1
|
Wijfjes Z, Ramos Tomillero I, Le Gall CM, van Dinther EAW, Turlings F, Classens R, Manna S, van Dalen D, Peters RJRW, Schouren K, Fennemann FL, Hagemans IM, van Dalen FJ, van der Schoot JMS, Figdor CG, Esser-Kahn A, Scheeren FA, Verdoes M. Co-delivery of antigen and adjuvant by site-specific conjugation to dendritic cell-targeted Fab fragments potentiates T cell responses. RSC Chem Biol 2025:d5cb00014a. [PMID: 40343174 PMCID: PMC12057635 DOI: 10.1039/d5cb00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
The aim of therapeutic cancer vaccines is to induce tumor-specific cellular immune responses. This requires tumor antigens to be efficiently processed and presented by antigen-presenting cells, in particular dendritic cells (DCs). In addition, DCs require maturation to upregulate the surface expression and secretion of T cell costimulatory molecules, which is achieved by co-administration of adjuvants in vaccines. Peptide-based antigen vaccination is an attractive strategy due to the established biocompatibility of peptides as well as the dosing control. To enhance the efficacy of peptide-based vaccines, antigens can be targeted to DCs. Antigen-adjuvant conjugates are known to enhance T cell activation by ensuring DC maturation upon antigen delivery. In this study, we aim to combine these two approaches in a single molecule, and present a DC-targeted antibody fragment-antigen-adjuvant (AAA)-conjugate. We generate the AAA-conjugate through a combination of site-specific sortase-mediated chemoenzymatic ligation and click chemistry. Ex vivo T cell activation assays show enhanced efficacy of the AAA-conjugate compared to non-adjuvanted control conjugates. The in vivo performance of the AAA-conjugate was suboptimal, which we hypothesize to be a consequence of the hydrophobic character of the conjugate. In vivo efficacy was rescued by co-administration of antibody fragment-antigen conjugates and antibody fragment-adjuvant conjugates, in which the antigen and adjuvant were separatedly delivered using two different DC-targeting molecules. In conclusion, this study provides a proof-of-concept for effective in vivo antigen-specific T cell activation by targeted delivery of both antigen and adjuvant to DCs in a single or separate molecule using site-specific protein engineering.
Collapse
Affiliation(s)
- Zacharias Wijfjes
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
| | - Iván Ramos Tomillero
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Camille M Le Gall
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Eric A W van Dinther
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Frederique Turlings
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- IMAGINE! Consortium Nijmegen The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Saikat Manna
- Pritzker School of Molecular Engineering, University of Chicago Chicago USA
| | - Duco van Dalen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Ruud J R W Peters
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Kayleigh Schouren
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Felix L Fennemann
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Iris M Hagemans
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Floris J van Dalen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
| | | | - Carl G Figdor
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago Chicago USA
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center Leiden The Netherlands
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
- IMAGINE! Consortium Nijmegen The Netherlands
| |
Collapse
|
2
|
R RJ, Choudhury B, Alam MM, Mm B, Chanda K. Unlocking the power of imidazoquinolines: recent advances in anticancer and immunotherapeutic strategies. Future Med Chem 2025; 17:943-959. [PMID: 40231819 DOI: 10.1080/17568919.2025.2491303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
The challenges in drug discovery aiming to mitigate cancer progression are the thrust area of scientific research for several decades. Since the advent of heterocyclic chemistry, drug discovery programs have made significant achievements that lead to the development of numerous drugs with broad spectrum of potencies, contributing to both diagnostic and therapeutic advancements. Till date, efforts to discover more potent and efficient drug candidates are underway to minimize adverse side effects of existing chemotherapeutics. In view of the above, small-molecule agonists that can interact with different immune modulators like toll like receptor-7 (TLR-7) and TLR-8 are being investigated and explored. These candidates are expected to display profound effect on anti-tumoral activity by enhancing the production of proinflammatory cytokines. Recently, numerous imidazoquinoline derivatives with proven TLR agonist activities have emerged as promising anticancer therapeutics. With advancements in technology and the evolution of new scopes in drug discovery, different strategies are being adopted, particularly with the help of nanotechnology, immune-technology, combination drug chemistry, etc., to curb the progression of various types of cancers. Herein, the novel strategies for cancer therapeutics with imidazoquinolines reported in the last 5 years, their structure-activity relationship along with important synthetic schemes for important TLR agonists, are discussed.
Collapse
Affiliation(s)
- Ranjini Jenifer R
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Badruzzaman Choudhury
- Department of Chemistry, School of Advanced Sciences, Vellore institute of Technology, Vellore, India
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Balamurali Mm
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, India
| |
Collapse
|
3
|
Xi X, Guo S, Gu Y, Wang X, Wang Q. Challenges and opportunities in single-domain antibody-based tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189284. [PMID: 39947441 DOI: 10.1016/j.bbcan.2025.189284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Single-domain antibodies (sdAbs) have emerged as a promising tool in tumor immunotherapy, garnering significant attention in recent years due to their unique structure and superior properties. Unlike traditional antibodies, sdAbs exhibit several advantages, including small molecular weight, high stability, strong affinity, and high specificity. These characteristics enable sdAbs to effectively target and eliminate tumor cells within the complex tumor microenvironment. Moreover, their structural advantages enhance tissue penetration and reduce immunogenicity, thereby increasing their potential for clinical application. The potential applications of sdAbs include novel immune checkpoint inhibitors, bispecific antibody drugs, innovative immune cell therapies, antibody-drug conjugate therapies, and tumor molecular imaging diagnostics. Despite the promising prospects, several challenges of sdAb-based tumor immunotherapy still require further investigation. This review aims to summarize the status of sdAb-based immunotherapy, identify the challenges encountered, and evaluate the clinical research and application potential of sdAbs in this field.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China.; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
| | - Shasha Guo
- Shandong Women's University, 250355 Jinan, People's Republic of China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuekai Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, People's Republic of China.; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, People's Republic of China.; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China.
