1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
He L, He T, Yang Y, Chen XB. Material selection, preparation, driving and applications of light-driven micro/nano motors: a review. NANOSCALE 2025; 17:11894-11933. [PMID: 40261240 DOI: 10.1039/d4nr05202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
As an external energy stimulus, light possesses the advantageous qualities of being reversible, wireless and remotely maneuverable while driving the motion of micro and nano motors. Despite the extensive publication of articles on light-driven micro- and nano-motors (LDMNMs) over the past two decades, reviews that address LDMNMs in general, from material selection, design, preparation, driving to applications, remain scarce. Therefore, it is necessary to highlight the superiority of light as a stimulating energy source for driving MNMs, as well as to promote the continuous development of LDMNMs and give newcomers a more basic and comprehensive knowledge in this field. This present review focuses on advanced preparation methods for LDNMNs, and provides a comprehensive comparison of the advantages and limitations of various techniques. In addition, general design strategies for building asymmetric fields around LDMNMs are introduced, as well as a variety of photoactive materials, including photocatalytic, photothermal, and photoinduced isomerization materials. The existing propulsive mechanisms and kinematic behaviours of LDMNMs are described in detail, including photocatalytic oxidation, photothermal effects and photoinduced isomerization. The principles of the various drive mechanisms are also analysed in detail and their merits and shortcomings summarized. Finally, following a comprehensive review of the potential applications in biomedicine, environmental remediation and other fields, further perspectives on future developments are presented with a view to overcoming key challenges.
Collapse
Affiliation(s)
- Lingcong He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
3
|
He M, Yang X, Xiang D, Chan YK, Yin G, Yang W, Deng Y. Jahn-Teller-Driven Electronic Modulation of Bio-Heterojunction for Wound Regeneration after Postoperative Tumor Resection. NANO LETTERS 2025; 25:6828-6838. [PMID: 40219956 DOI: 10.1021/acs.nanolett.5c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Abundant ·OH, 1O2, and ·O2- provide an efficient methodology for rapid tumor and bacteria killing, whereas a limitation focuses on the catalytic efficiency. Thus, Jahn-Teller-driven electronic modulation of a bioheterojunction (bioHJ) platform is developed for the remedy in diabetic infectious wound regeneration after postoperative tumor resection. The bioHJ is composed of MoTe2/MnO2 and glucose oxidase (GOx). GOx depletes glucose to H2O2, which intercepts their glucose metabolism. The H2O2 can be further converted into highly lethal ·OH owing to peroxidase-mimetic activity via the Jahn-Teller effect, while GSH can be consumed due to its GPx-mimetic activity. Both of which can be further amplified upon NIR irradiation as NIR-activatable enzyme-mimetic activities. In vivo studies in a subcutaneous tumor model and infectious model authenticate the ability to kill tumor, defeat bacterial infection, and accelerate wound regeneration. This work enlightens a powerful platform for postoperative infectious wound regeneration of tumor resection using an engineered bioHJ.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xuyang Yang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
- Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Mei YK, Zhu YW, Wei YW, Li SD, Zhou X, Yao YN, Qiu J. Metal-polydopamine coordinated coatings on titanium surface: enhancing corrosion resistance and biological property. RSC Adv 2025; 15:13603-13617. [PMID: 40297004 PMCID: PMC12036513 DOI: 10.1039/d5ra00301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Previous studies on polydopamine (PDA)-modified titanium implants have primarily focused on single-metal-ion systems (e.g., Ag+, Cu2+, or Zn2+), while overlooking the interplay between corrosion resistance, antioxidant retention, and antimicrobial efficacy under clinically relevant oxidative conditions. Here, we present a comparative analysis of Ag-, Cu-, and Zn-integrated PDA coatings fabricated via a two-step coordination strategy, addressing these limitations through systematic multi-parameter evaluation. Unlike prior studies, this study reveals distinct metal-PDA interaction mechanisms: XPS/EDS analyses confirm Zn2+ and Cu2+ form coordination complexes with PDA's catechol groups, whereas Ag+ undergoes reduction to metallic nanoparticles (Ag0), leading to divergent ion-release profiles (Zn2+ > Cu2+ > Ag+) and biofunctional outcomes. Electrochemical testing under H2O2-simulated oxidative stress demonstrates Zn-PDA coatings exhibit superior corrosion resistance (polarization resistance: 4330 vs. 3900 and 2850 kΩ cm2 for Cu-PDA and Ag-PDA, respectively), while Ag-PDA achieves the highest antibacterial efficacy (>95% reduction against S. aureus and E. coli). Notably, Zn/Cu-PDA coatings retain >80% of PDA's intrinsic antioxidant capacity, in contrast to Ag-PDA, which exhibits significant antioxidant depletion due to redox interference. In vivo rat models further differentiate our approach: all coatings show comparable soft-tissue integration and systemic biosafety, contrasting with earlier reports of Ag-induced cytotoxicity. By elucidating metal-specific performance trade-offs and establishing a design framework to balance corrosion resistance, ROS scavenging, and antimicrobial activity, this work advances clinically adaptable strategies for enhancing peri-implant tissue stability.
Collapse
Affiliation(s)
- Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Shu-di Li
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Xuan Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Nan Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine Nanjing China
| |
Collapse
|
5
|
Qiao Z, Yang Y, Zhang T, Chen W. Separation and Recovery of Trace Silver from Sintering Filtrated Dust of Ferrous Metallurgy via Complexation Leaching. Molecules 2025; 30:1339. [PMID: 40142114 PMCID: PMC11944294 DOI: 10.3390/molecules30061339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
In this work, by using the sintering filtrated dust (SFD) from ferrous metallurgy as a raw material, the process of separating and recovering trace silver, including the steps of complexation leaching by Na2S2O3-CuCl, purification by hydrogen peroxide, and precipitation transformation, was researched and developed. The process is characterized by a high leaching selectivity and a high recovery. The recommended conditions for leaching trace silver from SFD were as follows: a leaching time of 120 min, a leaching temperature of 60 °C, a solid-liquid ratio of 6 L/kg, a Na2S2O3 concentration of 45 g/L, and a CuCl dosage of 5.0 g/L. Through a two-step hydrogen peroxide process, removal of the impurity ions Cu and Pb and high-efficiency recovery of trace silver were realized. The purity of the silver sulfide product obtained from the recovery was 97.0%, and the total silver recovery was 80.1%. In addition, the reaction mechanism of the recovery process was investigated in this work, and effective removal of impurity ions was realized by regulating the reaction time.
Collapse
Affiliation(s)
- Zhiqiang Qiao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Z.Q.)
| | - Yunquan Yang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Z.Q.)
| | - Tian Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Z.Q.)
| | - Weishun Chen
- School of Chemical Engineering, Zhaoqing Technician Institute, Zhaoqing 526040, China;
| |
Collapse
|
6
|
Zeng J, Zhao Q, Xiong Z, Zhang S, Deng S, Liu D, Zhang X. Surface functionalization of two-dimensional nanomaterials beyond graphene: Applications and ecotoxicity. Adv Colloid Interface Sci 2025; 336:103357. [PMID: 39612722 DOI: 10.1016/j.cis.2024.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications. Moreover, when released into the environment, these 2D nanomaterials may interact with natural organic matter (NOM). Both intentional surface modification and unintentional environmental corona formation can alter the structure and physicochemical properties of 2D nanomaterials, potentially affecting their ecological toxicity. This review provides a comprehensive overview of covalent functionalization strategies and non-covalent interactions of 2D nanomaterials beyond graphene with organic substances, examining the resultant changes in material properties after modification. Covalent functionalization methods discussed include nucleophilic substitution reactions, addition reactions, condensation, and coordination. Non-covalent interactions are classified by substance type, covering interactions with NOM, in vivo biomolecules, and synthetic compounds. In addition, the review delves into the effects of surface functionalization on the toxicity of 2D nanomaterials to bacteria and algae. This discussion contributes to a foundational understanding for assessing the potential ecological risks associated with 2D nanomaterials.
