1
|
Zeng F, Hu W, Xu H, Wang X, Zhao C, Wang Y, Wang J. Strontium regulating lipid metabolism of bovine hepatocytes via SIRT1/SREBPs pathway. J Steroid Biochem Mol Biol 2025; 252:106785. [PMID: 40403884 DOI: 10.1016/j.jsbmb.2025.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Periparturient dairy cows are susceptible to negative energy balance (NEB), which triggers excessive adipose mobilization, leading to elevated plasma non-esterified fatty acids (NEFA) and hepatic lipid accumulation. While strontium (Sr) has shown metabolic regulatory potential, its role in hepatic lipid homeostasis remains unclear. Using an NEFA-induced lipid accumulation model in bovine hepatocytes, we demonstrated that Sr (5-20 μM) significantly reduced intracellular triglyceride (TG) and total cholesterol (TC) levels. Further mechanistic studies revealed that Sr enhances SIRT1 expression and suppresses the expression and nuclear translocation of SREBP-1C/SREBP2, thereby downregulating downstream lipogenic enzymes including ACC, FASN, SCD1, and HMGCR. Molecular docking indicated that Sr²⁺ binds with high affinity to Asp-481/483 of SIRT1, while SIRT1 inhibition with EX-527 abolished Sr-mediated lipid-lowering effects. Additionally, Sr promoted PPARα nuclear translocation to enhance β-oxidation and upregulated LDLR expression to facilitate lipid efflux. This study elucidated the multi-target molecular mechanism of Sr alleviating lipid metabolism disorders in bovine hepatocytes through the SIRT1/SREBPs pathway, providing a theoretical foundation for the application of Sr in preventing metabolic diseases in dairy cows.
Collapse
Affiliation(s)
- Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjuan Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haichuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinxin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Nath VR, Krishnan H, Mishra S, Raghu P. Ca2+ binding to Esyt modulates membrane contact site density in Drosophila photoreceptors. J Cell Biol 2025; 224:e202407190. [PMID: 40042442 PMCID: PMC11893162 DOI: 10.1083/jcb.202407190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/12/2025] Open
Abstract
Membrane contact sites (MCS) between the plasma membrane (PM) and endoplasmic reticulum (ER) regulate Ca2+ influx. However, the mechanisms by which cells modulate ER-PM MCS density are not understood, and the role of Ca2+, if any, in regulating these is unknown. We report that in Drosophila photoreceptors, MCS density is regulated by the Ca2+ channels, TRP and TRPL. Regulation of MCS density by Ca2+ is mediated by Drosophila extended synaptotagmin (dEsyt), a protein localized to ER-PM MCS and previously shown to regulate MCS density. We find that the Ca2+-binding activity of dEsyt is required for its function in vivo. dEsytCaBM, a Ca2+ non-binding mutant of dEsyt is unable to modulate MCS structure. Further, reconstitution of dEsyt null photoreceptors with dEsytCaBM is unable to rescue ER-PM MCS density and other key phenotypes. Thus, our data supports a role for Ca2+ binding to dEsyt in regulating ER-PM MCS density in photoreceptors thus tuning signal transduction during light-activated Ca2+ influx.
Collapse
Affiliation(s)
- Vaisaly R. Nath
- National Centre for Biological Sciences-TIFR, Bangalore, India
- School of Biotechnology, Amrita University, Kollam, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Shirish Mishra
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bangalore, India
| |
Collapse
|
3
|
Andreini C. Twenty years in metalloprotein bioinformatics: A short history of a long journey. J Inorg Biochem 2025; 266:112854. [PMID: 39961171 DOI: 10.1016/j.jinorgbio.2025.112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
The study of the structure and function of metalloproteins is a central subject of inorganic biochemistry. Starting from the 2000s, computational methods have flanked experimental research by exploiting the ever-increasing computing power and the huge amount of data produced by omics technologies. In this article, we retrace the major advancements that brought bioinformatics from being of minor relevance to being an essential tool for today's inorganic biochemists, focusing on the contributions coming from the Magnetic Resonance Center (CERM) of Florence, where we have been developing for twenty years methods and resources to investigate metalloproteins with computational approaches.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Chauhan S, Thakur A, Kulharia M, Verma SK. Bioinformatics Analysis of Cancer Related CBP Mutations on Copper Ion and Drug Binding. Protein J 2025:10.1007/s10930-025-10266-9. [PMID: 40299217 DOI: 10.1007/s10930-025-10266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
In cancer biology, copper-binding proteins (CBPs) possess a wide range of roles that impact various aspects of tumour development and progression. Modifications in CBPs in malignancy may have an enormous effect on cellular processes essential for the development and growth of cancers. We utilised bioinformatics approaches to separate down CBPs in the cancer proteome, and 32 proteins have been determined to be putative CBPs. Twelve of these proteins were associated with a likelihood of metastatic spread from primary to secondary cancer regions. Results indicated that the point mutation causes structural and functional changes in the proteins. Point mutations also alter the Cu2+/+ binding sites and drug molecules' binding affinity for CBPs. The majority of mutations disrupt copper binding sites in CBPs, based on subsequent mutation studies focused on proteins P61769:B2MG (Beta-2-microglobulin) and P42684:ABL2 (Tyrosine kinase protein ABL2) due to their high and low expression profile respectively, in various cancer types. The copper ion binding sites and drug-binding affinity for B2MG and ABL2 highlighted in the case study represent the impact of point mutation on the proteins. This study highlighted the possible effect of mutations in CBPs, representing that the point mutations disrupt the intramolecular interactions of the proteins and simultaneously alter the other molecules' binding affinity.
Collapse
Affiliation(s)
- Shilpa Chauhan
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, India
| | - Ankit Thakur
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, India
| | - Mahesh Kulharia
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, India.
| | - Shailender Kumar Verma
- Department of Environmental Studies, University of Delhi, New Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Zahradníková A, Pavelková J, Sabo M, Baday S, Zahradník I. Structure-based mechanism of RyR channel operation by calcium and magnesium ions. PLoS Comput Biol 2025; 21:e1012950. [PMID: 40300027 PMCID: PMC12119028 DOI: 10.1371/journal.pcbi.1012950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/28/2025] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Ryanodine receptors (RyRs) serve for excitation-contraction coupling in skeletal and cardiac muscle cells in a noticeably different way, not fully understood at the molecular level. We addressed the structure of skeletal (RyR1) and cardiac (RyR2) isoforms relevant to gating by Ca2+ and Mg2+ ions (M2+). Bioinformatics analysis of RyR structures ascertained the EF-hand loops as the M2+ binding inhibition site and revealed its allosteric coupling to the channel gate. The intra-monomeric inactivation pathway interacts with the Ca2+-activation pathway in both RyR isoforms, and the inter-monomeric pathway, stronger in RyR1, couples to the gate through the S23*-loop of the neighbor monomer. These structural findings were implemented in the model of RyR operation based on statistical mechanics and the Monod-Wyman-Changeux theorem. The model, which defines closed, open, and inactivated macrostates allosterically coupled to M2+-binding activation and inhibition sites, approximated the open probability data for both RyR1 and RyR2 channels at a broad range of M2+ concentrations. The proposed mechanism of RyR operation provides a new interpretation of the structural and functional data of mammalian RyR channels on common grounds. This may provide a new platform for designing pharmacological interventions in the relevant diseases of skeletal and cardiac muscles. The synthetic approach developed in this work may find general use in deciphering mechanisms of ion channel functions.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Pavelková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Sabo
- Bioinformatics Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University, Istanbul, Türkiye
| | - Ivan Zahradník
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Zhang H, Zhong J, Gucwa M, Zhang Y, Ma H, Deng L, Mao L, Minor W, Wang N, Zheng H. PinMyMetal: a hybrid learning system to accurately model transition metal binding sites in macromolecules. Nat Commun 2025; 16:3043. [PMID: 40155596 PMCID: PMC11953438 DOI: 10.1038/s41467-025-57637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025] Open
Abstract
Metal ions are vital components in many proteins for the inference and engineering of protein function, with coordination complexity linked to structural, catalytic, or regulatory roles. Modeling transition metal ions, especially in transient, reversible, and concentration-dependent regulatory sites, remains challenging. We present PinMyMetal (PMM), a hybrid machine learning system designed to accurately predict transition metal localization and environment in macromolecules, tailored to tetrahedral and octahedral geometries. PMM outperforms other predictors, achieving high accuracy in ligand and coordinate predictions. It excels in predicting regulatory sites (median deviation 0.36 Å), demonstrating superior accuracy in locating catalytic sites (0.33 Å) and structural sites (0.19 Å). Each predicted site is assigned a certainty score based on local structural and physicochemical features, independent of homologs. Interactive validation through our server, CheckMyMetal, expands PMM's scope, enabling it to pinpoint and validate diverse functional metal sites from different structure sources (predicted structures, cryo-EM, and crystallography). This facilitates residue-wise assessment and robust metal binding site design. The lightweight PMM system demands minimal computing resources and is available at https://PMM.biocloud.top . The PMM workflow can interrogate with protein sequence to characterize the localization of the most probable transition metals, which is often interchangeable and hard to differentiate by nature.