| |
Collapse
|
4
|
Boixareu C, Taha T, Venkadakrishnan VB, de Bono J, Beltran H. Targeting the tumour cell surface in advanced prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01014-w. [PMID: 40169837 DOI: 10.1038/s41585-025-01014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Prostate cancer remains a substantial health challenge, with >375,000 annual deaths amongst men worldwide. Most prostate cancer-related deaths are attributable to the development of resistance to standard-of-care treatments. Characterization of the diverse and complex surfaceome of treatment-resistant prostate cancer, combined with advances in drug development that leverage cell-surface proteins to enhance drug delivery or activate the immune system, have provided novel therapeutic opportunities to target advanced prostate cancer. The prostate cancer surfaceome, including proteins such as prostate-specific membrane antigen (PSMA), B7-H3, six transmembrane epithelial antigen of the prostate 1 (STEAP1), delta-like ligand 3 (DLL3), trophoblastic cell-surface antigen 2 (TROP2), prostate stem cell antigen (PSCA), HER3, CD46 and CD36, can be exploited as therapeutic targets, as regulatory mechanisms might contribute to the heterogeneity of expression of these proteins and subsequently affect treatment response and resistance. Specific treatment strategies targeting the surfaceome are in clinical development, including radionuclides, antibody-drug conjugates, T cell engagers and chimeric antigen receptor (CAR) T cells. Ultimately, biomarker development and clinical implementation of these agents will be informed and refined by further understanding of the biology of various targets; the target specificity and sensitivity of different agents; and off-target and toxic effects associated with these agents. Understanding the dynamic nature of cell-surface targets and non-overlapping expression patterns might also lead to future combinational strategies.
Collapse
Affiliation(s)
- Cristina Boixareu
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | - Tarek Taha
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | | | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK.
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Sega E, Kotapati S, Poudel YB, Cheng Q, Sadanala K, Schneider B, Chekler EP, Rao C, Gangwar S, Sproul T, Law D, Broz M, Strop P, Yamazoe S. Targeted Delivery of TLR7 Agonists to the Tumor Microenvironment Enhances Tumor Immunity via Activation of Tumor-Resident Myeloid Cells. Bioconjug Chem 2025; 36:437-448. [PMID: 39948340 PMCID: PMC11926791 DOI: 10.1021/acs.bioconjchem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Toll-like receptors (TLR) are phylogenetically conserved mediators of innate immunity that are essential for establishing adaptive immune responses against invading pathogens. TLR7 is an endosomal receptor expressed predominantly in myeloid and B cells. Activation of TLR7 induces Type I interferon and proinflammatory responses; therefore, targeting TLR7 is a promising strategy for antitumor therapy. Although the use of bacterial components to trigger innate immune responses in cancer patients started a century ago, the effectiveness of systemic TLR agonists has been rather underwhelming in clinical trials, partly due to nonspecific immune activation leading to safety and tolerability issues. Antibody-drug conjugates (ADCs) constitute a proven therapeutic modality amenable to systemic administration with limited toxicity concerns via a targeted delivery platform. We generated TLR7 agonist-antibody conjugates that recognize tumor antigens expressed on the surface of tumor cells. Generated ADCs demonstrated robust activity in in vitro tumor antigen-presenting cell (APC) coculture systems as indicated by dose-dependent upregulation of PD-L1 and CD86 on macrophages. TLR7 agonist-ADC provided superior tumor growth control compared to intravenously (IV) administrated free TLR7 agonist. Treatment with TLR7 agonist-ADC led to prolonged activation of myeloid cells in the tumor microenvironment (TME) with minimum immune activation in the periphery. Systemic and tissue exposure studies demonstrated tumor-specific free drug release by targeted ADC treatment. In summary, the TLR7 agonist-ADC can potentially activate immune cells in the TME to generate tumor antigen-specific T-cell responses, making it an attractive approach for precision cancer therapy.
Collapse
Affiliation(s)
| | | | - Yam B. Poudel
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Qinqin Cheng
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Keerthi Sadanala
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Bridget Schneider
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Eugene P. Chekler
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Chetana Rao
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sanjeev Gangwar
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Tim Sproul
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Deborah Law
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Miranda Broz
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Pavel Strop
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sayumi Yamazoe
- Bristol-Myers Squibb Research
& Development, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
6
|
Zhao RJ, Fan XX. Advances in Antibody-Based Immune-Stimulating Drugs: Driving Innovation in Cancer Therapy. Int J Mol Sci 2025; 26:1440. [PMID: 40003906 PMCID: PMC11855211 DOI: 10.3390/ijms26041440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Antibody-based immune-stimulating drugs (ABIs) represent a transformative frontier in cancer immunotherapy, designed to reshape the tumor microenvironment and overcome immune suppression. This study highlighted recent advances in ABIs, including immune-stimulating antibody conjugates (ISACs), bispecific antibodies (BsAbs), and checkpoint blockade enhancers, with a focus on their mechanisms of action, clinical advancements, and challenges. Preclinical findings revealed that ISACs effectively boost overall anti-cancer immunity by reprogramming tumor-associated macrophages, enhancing T cell activation, and engaging other immune pathways. Similarly, BsAbs effectively redirect immune cells to tumors, achieving significant tumor regression. Additionally, artificial intelligence (AI) is revolutionizing the development of ABIs by optimizing drug design, identifying novel targets, and accelerating preclinical validation, enabling personalized therapeutic strategies. Despite these advancements, significant challenges remain, including immune resistance and off-target effects. Future research should prioritize next-generation multifunctional antibodies, AI-driven innovations, and combination therapies to enhance efficacy and expand therapeutic applications. Connecting these gaps could unlock the full potential of ABIs, upgrading cancer treatment and improving outcomes for patients with refractory or resistant tumors.
