1
|
Wang YY, Lee XH, Chen CH, Yuan L, Lai YT, Peng TY, Chen JW, Chueh CC, Lu YJ. Plasmon-enhanced exciton relocalization in quasi-2D perovskites for low-threshold room-temperature plasmonic lasing. SCIENCE ADVANCES 2025; 11:eadu6824. [PMID: 40333984 PMCID: PMC12057676 DOI: 10.1126/sciadv.adu6824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/27/2025] [Indexed: 05/09/2025]
Abstract
Room-temperature nanolasers are crucial for advancing optical communication and photonic quantum technologies due to their capability to generate coherent light at a subwavelength scale. However, their development is constrained by challenges such as insufficient gain, material instability, and high lasing thresholds. By integrating quasi-two-dimensional (quasi-2D) perovskites with high-Q plasmonic nanostructures, we demonstrate a stable, wavelength-tunable, single-mode laser operating at room temperature. This device leverages a unique exciton relocalization effect in quasi-2D Ruddlesden-Popper perovskites with additives, substantially enhancing optical gain and improving stability. When coupled with a waveguide-hybridized surface lattice resonance mode, the enhanced light-matter interaction facilitates single-mode lasing with a notably low threshold of 0.9 millijoules per square centimeter. In addition, the device achieves robust lasing performance with extended operational stability (1.8 × 106 excitation pulses). These results provide a scalable, low-cost, and energy-efficient platform for nanolasing, with potential applications in next-generation photonic technologies, including light detection and ranging, sensing, optical communication, and computation.
Collapse
Affiliation(s)
- Yen-Yu Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, TIGP, Academia Sinica, Taipei 11529, Taiwan
| | - Xing-Hao Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chiung-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Linchyn Yuan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yin-Ti Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Wern Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Jung Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, TIGP, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Zhang Z, Jin J, Li Z, Huang Y, Jiang Y, Li M, Wang C, Luo Y, Gao Z, Xu Y, Wang X, Qu J, Jiao W, Liang W, Zhu J, Zhang H, Su Z, Gao X, Huang H, Xiao C, Ren S, Chen C, Gao P, Zhao D. Nucleation-Layer Assisted Quasi-2D Ruddlesden-Popper Tin Perovskite Solar Cells With High Oxygen Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501156. [PMID: 40341643 DOI: 10.1002/adma.202501156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/26/2025] [Indexed: 05/10/2025]
Abstract
Tin (Sn)-based perovskite solar cells (PSCs) are extremely vulnerable to oxygen. Nevertheless, mechanism understanding and fundamental strategies to achieve oxygen-stable Sn-based PSCs are lacking. Here a nucleation-layer assisted (NLA) strategy by forming nucleation layer at the interface of hole transport layer and perovskite to attain highly oxygen-stable quasi-2D Ruddlesden-Popper (RP) Sn-based PSCs is reported. The formation process of nucleation layer consists of washing off the prepared perovskite film and annealing the residue on the substrate, which produces a new substrate for perovskite film fabrication. Such nucleation layer can transform the subsequently deposited perovskite film from a small-n-value dominated wide phase distribution with random crystal orientation into an intermediate-n-value dominated narrow phase distribution with vertical crystal orientation. This nucleation layer also improves the perovskite film morphology with highly coadjacent flake-like grains, leading to reduced grain boundaries and pinholes. The resultant NLA perovskite film shows more efficient carrier transport capability, lower exciton-binding energy, weakened electron-phonon coupling, and significantly decreased oxygen diffusion rate upon oxygen exposure. Consequently, a quasi-2D RP Sn-based PSC with a champion efficiency of 11.18% is obtained. The unencapsulated device preserves 95% of its initial efficiency after a 2700-h oxygen aging test, creating a record oxygen stability for Sn-based PSCs.
Collapse
Affiliation(s)
- Zhihao Zhang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jialun Jin
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zicheng Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanfang Huang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yiting Jiang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Minghui Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Can Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yi Luo
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhiyu Gao
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yuliang Xu
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Xiaoxue Wang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Junyu Qu
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Wenbo Jiao
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Wenqing Liang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jingwei Zhu
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hao Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structure & School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Chuanxiao Xiao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shengqiang Ren
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Cong Chen
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Dewei Zhao
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Dong K, Lin R, Huang K, Lu S, Ma J, Xu Y, Liu K, Liu J, Shen Z, Yue S, Wang Z, Qu S. Broadband Tunable Photonic Crystal Lasers Based on Quasi-2D Perovskites in Green Spectral Region. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412728. [PMID: 40317904 DOI: 10.1002/smll.202412728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Photonic crystal (PhC) lasers offer significant advantages in terms of wavelength tuning, mode control, and reduction of lasing thresholds, arising from their unique photonic band structure. However, the development of perovskite-based PhC lasers in the green light band remains a challenging endeavor, limited by factors such as device structural accuracy, material gain, and tolerance. Here, this work demonstrates the fabrication of quasi-2D perovskite-based PhC laser exhibiting single-mode lasing with a narrow linewidth of 0.9 nm, a high Q-factor of 622, and an ultralow threshold of 10 µJ cm-2. By precisely adjusting the hole diameter to the period ratio of the PhC structure, broadband wavelength tuning is achieved across the green spectral region, spanning 30 nm with an accuracy of 1 nm. Furthermore, both surface and edge emission configurations are observed during wavelength tuning, demonstrating the versatility of this device. These results highlight the versatility and potential of quasi-2D perovskite-based PhC lasers for applications in sensing, display, communication, and on-chip integration.