Collapse
Affiliation(s)
- Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Arroyo M, Fernández-Mimbrera MA, Gollini E, Esteve-Codina A, Sánchez A, Marchal JA. TOP2A inhibition and its cellular effects related to cell cycle checkpoint adaptation pathway. Sci Rep 2025; 15:3831. [PMID: 39885205 PMCID: PMC11782647 DOI: 10.1038/s41598-025-87895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1. Using cellular models depleted of p53 or both p53 and MCPH1 in hTERT-RPE1 cells, we analyzed cell cycle dynamics and adaptation, segregation defects, apoptosis rate, and transcriptional changes related to prolonged exposure to TOP2A inhibitors. Our findings reveal that cell cycle dynamics are altered in MCPH1-depleted cells compared to control cells. We found that MCPH1 depletion can restore the robustness of the DC in a p53-negative background. Furthermore, this research highlights the differential effects of TOP2A poisons and catalytic inhibitors on cellular outcomes and transcriptional profiles. By examining the different mechanisms of TOP2A inhibition and their impact on cellular processes, this study contributes to a deeper understanding of the regulation and physiological implications of the DC and checkpoint adaptation in non-carcinogenic cell lines.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| | - M A Fernández-Mimbrera
- Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain
| | - E Gollini
- Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain
| | - A Esteve-Codina
- Centre Nacional d'Anàlisi Genòmica (CNAG), Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - A Sánchez
- Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain
| | - Juan Alberto Marchal
- Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain.
| |
Collapse
|
8
|
Zhang X, Zeng J, White JC, Li F, Xiong Z, Zhang S, Xu Y, Yang J, Tang W, Zhao Q, Wu F, Xing B. Mechanistic evaluation of enhanced graphene toxicity to Bacillus induced by humic acid adsorption. Nat Commun 2025; 16:184. [PMID: 39753547 PMCID: PMC11699226 DOI: 10.1038/s41467-024-55270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus. Contrary to previous data, GNSs-HA exhibits greater toxicity compared to GNSs. Multi-omics combined with sensitive bioassays and electrochemical methods reveals GNSs disrupt oxidative phosphorylation by causing physical membrane damage. This leads to the accumulation of intracellular reactive oxygen species and inhibition of ATP production, subsequently suppressing synthetic and metabolic processes and ultimately causing bacterial death. Conversely, GNSs-HA directly extracts electrons from bacteria and oxidized biomolecules due to HA-improved electron transfer. This finding suggests that the HA corona does not always mitigate the toxicity of nanoparticles, thereby introducing uncertainty over the interaction between environmental corona and nanoparticles during ecological risk evaluation.
Collapse
Grants
- 42394150, 42192574, 42277423, 42077394, 42230713, 22176196 National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Major Project of Basic and Applied Basic Research (2023B0303000006), National Key Research and Development Program of China (2023YFC3708700), GDAS’ Project of Science and Technology Development (2022GDASZH-2022010105, 2023GDASQNRC-0103, 2023GDASQNRC-0106, and 2020GDASYL-20200101002), and Guangdong Foundation for Program of Science and Technology Research (Grant No.2023B1212060044).
Collapse
Affiliation(s)
- Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, US
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Siyu Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuze Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Jingjing Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Weihao Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
- Wuhu Haichuang Environmental Protection Technology Co., Ltd., Wuhu, 723309, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Boulebd H. A comprehensive DFT-based study of the antioxidant properties of monolignols: Mechanism, kinetics, and influence of physiological environments. Int J Biol Macromol 2025; 284:138044. [PMID: 39603310 DOI: 10.1016/j.ijbiomac.2024.138044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Monolignols, p-coumaryl alcohol (CouA), coniferyl alcohol (ConiA), and sinapyl alcohol (SinA), are the fundamental materials for lignin biosynthesis, a major component of lignocellulosic biomass. In the present study, we report a comprehensive analysis of the antioxidant properties of monolignols, using density functional theory (DFT) calculations. Under model physiological conditions, monolignols demonstrated a high hydroperoxyl radical scavenging capacity in polar media, with overall rate constants (koverall) ranging from 5.80 × 106 to 1.15 × 107 M-1 s-1. In contrast, this activity was less pronounced in lipid media, with koverall in the range of 2.66 × 102 to 2.61 × 104 M-1 s-1. The single electron transfer (SET) mechanism was found to play a decisive role in water at physiological pH and under basic conditions, whereas the formal hydrogen transfer (FHT) mechanism was the exclusive pathway in aqueous acid conditions and lipid media. Furthermore, the monolignols ConiA and SinA, demonstrated a strong capacity to chelate Cu(II) and Fe(III) ions in water, with apparent equilibrium constants in the range of 9.21 × 1014 to 5.93 × 1021 M-1 s-1. Their complexes were also found to be highly effective in blocking the reduction of Cu(II)-to-Cu(I) and Fe(III)-to-Fe(II) via the ascorbic acid anion pathway.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria.
| |
Collapse
|
10
|
Kang M, Liu Y, Weng Y, Wang H, Huang Y, Bai X. Trade-off strategies for driving the toxicity and metabolic remodeling of copper oxide nanoparticles and copper ions in Ipomoea aquatica. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136342. [PMID: 39488971 DOI: 10.1016/j.jhazmat.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The ecological safety of copper oxide nanoparticles (CuO NPs) in the environment determines the advancement of nano-agriculture owing to breakthroughs in nanotechnology; however, the release of Cu2+ is an uncontrollable factor. Currently, the trade-off mechanisms of CuO NPs and Cu2+ dominating the potential hazards of plant-nano systems remain unclear. This study proposed the trade-off strategy for reconstructing physiological responses and metabolic profiles and deciphered the differential regulation of dominant CuO NPs and Cu2+ in plants. The results showed that 100 and 500 mg/kg CuO NPs promoted root fresh weight but reduced shoot fresh weight, while 1000 mg/kg Cu2+ demonstrated the strongest inhibition on both roots and shoots. The net photosynthetic perturbation in photosynthetic disorders is accompanied by superoxide anion and hydrogen peroxide accumulation, which are severe under 1000 mg/kg CuO NPs and Cu2+ stress. Metabolomics revealed that CuO NPs significantly altered coumaric acid and derivatives, for example, down-regulating coumaroyl hexoside (isomers of 690 and 691) by 40.79 %. Additionally, Cu2+ treatment severely interfered with the dominant metabolic response, activating plant hormone signal transduction and α-linolenic acid metabolism. The trade-off strategies of galactose metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A (CoA) biosynthesis, and β-alanine metabolism as differential metabolism were confirmed by comparing the CuO NPs and Cu2+ exposure. Protein secondary structure analysis revealed specific regulation of protein conformation upon exposure to CuO NPs and Cu2+. These findings provide new insights into differential metabolism and environmental effects in plant-nano systems.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| |
Collapse
|
11
|
Yang N, Song S, Yang X, Nawaz MAH, He D, Han W, Li Y, Yu C. Fabrication of photo-induced molecular superoxide radical generator for highly efficient therapy against bacterial wound infection. Colloids Surf B Biointerfaces 2024; 241:114018. [PMID: 38865868 DOI: 10.1016/j.colsurfb.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The pressing need for highly efficient antibacterial strategies arises from the prevalence of microbial biofilm infections and the emergence of rapidly evolving antibiotic-resistant strains of pathogenic bacteria. Photodynamic therapy represents a highly efficient and compelling antibacterial approach, offering promising prospects for effective control of the development of bacterial resistance. However, the effectiveness of many photosensitizers is limited due to the reduced generation of reactive oxygen species (ROS) in hypoxic microenvironment, which commonly occur in pathological conditions such as inflammatory and bacteria-infected wounds. Herein, we designed and prepared two phenothiazine-derived photosensitizers (NB-1 and NB-2), which can effectively generate superoxide anion radicals (O2●-) through the type I process. Both photosensitizers demonstrate significant efficacy in vitro for the eradication of broad-spectrum bacteria. Moreover, NB-2 possesses distinct advantages including strong membrane binding and strong generation of O2●-, rendering it an exceptionally efficient antibacterial agent against mature biofilms. In addition, laser activated NB-2 could be applied to treat MRSA-infected wound in vivo, which offers new opportunities for potential practical applications.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaofei Yang
- Harbin Center for Disease Control and Prevention, Harbin 150030, PR China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Di He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