Collapse
Affiliation(s)
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| |
Collapse
|
7
|
Poudel YB, Lo JC, Norris DJ, Cox M, He L, Johnson WL, A. M. Subbaiah M, Mondal S, Thangavel S, Subramani L, Reddy M, Jain S, Weiss DR, Sivaprakasam P, Critton D, Mulligan D, Xie C, Dhar P, Li Y, Sega E, Yamazoe S, Gavai AV, Mathur A, Zapf CW, Chekler EP. Structure-Based Design of Novel TLR7/8 Agonist Payloads Enabling an Immunomodulatory Conjugate Approach. ACS Med Chem Lett 2025; 16:80-88. [PMID: 39811121 PMCID: PMC11726388 DOI: 10.1021/acsmedchemlett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Dual activation of the TLR7 and TLR8 pathways leads to the production of type I interferon and proinflammatory cytokines, resulting in efficient antigen presentation by dendritic cells to promote T-cell priming and antitumor immunity. We developed a novel series of TLR7/8 dual agonists with varying ratios of TLR7 and TLR8 activity for use as payloads for an antibody-drug conjugate approach. The agonist-induced production of several cytokines in human whole blood confirmed their functional activity. Structure-activity relationship studies guided by structure-based drug design are described.
Collapse
Affiliation(s)
- Yam B. Poudel
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Julian C. Lo
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Derek J. Norris
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Matthew Cox
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Liqi He
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Walter L. Johnson
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | | | - Santigopal Mondal
- Biocon
Bristol Myers Squibb R&D Center (BBRC), Bangalore 560099, India
| | | | | | - Maheswara Reddy
- Biocon
Bristol Myers Squibb R&D Center (BBRC), Bangalore 560099, India
| | - Suraksha Jain
- Biocon
Bristol Myers Squibb R&D Center (BBRC), Bangalore 560099, India
| | - Dahlia R. Weiss
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Prasanna Sivaprakasam
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - David Critton
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Dawn Mulligan
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Payal Dhar
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Yvonne Li
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Emanuela Sega
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sayumi Yamazoe
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Ashvinikumar V. Gavai
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Christoph W. Zapf
- Bristol
Myers Squibb Research & Development, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Eugene P. Chekler
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
8
|
Chernyak N, Bhagwat B, Naravula S, Chen Y, Solban N, Zhang F, Kofman E, Raoufi F, Dang X, Bao J, Tomazela D, Baily M, Geierstanger B, Flygare JA, Han JH, Willingham A, Seganish WM. Discovery and Evaluation of TLR-Targeted Immune Agonists. J Med Chem 2024; 67:16222-16234. [PMID: 39235949 DOI: 10.1021/acs.jmedchem.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Toll-like receptor (TLR) activation converts immunologically inactive tumors into immunologically active tumors by activating tumor residing antigen-presenting cells and recruitment of cytotoxic T lymphocytes. Targeted immune agonists (TIAs) are antibody drug conjugates with small-molecule TLR agonist payloads. The mechanism of action of TIAs involves tumor antigen recognition, Fcγ-receptor-dependent phagocytosis, and TLR-mediated activation to drive tumor killing by myeloid cells. Several new low DAR anti-HER2 TIAs conjugated with novel TLR7 or dual-TLR7/8 agonists with cleavable and noncleavable linkers were synthesized and profiled. In vitro studies demonstrated that these TIAs activate myeloid cells only in the presence of antigen-expressing cancer cells. Evaluation in ELISpot-based assays confirmed the low immunogenicity of these constructs. Systemic administration of the novel TIAs in tumor-bearing mice resulted in tumor reduction at low doses. These results provide a strong rationale for further development of the TIAs as a novel class of immunotherapeutics.
Collapse
Affiliation(s)
- Natalia Chernyak
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Bhagyashree Bhagwat
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Saraswathi Naravula
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Ying Chen
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Nicolas Solban
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Fan Zhang
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Xibei Dang
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jianming Bao
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Daniela Tomazela
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Marc Baily
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Bernhard Geierstanger
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - John A Flygare
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jin-Hwan Han
- Discovery Oncology, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Aarron Willingham
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - W Michael Seganish
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Dong W, Wang W, Cao C. The Evolution of Antibody-Drug Conjugates: Toward Accurate DAR and Multi-specificity. ChemMedChem 2024; 19:e202400109. [PMID: 38758596 DOI: 10.1002/cmdc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Wenge Dong
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wanqi Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Ye X, Chen X, Liu H, Jiang Y, Yang C, Xu T, Chen Z, Wang Y, Chen F, Liu X, Yu H, Yuan Q, Xia N, Chen Y, Luo W. HBsAg and TLR7/8 dual-targeting antibody-drug conjugates induce sustained anti-HBV activity in AAV/HBV mice: a preliminary study. Antib Ther 2024; 7:249-255. [PMID: 39262443 PMCID: PMC11384142 DOI: 10.1093/abt/tbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 09/13/2024] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) infection is a significant global health concern due to elevated immunosuppressive viral antigen levels, the host immune system's inability to manage HBV, and the liver's immunosuppressive conditions. While immunotherapies utilizing broadly reactive HBV neutralizing antibodies present potential due to their antiviral capabilities and Fc-dependent vaccinal effects, they necessitate prolonged and frequent dosing to achieve optimal therapeutic outcomes. Toll-like receptor 7/8 (TLR7/8) agonists have been demonstrated promise for the cure of chronic hepatitis B, but their systemic use often leads to intense side effects. In this study, we introduced immune-stimulating antibody conjugates which consist of TLR7/8 agonists 1-[[4-(aminomethyl)phenyl]methyl]-2-butyl-imidazo[4,5-c]quinolin-4-amine (IMDQ) linked to an anti-hepatitis B surface antigen (HBsAg) antibody 129G1, and designated as 129G1-IMDQ. Our preliminary study highlights that 129G1-IMDQ can prompt robust and sustained anti-HBsAg specific reactions with short-term administration. This underscores the conjugate's potential as an effective strategy for HBsAg clearance and seroconversion, offering a fresh perspective for a practical therapeutic approach in the functional cure of CHB. HIGHLIGHTS HBV-neutralizing antibody 129G1 was linked with a TLR7/8 agonist small molecule compound IMDQ.Treatment with 129G1-IMDQ has shown significant promise in lowering HBsAg levels in AAV/HBV mice.129G1-IMDQ were eliciting a strong and lasting anti-HBsAg immune response after short-term treatment in AAV/HBV mice.