Collapse
Affiliation(s)
- Keqian Dong
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Runkang Lin
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaige Huang
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shudi Lu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Physical Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, P. R. China
| | - Jingteng Ma
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yipeng Xu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kong Liu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Liu
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Zhanwei Shen
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shizhong Yue
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhijie Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengchun Qu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Xu J, Yang Y, Lai R, Fan Y, Liu S, Zhang G, Wang Z, Zhao B, Zou C, Di D. Low-Threshold Amplified Spontaneous Emission from Quasi-2D Lead-Bromide Perovskites for Lasing Applications. ACS NANO 2025; 19:11323-11332. [PMID: 40064555 DOI: 10.1021/acsnano.5c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Quasi-two-dimensional (quasi-2D) lead halide perovskite materials have shown great potential as gain media for amplified spontaneous emission (ASE) and lasing. Due to the complexity of the mixed-dimensional perovskite materials, factors influencing their ASE thresholds remain unclear, limiting the pace of development in this emerging area of research. Here, we report exceptionally low ASE thresholds of ∼2.23 μJ cm-2 with high stability in quasi-2D lead-bromide perovskite semiconductors. Improved gain coefficients, suppressed Auger recombination, effective coupling between the optical field and the gain medium, and minimized scattering losses are found to be some of the key contributors to the low-threshold ASE. The optimized materials lead to the demonstration of a low-threshold, single-mode perovskite laser based on a distributed feedback (DFB) optical resonator, yielding a low lasing threshold of 0.69 μJ cm-2. We expect our findings to clarify some of the key design principles of low-threshold ASE in perovskite semiconductors for lasing applications.
Collapse
Affiliation(s)
- Jiying Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Yichen Yang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Runchen Lai
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Yangning Fan
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Shengnan Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Gan Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Zixiang Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Baodan Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Chen Zou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Jiang N, Ma G, Zhu M, Song D, Qiao B, Liang Z, Xu Z, Zhao S. Manipulating Phase and Defect Distribution of Quasi-2D Perovskites via a Synergistic Strategy for Enhancing the Performance of Blue Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8024-8035. [PMID: 39849664 DOI: 10.1021/acsami.4c21188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA+) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (p-F-PEA+), enhancing phase distribution management in quasi-2D PeLEDs. The DPEA+ not only inhibits the small-n phase but also strengthens carrier transport and alleviates exciton quenching. In addition, dual additives─formamidine acetate (FAoAc) and guanidine thiocyanate (GASCN)─were incorporated to assist phase tailoring and passivation of remaining defects in the perovskite films. The C═O and SCN- groups can coordinate with Pb2+ to suppress the charge trap density and nonradiative recombination. As a result of employing a synergetic strategy for comprehensive phase distribution regulation and defect passivation, the optimized device achieves blue emission at 479 nm with a 5× improvement in external quantum efficiency (EQE) and a 13× increase in device operating stability. This synergetic strategy paves a simple route for phase management and defect passivation toward high-performance blue-emission PeLEDs.
Collapse
Affiliation(s)
- Na Jiang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Guoquan Ma
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Mingyi Zhu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Bo Qiao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zhiqin Liang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng Xu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Suling Zhao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
6
|
Shi Y, Deng X, Gan Y, Xu L, Zhang Q, Xiong Q. Ten Years of Perovskite Lasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413559. [PMID: 39828626 DOI: 10.1002/adma.202413559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Indexed: 01/22/2025]
Abstract
Over the past decade, semiconducting halide perovskite lasers have emerged as a transformative platform in optoelectronics, owing to unique properties such as high photoluminescence quantum yields, tunable bandgaps, and low-cost fabrication processes. This review systematically examines the advancements in halide perovskite lasers, covering diverse laser architectures, such as whispering gallery mode, Fabry-Pérot, plasmonic, bound states in the continuum (BIC), quantum dot, and polariton lasers. The mechanisms of optical gain, the role of material engineering in optimizing lasing performance, and the challenges associated with continuous-wave (CW) pumping and electrically driven lasing are discussed. Furthermore, recent progress in improving the stability and scalability of perovskite lasers, essential for their integration into practical applications in displays, optical communications, sensing, and integrated photonics is highlighted. Finally, future research directions are discussed, emphasizing the potential of perovskite lasers to revolutionize various technological domains by enabling the development of next-generation photonic devices.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinyi Deng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Yusong Gan
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Luobing Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
- Frontier Science Center for Quantum Information, Beijing, 100084, P.R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| |
Collapse
|
7
|
Li C, Chen C, Gao W, Dong H, Zhou Y, Wu Z, Ran C. Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects. ACS NANO 2024; 18:35130-35163. [PMID: 39692273 DOI: 10.1021/acsnano.4c12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Over the past decade, lead halide perovskites (LHPs), an emerging class of organic-inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices. Herein, we provide a comprehensive review on the up-to-date research progress of WBG LHPs and their optoelectronics in terms of material fundamentals, optoelectronic devices, and their practical applications. First, the features and shortcomings of WBG LHPs are introduced to objectively display their natural features. Then we separately depict three typical optoelectronic devices based on WBG LHPs, including solar cells, light emitting diodes, and photodetectors. Sequentially, the inspiring applications of these optoelectronic devices in integrated functional systems are elaborately demonstrated. At last, the remaining challenges and future promise of WBG LHPs in optoelectronic applications are discussed. This review highlights the significance of WGB LHPs for promoting the development of the next-generation optoelectronics industry.