12
|
He M, Wang Z, Xiang D, Sun D, Chan YK, Ren H, Lin Z, Yin G, Deng Y, Yang W. A H₂S-Evolving Alternately-Catalytic Enzyme Bio-Heterojunction with Antibacterial and Macrophage-Reprogramming Activity for All-Stage Infectious Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405659. [PMID: 38943427 DOI: 10.1002/adma.202405659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The disorder of the macrophage phenotype and the hostile by-product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)-evolving alternately catalytic bio-heterojunction enzyme (AC-BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC-BioHJzyme exhibits circular enzyme-mimetic antibacterial (EMA) activity and macrophage re-rousing capability, which can be activated by near-infrared-II (NIR-II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase-mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx-mimetic activity endows AC-BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT-mimetic activity can generate 1O2 under the NIR-II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC-BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme-mimetic antibiosis and macrophage re-rousing.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuyao Wang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Department Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Yau Kai Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Huilin Ren
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhijie Lin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Li W, Huang H, Yao S, Zhao Y, Liu M, Liu X, Guo H. Engineering of a double targeting nanoplatform to elevate ROS generation and DSF anticancer activity. J Mater Chem B 2024; 12:7143-7152. [PMID: 38904428 DOI: 10.1039/d4tb00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Intracellular oxidative protection mechanisms and adverse systemic toxicity are major obstacles for the success of chemodynamic therapy (CDT)/chemotherapy (CT) synergistic therapy. To tackle the fundamental challenges of current CDT and circumvent the side effects of conventional CT, we developed a copper peroxide (CP) and disulfiram (DSF)-loaded 3-aminotriazole (3-AT) doped ZIF-8 (MAF) with partial sequence-specificity using hyaluronic acid (HA) and triphenylphosphine (TPP) in this study. Upon intravenous administration, CP@MAF-DSF@PEG-TPP@HA (CPMDTH) nanoparticles (NPs) were enriched in tumor tissues through HA-mediated endocytosis, followed by enhanced accumulation in mitochondria by the TPP target. The acidic tumor environment (TME) triggered the decomposition of MAF to release CP, DSF and 3-AT. Cu2+ and H2O2 hydrated from CP NPs produced ˙OH via a Fenton-like reaction. CAT activity inhibition and GSH consumption induced by 3-AT dramatically amplified mitochondrial oxidative stress, thereby promoting the overproduction of ˙OH. In addition, the accumulation of DSF and Cu2+ led to the formation of a cytotoxic bis(N,N-diethyldithiocarbamate) copper(II) complex (Cu(DTC)2) in situ, achieving efficient CT. CPMDTH NPs demonstrated significantly improved antitumor efficiency and excellent biosafety both in vitro and in vivo. This study offers a promising therapeutic strategy for CDT/CT synergistic oncotherapy.
Collapse
Affiliation(s)
- Wenqiu Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Haowu Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Shunyu Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Yiwang Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Mingxing Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Xiaoqing Liu
- Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huiling Guo
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
14
|
Gao Y, Wang X, Fan C. Advances in graphene-based 2D materials for tendon, nerve, bone/cartilage regeneration and biomedicine. iScience 2024; 27:110214. [PMID: 39040049 PMCID: PMC11261022 DOI: 10.1016/j.isci.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Two-dimensional (2D) materials, especially graphene-based materials, have important implications for tissue regeneration and biomedicine due to their large surface area, transport properties, ease of functionalization, biocompatibility, and adsorption capacity. Despite remarkable progress in the field of tissue regeneration and biomedicine, there are still problems such as unclear long-term stability, lack of in vivo experimental data, and detection accuracy. This paper reviews recent applications of graphene-based materials in tissue regeneration and biomedicine and discusses current issues and prospects for the development of graphene-based materials with respect to promoting the regeneration of tendons, neuronal cells, bone, chondrocytes, blood vessels, and skin, as well as applications in sensing, detection, anti-microbial activity, and targeted drug delivery.
Collapse
Affiliation(s)
- Yuxin Gao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
15
|
Cui T, Zhou D, Zhang Y, Kong D, Wang Z, Han Z, Song M, Aimaier X, Dan Y, Zhang B, Li H. A pH-Responsive Polycaprolactone-Copper Peroxide Composite Coating Fabricated via Suspension Flame Spraying for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2666. [PMID: 38893930 PMCID: PMC11173732 DOI: 10.3390/ma17112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In this study, a pH-responsive polycaprolactone (PCL)-copper peroxide (CuO2) composite antibacterial coating was developed by suspension flame spraying. The successful synthesis of CuO2 nanoparticles and fabrication of the PCL-CuO2 composite coatings were confirmed by microstructural and chemical analysis. The composite coatings were structurally homogeneous, with the chemical properties of PCL well maintained. The acidic environment was found to effectively accelerate the dissociation of CuO2, allowing the simultaneous release of Cu2+ and H2O2. Antimicrobial tests clearly revealed the enhanced antibacterial properties of the PCL-CuO2 composite coating against both Escherichia coli and Staphylococcus aureus under acidic conditions, with a bactericidal effect of over 99.99%. This study presents a promising approach for constructing pH-responsive antimicrobial coatings for biomedical applications.
Collapse
Affiliation(s)
- Tingting Cui
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Daofeng Zhou
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Decong Kong
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhijuan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meiqi Song
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xierzhati Aimaier
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanxin Dan
- Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan;
| | - Botao Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315201, China
| | - Hua Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China; (T.C.); (D.Z.); (Y.Z.); (D.K.); (Z.W.); (Z.H.); (M.S.); (X.A.)
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315201, China
| |
Collapse
|
16
|
Jannesari M, Caslin A, English NJ. Electric field-based air nanobubbles (EF-ANBs) irrigation on efficient crop cultivation with reduced fertilizer dependency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121228. [PMID: 38823304 DOI: 10.1016/j.jenvman.2024.121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
The advent of air nanobubbles (ANBs) has opened up a wide range of commercial applications spanning industries including wastewater treatment, food processing, biomedical engineering, and agriculture. The implementation of electric field-based air nanobubbles (EF-ANBs) irrigation presents a promising approach to enhance agricultural crop efficiency, concurrently promoting environmentally sustainable practices through reducing fertilizer usage. This study investigated the impact of EF-ANBs on the germination and overall growth of agricultural crops in soil. Results indicate a substantial enhancement in both germination rates and plant growth upon the application of EF-ANBs. Notably, the introduction of ANBs led to a significant enhancement in the germination rate of lettuce and basil, increasing from approximately 20% to 96% and from 16% to 53%, respectively over two days. Moreover, the presence of EF-ANBs facilitates superior hypocotyl elongation, exhibiting a 2.8- and a 1.6-fold increase in the elongation of lettuce and basil, respectively, over a six-day observation period. The enriched oxygen levels within the air nanobubbles expedite aerobic respiration, amplifying electron leakage from the electron transport chain (ETC) and resulting in heightened reactive oxygen species (ROS) production, playing a pivotal role in stimulating growth signaling. Furthermore, the application of EF-ANBs in irrigation surpasses the impact of traditional fertilizers, demonstrating a robust catalytic effect on the shoot, stem, and root length, as well as the leaf count of lettuce plants. Considering these parameters, a single fertilizer treatment (at various concentrations) during EF-ANBs administration, demonstrates superior plant growth compared to regular water combined with fertilizer. The findings underscore the synergistic interaction between aerobic respiration and the generation of ROS in promoting plant growth, particularly in the context of reduced fertilizer levels facilitated by the presence of EF-ANBs. This promising correlation holds significant potential in establishing more sustainability for ever-increasing environmentally conscious agriculture.