Collapse
Affiliation(s)
- Huihui Zhang
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Juanhong Zhong
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Cracow, Poland
| | - Yishuai Zhang
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Haojie Ma
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Longfei Mao
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Nasui Wang
- Division of Endocrinology and Metabolism, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| | - Heping Zheng
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Lin X, Su Z, Liu Y(L, Liu J, Kuang X, Cummings PT, Spencer-Smith J, Meiler J. SuperMetal: A Generative AI Framework for Rapid and Precise Metal Ion Location Prediction in Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644685. [PMID: 40196543 PMCID: PMC11974720 DOI: 10.1101/2025.03.21.644685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Metal ions, as abundant and vital cofactors in numerous proteins, are crucial for enzymatic activities and protein interactions. Given their pivotal role and catalytic efficiency, accurately and efficiently identifying metal-binding sites is fundamental to elucidating their biological functions and has significant implications for protein engineering and drug discovery. To address this challenge, we present SuperMetal, a generative AI framework that leverages a score-based diffusion model coupled with a confidence model to predict metal-binding sites in proteins with high precision and efficiency. Using zinc ions as an example, SuperMetal outperforms existing state-of-the-art models, achieving a precision of 94 % and coverage of 90 %, with zinc ions localization within 0.52 ± 0.55 Å of experimentally determined positions, thus marking a substantial advance in metal-binding site prediction. Furthermore, SuperMetal demonstrates rapid prediction capabilities (under 10 seconds for proteins with ∼ 2000 residues) and remains minimally affected by increases in protein size. Notably, SuperMetal does not require prior knowledge of the number of metal ions-unlike AlphaFold 3, which depends on this information. Additionally, SuperMetal can be readily adapted to other metal ions or repurposed as a probe framework to identify other types of binding sites, such as protein-binding pockets.
Collapse
Affiliation(s)
- Xiaobo Lin
- Data Science Institute, Vanderbilt University, Nashville, 37212, TN, USA
- Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, 37235, TN, USA
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, Nashville, 37212, TN, USA
| | - Yunchao (Lance) Liu
- Computer Science Department, Vanderbilt University, Nashville, 37240, TN, USA
| | - Jingxian Liu
- Data Science Institute, Vanderbilt University, Nashville, 37212, TN, USA
| | - Xiaohan Kuang
- Data Science Institute, Vanderbilt University, Nashville, 37212, TN, USA
| | - Peter T. Cummings
- Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, 37235, TN, USA
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Jesse Spencer-Smith
- Data Science Institute, Vanderbilt University, Nashville, 37212, TN, USA
- Computer Science Department, Vanderbilt University, Nashville, 37240, TN, USA
| | - Jens Meiler
- Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, 04109, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) and School of Embedded Composite Artificial Intelligence (SECAI), Dresden/Leipzig, Germany
- Department of Chemistry, Department of Pharmacology, Center for Structural Biology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, 37235, TN, USA
| |
Collapse
|
8
|
Song H, Chen WJ, Chen SF, Liu M, Si G, Zhu X, Bhatt K, Mishra S, Ghorab MA, Chen S. Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136570. [PMID: 39603136 DOI: 10.1016/j.jhazmat.2024.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a strain of Pseudomonas nitroreducens W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50 % of chlorpyrifos (25 mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44 %) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence "HxHxDH", were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.
Collapse
Affiliation(s)
- Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guiling Si
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Basit A, Choudhury D, Bandyopadhyay P. Prediction of Ca 2+ Binding Site in Proteins With a Fast and Accurate Method Based on Statistical Mechanics and Analysis of Crystal Structures. Proteins 2025; 93:482-497. [PMID: 39258438 DOI: 10.1002/prot.26743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Predicting the precise locations of metal binding sites within metalloproteins is a crucial challenge in biophysics. A fast, accurate, and interpretable computational prediction method can complement the experimental studies. In the current work, we have developed a method to predict the location of Ca2+ ions in calcium-binding proteins using a physics-based method with an all-atom description of the proteins, which is substantially faster than the molecular dynamics simulation-based methods with accuracy as good as data-driven approaches. Our methodology uses the three-dimensional reference interaction site model (3D-RISM), a statistical mechanical theory, to calculate Ca2+ ion density around protein structures, and the locations of the Ca2+ ions are obtained from the density. We have taken previously used datasets to assess the efficacy of our method as compared to previous works. Our accuracy is 88%, comparable with the FEATURE program, one of the well-known data-driven methods. Moreover, our method is physical, and the reasons for failures can be ascertained in most cases. We have thoroughly examined the failed cases using different structural and crystallographic measures, such as B-factor, R-factor, electron density map, and geometry at the binding site. It has been found that x-ray structures have issues in many of the failed cases, such as geometric irregularities and dubious assignment of ion positions. Our algorithm, along with the checks for structural accuracy, is a major step in predicting calcium ion positions in metalloproteins.
Collapse
Affiliation(s)
- Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Czarnievicz N, Iturralde M, Comino N, Skolimowski M, López-Gallego F. Surface engineering of amine transaminases to control their region-selective immobilization. Int J Biol Macromol 2025; 290:138776. [PMID: 39706444 DOI: 10.1016/j.ijbiomac.2024.138776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The industrial use of enzymes often requires their immobilization to facilitate downstream processing and enable reuse. However, controlling enzyme orientation during immobilization is challenging and typically restricted to the N- and C-terminal regions. In this work, we propose a strategy to immobilize more active and stable amine transaminases (ATAs) by combining protein engineering with immobilization techniques. Our approach involves the structure-guided insertion of histidine clusters (His-clusters) at flexible regions of ATA subunit interfaces, enabling immobilization on cobalt-chelated carriers. By screening multiple ATAs from various microbial sources and testing different His-clusters for each, we identified the most active and stable heterogeneous biocatalysts. Notably, the immobilized H2A variant of Chromobacterium violaceum ATA (CvATA-2HA) exhibited the highest activity per mass of biocatalyst (4 U g-1). Meanwhile, the H3 variant of Pseudomonas fluorescens ATA (PfATA-H3) showed enhanced thermostability and DMSO resistance, being approximately 2.5 times more stable than its free counterpart. Overall, our findings highlight the impact of enzyme surface engineering on immobilization efficiency. The strategic placement of His-clusters enabled region-directed immobilization, improving both the activity and stability of specific ATA variants.
Collapse
Affiliation(s)
- Nicolette Czarnievicz
- Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain; Micronit BV, Colosseum 15, 7521 PV Enschede, the Netherlands
| | - Maialen Iturralde
- Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain
| | - Natalia Comino
- Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain
| | | | - Fernando López-Gallego
- Center for cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
11
|
Yang Q, Shi Q, Dong X, Yu L, Sun Y. Co 2+-boosted catalytic performance of polyhistidine-tagged organophosphate hydrolase locked in cobalt-organic framework. Int J Biol Macromol 2025; 288:138636. [PMID: 39674479 DOI: 10.1016/j.ijbiomac.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Hydrolysis of organophosphates (OPs) with organophosphate hydrolase (OPH) provides a green approach to degrading OPs, but the success of enzymatic OPs degradation relies on the availability of high-efficiency OPH. Herein, we report a simple but effective way to constructing high-performance OPH preparations based on the in situ encapsulation of hexahistidine-tagged OPH (H6-OPH) into cobaltous zeolitic imidazolate framework (ZIF-67) via biomineralization. ZIF-8 made of the same organic ligand but a different metal ion (Zn2+) was used for comparison. It was found that the H6-tag domain did not affect the catalytic properties of OPH in the absence of Co2+, but boosted the Co2+-activation effect on the H6-OPH catalytic activity by two-fold. Furthermore, H6-OPH@ZIF-67 retained the highly boosted activity, while H6-OPH@ZIF-8 and OPH@ZIF-67/ZIF-8 lost most of the activities. Extensive analysis revealed that the H6-tag promoted the Co2+-induced OPH conformation transition and locked the activated conformation in ZIF-67. Notably, H6-OPH@ZIF-67 not only achieved an activity recovery as high as 348 % and a 321 % increased catalytic efficiency (kcat/Km) over free OPH, but also exhibited greatly improved stability and reusability. The findings underscore the high efficiency of fabricating high-performance OPH preparations via polyhistidine-tag fusion, Co2+ activation and locking by the cobalt-organic framework.
Collapse
Affiliation(s)
- Qingru Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Papayova K, Bocanova L, Bauerova V, Bauer J, Halgasova N, Kajsikova M, Bukovska G. From sequence to function: Exploring biophysical properties of bacteriophage BFK20 lytic transglycosylase domain from the minor tail protein gp15. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141044. [PMID: 39218139 DOI: 10.1016/j.bbapap.2024.141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Bacteriophages have evolved different mechanisms of infection and penetration of bacterial cell walls. In Siphoviridae-like viruses, the inner tail proteins have a pivotal role in these processes and often encode lytic protein domains which increase infection efficiency. A soluble lytic transglycosylase (SLT) domain was identified in the minor tail protein gp15 from the BFK20 bacteriophage. Six fragments containing this SLT domain with adjacent regions of different lengths were cloned, expressed and purified. The biophysical properties of the two best expressing fragments were characterized by nanoDSF and CD spectroscopy, which showed that both fragments had a high refolding ability of 90 %. 3D modeling indicated that the bacteriophage BFK20 SLT domain is structurally similar to lysozyme. The degradation activity of these SLT proteins was evaluated using a lysozyme activity assay. BFK20 might use its transglycosylase activity to allow efficient phage DNA entry into the host cell by degrading bacterial peptidoglycan.