Collapse
Affiliation(s)
- Xinya Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ziyou Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yalin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fentian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Kaushik D, Kaur A, Patil MT, Sihag B, Piplani S, Sakala I, Honda-Okubo Y, Ramakrishnan S, Petrovsky N, Salunke DB. Structure-Activity Relationships toward the Identification of a High-Potency Selective Human Toll-like Receptor-7 Agonist. J Med Chem 2024; 67:8346-8360. [PMID: 38741265 DOI: 10.1021/acs.jmedchem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 μM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 μM for hTLR7 and 18.25 μM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T Patil
- Mehr Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Binita Sihag
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Isaac Sakala
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
12
|
Fu C, Tong W, Yu L, Miao Y, Wei Q, Yu Z, Chen B, Wei M. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol Res 2024; 203:107160. [PMID: 38547937 DOI: 10.1016/j.phrs.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/30/2024]
Abstract
Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110122, PR China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
13
|
Mason M, Bisbal Lopez L, Bashiri F, Herrero A, Baron A, Bucci R, Pignataro L, Gennari C, Dal Corso A. Amine-Carbamate Self-Immolative Spacers Counterintuitively Release 3° Alcohol at Much Faster Rates than 1° Alcohol Payloads. Chembiochem 2024; 25:e202400174. [PMID: 38415320 DOI: 10.1002/cbic.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
Self-immolative (SI) spacers are degradable chemical connectors widely used in prodrugs and drug conjugates to release pharmaceutical ingredients in response to specific stimuli. Amine-carbamate SI spacers are particularly versatile, as they have been used to release different hydroxy cargos, ranging from 2° and 3° alcohols to phenols and oximes. In this work, we describe the ability of three amine-carbamate SI spacers to release three structurally similar imidazoquinoline payloads, bearing either a 1°, a 2° or a 3° alcohol as the leaving group. While the spacers showed comparable efficacy at releasing the 2° and 3° alcohols, the liberation of the 1° alcohol was much slower, unveiling a counterintuitive trend in nucleophilic acyl substitutions. The release of the 1° alcohol payload was only possible using a SI spacer bearing a pyrrolidine ring and a tertiary amine handle, which opens the way to future applications in drug delivery systems.
Collapse
Affiliation(s)
- Mattia Mason
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Lydia Bisbal Lopez
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Fazel Bashiri
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Aurélie Herrero
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Aurélien Baron
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Venezian 21, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I, -20133, Milan, Italy
| |
Collapse
|
14
|
Slezak AJ, Chang K, Beckman TN, Refvik KC, Alpar AT, Lauterbach AL, Solanki A, Kwon JW, Gomes S, Mansurov A, Hubbell JA. Cysteine-binding adjuvant enhances survival and promotes immune function in a murine model of acute myeloid leukemia. Blood Adv 2024; 8:1747-1759. [PMID: 38324726 PMCID: PMC10985806 DOI: 10.1182/bloodadvances.2023012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
ABSTRACT Therapeutic vaccination has long been a promising avenue for cancer immunotherapy but is often limited by tumor heterogeneity. The genetic and molecular diversity between patients often results in variation in the antigens present on cancer cell surfaces. As a result, recent research has focused on personalized cancer vaccines. Although promising, this strategy suffers from time-consuming production, high cost, inaccessibility, and targeting of a limited number of tumor antigens. Instead, we explore an antigen-agnostic polymeric in situ cancer vaccination platform for treating blood malignancies, in our model here with acute myeloid leukemia (AML). Rather than immunizing against specific antigens or targeting adjuvant to specific cell-surface markers, this platform leverages a characteristic metabolic and enzymatic dysregulation in cancer cells that produces an excess of free cysteine thiols on their surfaces. These thiols increase in abundance after treatment with cytotoxic agents such as cytarabine, the current standard of care in AML. The resulting free thiols can undergo efficient disulfide exchange with pyridyl disulfide (PDS) moieties on our construct and allow for in situ covalent attachment to cancer cell surfaces and debris. PDS-functionalized monomers are incorporated into a statistical copolymer with pendant mannose groups and TLR7 agonists to target covalently linked antigen and adjuvant to antigen-presenting cells in the liver and spleen after IV administration. There, the compound initiates an anticancer immune response, including T-cell activation and antibody generation, ultimately prolonging survival in cancer-bearing mice.