Collapse
Affiliation(s)
- Changbo Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Changshun Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Weiyin Gao
- Engineering Research Center of Smart Energy and Carbon Neutral in Oil & Gas Field Universities of Shaanxi Province, College of New Energy, Xi'an Shiyou University, Xi'an 710065, China
| | - He Dong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Yipeng Zhou
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| |
Collapse
|
8
|
Lu G, Wang X, Jiang X, Li J, Zhu M, Ma Z, Zhang D, Gao Y, Pan J, Dai X, Ye Z, He H. Blue Perovskite Lasing Derived from Bound Excitons through Defect Engineering. ACS NANO 2024; 18:23457-23467. [PMID: 39145749 DOI: 10.1021/acsnano.4c06877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
All-inorganic perovskite films have emerged as promising candidates for laser gain materials owing to their outstanding optoelectronic properties and straightforward solution processing. However, the performance of blue perovskite lasing still lags far behind due to the inevitable high density of defects. Herein, we demonstrate that defects can be utilized instead of passivated/removed to form bound excitons to achieve excellent blue stimulated emission in perovskite films. Such a strategy emphasizes defect engineering by introducing a deep-level defect in mixed-Rb/Cs perovskite films through octylammonium bromide (OABr) additives. Consequently, the OA-Rb/Cs perovskite films exhibit blue amplified spontaneous emission (ASE) from defect-related bound excitons with a low threshold (13.5 μJ/cm2) and a high optical gain (744.7 cm-1), which contribute to a vertical-cavity surface-emitting laser with single-mode blue emission at 482 nm. This work not only presents a facile method for creating blue laser gain materials but also provides valuable insights for further exploration of high-performance blue lasing in perovskite films.
Collapse
Affiliation(s)
- Guochao Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinyang Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinyi Jiang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, P. R. China
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, P. R. China
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, P. R. China
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, P. R. China
| |
Collapse
|
9
|
Zhao C, Guo J, Tao J, Chu J, Chen S, Xing G. Pulse-doubling perovskite nanowire lasers enabled by phonon-assisted multistep energy funneling. LIGHT, SCIENCE & APPLICATIONS 2024; 13:170. [PMID: 39019895 PMCID: PMC11255266 DOI: 10.1038/s41377-024-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024]
Abstract
Laser pulse multiplication from an optical gain medium has shown great potential in miniaturizing integrated optoelectronic devices. Perovskite multiple quantum wells (MQWs) structures have recently been recognized as an effective gain media capable of doubling laser pulses that do not rely on external optical equipment. Although the light amplifications enabled with pulse doubling are reported based on the perovskite MQWs thin films, the micro-nanolasers possessed a specific cavity for laser pulse multiplication and their corresponding intrinsic laser dynamics are still inadequate. Herein, a single-mode double-pulsed nanolaser from self-assembled perovskite MQWs nanowires is realized, exhibiting a pulse duration of 28 ps and pulse interval of 22 ps based on single femtosecond laser pulse excitation. It is established that the continuous energy building up within a certain timescale is essential for the multiple population inversion in the gain medium, which arises from the slowing carrier localization process owning to the stronger exciton-phonon coupling in the smaller-n QWs. Therefore, the double-pulsed lasing is achieved from one fast energy funnel process from the adjacent small-n QWs to gain active region and another slow process from the spatially separated ones. This report may shed new light on the intrinsic energy relaxation mechanism and boost the further development of perovskite multiple-pulse lasers.
Collapse
Affiliation(s)
- Chunhu Zhao
- Hunan Provincial Key Laboratory of Carbon Neutrality and Intelligent Energy, School of Resource & Environment, Hunan University of Technology and Business, 410205, Changsha, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Jia Guo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China
| | - Jiahua Tao
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Junhao Chu
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Shaoqiang Chen
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China.
| |
Collapse
|
10
|
Zhang Y, Dong Z, Guo X, Hu Y, Zhang Z, Deng Y, Zhang Y, Men Z, Geng C, Wang Y, Chen Z, Jiang Y, Song L, Xia Y. Enhanced performance of amplified spontaneous emission in Dion-Jacobson phase quasi-2D perovskite by facilitating carrier co-radiation. OPTICS EXPRESS 2024; 32:26306-26317. [PMID: 39538499 DOI: 10.1364/oe.525735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 11/16/2024]
Abstract
Dion-Jacobson (DJ) structured quasi-2D perovskites are promising candidates for new generation gain medium due to their excellent photoelectric performance, super environmental, and structure stability. The isolated carrier recombination with inhomogeneous mixed phase is detrimental in enhancing amplified spontaneous emission (ASE) of optically pumped DJ phase quasi-2D perovskites lasers. Here, in 1.3-propanediamine (PDA)-based DJ perovskites, the carrier dynamic behavior from the pristine sample to the Cremophor EL (Cre EL) treated sample is unraveled. Remarkably, the Cre EL treated sample displays a well-proportioned large n domain distribution, resulting in an increased radiation-state density and hence enhancing collaboration emitting between carriers. The improved collaboration emitting promotes carriers' fast relay radiation, resulting in a higher ASE performance with a threshold reduced from 11.7 to 4.8μJ/cm2, optical gain coefficient increased from 775 to 1559 cm-1 and degree-of-polarization (DOP) improved from 0.59 to 0.98. Our findings suggest that the development of DJ structured quasi-2D perovskite laser gain medium should target facilitating fast carrier co-radiation recombination.
Collapse
|
11
|
Chu Z, Li Y, Cong R, Mao X, Li Y, Xu W, Gao Y, Ran G. Perovskite Quantum Dots Lasing in Double-Heterostructure through Energy Transfer. NANO LETTERS 2024; 24:6010-6016. [PMID: 38739874 DOI: 10.1021/acs.nanolett.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Planar double heterostructures were initially investigated and have been successfully applied in III-V semiconductor lasers due to their excellent roles in confining both the photons and carriers. Here, we design and fabricate a (PEA)2Csn-1PbnX3n+1 (quasi-2D)/CsPbBr3 QD/quasi-2D double-heterostructure sandwiched in a 3/2 λ DBR microcavity, and then demonstrate a single-mode pure-green lasing with a threshold of 53.7 μJ/cm2 under nanosecond-pulsed optical pumping. The thresholds of these heterostructure devices decrease statistically by about 50% compared to the control group with no energy donor layers, PMMA/QD/PMMA in an identical microcavity. We show that there is efficient energy transfer from the barrier regions of the quasi-2D phases to the QD layer by transient absorption and luminescence lifetime spectra and that such energy transfer leads to marked threshold reduction. This work indicates that the double-heterostructure configurations should play a significant role in the future perovskite electrically pumped laser.