Collapse
Affiliation(s)
- Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Vladena Bauerova
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Jacob Bauer
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
13
|
Zhou JX, Zheng ZY, Peng ZX, Yang YT, Ni HG. Predictive model in silicon and pathogenicity mechanism of metabolic syndrome: Impacts of heavy metal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:124001. [PMID: 39746257 DOI: 10.1016/j.jenvman.2024.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Although the association between heavy metals in human and the development of metabolic syndrome (MetS) have been extensively studied, the pathogenic mechanism of MetS affected by metals is not clear to date. In this study, a predictive model was developed with machine learning base on the large-scale dataset. These proposed models were evaluated via comparatively analysis of their accuracy and robustness. With the optimal model, two metals significantly correlated with MetS were screened and were employed to infer the pathogenicity mechanism of MetS via molecular docking. Significant associations between heavy metals and MetS were found. Molecular docking provided insights into the interactions between metal ions and key protein receptors involved in metabolic regulation, suggesting a mechanism by which heavy metals interfere with metabolic functions. Specifically, Ba and Cd affect the development of MetS thru their interactions with insulin and estrogen receptors. This study attempted to explore heavy metals' potential roles in MetS at the molecular level. These findings emphasize the importance of addressing environmental exposures in the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Jing-Xuan Zhou
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhao-Xing Peng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yu-Ting Yang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Essien C, Wang N, Yu Y, Alqarghuli S, Qin Y, Manshour N, He F, Xu D. Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks. Comput Struct Biotechnol J 2024; 27:137-148. [PMID: 39840139 PMCID: PMC11750443 DOI: 10.1016/j.csbj.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs. However, accurately predicting these interactions remains challenging. In this study, we proposed GPred, a novel structure-based method that transforms the 3-dimensional structure of a protein into a point cloud representation and then designs a geometry-aware graph neural network to learn the local structural properties of each amino acid residue under specific ligand-binding supervision. We trained our model to predict the location of coordinated binding sites for five essential metal ions: Zn2+, Ca2+, Mg2+, Mn2+, and Fe2+. We further demonstrated the versatility of GPred by applying transfer learning to predict the binding sites of 2 heavy metal ions, that is, cadmium (Cd2+) and mercury (Hg2+). We achieved greater than 19.62 %, 14.32 %, 36.62 %, and 40.69 % improvement in the area under the precision-recall curve (AUPR) of Zn2+, Ca2+, Mg2+, Mn2+, and Fe2+, respectively, when compared with 6 current accessible state-of-the-art sequence-based or structure-based tools. We also validated the proposed approach on protein structures predicted by AlphaFold2, and its performance was similar to experimental protein structures. In both cases, achieving a low false discovery rate for proteins without annotated ion-binding sites was demonstrated. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Clement Essien
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ning Wang
- School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China
| | - Yang Yu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Salhuldin Alqarghuli
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yongfang Qin
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Negin Manshour
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Fei He
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
15
|
Sun S, Xie E, Xu S, Ji S, Wang S, Shen J, Wang R, Shen X, Su Y, Song Z, Wu X, Zhou J, Cai Z, Li X, Zhang Y, Min J, Wang F. The Intestinal Transporter SLC30A1 Plays a Critical Role in Regulating Systemic Zinc Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406421. [PMID: 39422023 PMCID: PMC11633486 DOI: 10.1002/advs.202406421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Indexed: 10/19/2024]
Abstract
The essential trace element, zinc, regulates virtually all aspects of cellular physiology, particularly cell proliferation and survival. Diverse families of metal transporters, metallothioneins, and metal-responsive transcriptional regulators are linked to zinc homeostasis. However, the mechanism underlying the regulation of systemic zinc homeostasis remains largely unknown. Here, it is reported that the intestinal transporter SLC30A1 plays an essential role in maintaining systemic zinc homeostasis. Using several lines of tissue-specific knockout mice, it is found that intestinal Slc30a1 plays a critical role in survival. Furthermore, lineage tracing reveals that Slc30a1 is localized to the basolateral membrane of intestinal epithelial cells (IECs). It is also found that Slc30a1 safeguards both intestinal barrier integrity and systemic zinc homeostasis. Finally, an integrative analysis of the cryo-EM structure and site-specific mutagenesis of human SLC30A1 are performed and a zinc transport mechanism of SLC30A1 unique within the SLC30A family, with His43 serving as a critical residue for zinc selectivity, is identified.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Enjun Xie
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Shan Xu
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Suyu Ji
- Department of Biophysics and Department of PathologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Shufen Wang
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Jie Shen
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Rong Wang
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xinyi Shen
- The First Affiliated HospitalBasic Medical SciencesSchool of Public HealthHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yunxing Su
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Zijun Song
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Xiaotian Wu
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Jiahui Zhou
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Zhaoxian Cai
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xiaopeng Li
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Yan Zhang
- Department of Biophysics and Department of PathologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Junxia Min
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Fudi Wang
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- The First Affiliated HospitalBasic Medical SciencesSchool of Public HealthHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
16
|
Rahman A, Tamseel S, Dutta S, Khan N, Faaiz M, Rastogi H, Nath JR, Haldar K, Chowdhury P, Ashish, Bhattacharjee S. Artemisinin-resistant Plasmodium falciparum Kelch13 mutant proteins display reduced heme-binding affinity and decreased artemisinin activation. Commun Biol 2024; 7:1499. [PMID: 39538019 PMCID: PMC11561146 DOI: 10.1038/s42003-024-07178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13.
Collapse
Affiliation(s)
- Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Sabahat Tamseel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Smritikana Dutta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Nawaal Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Mohammad Faaiz
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jyoti Rani Nath
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Pramit Chowdhury
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India.
| |
Collapse
|
17
|
Wang Q, Huang N, Psaltis JB, Gahtani RM, Yan G, Lu D, Cahalan SR, Shi X, Copeland RL, Haddad BR, Martin MB. Activation of estrogen-related receptor γ by calcium and cadmium. Front Endocrinol (Lausanne) 2024; 15:1400022. [PMID: 39507056 PMCID: PMC11537906 DOI: 10.3389/fendo.2024.1400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Estrogen-related receptor γ (ERRγ) is a metabolic regulator with no identified physiological ligands. This study investigates whether calcium is an ERRγ ligand that mediates the effects of glucagon and whether cadmium, which mimics the effects of calcium, disrupts metabolism through ERRγ. Method HepG2, MCF-7, and HEK293T transfected with ERRγ were treated with glucagon, calcium, cadmium, ERRγ agonist, or ERRγ inhibitor. Cells were then collected for in vitro assays including real-time qPCR, Western blot, ChIP, immunofluorescence, mutational analysis, or gene set enrichment analysis. Molecular dynamics simulations were performed to study mutation sites. Results In HepG2 cells, treatment with glucagon, calcium, or cadmium re-localized ERRγ to the cell nucleus, recruited ERRγ to estrogen-related response elements, induced the expression of ERRγ-regulated genes, and increased extracellular glucose that was blocked by an ERRγ antagonist. In MCF-7 cells and HEK293T cells transfected with ERRγ, similar treatments induced the expression of metabolic genes. Mutational analysis identified S303, T429, and E452 in the ligand-binding domain as potential interaction sites. Molecular dynamics simulations showed that calcium induced changes in ERRγ similar to ERRγ agonist. Conclusion The results suggest that calcium is a potential ligand of ERRγ that mediates the effects of glucagon and cadmium disrupts metabolism through ERRγ.
Collapse
Affiliation(s)
- Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Nanxi Huang
- Oncology, Georgetown University, Washington DC, United States
| | - John B. Psaltis
- Oncology, Georgetown University, Washington DC, United States
| | - Reem M. Gahtani
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Gai Yan
- Oncology, Georgetown University, Washington DC, United States
| | - Dajun Lu
- Oncology, Georgetown University, Washington DC, United States
| | | | - Xu Shi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Robert L. Copeland
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC, United States
| | | | - Mary Beth Martin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
- Oncology, Georgetown University, Washington DC, United States
| |
Collapse
|
18
|
Andrikopoulos PC, Čabart P. The chromatin remodeler SMARCA5 binds to d-block metal supports: Characterization of affinities by IMAC chromatography and QM analysis. PLoS One 2024; 19:e0309134. [PMID: 39374200 PMCID: PMC11458017 DOI: 10.1371/journal.pone.0309134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/05/2024] [Indexed: 10/09/2024] Open
Abstract
The ISWI family protein SMARCA5 contains the ATP-binding pocket that coordinates the catalytic Mg2+ ion and water molecules for ATP hydrolysis. In this study, we demonstrate that SMARCA5 can also possess an alternative metal-binding ability. First, we isolated SMARCA5 on the cobalt column (IMAC) to near homogeneity. Examination of the interactions of SMARCA5 with metal-chelating supports showed that, apart from Co2+, it binds to Cu2+, Zn2+ and Ni2+. The efficiency of the binding to the last-listed metal was influenced by the chelating ligand, resulting in a strong preference for Ni-NTA over the Ni-CM-Asp equivalent. To gain insight in the preferential affinity for the Ni-NTA ligand, QM calculations were performed on model systems and metal-ligand complexes with a limited protein fragment of SMARCA5 containing the double-histidine (dHis) motif. The calculations correlated the observed affinity with the relative stability of the d-block metals to tetradentate ligand coordination over tridentate, as well as their overall octahedral coordination capacity. Likewise, binding free energies derived from model imidazole complexes mirrored the observed Ni-NTA/Ni-CM-Asp preferential affinity. Finally, similar calculations on complexes with a SMARCA5 peptide fragment derived from the AlphaFold structural prediction, captured almost accurately the expected relative stability of the TM complexes, and produced a large energetic separation (~10 kcal∙mol-1) between Ni-NTA and Ni-CM-Asp in favour of the former.