Collapse
Affiliation(s)
- Anna J. Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Kevin Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Taryn N. Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL
| | - Kirsten C. Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | | | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL
| | - Jung Woo Kwon
- Department of Pathology, University of Chicago, Chicago, IL
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
15
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
16
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
17
|
Monteiro MR, Nunes NCC, Junior AADS, Fêde ABDS, Bretas GDO, Souza CDP, Mano M, da Silva JL. Antibody-Drug Conjugates in Breast Cancer: A Comprehensive Review of How to Selectively Deliver Payloads. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:51-70. [PMID: 38434801 PMCID: PMC10909371 DOI: 10.2147/bctt.s448191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Antibody-drug conjugates (ADCs) have surfaced as a promising group of anticancer agents employing the precise targeting capacity of monoclonal antibodies to transport highly effective cytotoxic payloads. Compared to conventional chemotherapy, they aim to selectively eradicate cancer cells while minimizing off-target toxicity on healthy tissues. An increasing body of evidence has provided support for the efficacy of ADCs in treating breast cancer across various contexts and tumor subtypes, resulting in significant changes in clinical practice. Nevertheless, unlocking the full potential of these therapeutic agents demands innovative molecular designs to address complex clinical challenges, including drug resistance, tumor heterogeneity, and treatment-related adverse events. This thorough review provides an in-depth analysis of the clinical data on ADCs, offering crucial insights from pivotal clinical trials that assess the efficacy of ADCs in diverse breast cancer settings. This aids in providing a comprehensive understanding of the current state of ADCs in breast cancer therapy, while also providing valuable perspectives for the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Max Mano
- Grupo Oncoclínicas, São Paulo, Brazil
| | - Jesse Lopes da Silva
- Grupo Oncoclínicas, Rio de Janeiro, Brazil
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
- Hospital da Força Aérea do Galeão, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
He L, Zhang MY, Cox M, Zhang Q, Donnell AF, Zhang Y, Tarby C, Gill P, Subbaiah MAM, Ramar T, Reddy M, Puttapaka V, Li YX, Sivaprakasam P, Critton D, Mulligan D, Xie C, Ramakrishnan R, Nagar J, Dudhgaonkar S, Murtaza A, Oderinde MS, Schieven GL, Mathur A, Gavai AV, Vite G, Gangwar S, Poudel YB. Identification and Optimization of Small Molecule Pyrazolopyrimidine TLR7 Agonists for Applications in Immuno-oncology. ACS Med Chem Lett 2024; 15:189-196. [PMID: 38352849 PMCID: PMC10860188 DOI: 10.1021/acsmedchemlett.3c00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Small molecule toll-like receptor (TLR) 7 agonists have gathered considerable interest as promising therapeutic agents for applications in cancer immunotherapy. Herein, we describe the development and optimization of a series of novel TLR7 agonists through systematic structure-activity relationship studies focusing on modification of the phenylpiperidine side chain. Additional refinement of ADME properties culminated in the discovery of compound 14, which displayed nanomolar reporter assay activity and favorable drug-like properties. Compound 14 demonstrated excellent in vivo pharmacokinetic/pharmacodynamic profiles and synergistic antitumor activity when administered in combination with aPD1 antibody, suggesting opportunities of employing 14 in immuno-oncology therapies with immune checkpoint blockade agents.
Collapse
Affiliation(s)
- Liqi He
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Meng Yao Zhang
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Matthew Cox
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Qian Zhang
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Andrew F. Donnell
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Yong Zhang
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Christine Tarby
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Patrice Gill
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | | | - Maheswara Reddy
- Biocon
Bristol Myers Squibb R&D Centre, Bangalore 560099, India
| | | | - Yi-Xin Li
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Prasanna Sivaprakasam
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - David Critton
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Dawn Mulligan
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Radha Ramakrishnan
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Jignesh Nagar
- Biocon
Bristol Myers Squibb R&D Centre, Bangalore 560099, India
| | | | - Anwar Murtaza
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Martins S. Oderinde
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Gary L. Schieven
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ashvinikumar V. Gavai
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Gregory Vite
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Sanjeev Gangwar
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Yam B. Poudel
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
19
|
Poudel YB, He L, Cox M, Zhang Q, Johnson WL, Cong Q, Cheng H, Chowdari NS, Tarby C, Donnell AF, Broekema M, O’Malley DP, Zhang Y, A. M. Subbaiah M, Kumar BV, Subramani L, Wang B, Li YX, Sivaprakasam P, Critton D, Mulligan D, Sandhu B, Xie C, Ramakrishnan R, Nagar J, Dudhgaonkar S, Oderinde MS, Murtaza A, Schieven GL, Mathur A, Gavai AV, Vite G, Gangwar S. Discovery of Novel TLR7 Agonists as Systemic Agent for Combination With aPD1 for Use in Immuno-oncology. ACS Med Chem Lett 2024; 15:181-188. [PMID: 38352830 PMCID: PMC10860183 DOI: 10.1021/acsmedchemlett.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
We have designed and developed novel and selective TLR7 agonists that exhibited potent receptor activity in a cell-based reporter assay. In vitro, these agonists significantly induced secretion of cytokines IL-6, IL-1β, IL-10, TNFa, IFNa, and IP-10 in human and mouse whole blood. Pharmacokinetic and pharmacodynamic studies in mice showed a significant secretion of IFNα and TNFα cytokines. When combined with aPD1 in a CT-26 tumor model, the lead compound showed strong synergistic antitumor activity with complete tumor regression in 8/10 mice dosed using the intravenous route. Structure-activity relationship studies enabled by structure-based designs of TLR7 agonists are disclosed.
Collapse
Affiliation(s)
- Yam B. Poudel
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Liqi He
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Matthew Cox
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Qian Zhang
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Walter L. Johnson
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Qiang Cong
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Heng Cheng
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Naidu S. Chowdari
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Christine Tarby
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Andrew F. Donnell
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Matthais Broekema
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Daniel P. O’Malley
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Yong Zhang
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | | | - Boda Vijay Kumar
- The
Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | | | - Bei Wang
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Yi-Xin Li
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Prasanna Sivaprakasam
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - David Critton
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Dawn Mulligan
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Bhupindar Sandhu
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Radha Ramakrishnan
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Jignesh Nagar
- The
Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | | | - Martins S. Oderinde
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Anwar Murtaza
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Gary L. Schieven
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Ashvinikumar V. Gavai
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Gregory Vite
- Bristol-Myers
Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Sanjeev Gangwar
- Bristol-Myers
Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
20
|
Choi Y, Choi Y, Hong S. Recent Technological and Intellectual Property Trends in Antibody-Drug Conjugate Research. Pharmaceutics 2024; 16:221. [PMID: 38399275 PMCID: PMC10892729 DOI: 10.3390/pharmaceutics16020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Antibody-drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in cancer incidence has driven increased investment in anticancer agents, resulting in significant growth in the ADC therapy market. Over the past two decades, notable progress has been made, with approvals for 14 ADC treatments targeting various cancers by 2022. Diverse ADC therapies for hematologic malignancies and solid tumors have emerged, with numerous candidates currently undergoing clinical trials. Recent years have seen a noteworthy increase in ADC therapy clinical trials, marked by the initiation of numerous new therapies in 2022. Research and development, coupled with patent applications, have intensified, notably from major companies like Pfizer Inc. (New York, NY, USA), AbbVie Pharmaceuticals Inc. (USA), Regeneron Pharmaceuticals Inc. (Tarrytown, NY, USA), and Seagen Inc. (Bothell, WA, USA). While ADC therapy holds great promise in anticancer treatment, challenges persist, including premature payload release and immune-related side effects. Ongoing research and innovation are crucial for advancing ADC therapy. Future developments may include novel conjugation methods, stable linker designs, efficient payload delivery technologies, and integration with nanotechnology, driving the evolution of ADC therapy in anticancer treatment.