Collapse
Affiliation(s)
- Zihao Chu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Yang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Riyu Cong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Xinrui Mao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Yanping Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Wanjin Xu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Yunan Gao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangzhao Ran
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| |
Collapse
|
12
|
Moon J, Mehta Y, Gundogdu K, So F, Gu Q. Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211284. [PMID: 36841548 DOI: 10.1002/adma.202211284] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.
Collapse
Affiliation(s)
- Jiyoung Moon
- Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yash Mehta
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenan Gundogdu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Franky So
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Gu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
13
|
Wu XG, Sun S, Song T, Zhang X, Wang C, Yang Y, Wang S, Zhong H. Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. FUNDAMENTAL RESEARCH 2024; 4:362-368. [PMID: 38933501 PMCID: PMC11197484 DOI: 10.1016/j.fmre.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
Abstract
The development of efficient perovskite light-emitting diodes (PeLEDs) relies strongly on the fabrication of perovskite films with rationally designed structures (grain size, composition, surface, etc.). Therefore, an understanding of structure-performance relationships is of vital importance for developing high-performance perovskite devices, particularly for devices with in-situ fabricated perovskite nanocrystal films. In this study, we reveal the vertical structure of an in-situ fabricated quasi-two-dimensional perovskite film. By combining time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, grazing incidence wide-angle X-ray scattering (GIWAXS), and low-temperature photoluminescence spectra, we illustrate that the resulting in-situ fabricated DPPA2Csn-1Pbn(Br0.3I0.7)3n+1 (DPPA+: 3,3-diphenylpropylammonium) film has a gradient structure with a very thin layer of ligands on the surface, predominantly small-n domains at the top, and predominantly large-n domains at the bottom owing to the solubility difference of the precursors. In addition, GIWAXS measurements show that the domain of n = 2 on the top layer has an ordered in-plane alignment. Based on the understanding of the film structure, we developed an in-situ fabrication process with ligand exchange to achieve efficient pure red PeLEDs at 638 nm with an average external quantum efficiency (EQE) of 7.4%. The optimized device had a maximum luminance of 623 cd/m2 with a peak EQE of 9.7%.
Collapse
Affiliation(s)
- Xian-gang Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shipei Sun
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chenhui Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Yao F, Dong K, Ke W, Fang G. Micro/Nano Perovskite Materials for Advanced X-ray Detection and Imaging. ACS NANO 2024; 18:6095-6110. [PMID: 38372495 DOI: 10.1021/acsnano.3c10116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Halide perovskites have emerged as highly promising materials for ionizing radiation detection due to their exceptional characteristics, including a large mobility-lifetime product, strong stopping power, tunable band gap, and cost-effective crystal growth via solution processes. Semiconductor-type X-ray detectors employing various micro/nano perovskite materials have shown impressive progress in achieving heightened sensitivity and lower detection limits. Here, we present a comprehensive review of the applications of micro/nano perovskite materials for direct type X-ray detection, with a focus on the requirements for micro/nano crystal assembly and device properties in advanced X-ray detectors. We explore diverse processing techniques and optoelectronic considerations applied to perovskite X-ray detectors. Additionally, this review highlights the challenges and promising opportunities for perovskite X-ray detector arrays in real-world applications, potentially necessitating further research efforts.
Collapse
Affiliation(s)
- Fang Yao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Kailian Dong
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Zhao S, Yu H, Jia Y, Zhou Y, Zhang Z, Zhao N. Postdeposition Halide Exchange for Achieving Deep-Blue Perovskite Light-Emitting Diodes: The Role of the Organic Cations in the Chloride Source. SMALL METHODS 2024; 8:e2300572. [PMID: 37469235 DOI: 10.1002/smtd.202300572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Postdeposition halide exchange has been a popular strategy for tuning the emission wavelength of metal halide perovskites and is particularly attractive in achieving deep-blue perovskite light-emitting diodes (PeLEDs), where the quality of the emissive layer is largely limited by the low solubility of chlorides in perovskite precursor solution. In this work, the halide exchange strategy is examined for deep-blue PeLEDs, with a focus on understanding the role of the organic cations of the halide salt (i.e., the chloride source for ion exchange) in modifying the properties of the perovskite films and consequently the PeLED performances. By comparatively investigating the treatment effects of two model systems, namely phenethylammonium chloride and 2,2-diphenylethylammonium chloride (DPEACl), it is found that although the two chlorides produce highly similar photoluminescence properties of the perovskite films, they create different landscapes for current flow in the PeLEDs. In particular, the bulky branch-structured DPEA cations exhibit minimal disturbance to the perovskite grains while providing highly effective inter-grain void filling and thus leakage current blocking, leading to 3D perovskite-based PeLEDs with a record high peak external quantum efficiency of 6.4% at 462 nm. The study highlights the importance of organic cation selection in the halide exchange processes for PeLEDs.