Collapse
Affiliation(s)
- Prokopis C. Andrikopoulos
- BIOCEV, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- BIOCEV, 1 Faculty of Medicine, Charles University, Vestec, Czechia
| | - Pavel Čabart
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
19
|
Zhang X, Chen R, Shu H, Liang P, Qin T, Wang K, Guo A, Craik DJ, Liao B, Zhang J. Gene-guided identifications of a structure-chimeric cyclotide viphi I from Viola philippica: Potential functions against cadmium and nematodes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112185. [PMID: 38986912 DOI: 10.1016/j.plantsci.2024.112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The cyclic peptides, cyclotides, are identified mostly with 29-31-aa (amino acid residues) but rarely with ≥ 34-aa in plants. Viola philippica is a well-known medicinal plant but a rare metallophyte with cyclotides. A hypothesis was hence raised that the potential novel 34-aa cyclotide of Viola philippica would clearly broaden the structural and functional diversities of plant cyclotides. After homology-cloning the cyclotide precursor gene of VpCP5, a 34-aa cyclotide (viphi I) was identified to be larger than 22 other known cyclotides in V. philippica. It had a chimeric primary structure, due to its unusual loop structures (8 residues in loop 2 and 6 residues in loop 5) and aa composition (3 E and 5 R), by using phylogenetic analyses and an in-house cyclotide analysis tool, CyExcel_V1. A plasmid pCYC-viphi_I and a lab-used recombinant process were specially constructed for preparing viphi I. Typically, 0.12 or 0.25 mg ml-1 co-exposed viphi I could significantly remain cell activities with elevating Cd2+-exposed doses from 10-8 to 10-6 mol l-1 in MCF7 cells. In the model nematode Caenorhabditis elegans, IC50 values of viphi I to inhibit adult ratios and to induce death ratios, were 184.7 and 585.9 µg ml-1, respectively; the median lifespan of adult worms decreased from 14 to 2 d at viphi I doses ranging from 0.05 to 2 mg ml-1. Taken together, the newly identified viphi I exhibits functional potentials against cadmium and nematodes, providing new insights into structural and functional diversity of chimeric cyclotides in plants.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Ruohong Chen
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Haoyue Shu
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Peihui Liang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Ting Qin
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Kemei Wang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Aimin Guo
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| | - Bin Liao
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Jun Zhang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| |
Collapse
|
20
|
Ertik O, Yanardag R. Purification and characterization of glutamate dehydrogenase from rainbow trout (Oncorhynchus mykiss) liver and molecular docking studies. Biotechnol Appl Biochem 2024; 71:1005-1024. [PMID: 38689532 DOI: 10.1002/bab.2593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Glutamate dehydrogenase (GDH) participates in the energy metabolism of proteins and the synthesis of metabolites important for the organism. In this study, GDH enzyme was purified from the liver of rainbow trout (Oncorhynchus mykiss) by 2',5'-ADP Sepharose 4B affinity chromatography in one step. As a result of this purification process, GDH enzyme was purified 171-fold with 5.83 U/mg protein-specific activity. The characterization experiments presented that the storage stability of the purified GDH enzyme was determined as -80°C; optimum temperature 40°C; it was determined that the optimum ionic strength was 100 mM phosphate buffer and the optimum pH was 8.00. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and PAGE studies showed that the natural molar mass of the purified GDH enzyme was 346.74 kDa, and the molar mass of its subunits was 53.71 kDa. Km and Vmax values for substrates and coenzymes of GDH enzyme purified from rainbow trout liver were calculated, and the lowest Km value was found in NAD+ (1.86 mM) and the highest Vmax value in NH4 + (1.79 U/mL). The effects of some metal ions, vitamins, and solvents on the activity of the purified GDH enzyme were investigated and also IC50 values and inhibition types. The metal ion with the lowest IC50 value is Ag+ (8.65 ± 1.68 μM), and the vitamin is B6 (0.77 ± 0.04 mM). The binding affinities of inhibitors were investigated with molecular docking, based on the conformational state of GDH.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| |
Collapse
|
21
|
Ramírez-Alonso JI, Sampedro JG. Effect of Cations on ATP Binding to the N-domain of Na +, K +-ATPase. J Fluoresc 2024:10.1007/s10895-024-03922-3. [PMID: 39298054 DOI: 10.1007/s10895-024-03922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
The nucleotide-binding domain (N-domain) of the Na+, K+-ATPase (NKA) is physicochemically characterized by a high content of Glu and Asp residues, resulting in a low isoelectric point (pI = 5.0). Acidic proteins are known to interact with cations. The analysis in silico revealed potential cation interaction sites in the NKA N-domain structure. The interaction with cations was tested in vitro by using a recombinant NKA N-domain. The N-domain contains two Trp residues at the protein surface, as determined by acrylamide-mediated fluorescence quenching, that are useful for structural studies through fluorescence changes. Intrinsic fluorescence of the N-domain was decreased by the presence of cations (Na+, K+, Ca2+) indicating an effect on the protein structure. ATP binding also decreased the N-domain intrinsic fluorescence, which allowed nucleotide affinity determination. In the presence of cations, the N-domain affinity for ATP was increased. Molecular docking of fluorescein isothiocyanate (FITC) with the N-domain showed two binding modes with the isothiocyanate group located 5-6 Å close to Lys485 and Lys506 in the nucleotide-binding site. The presence of ATP prevented the FITC covalent labeling of the N-domain demonstrating the competitive behavior for the binding site. It is proposed that cations interact with the N-domain structure and thereby modulate nucleotide (ATP) affinity and possibly affecting NKA catalysis.
Collapse
Affiliation(s)
- Jocelin I Ramírez-Alonso
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México.
| |
Collapse
|
22
|
Kennedy L, Sajjad M, Herrera MA, Szieber P, Rybacka N, Zhao Y, Steven C, Alghamdi Z, Zlatkov I, Hagen J, Lauder C, Rudolfova N, Abramiuk M, Bolimowska K, Joynt D, Lucero A, Ortiz GP, Lilienkampf A, Hulme AN, Campopiano DJ. Developing deprotectase biocatalysts for synthesis. Faraday Discuss 2024; 252:174-187. [PMID: 38856717 PMCID: PMC11389852 DOI: 10.1039/d4fd00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Organic synthesis often requires multiple steps where a functional group (FG) is concealed from reaction by a protecting group (PG). Common PGs include N-carbobenzyloxy (Cbz or Z) of amines and tert-butyloxycarbonyl (OtBu) of acids. An essential step is the removal of the PG, but this often requires excess reagents, extensive time and can have low % yield. An overarching goal of biocatalysis is to use "green" or "enzymatic" methods to catalyse chemical transformations. One under-utilised approach is the use of "deprotectase" biocatalysts to selectively remove PGs from various organic substrates. The advantage of this methodology is the exquisite selectivity of the biocatalyst to only act on its target, leaving other FGs and PGs untouched. A number of deprotectase biocatalysts have been reported but they are not commonly used in mainstream synthetic routes. This study describes the construction of a cascade to deprotect doubly-protected amino acids. The well known Bacillus BS2 esterase was used to remove the OtBu PG from various amino acid substrates. The more obscure Sphingomonas Cbz-ase (amidohydrolase) was screened with a range of N-Cbz-modified amino acid substrates. We then combined both the BS2 and Cbz-ase together for a 1 pot, 2 step deprotection of the model substrate CBz-L-Phe OtBu to produce the free L-Phe. We also provide some insight into the residues involved in substrate recognition and catalysis using docked ligands in the crystal structure of BS2. Similarly, a structural model of the Cbz-ase identifies a potential di-metal binding site and reveals conserved active site residues. This new biocatalytic cascade should be further explored for its application in chemical synthesis.
Collapse
Affiliation(s)
- Lisa Kennedy
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Mariyah Sajjad
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Michael A Herrera
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Peter Szieber
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Natasza Rybacka
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Yinan Zhao
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Craig Steven
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Zainab Alghamdi
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Ivan Zlatkov
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Julie Hagen
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Chloe Lauder
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Natalie Rudolfova
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Magdalena Abramiuk
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Karolina Bolimowska
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Daniel Joynt
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Angelica Lucero
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Gustavo Perez Ortiz
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Annamaria Lilienkampf
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Alison N Hulme
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
23
|
Tian S, Faheem M, Satti HS, Xiao J, Zhang F, Khan TN, Liu C. A homozygous missense variant in YTHDC2 induces azoospermia in two siblings. Mol Genet Genomics 2024; 299:84. [PMID: 39223386 DOI: 10.1007/s00438-024-02168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg2+ binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.
Collapse
Affiliation(s)
- Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
- National Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tahir Naeem Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
- National Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
24
|
Kushwah AS, Dixit H, Upadhyay V, Verma SK, Prasad R. The study of iron- and copper-binding proteome of Fusarium oxysporum and its effector candidates. Proteins 2024; 92:1097-1112. [PMID: 38666709 DOI: 10.1002/prot.26696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 08/07/2024]
Abstract
Fusarium oxysporum f.sp. lycopersici is a phytopathogen which causes vascular wilt disease in tomato plants. The survival tactics of both pathogens and hosts depend on intricate interactions between host plants and pathogenic microbes. Iron-binding proteins (IBPs) and copper-binding proteins (CBPs) play a crucial role in these interactions by participating in enzyme reactions, virulence, metabolism, and transport processes. We employed high-throughput computational tools at the sequence and structural levels to investigate the IBPs and CBPs of F. oxysporum. A total of 124 IBPs and 37 CBPs were identified in the proteome of Fusarium. The ranking of amino acids based on their affinity for binding with iron is Glu > His> Asp > Asn > Cys, and for copper is His > Asp > Cys respectively. The functional annotation, determination of subcellular localization, and Gene Ontology analysis of these putative IBPs and CBPs have unveiled their potential involvement in a diverse array of cellular and biological processes. Three iron-binding glycosyl hydrolase family proteins, along with four CBPs with carbohydrate-binding domains, have been identified as potential effector candidates. These proteins are distinct from the host Solanum lycopersicum proteome. Moreover, they are known to be located extracellularly and function as enzymes that degrade the host cell wall during pathogen-host interactions. The insights gained from this report on the role of metal ions in plant-pathogen interactions can help develop a better understanding of their fundamental biology and control vascular wilt disease in tomato plants.