Collapse
Affiliation(s)
- Marziyeh Jannesari
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Anna Caslin
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| |
Collapse
|
17
|
Wang Y, Sutton NB, Zheng Y, Dong H, Rijnaarts H. Effect of wheat crops on the persistence and attenuation of antibiotic resistance genes in soil after swine wastewater application. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133759. [PMID: 38377902 DOI: 10.1016/j.jhazmat.2024.133759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Swine wastewater (SW) application introduces antibiotic resistance genes (ARGs) into farmland soils. However, ARG attenuation in SW-fertigated soils, especially those influenced by staple crops and soil type, remains unclear. This study investigated twelve soil ARGs and one mobile genetic element (MGE) in sandy loam, loam, and silt loam soils before and after SW application in wheat-planted and unplanted soils. The results revealed an immediate increase in the abundance of ARGs in soil by two orders of magnitude above background levels following SW application. After SW application, the soil total ARG abundance was attenuated, reaching background levels at 54 days; However, more individual ARGs were detected above the detection limit than pre-application. Among the 13 genes, acc(6')-lb, tetM, and tetO tended to persist in the soil during wheat harvest. ARG half-lives were up to four times longer in wheat-planted soils than in bare soils. Wheat planting decreased the persistence of acc(6')-lb, ermB, ermF, and intI2 but increased the persistence of others such as sul1 and sul2. Soil type had no significant impact on ARG and MGE fates. Our findings emphasize the need for strategic SW application and the consideration of crop cultivation effects to mitigate ARG accumulation in farmland soils.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| | - YunHao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Huub Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
18
|
Zhang S, Hussain S, Tang Y, Wang K, Wang X, Zhang L, Liao Y, Wang C, Hao Y, Gao R. Enzyme-triggered on-demand release of a H 2O 2-self-supplying CuO 2@Fe 3O 4 nanoagent for enhanced chemodyamic antimicrobial therapy and wound healing. J Mater Chem B 2024; 12:3404-3416. [PMID: 38487992 DOI: 10.1039/d3tb02762g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nanoagents for chemodynamic therapy (CDT) hold a promising future in the field of antimicrobials, especially copper peroxide (CuO2) (CP) nanomaterials which have garnered significant attention due to their ability to self-supply H2O2. Nevertheless, the poor stability of CuO2 remains a critical challenge which restricts its practical application in the antibacterial field. In this study, an advanced nano-antimicrobial system HA-CP@Fe3O4 with enzyme-responsive properties is developed by coating hyaluronic acid (HA) on CuO2-loaded iron tetraoxide nanoparticles. The coating of HA not only stabilizes the CuO2 nanomaterials but also provides responsiveness towards the enzyme hyaluronidase, which is typically secreted by some bacteria. The outer layer of HA in HA-CP@Fe3O4 undergoes decomposition in the presence of hyaluronidase-secreting bacteria, resulting in the release of CuO2@Fe3O4. The released CuO2@Fe3O4 then self-supplies H2O2 and generates reactive oxygen species (ROS) within the infected microenvironment through Fenton and Russell effects, to ultimately achieve effective and precise antimicrobial activity. Simultaneously, the magnetic property provided by Fe3O4 allows the substance to be directed towards the infection site. Both in vitro and in vivo tests demonstrated that HA-CP@Fe3O4 exhibited excellent antimicrobial capabilities at low concentration (30 μg mL-1), exceptional biocompatibility and the ability to accelerate wound healing. The findings of this work offer a new and promising approach for targeted and precise CDT.
Collapse
Affiliation(s)
- Sijie Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kaili Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xingyan Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Long Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuheng Liao
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chen Wang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Hao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
19
|
Ye Y, Zou J, Wu W, Wang Z, Wen S, Liang Z, Liu S, Lin Y, Chen X, Luo T, Yang L, Jiang Q, Guo L. Advanced nanozymes possess peroxidase-like catalytic activities in biomedical and antibacterial fields: review and progress. NANOSCALE 2024; 16:3324-3346. [PMID: 38276956 DOI: 10.1039/d3nr05592b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Infectious diseases caused by bacterial invasions have imposed a significant global health and economic burden. More worryingly, multidrug-resistant (MDR) pathogenic bacteria born under the abuse of antibiotics have further escalated the status quo. Nowadays, at the crossroads of multiple disciplines such as chemistry, nanoscience and biomedicine, nanozymes, as enzyme-mimicking nanomaterials, not only possess excellent bactericidal ability but also reduce the possibility of inducing resistance. Thus, nanozymes are promising to serve as an alternative to traditional antibiotics. Nanozymes that mimic peroxidase (POD) activity are also known as POD nanozymes. In recent years, POD nanozymes have become one of the most frequently reported and effective nanozymes due to their broad-spectrum bactericidal properties and unique sterilization mechanism. In this review, we introduce the mechanism as well as the classification of POD nanozymes. More importantly, to further improve the antibacterial efficacy of POD nanozymes, we elaborate on three aspects: (1) improving the physicochemical properties; (2) regulating the catalytic microenvironment; and (3) designing multimodel POD nanozymes. In addition, we review the nanosafety of POD nanozymes for discussing their potential toxicity. Finally, the remaining challenges of POD nanozymes and possible future directions are discussed. This work provides a systematic summary of POD nanozymes and hopefully contributes to the early clinical translation.
Collapse
Affiliation(s)
- Yunxin Ye
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Jiyuan Zou
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Weian Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Ziyan Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Siyi Wen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Zitian Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Shirong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Yifan Lin
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Xuanyu Chen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Tao Luo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Li Yang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Qianzhou Jiang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, China.