Collapse
Affiliation(s)
- Shenghe Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Hui Yu
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yongheng Jia
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yang Zhou
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Zheng Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| |
Collapse
|
16
|
Li Y, Gui P, Wei S, Sun Y, Yang L, Hu Y, Chen Z, Wang S, Zeng W, Ren X, Huang Z. Template-Assisted Synthesis of 2D Perovskite Grating Single Crystal Films at Low Temperatures for UV Polarization-Sensitive Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305207. [PMID: 37963824 DOI: 10.1002/smll.202305207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Indexed: 11/16/2023]
Abstract
2D perovskites have attracted tremendous attention due to their superior optoelectronic properties and potential applications in optoelectronic devices. Especially, the larger bandgap of 2D perovskite means that they are suitable for UV photodetection. However, the layered structure of 2D perovskites hinders the interlayer carrier transport, which limits the improvement of device performance. Therefore, nanoscale structures are normally used to enhance the light absorption ability, which is an effective strategy to improve the photocurrent in 2D perovskite-based photodetectors. Herein, a template-assisted low-temperature method is proposed to fabricate 2D perovskite ((C6 H5 C2 H4 NH3 )2 PbBr4 , (PEA)2 PbBr4 ) grating single crystal films (GSCFs). The crystallinity of the (PEA)2 PbBr4 GSCFs is significantly improved due to the slow evaporation of the precursor solution under low temperatures. Based on this high crystalline quality and extremely ordered microstructures, the metal-semiconductor-metal photodetectors are assembled. Finite-different time-domain (FDTD) simulation and experiment indicate that the GSCF-based photodetectors exhibit significantly improved performance in comparison with the plane devices. The optimized 2D perovskite photodetectors are sensitive to UV light and demonstrate a responsivity and detectivity of 28.6 mA W-1 and 2.4 × 1011 Jones, respectively. Interestingly, the photocurrent of this photodetector varies as the angle of the incident polarized light, resulting in a high polarization ratio of 1.12.
Collapse
Affiliation(s)
- Yanhui Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Pengbin Gui
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Shengyang Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Yanming Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Liangpan Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Yali Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Zhiliang Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Wei Zeng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Xingang Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Zhixiang Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
17
|
Rojas-Gatjens E, Li H, Vega-Flick A, Cortecchia D, Petrozza A, Bittner ER, Srimath Kandada AR, Silva-Acuña C. Many-Exciton Quantum Dynamics in a Ruddlesden-Popper Tin Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21194-21203. [PMID: 37937156 PMCID: PMC10626601 DOI: 10.1021/acs.jpcc.3c04896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/01/2023] [Indexed: 11/09/2023]
Abstract
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
| | - Hao Li
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alejandro Vega-Flick
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
| | - Daniele Cortecchia
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Eric R. Bittner
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Ram Srimath Kandada
- Department
of Physics, Wake Forest University, Winston–Salem, North
Carolina 27587, United States
- Center
for Functional Materials, Wake Forest University, Winston–Salem, North
Carolina 27109, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
18
|
Wang X, Jin L, Sergeev A, Liu W, Gu S, Li N, Fan K, Chen SC, Wong KS, Sun X, Zhao N. Quasi-2D Dion-Jacobson phase perovskites as a promising material platform for stable and high-performance lasers. SCIENCE ADVANCES 2023; 9:eadj3476. [PMID: 37889979 PMCID: PMC10610889 DOI: 10.1126/sciadv.adj3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Metal halide perovskites have shown outstanding optoelectronic and nonlinear optical properties; yet, to realize wafer-scale high-performance perovskite-integrated photonics, the materials also need to have excellent ambient stability and compatibility with nanofabrication processes. In this work, we introduce Dion-Jacobson (D-J) phase perovskites for photonic device applications. By combining self-assembled monolayer-assisted film growth with thermal pressing, we obtain a series of compact and extremely smooth D-J phase perovskite thin films that exhibit excellent stability during electron-beam lithography, solvent development, and rinse. Combining spectroscopic and morphological characterizations, we further demonstrate how organic spacers can be used to fine-tune the photophysical properties and processability of the perovskite films. The distributed-feedback lasers based on the D-J phase perovskites exhibit a low lasing threshold (5.5 μJ cm-2 pumped with nanosecond laser), record high Q factor (up to 30,000), and excellent stability, with an unencapsulated device demonstrating a T90 beyond 60 hours in ambient conditions (50% relative humidity).
Collapse
Affiliation(s)
- Xuezhou Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Long Jin
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Aleksandr Sergeev
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Songyun Gu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kezhou Fan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shih-chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiankai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
19
|
Yin H, Wang S, Jin K. Enhanced Rashba Spin Orbit Coupling and Magnetic Behavior at Oxide Heterointerfaces by Optical Gating. J Phys Chem Lett 2023; 14:8684-8690. [PMID: 37733252 DOI: 10.1021/acs.jpclett.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Complex oxide heterointerfaces have been a hot research spot due to their rich physical phenomena and broad quantum coherence that respond to multiple external stimuli. Among these external stimuli, light is a very powerful one to manipulate properties such as carrier density and spin characteristics. However, achieving a light-magnetic correlation is in high demand for multifield responding devices, and its intrinsic mechanism remains unclear. Here, by illuminating Nd0.86Sr0.14Al0.86Ni0.14O3-SrTiO3 heterointerfaces using 360 nm light, we observe a series of interesting physical phenomena, like enhanced magnetoresistance (MR). More interestingly, a band splitting and strong Rashba spin-orbit coupling (SOC) effect occur after illumination, accompanied by a magnetic feature and thus leading to an anomalous Hall effect (AHE). Upon optical gating, the magnetism can be caused by Rashba SOC induced spin-orbit torque (SOT). The work will be sure to have great importance in both theoretical studies and all-oxide devices.