Collapse
Affiliation(s)
- Ankita Singh Kushwah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, North Campus, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
25
|
Goswami V, Das SM, Deep S. Quercetin-Loaded Nanocarriers as Effective Inhibitors for Copper Metal Ion-Induced γD-Crystallin Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16093-16102. [PMID: 39046313 DOI: 10.1021/acs.langmuir.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cataract is one of the leading causes of blindness worldwide. Till date, the only solution for cataracts is surgery, which is a resource-intensive solution. A much simpler solution is to find a potential drug that could inhibit aggregation. It is well established that nonamyloid aggregates of eye lens protein result in cataract. γD-Crystallin, a thermodynamically stable protein, is one of the most abundant proteins in the core of the eye lens and is found to aggregate under stress conditions, leading to the cataract. It has also been found that in cataractous lens, the concentration of metals like copper is elevated significantly as compared to healthy eye lens, suggesting their role in inducing aggregation. In our present study, aggregation of γD-Crystallin was carried out in the presence of Cu (II). Using techniques like turbidity assay, CD spectroscopy, ANS binding assay, and microscopic studies like TEM, it could be confirmed that protein aggregates in the presence of Cu (II) and the nature of aggregates is amorphous. Various polyphenols were tested to suppress aggregation of the protein. Quercetin was observed to be the most efficient. To overcome the problems associated with the delivery of polyphenols, such as solubility and bioavailability, quercetin was encapsulated in two types of nanocarriers. Their characterization was done using TEM, DLS, and other techniques. The potency of quercetin-loaded CS-TPP/CS-PLGA NPs as inhibitors of γD-Crystallin aggregation was confirmed by various experiments.
Collapse
Affiliation(s)
- Vishakha Goswami
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sony Moni Das
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
26
|
Abdul Aziz SFN, Salleh AB, Normi YM, Mohammad Latif MA, Alang Ahmad SA. Bioinspired mp20 mimicking uricase in ZIF-8: Metal ion dependent for controllable activity. Enzyme Microb Technol 2024; 178:110439. [PMID: 38579423 DOI: 10.1016/j.enzmictec.2024.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20. The metal ion-binding site prediction and docking (MIB) web server was employed to identify the metal ion binding sites and their affinities towards mp20 residues. Among the tested metal ions, Cu2+ displayed the highest docking score, indicating its preference for interaction with Thr16 and Asp17 residues of mp20. To assess the catalytic activity of mp20 in the presence of metal ions, uric acid assays was monitored using a colorimetric method. The presence of Cu2+ in the assays promotes the activation of mp20, resulting in a color change based on quinoid production. Furthermore, the encapsulation of the mp20 within zeolitic imidazolate framework-8 (ZIF-8) notably improved the stability of the biomolecule. In comparison to the naked mp20, the encapsulated ZIFs biocomposite (mp20@ZIF-8) demonstrates superior stability, selectivity and sensitivity. ZIF's porous shells provides excellent protection, broad detection (3-100 μM) with a low limit (4.4 μM), and optimal function across pH (3.4-11.4) and temperature (20-100°C) ranges. Cost-effective and stable mp20@ZIF-8 surpasses native uricase, marking a significant biosensor technology breakthrough. This integration of metal cofactor optimization and robust encapsulation sets new standards for biosensing applications.
Collapse
Affiliation(s)
- Siti Fatimah Nur Abdul Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang 11800, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Muhammad Alif Mohammad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
27
|
Zhao Q, Liang W, Xiong Z, Li C, Zhang L, Rong J, Xiong S, Liu R, You J, Yin T, Hu Y. Digestion and absorption characteristics of iron-chelating silver carp scale collagen peptide and insights into their chelation mechanism. Food Res Int 2024; 190:114612. [PMID: 38945620 DOI: 10.1016/j.foodres.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl2·4H2O, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO4. Two potential high iron chelating peptides DTSGGYDEY (DY) and LQGSNEIEIR (LR) were screened and synthesized from the SCSCP sequence by molecular dynamics and LC-MS/MS techniques. The FTIR results displayed that the binding sites of DY and LR for Fe2+ were the carboxyl group, the amino group, and the nitrogen atom on the amide group on the peptide. ITC results indicated that the chelation reactions of DY and LR with Fe2+ were mainly dominated by electrostatic interactions, forming chelates in stoichiometric ratios of 1:2 and 1:1, respectively. Both DY and LR had a certain ability to promote iron absorption. The transport of DY-Fe chelate may be a combination of the three pathways: PepT1 vector pathway, cell bypass, and endocytosis, while LR-Fe chelate was dominated by bivalent metal ion transporters. This study is expected to provide theoretical reference and technical support for the high-value utilization of silver carp scales and the development of novel iron supplements.
Collapse
Affiliation(s)
- Qiannan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhe Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
28
|
Wu Y, Sun Y. A Hydrophilic Metal Azolate Coordination Polymer for In Situ Encapsulation of Haloalkane Dehalogenase with Enhanced Enzymatic Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35566-35575. [PMID: 38922631 DOI: 10.1021/acsami.4c06357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Encapsulating enzymes within metal-organic frameworks such as zeolitic imidazolate framework-8 (ZIF-8) has been demonstrated to enhance enzymatic performance under harsh conditions. However, by computer-aided analysis, we revealed that highly hydrophobic organic ligands and unfavorable metal ions could greatly impair the activity of haloalkane dehalogenase DhaA by directly interacting with the catalytic sites, causing an extremely low activity of DhaA after encapsulating within ZIF-8. We also found that the presence of a protecting polymer could protect DhaA from the damage of organic ligands and metal ions and that a positively charged amino acid could increase the DhaA activity. Based on the simulations and experimental observations, we have designed to coencapsulate DhaA with poly(vinylpyrrolidone) (PVP) and lysine (Lys) within the amorphous Co-based metal azolate coordination polymer (CoCP). The as-prepared immobilized enzyme (DhaA/PVP/Lys@CoCP) exhibited significantly increased activity (91.5 times higher than that of DhaA@ZIF-8), dramatically enhanced thermostability at 50-70 °C, greatly improved catalytic performance in several organic solvent solutions, and good recyclability (over 75% of the initial activity after 10 cycles). The superiority of the immobilized enzyme was also demonstrated with a substrate frequently detected in the real world. In addition to the protective effect of PVP and positive effect of Lys, experimental and computational investigations unveiled other two favorable aspects that contributed to the enhanced enzymatic performance: (1) high hydrophilicity of the immobilization material and (2) the use of Co2+ with a minimal negative effect on DhaA. The research has thus provided a promising immobilized DhaA with favorable catalytic performance and great potential in industrial applications.
Collapse
Affiliation(s)
- Yin Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
29
|
Davuluri KS, Shukla S, Kakade M, Cherian S, Alagarasu K, Parashar D. Explorations on the antiviral potential of zinc and magnesium salts against chikungunya virus: implications for therapeutics. Front Cell Infect Microbiol 2024; 14:1335189. [PMID: 38895735 PMCID: PMC11183322 DOI: 10.3389/fcimb.2024.1335189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Background Chikungunya virus (CHIKV), which causes chikungunya fever, is an arbovirus of public health concern with no approved antiviral therapies. A significant proportion of patients develop chronic arthritis after an infection. Zinc and magnesium salts help the immune system respond effectively against viral infections. This study explored the antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV infection. Methods The highest non-toxic concentration of the salts (100 µM) was used to assess the prophylactic, virucidal, and therapeutic anti-CHIKV activities. Dose-dependent antiviral effects were investigated to find out the 50% inhibitory concentration of the salts. Entry bypass assay was conducted to find out whether the salts affect virus entry or post entry stages. Virus output in all these experiments was estimated using a focus-forming unit assay, real-time RT-PCR, and immunofluorescence assay. Results Different time- and temperature-dependent assays revealed the therapeutic antiviral activity of zinc and magnesium salts against CHIKV. A minimum exposure of 4 hours and treatment initiation within 1 to 2 hours of infection are required for inhibition of CHIKV. Entry assays revealed that zinc salt affected virus-entry. Entry bypass assays suggested that both salts affected post-entry stages of CHIKV. In infected C57BL6 mice orally fed with zinc and magnesium salts, a reduction in viral RNA copy number was observed. Conclusion The study results suggest zinc salts exert anti-CHIKV activity at entry and post entry stages of the virus life cycle, while magnesium salt affect CHIKV at post entry stages. Overall, the study highlights the significant antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV, which can be exploited in designing potential therapeutic strategies for early treatment of chikungunya patients, thereby reducing the virus-associated persistent arthritis.
Collapse
Affiliation(s)
- Kusuma Sai Davuluri
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Shridhar Shukla
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Mahadeo Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
| | - Sarah Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalichamy Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Deepti Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Samal RR, Subudhi U. Biochemical and biophysical interaction of rare earth elements with biomacromolecules: A comprehensive review. CHEMOSPHERE 2024; 357:142090. [PMID: 38648983 DOI: 10.1016/j.chemosphere.2024.142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Matsubara M, Muraki Y, Suzuki H, Hatano N, Muraki K. Critical amino acid residues regulating TRPA1 Zn 2+ response: A comparative study across species. J Biol Chem 2024; 300:107302. [PMID: 38642892 PMCID: PMC11134551 DOI: 10.1016/j.jbc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.