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| |
Collapse
|
20
|
Wang L, Pei W, Li J, Feng Y, Gao X, Jiang P, Wu Q, Li L. Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115970. [PMID: 38218108 DOI: 10.1016/j.ecoenv.2024.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The ubiquitous presence of Microplastics (MPs) in various environments documented in recent years has recently raised significant concerns about their toxic effects. While macrophages serve as the first line of defense against toxic substances and pathogens, the impact and mechanisms of microplastics on these immune cells remain unclear. This study aims to explore whether MPs induce macrophage apoptosis through the promotion of reactive oxygen species (ROS) generation and alterations in metabolic profiles. The viability of RAW264.7 cells decreased as the concentration of 0.5 µm or 5 µm MPs ranged from 0.2 to 1.5 mg/mL, with a more pronounced effect observed in the 0.5 µm MPs group. Zebrafish exposed to 0.5 µm or 5 µm MPs at a concentration of 0.5 mg/mL exhibited decreased macrophage abundance and increased apoptosis, accompanied by alterations in the expression of inflammatory and apoptosis-related genes. While 0.5 µm MPs were observed to enter macrophages, 5 µm MPs only adhered to the cell membrane surface. Both particle sizes induced ROS generation and disrupted cellular metabolism in RAW264.7 cells. Notably, macrophages exhibited a more pronounced response to 0.5 µm MPs, characterized by heightened ROS generation, increased secretion of pro-inflammatory mediators, and a significant decrease in sphingolipid metabolism. These findings suggest that the adverse effects on macrophages are greater with 0.5 µm MPs compared to 5 µm MPs, possibly attributed to particle size effects. This study contributes additional evidence on the impact of MPs on human immune cells.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yiming Feng
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xingsu Gao
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
21
|
Samal PP, Swain J, Qaiyum MA, Ghosh A, Mandal D, Dey B, Dey S. Green synthesis of MnO 2-embedded Rauvolfia tetraphylla leaves (MnO 2@RTL) for crystal violet dye removal and as an antibacterial agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5457-5472. [PMID: 38123767 DOI: 10.1007/s11356-023-31442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The application of green synthesized nanocomposites for the prevention of environmental pollution is increasing nowadays. Here, a green composite has been synthesized by embedding MnO2 on Rauvolfia tetraphylla leaves using its leaf extract hereinafter termed as MnO2@RTL, and demonstrated for crystal violet (CV) dye removal from simulated and real wastewater. The surface properties of the material were determined by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface area, pHZPC, and zeta potential. The material exhibits a remarkable adsorption capacity of 61.162 mg/g at 328 K and pH 7. The adsorption was best fitted with Pseudo-second-order kinetic (R2 = 0.998) and a combination of Langmuir and Freundlich isotherm model (R2 = 0.994-0.999). The thermodynamic study revealed spontaneous (ΔG values = - 2.988 to - 4.978 kJ/mol) and endothermic (ΔH values = 6.830 to 11.018 kJ/mol) adsorption. After adsorption, 80% regeneration occurred with 50% methanol, and recycled up to five times. Advantageously, the material was able to remove CV dye in the presence of coexistent ions and from industrial wastewater, confirming field applicability. The adsorption capacity of the material is superior to previously reported materials. The standard deviation and relative standard deviations have been evaluated to be 0.000422-0.000667 and 0.473-0.749%, which suggests the reliability of the experiments. The exhausted material, after recycling, was pyrolyzed to overcome the disposal problem. It was established as a secondary adsorbent with 73% efficiency which makes the material win-win. The material showed antibacterial properties with Staphylococcus aureus bacteria with a zone of inhibition 5 mm.
Collapse
Affiliation(s)
- Priyanka Priyadarsini Samal
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Jashminirani Swain
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Md Atif Qaiyum
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India
| | - Adrija Ghosh
- Department of Polymer Science & Technology, University of Calcutta, Kolkata, 700009, West Bengal, India
| | - Debashmita Mandal
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, 700106, West Bengal, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Jamshedpur, 831001, India
| | - Soumen Dey
- Department of Chemistry, Environment Protection Laboratory, Central University of Jharkhand, Ranchi, 835205, India.
| |
Collapse
|
22
|
Usman I, Afzaal M, Imran A, Saeed F, Afzal A, Ashfaq I, Shah YA, Islam F, Azam I, Tariq I, Ateeq H, Asghar A, Farooq R, Rasheed A, Asif Shah M. Recent updates and perspectives of plasma in food processing: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2171052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Azam
- Department of Food Sciences, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ifra Tariq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rimsha Farooq
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Amara Rasheed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohd Asif Shah
- Department of Economics, College of Business and Economics, Kebri Dehar, University, Kebri Dehar, Ethiopia
- Adjunct Faculty, University Centre for Research & Development, Chandigarh University, Mohali, India
| |
Collapse
|
23
|
Zhang J, Yang Y, Li K, Li J. Application of graphene oxide in tumor targeting and tumor therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2551-2576. [PMID: 37768314 DOI: 10.1080/09205063.2023.2265171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Graphene oxide (GO), as a kind of two-dimensional sp2 carbon nanomaterials, has attracted great attention in many fields in the past decade. Due to its unique physical and chemical properties, GO is showing great promise in the field of biomedicine. For GO, all the atoms on its surface are exposed to the surface with ultra-high specific surface area, and a variety of groups on the surface, such as carboxyl, hydroxyl and epoxy groups, can effectively bind/load various biomolecules. Due to the availability of these groups, GO also possesses excellent hydrophilicity and biocompatibility for the modification of the desired biocompatible molecules or polymers on the surface of GO. The nano-network structure and hydrophobicity of GO enable it to load a large number of hydrophobic drugs containing benzene rings and it has been widely used as a multi-functional nano-carrier for chemotherapeutic drug or gene delivery. This review article will give an in-depth overview of the synthesis methods of GO, the advantages and disadvantages of GO used in nano-drug delivery system, the research progress of GO as a stimulus-responsive nano-drug carrier, and the application of these intelligent systems in cancer treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Yibo Yang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Kun Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jian Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| |
Collapse
|
24
|
Xu Y, Wang K, Zhu Y, Wang J, Ci D, Sang M, Fang Q, Deng H, Gong X, Leung KCF, Xuan S. Size-dependent magnetomechanically enhanced photothermal antibacterial effect of Fe 3O 4@Au/PDA nanodurian. Dalton Trans 2023; 52:17148-17162. [PMID: 37947135 DOI: 10.1039/d3dt03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The global health crisis of bacterial resistance to antibiotics requires innovative antibacterial strategies. One promising solution is the exploitation of multifunctional nanoplatforms based on non-resistant antibacterial mechanisms. This work reports a novel Fe3O4@Au/polydopamine (PDA) nanodurian with excellent photothermal-magnetomechanic synergistic antibacterial effects. The one-step formed Au/PDA hybrid shell provides good photothermal properties and spiky surfaces for enhanced magnetomechanic effects. Upon near-infrared (NIR) irradiation, the Fe3O4@Au/PDA nanodurian (200 μg mL-1) achieved nearly 100% antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The efficiency of photothermal antimicrobial activity was further enhanced by the application of a rotating magnetic field (RMF), with the sterilization efficiency being increased by up to more than a half compared to the action alone. Interestingly, the size of the nanodurian has a significant impact on the synergistic sterilization effect, with larger particles showing a superior performance due to stronger chain-like structures in the magnetic field. Finally, the Fe3O4@Au/PDA nanodurian also demonstrates effective biofilm removal, with larger particles exhibiting the best eradication effect under the photothermal-magnetomechanic treatment. Overall, this magnetic field enhanced photothermal antibacterial strategy provides a promising broad-spectrum antimicrobial solution to combat bacterial infections. Thus, it possesses great potential in future nanomedicine and pollution treatment.
Collapse
Affiliation(s)
- Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Kang Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Dazheng Ci
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Huaxia Deng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong SAR, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
25
|
Singh A, Gautam A, Banerjee S, Singh A, Kushwaha HR. Synthesis of copper-reduced graphene oxide nanomaterials using glucose and study of its antibacterial and anticancer activities. Biomed Mater 2023; 18:065025. [PMID: 37820688 DOI: 10.1088/1748-605x/ad0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
In this work, glucose-capped copper nanoparticles decorated reduced graphene oxide nanomaterial are synthesized at 100 °C and 200 °C via chemical reduction method and studied for their antibacterial and anticancer activities. Synthesized nanomaterials were characterized using x-ray diffraction, Fourier-transform infrared, transmission electron microscope, and RAMAN. It is observed in transmission electron microscopy and selected area electron diffraction studies that copper nanoparticles deposited onto reduced graphene oxide are smaller than nanoparticles generated in the absence of reduced graphene oxide. Also, the size of copper nanoparticles synthesized at 200 °C is smaller than at 100 °C. Results suggest that Cu/Glu/rGO synthesized at both temperatures showed significant antibacterial activity againstEscherichia coliandBacillus anthracis,similarly, showed significant cell death in cancer cell lines [Cal33 and HCT-116 p53 (+/+)]. Interestingly, the nanomaterials were seen to be more effective against the cancer cell lines harboring aggregating mutant p53. Tumors with aggregating mutants of p53 are difficult to treat hence, Cu/Glu/rGO can be promising therapeutic agents against these difficult cancers. However, the antibacterial and anticancer activity of Cu/Glu/rGO synthesized at 100 °C where Cu2O form is obtained was found to be more effective compared to Cu/Glu/rGO synthesized at 200 °C where Cu form is obtained. Though fine-tuning of the material may be required for its commercial applications.