Collapse
Affiliation(s)
- Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
- Department of BigData, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Youbeen Choi
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| | - Surin Hong
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| |
Collapse
|
21
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
23
|
Cardenas KCA, Enos CW, Spear MR, Austin DE, Almofeez R, Kortchak S, Pincus L, Guo HB, Dolezal S, Pierce JM, Furth E, Gineste C, Kwon Y, Gelber C. CT109-SN-38, a Novel Antibody-drug Conjugate with Dual Specificity for CEACAM5 and 6, Elicits Potent Killing of Pancreatic Cancer Cells. Curr Cancer Drug Targets 2024; 24:720-732. [PMID: 38178674 DOI: 10.2174/0115680096260614231115192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND CEACAM5 and CEACAM6 are glycosylphosphatidylinositol (GPI)- linked members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which are frequently upregulated in epithelial cancers where they contribute to invasion, metastasis, immune evasion, and resistance to anoikis. CT109 is a novel antibody with dual specificity to both CEACAM5 and 6. OBJECTIVES In this study, we aimed to perform the preclinical characterization of CT109 and antibody- drug conjugate (ADCs) derivatives of CT109, focusing on CT109-SN-38. METHODS CT109's cognate epitope was characterized by scanning mutagenesis. CT109 specificity and internalization kinetics were assessed by immunoblot and flow cytometry, respectively. Cognate antigen expression prevalence in colorectal cancer and normal tissue arrays was determined by immunohistochemistry. CT109 conjugations were generated by the reaction of reduced CT109 cysteines with maleimide-functionalized payload linkers. In vitro cytotoxic activity of CT109 ADCs was characterized on antigen-positive and negative pancreatic ductal adenocarcinoma cell (PDAC) lines using a luminometric viability assay. In vivo efficacy of CT109-SN-38 was assessed on a PDAC tumor xenograft model at 10 and 25 mg/kg concentrations. RESULTS CT109 was shown to bind a glycoepitope centered on N309. CT109 is internalized in the CEACAM5+/CEACAM6+ double-positive PDAC line, BxPC-3, with a t1/2 of 2.3 hours. CT109 ADCs elicit a dose and antigen-dependent cytotoxic effect, with CT109-SN-38 exhibiting an IC50 value of 21 nM in BxPC-3 cells. In a BxPC-3 tumor xenograft model, CT109-SN-38 reduced tumor growth and induced regression in 3/10 mice at a concentration 25 mg/kg. CONCLUSION These data suggest that further preclinical and clinical development of CT109-SN-38 is warranted.
Collapse
Affiliation(s)
| | | | - Mark R Spear
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Dana E Austin
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Raghad Almofeez
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | | | - Lauren Pincus
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Hua-Bei Guo
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Samuel Dolezal
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - J Michael Pierce
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Emma Furth
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Yongjun Kwon
- Institute: Food and Drug Administration, CDER, MD, USA
| | - Cohava Gelber
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| |
Collapse
|
24
|
Bisbal Lopez L, Ravazza D, Bocci M, Zana A, Principi L, Dakhel Plaza S, Galbiati A, Gilardoni E, Scheuermann J, Neri D, Pignataro L, Gennari C, Cazzamalli S, Dal Corso A. Ex vivo mass spectrometry-based biodistribution analysis of an antibody-Resiquimod conjugate bearing a protease-cleavable and acid-labile linker. Front Pharmacol 2023; 14:1320524. [PMID: 38125888 PMCID: PMC10731371 DOI: 10.3389/fphar.2023.1320524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Immune-stimulating antibody conjugates (ISACs) equipped with imidazoquinoline (IMD) payloads can stimulate endogenous immune cells to kill cancer cells, ultimately inducing long-lasting anticancer effects. A novel ISAC was designed, featuring the IMD Resiquimod (R848), a tumor-targeting antibody specific for Carbonic Anhydrase IX (CAIX) and the protease-cleavable Val-Cit-PABC linker. In vitro stability analysis showed not only R848 release in the presence of the protease Cathepsin B but also under acidic conditions. The ex vivo mass spectrometry-based biodistribution data confirmed the low stability of the linker-drug connection while highlighting the selective accumulation of the IgG in tumors and its long circulatory half-life.