Collapse
Affiliation(s)
- Masaki Matsubara
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Yukiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Hiroka Suzuki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
32
|
Attri K, Chudasama B, Mahajan RL, Choudhury D. Integrated insulin-iron nanoparticles: a multi-modal approach for receptor-specific bioimaging, reactive oxygen species scavenging, and wound healing. DISCOVER NANO 2024; 19:96. [PMID: 38814485 PMCID: PMC11139842 DOI: 10.1186/s11671-024-04024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Metallic nanoparticles have emerged as a promising option for various biological applications, owing to their distinct characteristics such as small size, optical properties, and ability to exhibit luminescence. In this study, we have successfully employed a one-pot method to synthesize multifunctional insulin-protected iron [Fe(II)] nanoparticles denoted as [IFe(II)NPs]. The formation of IFe(II)NPs is confirmed by the presence of FTIR bonds at 447.47 and 798.28 cm-1, corresponding to Fe-O and Fe-N bonds, respectively. Detailed analysis of the HR-TEM-EDS-SAED data reveals that the particles are spherical in shape, partially amorphous in nature, and have a diameter of 28.6 ± 5.2 nm. Additionally, Metal Ion Binding (MIB) and Protein Data Bank (PDB) analyses affirm the binding of iron ions to the insulin hexamer. Our findings underscore the potential of IFe(II)NPs as a promising new platform for a variety of biomedical applications due to their high signal-to-noise ratio, and minimal background fluorescence. The particles are highly luminescent, biocompatible, and have a significant quantum yield (0.632). Exemplar applications covered in this paper include insulin receptor recognition and protection against reactive oxygen species (ROS), harmful molecules known to inflict damage on cells and DNA. The IFe(II)NPs effectively mitigate ROS-induced inflammation, which is a hinderance to wound recovery, thereby facilitating enhanced wound recovery.
Collapse
Affiliation(s)
- Komal Attri
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Bhupendra Chudasama
- Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Department of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Roop L Mahajan
- Department of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Department of Mechanical Engineering, Department of Materials Science and Engineering Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
33
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
34
|
Pelentir GF, Tomazini A, Bevilaqua VR, Viviani VR. Role of Histidine 310 in Amydetes vivianii firefly luciferase pH and metal sensitivities and improvement of its color tuning properties. Photochem Photobiol Sci 2024; 23:997-1010. [PMID: 38693447 DOI: 10.1007/s43630-024-00570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.
Collapse
Affiliation(s)
- Gabriel F Pelentir
- Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Atílio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Vanessa R Bevilaqua
- Biomaterials Laboratory, Pontifical Catholic University-PUC, Sorocaba, SP, Brazil
| | - Vadim R Viviani
- Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
- Department of Physics, Chemistry and Mathematics, Center for Sustainable Sciences and Technologies (CCTS), UFSCar, Sorocaba, SP, Brazil.
| |
Collapse
|
35
|
Yuan Q, Tian C, Yang Y. Genome-scale annotation of protein binding sites via language model and geometric deep learning. eLife 2024; 13:RP93695. [PMID: 38630609 PMCID: PMC11023698 DOI: 10.7554/elife.93695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven't fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.
Collapse
Affiliation(s)
- Qianmu Yuan
- School of Computer Science and Engineering, Sun Yat-sen UniversityGuangzhouChina
| | - Chong Tian
- School of Computer Science and Engineering, Sun Yat-sen UniversityGuangzhouChina
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
36
|
Moosavi-Movahedi F, Saboury AA, Ghasemi A, Pirhaghi M, Mamashli F, Mohammad-Zaheri M, Arghavani P, Yousefi R, Moosavi-Movahedi AA. Exploring the significance of potassium homeostasis in copper ion binding to human αB-Crystallin. Int J Biol Macromol 2024; 263:130261. [PMID: 38368978 DOI: 10.1016/j.ijbiomac.2024.130261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.
Collapse
Affiliation(s)
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
37
|
Hou R, Wang Z, Zhu Q, Wang J, Zhou Y, Li Y, Liu H, Zhao Q, Huang J. Identification and characterization of the critical genes encoding Cd-induced enhancement of SOD isozymes activities in Zhe-Maidong ( Ophiopogon japonicus). FRONTIERS IN PLANT SCIENCE 2024; 15:1355849. [PMID: 38606075 PMCID: PMC11007131 DOI: 10.3389/fpls.2024.1355849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Superoxide dismutase (SOD) protects plants from abiotic stress-induced reactive oxygen species (ROS) damage. Here, the effects of cadmium (Cd) exposure on ROS accumulation and SOD isozymes, as well as the identification of significant SOD isozyme genes, were investigated under different Cd stress treatments to Zhe-Maidong (Ophiopogon japonicus). The exposure to Cd stress resulted in a notable elevation in the SOD activity in roots. Cu/ZnSODa and Cu/ZnSODb were the most critical SOD isozymes in response to Cd stress, as indicated by the detection results for SOD isozymes. A total of 22 OjSOD genes were identified and classified into three subgroups, including 10 OjCu/ZnSODs, 6 OjMnSODs, and 6 OjFeSODs, based on the analysis of conserved motif and phylogenetic tree. Cu/ZnSOD-15, Cu/ZnSOD-18, Cu/ZnSOD-20, and Cu/ZnSOD-22 were the main genes that control the increase in SOD activity under Cd stress, as revealed via quantitative PCR and transcriptome analysis. Additionally, under various heavy metal stress (Cu2+, Fe2+, Zn2+, Mn2+), Cu/ZnSOD-15, Cu/ZnSOD-18, and Cu/ZnSOD-22 gene expression were significantly upregulated, indicating that these three genes play a critical part in resisting heavy metal stress. The molecular docking experiments performed on the interaction between oxygen ion (O2•-) and OjSOD protein have revealed that the critical amino acid residues involved in the binding of Cu/ZnSOD-22 to the substrate were Pro135, Ile136, Ile140, and Arg144. Our findings provide a solid foundation for additional functional investigations on the OjSOD genes, as well as suggestions for improving genetic breeding and agricultural management strategies to increase Cd resistance in O. japonicus.
Collapse
Affiliation(s)
- Ruijun Hou
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhihui Wang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Qian Zhu
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Jie Wang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Yifeng Zhou
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Li
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qian Zhao
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
38
|
Sun R, Zheng P, Chen P, Wu D, Zheng J, Liu X, Hu Y. Enhancing the Catalytic Efficiency of D-lactonohydrolase through the Synergy of Tunnel Engineering, Evolutionary Analysis, and Force-Field Calculations. Chemistry 2024; 30:e202304164. [PMID: 38217521 DOI: 10.1002/chem.202304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Computational design advances enzyme evolution and their use in biocatalysis in a faster and more efficient manner. In this study, a synergistic approach integrating tunnel engineering, evolutionary analysis, and force-field calculations has been employed to enhance the catalytic activity of D-lactonohydrolase (D-Lac), which is a pivotal enzyme involved in the resolution of racemic pantolactone during the production of vitamin B5. The best mutant, N96S/A271E/F274Y/F308G (M3), was obtained and its catalytic efficiency (kcat/KM) was nearly 23-fold higher than that of the wild-type. The M3 whole-cell converted 20 % of DL-pantolactone into D-pantoic acid (D-PA, >99 % e.e.) with a conversion rate of 47 % and space-time yield of 107.1 g L-1 h-1, demonstrating its great potential for industrial-scale D-pantothenic acid production. Molecular dynamics (MD) simulations revealed that the reduction in the steric hindrance within the substrate tunnel and conformational reconstruction of the distal loop resulted in a more favourable"catalytic" conformation, making it easier for the substrate and enzyme to enter their pre-reaction state. This study illustrates the potential of the distal residue on the pivotal loop at the entrance of the D-Lac substrate tunnel as a novel modification hotspot capable of reshaping energy patterns and consequently influencing the enzymatic activity.
Collapse
Affiliation(s)
- Ruobin Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiangmei Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xueyu Liu
- Hangzhou Xinfu Technology Co., Ltd., Hangzhou, 311301, P. R. China
| | - Yunxiang Hu
- Hangzhou Xinfu Technology Co., Ltd., Hangzhou, 311301, P. R. China
| |
Collapse
|
39
|
Zheng H, Zhang H, Zhong J, Gucwa M, Zhang Y, Ma H, Deng L, Mao L, Minor W, Wang N. PinMyMetal: A hybrid learning system to accurately model metal binding sites in macromolecules. RESEARCH SQUARE 2024:rs.3.rs-3908734. [PMID: 38463967 PMCID: PMC10925427 DOI: 10.21203/rs.3.rs-3908734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Metal ions are vital components in many proteins for the inference and engineering of protein function, with coordination complexity linked to structural (4-residue predominate), catalytic (3-residue predominate), or regulatory (2-residue predominate) roles. Computational tools for modeling metal ions in protein structures, especially for transient, reversible, and concentration-dependent regulatory sites, remain immature. We present PinMyMetal (PMM), a sophisticated hybrid machine learning system for predicting zinc ion localization and environment in macromolecular structures. Compared to other predictors, PMM excels in predicting regulatory sites (median deviation of 0.34 Å), demonstrating superior accuracy in locating catalytic sites (median deviation of 0.27 Å) and structural sites (median deviation of 0.14 Å). PMM assigns a certainty score to each predicted site based on local structural and physicochemical features independent of homolog presence. Interactive validation through our server, CheckMyMetal, expands PMM's scope, enabling it to pinpoint and validates diverse functional zinc sites from different structure sources (predicted structures, cryo-EM and crystallography). This facilitates residue-wise assessment and robust metal binding site design. The lightweight PMM system demands minimal computing resources and is available at https://PMM.biocloud.top. While currently trained on zinc, the PMM workflow can easily adapt to other metals through expanded training data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Deng
- Hunan University College of Biology
| | | | | | - Nasui Wang
- Division of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College
| |
Collapse
|
40
|
González-Madrid G, Navarro CA, Acevedo-López J, Orellana LH, Jerez CA. Possible Role of CHAD Proteins in Copper Resistance. Microorganisms 2024; 12:409. [PMID: 38399813 PMCID: PMC10892726 DOI: 10.3390/microorganisms12020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Conserved Histidine Alpha-helical Domain (CHAD) proteins attached to the surface of polyphosphate (PolyP) have been studied in some bacteria and one archaeon. However, the activity of CHAD proteins is unknown beyond their interaction with PolyP granules. By using bioinformatic analysis, we report that several species of the biomining acidophilic bacteria contain orthologs of CHAD proteins with high sequence identity. Furthermore, the gene coding for the CHAD protein is in the same genetic context of the enzyme polyphosphate kinase (PPK), which is in charge of PolyP synthesis. Particularly, the group of ppk and CHAD genes is highly conserved. Metallosphaera sedula and other acidophilic archaea used in biomining also contain CHAD proteins. These archaea show high levels of identity in genes coding for a cluster having the same organization. Amongst these genes are chad and ppx. In general, both biomining bacteria and archaea contain high PolyP levels and are highly resistant to heavy metals. Therefore, the presence of this conserved genetic organization suggests a high relevance for their metabolism. It has been formerly reported that a crystallized CHAD protein contains a copper-binding site. Based on this previous knowledge, in the present report, it was determined that all analyzed CHAD proteins are very conserved at their structural level. In addition, it was found that the lack of YgiF, an Escherichia coli CHAD-containing protein, decreases copper resistance in this bacterium. This phenotype was not only complemented by transforming E. coli with YgiF but also by expressing CHAD from Acidithiobacillus ferrooxidans in it. Interestingly, the strains in which the possible copper-binding sites were mutated were also more metal sensitive. Based on these results, we propose that CHAD proteins are involved in copper resistance in microorganisms. These findings are very interesting and may eventually improve biomining operations in the future.