Collapse
Affiliation(s)
- Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
26
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
27
|
Mahakal S, Pathan HM, Prasad M, Rondiya S, Patole SP, Jadkar SR. Modification in Toxicity of l-Histidine-Incorporated ZnO Nanoparticles toward Escherichia coli. ACS OMEGA 2023; 8:34354-34363. [PMID: 37780019 PMCID: PMC10536091 DOI: 10.1021/acsomega.3c01183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 10/03/2023]
Abstract
This paper presents a comparative study of the toxicity of pristine-ZnO and l-histidine-incorporated ZnO toward Escherichia coli (E. coli) as a Gram-negative model organism. Pristine-ZnO and l-histidine-incorporated ZnO with different l-histidine concentrations were synthesized using an open aqueous solution bath technique. XRD studies revealed the formation of polycrystalline wurtzite ZnO. The average crystallite size of the synthesized l-histidine-incorporated ZnO decreased as the concentration of l-histidine increased. The FTIR spectra showed the presence of Zn-O, CO2-/CO3-, and C-N (only in l-histidine-incorporated ZnO samples) and -OH bond vibration signals in all samples. The chemical purity of all the samples was ensured using XPS analysis. The microbial activity of these samples was investigated using E. coli. The solution with 100 μg/mL ZnO in sterile distilled water showed up to 94% growth inhibition of E. coli, establishing antibacterial activity. However, l-histidine incorporated in ZnO showed reduced antibacterial activity with the increase of the concentration of l-histidine in ZnO. Furthermore, flow cytometry studies during the interaction of ZnO and E. coli confirmed the generation of reactive oxygen species (ROS), validating its antibacterial activity. The interaction of l-histidine-incorporated ZnO and E. coli showed declining ROS with the increase in the l-histidine concentration, indicating a ZnO toxicity reduction.
Collapse
Affiliation(s)
- Shraddha Mahakal
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
| | - Habib M. Pathan
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
| | - Mohit Prasad
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
- Department
of Applied Science and Humanities, Pimpri
Chinchwad College Of Engineering (PCCOE), Nigdi, Pune 411 004, India
| | - Sachin Rondiya
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore 560 012, India
| | - Shashikant P. Patole
- Department
of Physics, Khalifa University of Science
and Technology, Abu Dhabi 127788, UAE
| | - Sandesh R. Jadkar
- Department
of Physics, Savitribai Phule Pune University, Pune 411 007, India
| |
Collapse
|
28
|
Fonseca E, Vázquez M, Rodriguez-Lorenzo L, Mallo N, Pinheiro I, Sousa ML, Cabaleiro S, Quarato M, Spuch-Calvar M, Correa-Duarte MA, López-Mayán JJ, Mackey M, Moreda A, Vasconcelos V, Espiña B, Campos A, Araújo MJ. Getting fat and stressed: Effects of dietary intake of titanium dioxide nanoparticles in the liver of turbot Scophthalmus maximus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131915. [PMID: 37413800 DOI: 10.1016/j.jhazmat.2023.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - María Vázquez
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Natalia Mallo
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Maria Lígia Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Santiago Cabaleiro
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Spuch-Calvar
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Mick Mackey
- IRMRC - Indigo Rock Marine Research Centre, Gearhies, Bantry, Co., Cork P75 AX07, Ireland
| | - Antonio Moreda
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Vítor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Biology Department, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
29
|
Abstract
Ischemia or hypoxia can lead to pathological changes in the metabolism and function of tissues and then lead to various diseases. Timely and effective blood resuscitation or improvement of hypoxia is very important for the treatment of diseases. However, there is a need to develop stable, nontoxic, and immunologically inert oxygen carriers due to limitations such as blood shortages, different blood types, and the risk of transmitting infections. With the development of various technologies, oxygen carriers based on hemoglobin and perfluorocarbon have been widely studied in recent years. This paper reviews the development and application of hemoglobin and perfluorocarbon oxygen carriers. The design of oxygen carriers was analyzed, and their application as blood substitutes or oxygen carriers in various hypoxic diseases was discussed. Finally, the characteristics and future research of ideal oxygen carriers were prospected to provide reference for follow-up research.
Collapse
Affiliation(s)
- Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Kaiyuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
30
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
31
|
Jannesari M, Akhavan O, Madaah Hosseini HR, Bakhshi B. Oxygen-Rich Graphene/ZnO 2-Ag nanoframeworks with pH-Switchable Catalase/Peroxidase activity as O 2 Nanobubble-Self generator for bacterial inactivation. J Colloid Interface Sci 2023; 637:237-250. [PMID: 36701869 DOI: 10.1016/j.jcis.2023.01.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The oxygen-rich organic/inorganic (reduced graphene oxide (rGO)/ZnO2-Ag) nanoframeworks as suppliers of O2 nanobubbles (NBs) with dual pH-and-temperature-sensitive behavior were developed to suppress bacterial growth. It was demonstrated that not only the rate but also the final product of oxygen-rich ZnO2 decomposition (to an intermediate product of H2O2) rate was dramatically controlled by pH adjustment. Furthermore, in the presence of Ag nanoparticles, ̇OH radical generation switched to O2 NBs evolution by shifting the pH from acidic to basic/neutral conditions, demonstrating an adjustable nanozyme function-ability between catalase and peroxidase-like activity, respectively. Antibacterial properties of the in-situ generated O2 NBs substantially enhanced against bacterial models including methicillin-resistant Staphylococcus aureus in the presence of rGO. In fact, deflecting the electrons from their main respiratory chain to an oxygen-rich bypath through rGO significantly stimulated reactive oxygen species (ROS) generation, combating bacteria more efficiently. Moreover, NIR laser irradiation-induced temperature rise (due to the inherent photothermal properties of rGO) facilitated ZnO2 decomposition and accelerated growth and collapse of NBs. The simultaneous microscale thermal and mechanical destructions induced stronger antibacterial behavior. These results hold great promises for designing simple organic/inorganic nanoframeworks as solid sources of NBs with tunable enzyme-like ability in response to environmental conditions suitable for forthcoming graphene-based bio-applications.