Collapse
Affiliation(s)
- Hang Yin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
20
|
Guo Z, Liang Y, Ni D, Li L, Liu S, Zhang Y, Chen Q, Zhang Q, Wang Q, Zhou H. Homogeneous Phase Distribution in Q-2D Perovskites via Co-Assembly of Spacer Cations for Efficient Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302711. [PMID: 37310805 DOI: 10.1002/adma.202302711] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Indexed: 06/15/2023]
Abstract
Quasi-2D (Q-2D) perovskites are promising candidates to apply in light-emitting diodes (LEDs). However, delicate control on crystallization kinetics is needed to suppress severe phase segregation. Here, the crystallization kinetics of Q-2D perovskites are investigated via in situ absorbance spectroscopy and for the first time find the multiphase distribution is governed by the arrangement, rather than diffusion, of spacer cations at the nucleation stage, which associate with its assembling ability determined by molecular configuration. A "co-assembly" strategy is conceived by combining co-cations with different configuration characteristics, where bulky cations disturb the assembling between slender cations and lead-bromide sheet, contributing to homogeneous emitting phase with effective passivation. Correspondingly, in the phenylethylammonium (PEA+ )-based Q-2D perovskites ( = 3), homogeneous phase distribution is achieved by incorporating co-cation triphenylmethaneammonium (TPMA+ ), the branching terminals of which suppress cations assembling into low-n phases and afford adequate cations as passivating ligands. Therefore, the champion external quantum efficiency of the LED device reaches 23.9%, which is among the highest performance of green Q-2D perovskite LEDs. This work reveals that the arrangement of spacer cations determines the crystallization kinetics in Q-2D perovskites, providing further guidance on the molecular design and phase modulation of Q-2D perovskites.
Collapse
Affiliation(s)
- Zhenyu Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dongyuan Ni
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Liang Li
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shaocheng Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qi Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Huanping Zhou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Gunnarsson WB, Roh K, Zhao L, Murphy JP, Grede AJ, Giebink NC, Rand BP. Toward Nonepitaxial Laser Diodes. Chem Rev 2023. [PMID: 37219995 DOI: 10.1021/acs.chemrev.2c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thin-film organic, colloidal quantum dot, and metal halide perovskite semiconductors are all being pursued in the quest for a wavelength-tunable diode laser technology that does not require epitaxial growth on a traditional semiconductor substrate. Despite promising demonstrations of efficient light-emitting diodes and low-threshold optically pumped lasing in each case, there are still fundamental and practical barriers that must be overcome to reliably achieve injection lasing. This review outlines the historical development and recent advances of each material system on the path to a diode laser. Common challenges in resonator design, electrical injection, and heat dissipation are highlighted, as well as the different optical gain physics that make each system unique. The evidence to date suggests that continued progress for organic and colloidal quantum dot laser diodes will likely hinge on the development of new materials or indirect pumping schemes, while improvements in device architecture and film processing are most critical for perovskite lasers. In all cases, systematic progress will require methods that can quantify how close new devices get with respect to their electrical lasing thresholds. We conclude by discussing the current status of nonepitaxial laser diodes in the historical context of their epitaxial counterparts, which suggests that there is reason to be optimistic for the future.
Collapse
Affiliation(s)
- William B Gunnarsson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kwangdong Roh
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lianfeng Zhao
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - John P Murphy
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Tang H, Wang Y, Chen Y, Wang K, He X, Huang C, Xiao S, Yu S, Song Q. Ultrahigh-Q Lead Halide Perovskite Microlasers. NANO LETTERS 2023; 23:3418-3425. [PMID: 37042745 DOI: 10.1021/acs.nanolett.3c00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lead halide perovskites have been promising platforms for micro- and nanolasers. However, the fragile nature of perovskites poses an extreme challenge to engineering a cavity boundary and achieving high-quality (Q) modes, severely hindering their practical applications. Here, we combine an etchless bound state in the continuum (BIC) and a chemically synthesized single-crystalline CsPbBr3 microplate to demonstrate on-chip integrated perovskite microlasers with ultrahigh Q factors. By pattering polymer microdisks on CsPbBr3 microplates, we show that record high-Q BIC modes can be formed by destructive interference between different in-plane radiation from whispering gallery modes. Consequently, a record high Q-factor of 1.04 × 105 was achieved in our experiment. The high repeatability and high controllability of such ultrahigh Q BIC microlasers have also been experimentally confirmed. This research provides a new paradigm for perovskite nanophotonics.
Collapse
Affiliation(s)
- Haijun Tang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yuhan Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yimu Chen
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Kaiyang Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xianxiong He
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Can Huang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi P. R. China
| | - Shaohua Yu
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi P. R. China
| |
Collapse
|
23
|
Lou X, Yao L, Zhang J, Sui N, Wu M, Zhang W, Kang Z, Chi X, Zhou Q, Zhang H, Wang Y. Competition of Carrier Kinetics Contributes to Amplified Spontaneous Emission in Quasi-2D/3D (PBA) 2MA n-1Pb nBr 3n+1 Thin Films under Strip Light Mode. J Phys Chem Lett 2023; 14:4050-4057. [PMID: 37093818 DOI: 10.1021/acs.jpclett.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quasi-2D halide perovskites have potential in lasing due to their amplified spontaneous emission (ASE) properties. The ASE of (PBA)2MAn-1PbnBr3n+1 thin films has been confirmed by photoluminescence (PL) testing using stripe light excitation (SLE). The ASE threshold decreases with decreasing environmental temperature (TE) or increasing number of inorganic layers (n). Using the transient absorption technique, the Auger recombination and the cooling process of the high-activity carrier are accelerated with the decrease of n or TE. A new ASE mechanism is proposed where high-activity carriers directly emit photons under photon perturbation from adjacent sites, leading to the accumulation and amplification of emitted photons only in the SLE region for ASE to occur. In addition, the reduction of n promotes light scattering between nano-thin layers, which supports a rapid increase in the ASE signal after the ASE threshold is crossed.