Collapse
Affiliation(s)
| | | | | | | | - Carlos A. Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile; (G.G.-M.); (C.A.N.); (J.A.-L.); (L.H.O.)
| |
Collapse
|
41
|
Barati F, Hosseini F, Vafaee R, Sabouri Z, Ghadam P, Arab SS, Shadfar N, Piroozmand F. In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 2024; 26:5744-5761. [PMID: 38294035 DOI: 10.1039/d3cp03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enzymes are popular catalysts with many applications, especially in industry. Biocatalyst usage on a large scale is facing some limitations, such as low operational stability, low recyclability, and high enzyme cost. Enzyme immobilization is a beneficial strategy to solve these problems. Bioinformatics tools can often correctly predict immobilization outcomes, resulting in a cost-effective experimental phase with the least time consumed. This study provides an overview of in silico methods predicting immobilization processes via a comprehensive systematic review of published articles till 11 December 2022. It also mentions the strengths and weaknesses of the processes and explains the computational analyses in each method that are required for immobilization assessment. In this regard, Web of Science and Scopus databases were screened to gain relevant publications. After screening the gathered documents (n = 3873), 60 articles were selected for the review. The selected papers have applied in silico procedures including only molecular dynamics (MD) simulations (n = 20), parallel tempering Monte Carlo (PTMC) and MD simulations (n = 3), MD and docking (n = 1), density functional theory (DFT) and MD (n = 1), only docking (n = 11), metal ion binding site prediction (MIB) server and docking (n = 2), docking and DFT (n = 1), docking and analysis of enzyme surfaces (n = 1), only DFT (n = 1), only MIB server (n = 2), analysis of an enzyme structure and surface (n = 12), rational design of immobilized derivatives (RDID) software (n = 3), and dissipative particle dynamics (DPD; n = 2). In most included studies (n = 51), enzyme immobilization was investigated experimentally in addition to in silico evaluation.
Collapse
Affiliation(s)
- Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Fakhrisadat Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Rayeheh Vafaee
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sabouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Shadfar
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Firoozeh Piroozmand
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
42
|
Ibrahim IH. Metalloproteins and metalloproteomics in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:123-176. [PMID: 38960472 DOI: 10.1016/bs.apcsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
43
|
Souza DES, Santos LMF, Freitas JPA, de Almeida LC, Santos JCB, de Souza RL, Pereira MM, Lima ÁS, Soares CMF. Experimental and Computational Analysis of Synthesis Conditions of Hybrid Nanoflowers for Lipase Immobilization. Molecules 2024; 29:628. [PMID: 38338371 PMCID: PMC10856756 DOI: 10.3390/molecules29030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
This work presents a framework for evaluating hybrid nanoflowers using Burkholderia cepacia lipase. It was expanded on previous findings by testing lipase hybrid nanoflowers (hNF-lipase) formation over a wide range of pH values (5-9) and buffer concentrations (10-100 mM). The free enzyme activity was compared with that of hNF-lipase. The analysis, performed by molecular docking, described the effect of lipase interaction with copper ions. The morphological characterization of hNF-lipase was performed using scanning electron microscopy. Fourier Transform Infrared Spectroscopy performed the physical-chemical characterization. The results show that all hNF-lipase activity presented values higher than that of the free enzyme. Activity is higher at pH 7.4 and has the highest buffer concentration of 100 mM. Molecular docking analysis has been used to understand the effect of enzyme protonation on hNF-lipase formation and identify the main the main binding sites of the enzyme with copper ions. The hNF-lipase nanostructures show the shape of flowers in their micrographs from pH 6 to 8. The spectra of the nanoflowers present peaks typical of the amide regions I and II, current in lipase, and areas with P-O vibrations, confirming the presence of the phosphate group. Therefore, hNF-lipase is an efficient biocatalyst with increased catalytic activity, good nanostructure formation, and improved stability.
Collapse
Affiliation(s)
- Danivia Endi S. Souza
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Lucas M. F. Santos
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - João P. A. Freitas
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Lays C. de Almeida
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Jefferson C. B. Santos
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
| | - Ranyere Lucena de Souza
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
- Institute of Technology and Research (ITP), Aracaju 49032-490, Sergipe, Brazil
| | - Matheus M. Pereira
- Department of Chemical Engineering, University of Coimbra, CIEPQPF, 3030-790 Coimbra, Portugal
| | - Álvaro S. Lima
- Postgraduate Program Chemical Engineering, Federal University of Bahia (UFBA), Campus Federação, Salvador 40210-630, Bahia, Brazil;
| | - Cleide M. F. Soares
- Postgraduate Program Process Engineering, Tiradentes University (UNIT), Campus Farolandia, Aracaju 49032-490, Sergipe, Brazil; (D.E.S.S.); (L.C.d.A.); (J.C.B.S.); (R.L.d.S.)
- Institute of Technology and Research (ITP), Aracaju 49032-490, Sergipe, Brazil
| |
Collapse
|
44
|
Yadav MP, Narayanasamy S, Aradhyam GK. Structural Plasticity Allows Calumenin-1 to Moonlight as a Ca 2+-Independent Chaperone: Pb 2+ Enables Probing Alternate Inhibitory Conformation. Biochemistry 2024; 63:69-81. [PMID: 38100476 DOI: 10.1021/acs.biochem.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Human calumenin-1 (HsCalu-1) is an endoplasmic reticulum (ER) and Golgi-resident Ca2+-binding protein of the hepta-EF-hand superfamily that plays a vital role in maintaining the cytoplasmic Ca2+ concentration below toxic levels by interacting with Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and ryanodine receptors (RyR), indicating its role in Ca2+ homeostasis in the ER. HsCalu-1 seems to be able to exhibit structural plasticity to achieve its plethora of functions. In this study, we demonstrate that HsCalu-1 acts as a chaperone in both its intrinsically disordered state (apo form) and the structured state (Ca2+-bound form). HsCalu-1 chaperone activity is independent of Ca2+ and Pb2+ binding attenuating its chaperone-like activity. Incidentally, Pb2+ binds to HsCalu-1 with lower affinity (KD = 38.46 μM) (compared to Ca2+-binding), leading to the formation of a less-stable conformation as observed by a sharp drop in its melting temperature Tm from 67 °C in the Ca2+-bound form to 43 °C in the presence of Pb2+. The binding site for Pb2+ was mapped as being in the EF-Hand-234 domain of HsCalu-1, a region that overlaps with the Ca2+-dependent initiator of its functional fold. A change in the secondary and tertiary structure, leading to a less-stable but compact conformation upon Pb2+ binding, is the mechanism by which the chaperone-like activity of HsCalu-1 is diminished. Our results not only demonstrate the chaperone activity by a protein in its disordered state but also explain, using Pb2+ as a probe, that the multiple functions of calumenin are due to its ability to adopt a quasi-stable conformation.
Collapse
Affiliation(s)
- Manoj Padamsing Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sasirekha Narayanasamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
45
|
Lee H, Park SH, Kim J, Lee J, Koh MS, Lee JH, Kim S. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305946. [PMID: 37987032 PMCID: PMC10787088 DOI: 10.1002/advs.202305946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural products with a distinct biosynthetic logic, the enzymatic modification of genetically encoded precursor peptides. Although their structural and biosynthetic diversity remains largely underexplored, the identification of novel subclasses with unique structural motifs and biosynthetic pathways is challenging. Here, it is reported that peptide/protein L-aspartyl O-methyltransferases (PAMTs) present in several RiPP subclasses are highly homologous. Importantly, it is discovered that the apparent evolutionary transmission of the PAMT gene to unrelated RiPP subclasses can serve as a basis to identify a novel RiPP subclass. Biochemical and structural analyses suggest that homologous PAMTs convert aspartate to isoaspartate via aspartyl-O-methyl ester and aspartimide intermediates, and often require cyclic or hairpin-like structures for modification. By conducting homology-based bioinformatic analysis of PAMTs, over 2,800 biosynthetic gene clusters (BGCs) are identified for known RiPP subclasses in which PAMTs install a secondary modification, and over 1,500 BGCs where PAMTs function as a primary modification enzyme, thereby defining a new RiPP subclass, named pamtides. The results suggest that the genome mining of proteins with secondary biosynthetic roles can be an effective strategy for discovering novel biosynthetic pathways of RiPPs through the principle of "guilt by association".