Collapse
Affiliation(s)
- Marziyeh Jannesari
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588, 89694, Tehran, Iran; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Omid Akhavan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588, 89694, Tehran, Iran; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Hamid R Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9466, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
32
|
Thulasinathan B, D S, Murugan S, Panda SK, Veerapandian M, Manickam P. DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: A quorum sensing molecule in Pseudomonas aeruginosa. Biosens Bioelectron 2023; 227:115156. [PMID: 36842368 DOI: 10.1016/j.bios.2023.115156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The electrochemical biosensing strategy for pyocyanin (PYO), a virulent quorum-sensing molecule responsible for Pseudomonas aeruginosa infections, was developed by mimicking its extracellular DNA interaction. Calf thymus DNA (ct-DNA) functionalized amine-containing carbon quantum dots (CQDs) were used as a biomimetic receptor for electrochemical sensing of PYO as low as 37 nM in real urine sample. The ct-DNA-based biosensor enabled the selective measurement of PYO in the presence of other interfering species. Calibration and validation of the PYO sensor platform were demonstrated in buffer solution (0-100 μM), microbial culture media (0-100 μM), artificial urine (0-400 μM), and real urine sample (0-250 μM). The sensor capability was successfully implemented for point-of-care (POC) detection of PYO release from Pseudomonas aeruginosa strains during lag and stationary phases. Cross-reactivity of the sensing platform was also tested in other bacterial species such as Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumoniae. Potential clinical implementation of the ct-DNA-based sensor was manifested in detecting the PYO in P. aeruginosa cultured baby diaper and sanitary napkin. Our results highlight that the newly developed ct-DNA-based sensing platform can be used as a potential candidate for real-time POC diagnosis of Pseudomonas aeruginosa infection in clinical samples.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sujatha D
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sethupathi Murugan
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Subhendu K Panda
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Murugan Veerapandian
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Pandiaraj Manickam
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.
| |
Collapse
|
33
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
34
|
He D, Wang W, Feng N, Zhang Z, Zhou D, Zhang J, Luo H, Li Y, Chen X, Wu J. Defect-Modified nano-BaTiO 3 as a Sonosensitizer for Rapid and High-Efficiency Sonodynamic Sterilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15140-15151. [PMID: 36929922 DOI: 10.1021/acsami.2c23113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multidrug-resistant bacteria caused by the unlimited overuse of antibiotics pose a great challenge to global health. An antibacterial method based on reactive oxygen species (ROS) is one of the effective strategies without inducing bacterial resistance. Owing to the ability of generating ROS, piezocatalytic material-mediated sonodynamic therapy (SDT) has drawn much attention. However, its major challenge is the low ROS generation efficiency in the piezocatalytic process due to the poor charge carrier concentration of piezoelectric materials. Vacancy engineering can regulate the charge density and largely promote ROS generation under ultrasound (US) irradiation. Herein, a US-responsive self-doped barium titanate with controlled oxygen vacancy (Vo) concentrations was successfully synthesized through a facile thermal reduction treatment at different temperatures (i.e., 350, 400, and 450 °C), and the corresponding samples were named as BTO-350, BTO-400, and BTO-450, respectively. Then, the effect of Vo concentrations on ROS generation efficiency during the piezocatalytic process was systematically studied. And BTO-400 was found to possess the highest piezocatalytic activity and excellent sonodynamic antibacterial performance against Escherichia coli and Staphylococcus aureus. Furthermore, its antibacterial mechanism was confirmed that the ROS generated under US could damage bacterial cell membrane and cause considerable leakage of cytoplasmic components and irreversible death of bacteria. Notably, the in vivo results illustrated that the BTO-400 could serve as an effective antibacterial agent and accelerate skin healing via SDT therapy. In all, the Vo defect-modified nano-BaTiO3 has a noticeable potential to induce a rapid and efficient sterilization as well as skin tissue repair by SDT.
Collapse
Affiliation(s)
- Dongcai He
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Weijie Wang
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Nan Feng
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziqiang Zhang
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Dali Zhou
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | | | - Yunfeng Li
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianchun Chen
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
35
|
Maheo A, Vithiya B SM, Arul Prasad T A, Mangesh VL, Perumal T, Al-Qahtani WH, Govindasamy M. Cytotoxic, Antidiabetic, and Antioxidant Study of Biogenically Improvised Elsholtzia blanda and Chitosan-Assisted Zinc Oxide Nanoparticles. ACS OMEGA 2023; 8:10954-10967. [PMID: 37008090 PMCID: PMC10061636 DOI: 10.1021/acsomega.2c07530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 μg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.
Collapse
Affiliation(s)
- Athisa
Roselyn Maheo
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Scholastica Mary Vithiya B
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Augustine Arul Prasad T
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - V. L. Mangesh
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Tamizhdurai Perumal
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - Wahidah H. Al-Qahtani
- Department
of Food Sciences & Nutrition, College of Food & Agriculture
Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- Faculty,
International Ph.D. Program in Innovative Technology of Biomedical
Engineering and Medical Devices, Ming Chi
University of Technology, New Taipei
City 243303, Taiwan
- Adjunct
Faculty,
Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Thandalam, Chennai 602105, India
- Korea
University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
36
|
Oves M, Ansari MO, Ansari MS, Memić A. Graphene@Curcumin-Copper Paintable Coatings for the Prevention of Nosocomial Microbial Infection. Molecules 2023; 28:molecules28062814. [PMID: 36985785 PMCID: PMC10051306 DOI: 10.3390/molecules28062814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has brought into focus the urgent need for the next generation of antimicrobial coating. Specifically, the coating of suitable antimicrobial nanomaterials on contact surfaces seems to be an effective method for the disinfection/contact killing of microorganisms. In this study, the antimicrobial coatings of graphene@curcumin-copper (GN@CR-Cu) were prepared using a chemical synthesis methodology. Thus, the prepared GN@CR-Cu slurry was successfully coated on different contact surfaces, and subsequently, the GO in the composite was reduced to graphene (GN) by low-temperature heating/sunlight exposure. Scanning electron microscopy was used to characterize the coated GN@CR-Cu for the coating properties, X-ray photon scattering were used for structural characterization and material confirmation. From the morphological analysis, it was seen that CR and Cu were uniformly distributed throughout the GN network. The nanocomposite coating showed antimicrobial properties by contact-killing mechanisms, which was confirmed by zone inhibition and scanning electron microscopy. The materials showed maximum antibacterial activity against E. coli (24 ± 0.50 mm) followed by P. aeruginosa (18 ± 0.25 mm) at 25 µg/mL spot inoculation on the solid media plate, and a similar trend was observed in the minimum inhibition concentration (80 µg/mL) and bactericidal concentration (160 µg/mL) in liquid media. The synthesized materials showed excellent activity against E. coli and P. aeruginosa. These materials, when coated on different contact surfaces such medical devices, might significantly reduce the risk of nosocomial infection.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
37
|
Huang W, Hu B, Yuan Y, Fang H, Jiang J, Li Q, Zhuo Y, Yang X, Wei J, Wang X. Visible Light-Responsive Selenium Nanoparticles Combined with Sonodynamic Therapy to Promote Wound Healing. ACS Biomater Sci Eng 2023; 9:1341-1351. [PMID: 36825832 DOI: 10.1021/acsbiomaterials.2c01119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In this paper, we synthesized selenium nanoparticles (SeNPs) that could be effectively excited by pure yellow light (YL) source to enhance antibacterial ability. Meanwhile, YL could also play the role of anti-inflammatory and promote wound healing. In addition, in order to overcome the problem of low penetration depth of photodynamic therapy (PDT), SeNPs were encapsulated with polyethylenimine (PEI), then modified with the sound sensitive agent indocyanine green (ICG), realizing the combined photoacoustic therapy to promote the healing of wounds infected by drug-resistant bacteria. The antibacterial efficiency of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) reached more than 99% in in vitro and in vivo experiments within 10 min, which could safely and quickly kill drug-resistant bacteria to repair and heal wounds.