Collapse
Affiliation(s)
| | | | - Matilde Bocci
- R&D Department, Philochem AG, Otelfingen, Switzerland
| | | | | | | | | | | | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- R&D Department, Philochem AG, Otelfingen, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- Philogen S.p.A, Siena, Italy
| | - Luca Pignataro
- Chemistry Department, Università degli Studi di Milano, Milano, Italy
| | - Cesare Gennari
- Chemistry Department, Università degli Studi di Milano, Milano, Italy
| | | | - Alberto Dal Corso
- Chemistry Department, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
25
|
Howe JM, Fang S, Watts KA, Xu F, Benjamin SR, Tumey LN. ValCitGlyPro-dexamethasone antibody conjugates selectively suppress the activation of human monocytes. RSC Med Chem 2023; 14:2348-2357. [PMID: 37974960 PMCID: PMC10650436 DOI: 10.1039/d3md00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023] Open
Abstract
Glucocorticoids (GCs) are effective in treating autoimmune and inflammatory disorders but come with significant side effects, many of which are mediated by non-immunological cells. Therefore, there is rapidly growing interest in using antibody drug conjugate (ADC) technology to deliver GCs specifically to immune cells, thereby minimizing off-target side effects. Herein, we report the study of anti-CD11a, anti-CD38, and anti-TNFα ADCs to deliver dexamethasone to monocytes. We found that anti-CD11a and anti-CD38 were rapidly internalized by monocytes, while uptake of anti-TNFα depended on pre-activation with LPS. Using these antibodies were attached to a novel linker system, ValCitGlyPro-Dex (VCGP-Dex), that efficiently released dexamethasone upon lysosomal catabolism. This linker relies on lysosomal cathepsins to cleave after the ValCit sequence, thereby releasing a GlyPro-Dex species that undergoes rapid self-immolation to form dexamethasone. The resulting monocyte-targeting ADCs bearing this linker payload effectively suppressed LPS-induced NFκB activation and cytokine release in both a monocytic cell line (THP1) and in human PBMCs. Anti-TNFα_VCGP-Dex and anti-CD38_VCGP-Dex were particularly effective, suppressing ∼60-80% of LPS-induced IL-6 release from PBMCs at 3-10 μg mL-1 concentrations. In contrast, the corresponding isotype control ADC (anti-RSV) and the corresponding naked antibodies (anti-CD38 and anti-TNFα) resulted in only modest suppression (0-30%) of LPS-induced IL-6. Taken together, these results provide further evidence of the ability of glucocorticoid-ADCs to selectively suppress immune responses, and highlight the potential of two targets (CD38 and TNFα) for the development of novel immune-suppressing ADCs.
Collapse
Affiliation(s)
- Justin M Howe
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University PO Box 6000 Binghamton NY 13902-6000 USA
| | - Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University PO Box 6000 Binghamton NY 13902-6000 USA
| | - Kelsey A Watts
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University PO Box 6000 Binghamton NY 13902-6000 USA
| | - Fanny Xu
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University PO Box 6000 Binghamton NY 13902-6000 USA
| | - Samantha R Benjamin
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University PO Box 6000 Binghamton NY 13902-6000 USA
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University PO Box 6000 Binghamton NY 13902-6000 USA
| |
Collapse
|
26
|
DeYoung EG, Howe JM, Fang S, Reddy MM, Handel JP, Gillen Miller JT, Wheeler DR, Tumey LN. Synthesis and Optimization of 1-Substituted Imidazo[4,5- c]quinoline TLR7 Agonists. ACS Med Chem Lett 2023; 14:1358-1368. [PMID: 37849530 PMCID: PMC10577892 DOI: 10.1021/acsmedchemlett.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
TLR7 agonists have significant therapeutic potential in a variety of oncology and autoimmune applications. We recently reported a potent TLR7 selective agonist 1 that could be delivered by antibody-drug conjugate (ADC) technology to elicit potent anticancer activity. Herein we report synthetic chemistry and structure-activity relationship studies to develop TLR7 agonists with improved potency for next-generation ADC efforts. We found that the addition of hydrophobic acyl tails to parent compound 1 generally resulted in retained or improved TLR7 agonist activity without sacrificing the permeability or the selectivity over TLR8. In contrast, the addition of a simple alkyl tail at the same position resulted in a dramatic loss in potency. Molecular modeling was performed to provide a rationale for this dramatic loss in potency. We ultimately identified compounds 17b, 16b, and 16d as highly potent TLR7 agonists that potently induced the activation of mouse macrophages and hPBMCs at low-nanomolar concentrations.
Collapse
Affiliation(s)
- Emma G. DeYoung
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Justin M. Howe
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Siteng Fang
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Mullapudi Mohan Reddy
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Jillian P. Handel
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Jared T. Gillen Miller
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Daniel R. Wheeler
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - L. Nathan Tumey
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| |
Collapse
|
27
|
Schlam I, Moges R, Morganti S, Tolaney SM, Tarantino P. Next-generation antibody-drug conjugates for breast cancer: Moving beyond HER2 and TROP2. Crit Rev Oncol Hematol 2023; 190:104090. [PMID: 37562695 DOI: 10.1016/j.critrevonc.2023.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have reshaped the treatment of several malignancies, including breast cancer. Two ADCs are currently approved for the treatment of each breast cancer subtype, including the HER2 targeted ADCs trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), and the TROP2-targeted ADC sacituzumab govitecan. Each of the ADC components (antibody, linker, and payload) plays a key role in determining the efficacy and toxicity profile of an individual ADC, and their modification can lead to major changes in the clinical profile of these agents. Leveraging the knowledge from three decades of development in the field, several novel ADCs are currently being investigated. Some approaches include targeting different antigens beyond the established HER2/TROP2, or evaluating innovative constructs, such as bispecific ADCs, ADCs with dual payload, immune-modulating ADCs, radionuclide drug conjugates, and masked ADCs, among others. In this review article we discuss the evolving landscape of novel ADCs, highlighting opportunities and challenges emerging in the field.
Collapse
Affiliation(s)
- Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Ruth Moges
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefania Morganti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Duvall JR, Thomas JD, Bukhalid RA, Catcott KC, Bentley KW, Collins SD, Eitas T, Jones BD, Kelleher EW, Lancaster K, Protopopova M, Ray SS, Ter-Ovanesyan E, Xu L, Yang L, Zurita J, Damelin M, Toader D, Lowinger TB. Discovery and Optimization of a STING Agonist Platform for Application in Antibody Drug Conjugates. J Med Chem 2023; 66:10715-10733. [PMID: 37486969 PMCID: PMC10424177 DOI: 10.1021/acs.jmedchem.3c00907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/26/2023]
Abstract
While STING agonists have proven to be effective preclinically as anti-tumor agents, these promising results have yet to be translated in the clinic. A STING agonist antibody-drug conjugate (ADC) could overcome current limitations by improving tumor accessibility, allowing for systemic administration as well as tumor-localized activation of STING for greater anti-tumor activity and better tolerability. In line with this effort, a STING agonist ADC platform was identified through systematic optimization of the payload, linker, and scaffold based on multiple factors including potency and specificity in both in vitro and in vivo evaluations. The platform employs a potent non-cyclic dinucleotide STING agonist, a cleavable ester-based linker, and a hydrophilic PEG8-bisglucamine scaffold. A tumor-targeted ADC built with the resulting STING agonist platform induced robust and durable anti-tumor activity and demonstrated high stability and favorable pharmacokinetics in nonclinical species.