Collapse
Affiliation(s)
- Hyunbin Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sho Hee Park
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jiyoon Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jaehak Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Min Sun Koh
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jung Ho Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seokhee Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
46
|
Bharat V, Durairaj AS, Vanhauwaert R, Li L, Muir CM, Chandra S, Kwak CS, Le Guen Y, Nandakishore P, Hsieh CH, Rensi SE, Altman RB, Greicius MD, Feng L, Wang X. A mitochondrial inside-out iron-calcium signal reveals drug targets for Parkinson's disease. Cell Rep 2023; 42:113544. [PMID: 38060381 PMCID: PMC10804639 DOI: 10.1016/j.celrep.2023.113544] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulated iron or Ca2+ homeostasis has been reported in Parkinson's disease (PD) models. Here, we discover a connection between these two metals at the mitochondria. Elevation of iron levels causes inward mitochondrial Ca2+ overflow, through an interaction of Fe2+ with mitochondrial calcium uniporter (MCU). In PD neurons, iron accumulation-triggered Ca2+ influx across the mitochondrial surface leads to spatially confined Ca2+ elevation at the outer mitochondrial membrane, which is subsequently sensed by Miro1, a Ca2+-binding protein. A Miro1 blood test distinguishes PD patients from controls and responds to drug treatment. Miro1-based drug screens in PD cells discover Food and Drug Administration-approved T-type Ca2+-channel blockers. Human genetic analysis reveals enrichment of rare variants in T-type Ca2+-channel subtypes associated with PD status. Our results identify a molecular mechanism in PD pathophysiology and drug targets and candidates coupled with a convenient stratification method.
Collapse
Affiliation(s)
- Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aarooran S Durairaj
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roeland Vanhauwaert
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Li Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Colin M Muir
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sujyoti Chandra
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chulhwan S Kwak
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Institut du Cerveau - Paris Brain Institute - ICM, 75013 Paris, France
| | | | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefano E Rensi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Kumaravel A, Selvamani V, Hong SH. Photocatalytic Reduction of Methylene Blue by Surface-Engineered Recombinant Escherichia coli as a Whole-Cell Biocatalyst. Bioengineering (Basel) 2023; 10:1389. [PMID: 38135980 PMCID: PMC10741084 DOI: 10.3390/bioengineering10121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
A novel Escherichia coli strain, created by engineering its cell surface with a cobalt-binding peptide CP1, was investigated in this study. The recombinant strain, pBAD30-YiaT-CP1, was structurally modeled to determine its cobalt-binding affinity. Furthermore, the effectiveness and specificity of pBAD30-CP1 in adsorbing and extracting cobalt from artificial wastewater polluted with the metal were investigated. The modified cells were subjected to cobalt concentrations (0.25 mM to 1 mM) and pH levels (pH 3, 5, 7, and 9). When exposed to a pH of 7 and a cobalt concentration of 1 mM, the pBAD30-CP1 strain had the best cobalt recovery efficiency, measuring 1468 mol/g DCW (Dry Cell Weight). Furthermore, pBAD30-CP1 had a higher affinity for cobalt than nickel and manganese. Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Energy-Dispersive X-ray Spectroscopy (EDS) were used to examine the physiochemical parameters of the recombinant cells after cobalt adsorption. These approaches revealed the presence of cobalt in a bound state on the cell surface in the form of nanoparticles. In addition, the cobalt-binding recombinant strains were used in the photocatalytic reduction of methylene blue, which resulted in a 59.52% drop in the observed percentage. This study shows that modified E. coli strains have the potential for efficient cobalt recovery and application in environmental remediation operations.
Collapse
Affiliation(s)
| | | | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (A.K.); (V.S.)
| |
Collapse
|
48
|
Sun L, Ding X, Kang YJ. ABCE1 selectively promotes HIF-1α transactivation of angiogenic gene expression. J Trace Elem Med Biol 2023; 80:127307. [PMID: 37738929 DOI: 10.1016/j.jtemb.2023.127307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Copper (Cu), by inhibiting the factor inhibiting HIF-1 (FIH-1), promotes the transcriptional activity of hypoxia-inducible factor-1 (HIF-1). OBJECTIVE The present study was undertaken to understand the molecular mechanism by which Cu inhibits FIH-1. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with dimethyloxalylglycine (DMOG) resulting in HIF-1α accumulation and the FIH-1 protein complexes were pulled down for candidate protein analysis. The metal binding sites were predicted by both MetalDetector V2.0 and Metal Ion-Binding Site Prediction Server, and then the actual ability to bind to Cu in vitro was tested by both Copper-Immobilized metal affinity chromatography (Cu-IMAC) and Isothermal Titration Calorimetry (ITC). Subsequently, subcellular localization was monitored by immunocytochemistry, GFP-fusion protein expression plasmid and Western blotting in the nuclear extract. The interaction of candidate protein with HIF-1α and FIH-1 was validated by Co-Immunoprecipitation (Co-IP). Finally, the effect of candidate protein on the FIH-1 structure and HIF-1α transcriptional activity was analyzed by the InterEvDock3 web server and real-time quantitative RT-PCR. RESULTS ATP-binding cassette E1 (ABCE1) was present in the FIH-1 complexes and identified as a leading Cu-binding protein as indicated by a number of possible Cu binding sites. The ability of ABCE1 to bind Cu was demonstrated in vitro. ABCE1 entered the nucleus along with FIH-1 under hypoxic conditions. Protein interaction analysis revealed that ABCE1 prevented FIH-1 to bind iron ions, inhibiting FIH-1 enzymatic activity. ABCE1 silencing suppressed the expression of Cu-dependent HIF-1 target gene BNIP3, not that of Cu-independent IGF-2. CONCLUSION The results demonstrate that ABCE1, as a Cu-binding protein, enters the nucleus under hypoxic conditions and inhibits FIH-1degradation of HIF-1α, thus promoting HIF-1 transactivation of angiogenic gene expression.
Collapse
Affiliation(s)
- Lihui Sun
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Pacak P, Kluger C, Vogel V. Molecular dynamics of JUNO-IZUMO1 complexation suggests biologically relevant mechanisms in fertilization. Sci Rep 2023; 13:20342. [PMID: 37990051 PMCID: PMC10663542 DOI: 10.1038/s41598-023-46835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
JUNO-IZUMO1 binding is the first known physical link created between the sperm and egg membranes in fertilization, however, how this initiates sperm-egg fusion remains elusive. As advanced structural insights will help to combat the infertility crisis, or advance fertility control, we employed all-atom Molecular Dynamics (MD) to derive dynamic structural insights that are difficult to obtain experimentally. We found that the hydrated JUNO-IZUMO1 interface is composed of a large set of short-lived non-covalent interactions. The contact interface is destabilized by strategically located point mutations, as well as by Zn2+ ions, which shift IZUMO1 into the non-binding "boomerang" conformation. We hypothesize that the latter might explain how the transient zinc spark, as released after sperm entry into the oocyte, might contribute to block polyspermy. To address a second mystery, we performed another set of simulations, as it was previously suggested that JUNO in solution is unable to bind to folate despite it belonging to the folate receptor family. MD now suggests that JUNO complexation with IZUMO1 opens up the binding pocket thereby enabling folate insertion. Our MD simulations thus provide crucial new hypotheses how the dynamics of the JUNO-IZUMO1 complex upon solvation might regulate fertility.
Collapse
Affiliation(s)
- Paulina Pacak
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität, München, Munich, Germany
- Evotec München GmbH, Neuried, Germany
| | - Viola Vogel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Podgorski JM, Podgorski J, Abad L, Jacobs-Sera D, Freeman KG, Brown C, Hatfull G, Luque A, White SJ. A novel stabilization mechanism accommodating genome length variation in evolutionarily related viral capsids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565530. [PMID: 37961133 PMCID: PMC10635136 DOI: 10.1101/2023.11.03.565530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tailed bacteriophages are one of the most numerous and diverse group of viruses. They store their genome at quasi-crystalline densities in capsids built from multiple copies of proteins adopting the HK97-fold. The high density of the genome exerts an internal pressure, requiring a maturation process that reinforces their capsids. However, it is unclear how capsid stabilization strategies have adapted to accommodate the evolution of larger genomes in this virus group. Here we characterized a novel capsid reinforcement mechanism in two evolutionary-related actinobacteriophages that modifies the length of a stabilization protein to accommodate a larger genome while maintaining the same capsid size. We used cryo-EM to reveal that capsids contained split hexamers of HK97-fold proteins with a stabilization protein in the chasm. The observation of split hexamers in mature capsids was unprecedented, so we rationalized this result mathematically, discovering that icosahedral capsids can be formed by all split or skewed hexamers as long as their T-number is not a multiple of three. Our results suggest that analogous stabilization mechanisms can be present in other icosahedral capsids, and they provide a strategy for engineering capsids accommodating larger DNA cargoes as gene delivery systems.
Collapse
Affiliation(s)
- Jennifer M. Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA
| | - Joshua Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Krista G. Freeman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Colin Brown
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Graham Hatfull
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33155, USA
| | - Simon J. White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA
| |
Collapse
|