Collapse
Affiliation(s)
- Xue Lou
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Lianfei Yao
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Ning Sui
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Min Wu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| | - Zhihui Kang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Xiaochun Chi
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Qiang Zhou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hanzhuang Zhang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Wang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Chakraborty R, Rajput PK, Anilkumar GM, Maqbool S, Das R, Rahman A, Mandal P, Nag A. Rational Design of Non-Centrosymmetric Hybrid Halide Perovskites. J Am Chem Soc 2023; 145:1378-1388. [PMID: 36594717 DOI: 10.1021/jacs.2c12034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural non-centrosymmetry in semiconducting organic-inorganic hybrid halide perovskites can introduce functionalities like anomalous photovoltaics and nonlinear optical properties. Here we introduce a design principle to prepare Pb- and Bi-based two- and one-dimensional hybrid perovskites with polar non-centrosymmetric space groups. The design principle relies on creating dissimilar hydrogen and halogen bonding non-covalent interactions at the organic-inorganic interface. For example, in organic cations like I-(CH2)3-NH2(CH3)+ (MIPA), -CH3 is substituted by -CH2I at one end, and -NH3+ is substituted by -NH2(CH3)+ at the other end. These substitutions of two -H atoms by -I and -CH3 reduce the rotational symmetry of MIPA at both ends, compared to an unsubstituted cation, for example, H3C-(CH2)3-NH3+. Consequently, the dissimilar hydrogen-iodine and iodine-iodine interactions at the organic-inorganic interface of (MIPA)2PbI4 2D perovskites break the local inversion symmetries of Pb-I octahedra. Owing to this non-centrosymmetry, (MIPA)2PbI4 displays visible to infrared tunable nonlinear optical properties with second and third harmonic generation susceptibility values of 5.73 pm V-1 and 3.45 × 10-18 m2 V-2, respectively. Also, the single crystal shows photocurrent on shining visible light at no external bias, exhibiting anomalous photovoltaic effect arising from the structural asymmetry. The design strategy was extended to synthesize four new non-centrosymmetric hybrid perovskite compounds. Among them, one-dimensional (H3N-(CH2)3-NH(CH3)2)BiI5 shows a second harmonic generation susceptibility of 7.3 pm V-1 and a high anomalous photovoltaic open-circuit voltage of 22.6 V.
Collapse
Affiliation(s)
- Rayan Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Parikshit Kumar Rajput
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Gokul M Anilkumar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Shabnum Maqbool
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Ranjan Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Atikur Rahman
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
25
|
Zhang H, Wu C, Xu W, Fu H. Compact-Type Quasi-2D Perovskite Based on Two Conventional 3D Perovskites. NANO LETTERS 2023; 23:252-258. [PMID: 36562880 DOI: 10.1021/acs.nanolett.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quasi-2D perovskites are natural quantum well (QW) structures composed of insulating organic layers inserted between conducting [An-1PbnX3n+1]2- slabs. The presence of the bulky organic layer improves the stability but meanwhile sacrifices carrier transport performance. By utilizing two A-site cations of formamidinium (FA+) and cesium (Cs+), we synthesize unique compact-type quasi-2D perovskites CsPbBr3@FABr. Instead of the bulky organic cations, the FA+ cation was employed to work as interlayer "spacer", while the smaller Cs+ cation was chosen to occupy perovskite cages. Transient absorption reveals an energy transfer from small-n-value QWs to large-n-value QWs, enabling a photoluminescence quantum yield (PLQY) of 36.1%. After further promoting the formation of middle-n-value QWs, the homogeneous QW distribution provides a complete energy cascade to access more efficient energy transfer, leading to significant PLQY raise to 70.1%. We break the shackles to report the first case of compact-type quasi-2D perovskites, providing new guidelines for designing high-performance perovskite materials for optoelectronic devices.
Collapse
Affiliation(s)
- Haihua Zhang
- Institute of Molecule Plus, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Chuang Wu
- Institute of Molecule Plus, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Wenbao Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Hongbing Fu
- Institute of Molecule Plus, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| |
Collapse
|
26
|
Ning S, Duan F, Zhang N, Dai K, He J, Liu Z, Wang S, Zhang F. High-performance all-inorganic CsPbBr 3 quantum dots with a low-threshold amplified spontaneous emission. OPTICS EXPRESS 2023; 31:301-312. [PMID: 36606968 DOI: 10.1364/oe.477912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
All-inorganic halide perovskite CsPbX3(X = Br/Cl/I)quantum dots have gained a considerable attention in the optoelectronic fields. However, the high cost and poor stability of the prepared CsPbX3 quantum dots (QDs) are inevitable challenges for their future practical applications. And the high-performance CsPbX3 QDs are always needed. Herein, a facile and low-cost synthesis scheme was adopted to prepare the CsPbBr3 QDs modified by lead bromide (PbBr2) and tetraoctylammonium bromide (TOAB) ligands at room temperature in open air. The prepared CsPbBr3 QDs exhibited a high photoluminescence quantum yield (PLQY) of 96.6% and a low amplified spontaneous emission (ASE) threshold of 12.6 µJ/cm2. Stable ASE intensity with little degradation was also realized from the CsPbBr3 QDs doped with PMMA. Furthermore, the enhanced ASE properties of the CsPbBr3 QDs-doped PMMA based on distributed feedback (DFB) substrate was achieved with a lower threshold of 3.6 µJ/cm2, which is 28.6% of that of the (PbBr2 + TOAB)-treated CsPbBr3 QDs without PMMA. This work exhibits a promising potential in the on-chip light source.