Collapse
Affiliation(s)
- Jeremy R. Duvall
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Joshua D. Thomas
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Raghida A. Bukhalid
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kalli C. Catcott
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Keith W. Bentley
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Scott D. Collins
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Timothy Eitas
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Brian D. Jones
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Eugene W. Kelleher
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kelly Lancaster
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Marina Protopopova
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Soumya S. Ray
- 3-Dimensional
Consulting, 134 Franklin
Avenue, Quincy, Massachusetts 02170, United States
| | - Elena Ter-Ovanesyan
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Ling Xu
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Liping Yang
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Zurita
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Marc Damelin
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Dorin Toader
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Timothy B. Lowinger
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Yang T, Li W, Huang T, Zhou J. Antibody-Drug Conjugates for Breast Cancer Treatment: Emerging Agents, Targets and Future Directions. Int J Mol Sci 2023; 24:11903. [PMID: 37569276 PMCID: PMC10418918 DOI: 10.3390/ijms241511903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
To achieve the scheme of "magic bullets" in antitumor therapy, antibody-drug conjugates (ADCs) were developed. ADCs consist of antibodies targeting tumor-specific antigens, chemical linkers, and cytotoxic payloads that powerfully kill cancer cells. With the approval of ado-trastuzumab emtansine (T-DM1) and fam-trastuzumab deruxtecan (T-DXd), the therapeutic potentials of ADCs in breast cancer have come into the spotlight. Nearly 30 ADCs for breast cancer are under exploration to move targeted therapy forward. In this review, we summarize the presenting and emerging agents and targets of ADCs. The ADC structure and development history are also concluded. Moreover, the challenges faced and prospected future directions in this field are reviewed, which give insights into novel treatments with ADCs for breast cancer.
Collapse
Affiliation(s)
| | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Brant MG, Garnett GAE, Guedia J, Lasalle M, Lawn S, Petersen ME, Duan R, Mendez-Campos J, Hirkala-Schaefer T, Winters GC, Barnscher SD. Generation and structure-activity relationships of novel imidazo-thienopyridine based TLR7 agonists: application as payloads for immunostimulatory antibody drug-conjugates. Bioorg Med Chem Lett 2023; 91:129348. [PMID: 37217025 DOI: 10.1016/j.bmcl.2023.129348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Pairing immunostimulatory small molecules with the targeting capability of an antibody has emerged as a novel therapeutic modality with the potential to treat a variety of solid tumors. A series of compounds based on an imidazo-thienopyridine scaffold were synthesized and tested for their ability to agonize the innate immune sensors toll-like receptor 7 and 8 (TLR7/8). Structure-activity relationship (SAR) studies revealed that certain simple amino-substituents could enable TLR7 agonism at low nanomolar concentrations. Drug-linkers containing either payload 1 or 20h were conjugated to the HER2-targeting antibody trastuzumab at the interchain disulfide cysteine residues using a cleavable valine-citrulline dipeptide linker and stochastic thiol-maleimide chemistry. In vitro, these immune-stimulating antibody drug-conjugates (ADCs) were found to induce cytokine release in a murine splenocyte assay when co-cultured with the HER2-high NCI-N87 cancer cell line. In vivo, tumor regression was observed with a single dose in an NCI-N87 gastric carcinoma xenograft model in BALB/c nude mice.
Collapse
Affiliation(s)
- Michael G Brant
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada.
| | | | - Joy Guedia
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada
| | - Manuel Lasalle
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada
| | - Samuel Lawn
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada
| | - Mark E Petersen
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada
| | - Renee Duan
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
31
|
Bhagchandani SH, Vohidov F, Milling LE, Tong EY, Brown CM, Ramseier ML, Liu B, Fessenden TB, Nguyen HVT, Kiel GR, Won L, Langer RS, Spranger S, Shalek AK, Irvine DJ, Johnson JA. Engineering kinetics of TLR7/8 agonist release from bottlebrush prodrugs enables tumor-focused immune stimulation. SCIENCE ADVANCES 2023; 9:eadg2239. [PMID: 37075115 PMCID: PMC10115420 DOI: 10.1126/sciadv.adg2239] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Imidazoquinolines (IMDs), such as resiquimod (R848), are of great interest as potential cancer immunotherapies because of their ability to activate Toll-like receptor 7 (TLR7) and/or TLR8 on innate immune cells. Nevertheless, intravenous administration of IMDs causes severe immune-related toxicities, and attempts to improve their tissue-selective exposure while minimizing acute systemic inflammation have proven difficult. Here, using a library of R848 "bottlebrush prodrugs" (BPDs) that differ only by their R848 release kinetics, we explore how the timing of R848 exposure affects immune stimulation in vitro and in vivo. These studies led to the discovery of R848-BPDs that exhibit optimal activation kinetics to achieve potent stimulation of myeloid cells in tumors and substantial reductions in tumor growth following systemic administration in mouse syngeneic tumor models without any observable systemic toxicity. These results suggest that release kinetics can be tuned at the molecular level to provide safe yet effective systemically administered immunostimulant prodrugs for next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Sachin H. Bhagchandani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Farrukh Vohidov
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren E. Milling
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Evelyn Yuzhou Tong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Christopher M. Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Timothy B. Fessenden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gavin R. Kiel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lori Won
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert S. Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
32
|
Yamazaki S, Matsuda Y. Tag‐Free Enzymatic Modification for Antibody−Drug Conjugate Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202203753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| |
Collapse
|