Collapse
|
27
|
Peng M, Zhang F, Tian L, You L, Wu J, Wen N, Zhang Y, Wu Y, Gan F, Yu H, Zhao J, Feng Q, Deng F, Zheng L, Wu Y, Yi N. Modified Fabrication of Perovskite-Based Composites and Its Exploration in Printable Humidity Sensors. Polymers (Basel) 2022; 14:4354. [PMID: 36297932 PMCID: PMC9606918 DOI: 10.3390/polym14204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Organic perovskites are promising optoelectronic semiconductor materials with photoelectric applications. It is known that the luminescence of perovskites is highly sensitive to hydron molecules due to its low moisture resistance of crystal structure, indicating its potential application on humidity-sensing. Herein, a novel perovskite-based compound (PBC) with minimal defects was developed to promote the photoluminescence performance via optimization of the drying method and precursor constitutions. Perovskite materials with good structural integrity and enhanced fluorescence performance up to four times were obtained from supercritical drying. Moreover, the hydrophilic polymer matrix, polyethylene oxide (PEO), was added to obtain a composite of perovskite/PEO (PPC), introducing enhanced humidity sensitivity and solution processibility. These perovskite/PEO composites also exhibited long-term stability and manifold cycles of sensitivity to humidity owing to perovskite encapsulation by PEO. In addition, this precursor solution of perovskite-based composites could be fancily processed by multiple methods, including printing and handwriting, which demonstrates the potential and broaden the applications in architecture decoration, logos, trademarks, and double encryption of anti-fake combined with humidity.
Collapse
Affiliation(s)
- Meiting Peng
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyong Tian
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longbin You
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiayi Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Nanhua Wen
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangfan Zhang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yancheng Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Fuqin Deng
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingzhu Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
28
|
Qin C, Zhang S, Zhou Z, Han T, Song J, Ma S, Jia G, Jiao Z, Zhu Z, Chen X, Jiang Y. Low amplified spontaneous emission threshold from 2-thiophenemethylammonium quasi-2D perovskites via phase engineering. OPTICS EXPRESS 2022; 30:36541-36551. [PMID: 36258580 DOI: 10.1364/oe.471849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Quasi-2D Ruddlesden-Popper perovskites attract great attention as an optical gain media in lasing applications due to their excellent optoelectronic properties. Herein, a novel quasi-2D Ruddlesden-Popper perovskite based on 2-thiophenemethylammonium (ThMA) is synthesized by a facile solution-processed method. In addition, an anti-solvent treatment method is proposed to tune the phase distribution, and preferential orientation of quasi-2D (ThMA)2Csn-1PbnBr3n+1 thin films. The large-n-dominated narrow domain distribution improves the energy transfer efficiency from small-n to large-n phases. Also, the highly oriented nanocrystals facilitate the efficient Förster energy transfer, beneficial for the carrier population transfer. Furthermore, a green amplified spontaneous emission with a low threshold of 13.92 µJ/cm2 is obtained and a single-mode vertical-cavity laser with an 0.4 nm linewidth emission is fabricated. These findings provide insights into the design of the domain distribution to realize low-threshold multicolor continuous-wave or electrically driven quasi-2D perovskites laser.
Collapse
|
29
|
Gao W, Wei Q, Wang T, Xu J, Zhuang L, Li M, Yao K, Yu SF. Two-Photon Lasing from Two-Dimensional Homologous Ruddlesden-Popper Perovskite with Giant Nonlinear Absorption and Natural Microcavities. ACS NANO 2022; 16:13082-13091. [PMID: 35969210 DOI: 10.1021/acsnano.2c05726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional Ruddlesden-Popper perovskites (RPPs) with multiple quantum well-like structures, strong excitonic quantum confinement, and high stability are promising optical gain media. However, the lasing from such material with a small number of inorganic well layers is difficult to achieve. Herein, we demonstrate the low-threshold upconversion lasing from the homologous RPP (PEA)2(MA)n-1PbnI3n+1 (n = 2 and 3) microflakes with wavelength varies from 598 to 637 nm under 800 nm laser excitation at low temperature (≤153 K). Using the micro Z-scan technique, we discovered that the RPP flakes have a giant two-photon absorption coefficient β as high as 3.6 × 103 cm GW-1, resulting in the effective upconversion transition under two-photon excitation. Furthermore, the self-formation of Fabry-Pérot microcavities provides the support for lasing emission from the n ≥ 2 RPP flakes. Calculation results and microscopic transient absorption measurements reveal that low-threshold lasing is due to the high differential gain coefficient and the suppressed nonradiative Auger recombination rate inside the quantum confinement structures. These properties enable RPPs as potential gain media for developing upconversion microcavity lasers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518060, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ting Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jiangtao Xu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Lyuchao Zhuang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Kai Yao
- Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Siu Fung Yu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518060, China
| |
Collapse
|
30
|
Gao Y, Su X, Wei J, Sun J, Zhang M, Tan H, Zhang J, Ouyang J, Na N. Water-resistant organic-inorganic hybrid perovskite quantum dots activated by the electron-deficient d-orbital of platinum atoms for nitrogen fixation. NANOSCALE 2022; 14:10780-10792. [PMID: 35861174 DOI: 10.1039/d2nr02662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their special physicochemical properties, organic-inorganic hybrid perovskite quantum dots (OIP QDs) are ideal and potential catalysts for the nitrogen reduction reaction (NRR). However, the OIP QD-based NRR is limited by poor water resistance, competitive suppression by the hydrogen evolution reaction, and inefficient active sites on the catalyst surfaces. Herein, to ensure an efficient NRR in aqueous solution, a water-resistant polycarbonate-part-encapsulated heterojunction of Zn,PtIV co-doped PbO-MAPbBr3 (PtIV/Zn/PbO/PC-Zn/MAPbBr3) is prepared through one-step electrospray-based microdroplet synthesis. Confirmed by both experimental and theoretical examinations, PbO is exposed on the PC-part-encapsulated surface to construct a Type I heterojunction. This heterojunction is further improved by synergistic co-doping with PtIV to facilitate efficient electron transfer for efficient photocatalysis of the NRR. Due to the active sites of the d-orbital electron-deficient Pt atoms (exhibiting a lower reaction energy barrier and highly selective N2 adsorption), the ammonia yield rate is 40 times higher than that without doping. This work initiates and develops on the application of OIP QDs in the NRR.
Collapse
Affiliation(s)
- Yixuan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiao Su
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Juanjuan Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Min Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State, Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), China.
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|