Collapse
Affiliation(s)
- Wenjing Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Binbin Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Yalin Yuan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Huaqiang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Qun Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Yi Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Xuetao Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Jinlu Wei
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi330088, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330088, P. R. China
| |
Collapse
|
38
|
Tan Y, Khan HM, Sheikh BA, Sun H, Zhang H, Chen J, Huang D, Chen X, Zhou C, Sun J. Recent advances in 2D material-based phototherapy. Front Bioeng Biotechnol 2023; 11:1141631. [PMID: 36937746 PMCID: PMC10020212 DOI: 10.3389/fbioe.2023.1141631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Zhang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinmei Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Liang M, Shang L, Yu Y, Jiang Y, Bai Q, Ma J, Yang D, Sui N, Zhu Z. Ultrasound activatable microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Acta Biomater 2023; 158:811-826. [PMID: 36572249 DOI: 10.1016/j.actbio.2022.12.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Chemodynamic therapy (CDT) employs Fenton catalysts to kill bacteria by converting hydrogen peroxide (H2O2) into toxic hydroxyl radical (•OH). Among them, Fenton-type metal peroxide nanoparticles fascinate nanomaterials with intriguing physiochemical properties, but research on this antibacterial agent is still in its infancy. Herein, a distinct CuO2/TiO2 heterostructure constituted of ultrasmall copper peroxide (CuO2) nanoclusters and sonosensitized ultrathin oxygen vacancy-rich porous titanium oxide (OV-TiO2) nanosheets was developed and was incorporated into microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Engineering CuO2 nanoclusters on the surface of TiO2 nanosheets not only endows the Fenton catalytic activity for sono-chemodynamic therapy (SCDT), but also improves the sonodynamic and sonothermal performance of TiO2 by narrowing the bandgap of TiO2 and suppressing the recombination of electron-hole pairs. The high efficacy of this CuO2/TiO2 integrated microneedle (CTMN) patch was systematically demonstrated both in vitro and in vivo with the eliminating rate >99.9999% against multidrug resistant (MDR) pathogens in 5 min as well as accelerated wound tissue healing. This work highlights a promisingly new and efficient strategy for the development of sonosensitive and chemoreactive nanomedicine for non-antibiotic therapies. STATEMENT OF SIGNIFICANCE: Feton-type metal peroxides, a novel nanomaterial with self-supplied oxygen and hydrogen peroxide, can achieve effective antimicrobial activity in vitro. However, there is a lack of effective nanomaterial delivery systems and suitable means for in vivo activation/enhancement of antimicrobial activity during bacterial infected skin wound treatment. In this study, we designed and prepared efficient ultrasound activable microneedles that effectively addressed the deficiencies mentioned above and established a new paradigm for efficient utilization of metal peroxide nanomaterials and ultrasound based strategies. Noticeably, copper peroxide nanoclusters/oxygen vacancy-rich porous titanium oxide nanosheets (CuO2/TiO2) integrated microneedle (CTMN) patch combines advantages of both sono-chemodynamic and sonothermal antibacterial therapy, achieving one of the most instant and effective antibacterial efficacy (>99.9999% in 5 min) in vivo reported till now.
Collapse
Affiliation(s)
- Manman Liang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Junchi Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
40
|
Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. Int J Biomater 2023; 2023:8803283. [PMID: 36819211 PMCID: PMC9929215 DOI: 10.1155/2023/8803283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Graphene-based materials have been shown to have advantageous properties in biomedical and dental applications due to their high mechanical, physiochemical, antibacterial, and stem cell differentiating properties. Although graphene-based materials have displayed appropriate biocompatible properties when used in implant materials for orthopedic applications, little research has been performed to specifically test the biocompatibility of graphene for dental applications. The oral environment, compared to the body, varies greatly and must be considered when evaluating biocompatibility requirements for dental applications. This review will discuss in vitro and in vivo studies that assess graphene's cytotoxicity, antibacterial properties, and cell differentiation ability to evaluate the overall biocompatibility of graphene-based materials for dental applications. Particle shape, size, and concentration were found to be major factors that affected overall biocompatibility of graphene.
Collapse
|
41
|
Wu K, Li Y, Zhou Q, Hu X, Ouyang S. Integrating FTIR 2D correlation analyses, regular and omics analyses studies on the interaction and algal toxicity mechanisms between graphene oxide and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130298. [PMID: 36356516 DOI: 10.1016/j.jhazmat.2022.130298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO, a popular 2D graphene-based nanomaterial) has developed quickly and has received considerable attention for its applications in environmental protection and pollutant removal. However, significant knowledge gaps still exist about the interaction characteristic and joint toxicity mechanism of GO and cadmium (Cd) on aquatic organisms. In this study, GO showed a high adsorption capacity (120. 6 mg/g) and strong adsorption affinity (KL = 0.85 L/mg) for Cd2+. Integrating multiple analytical methods (e.g., electron microscopy, Raman spectra, and 2D correlation spectroscopy) revealed that Cd2+ is uniformly adsorbed on the GO surface and edge mainly through cation-π interactions. The combined ecological effects of GO and Cd2+ on Chlorella vulgaris were observed. Cd2+ induced more severe growth inhibition, photosynthesis toxicity, ultrastructure damage and plasmolysis than GO. Interestingly, we found that GO nanosheets could augment the algal toxicity of Cd2+ (e.g., chlorophyll b, mitochondrial membrane damage, and uptake). Transcriptomics and metabolomics further explained the underlying mechanism. The results indicated that the regulation of PSI-, PSII-, and metal transport-related genes (e.g., ABCG37 and ZIP4) and the inhibition of metabolic pathways (e.g., amino acid, fatty acid, and carbohydrate metabolism) were responsible for the persistent phytotoxicity. The present work provides mechanistic insights into the roles of coexisting inorganic pollutants on the environmental fate and risk of GO in aquatic ecosystems.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
42
|
Chen W, Li X, Wei X, Liao G, Wang J, Li L. Activation of peroxymonosulfate for degrading ibuprofen via single atom Cu anchored by carbon skeleton and chlorine atom: The radical and non-radical pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160097. [PMID: 36368392 DOI: 10.1016/j.scitotenv.2022.160097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Single atomic Cu catalysts (SACs Cu@C) anchored by carbon skeleton and chlorine atom was synthesized by hydrolyzing Cu-MOFs and then pickled by aqua-regia to remove Cu nanoparticles (NPs Cu). Comparative characterizations revealed that SACs Cu@C was a hierarchically porous nanostructure and Cu dispersed uniformly throughout the carbon skeletons. With less active components, SACs Cu@C behaved better in activating PMS over NPs Cu@C on ibuprofen removal (91.3 % versus 30.2 % in 30 min). Two Cu coordination environments were found by EXAF and DFT calculation, including four-coordinated Cu with 4C atoms and six-coordinated Cu with 4Cu and 2Cl atoms. The obvious interfacial electron delivery between PMS and SACs Cu@C was found, which was enhanced by Cl atom. Cu(I)/Cu(II) redox cycle would donate electron to peroxy bond of PMS for generating OH, SO4- and O2-. But electron transferred in opposite direction when PMS bonded to Cu atom through its terminal oxygen atom in sulfate, which formed 1O2. IBP degradation proceeded through both radical and non-radical route. IBP degradation was inhibited with the presence of TBA, methanol and furfuryl alcohol but accelerated by p-BQ, which could accelerate OH generation. Two degradation pathways were deducted. This study provided a new insight into catalysts designed for PMS activation.
Collapse
Affiliation(s)
- Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xukai Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Xipeng Wei
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Gaozu Liao
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jing Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|
43
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
44
|
Yang F, Song Y, Hui A, Mu B, Wang A. Phyto-Mediated Controllable Synthesis of ZnO Clusters with Bactericidal Activity. ACS APPLIED BIO MATERIALS 2023; 6:277-287. [PMID: 36576779 DOI: 10.1021/acsabm.2c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rapid development of antibiotic resistance has been considered a major threat to public health. Nanomaterials have risen to be an effective weapon to tackle this problem through multiple antibacterial mechanisms. The improved and tailored physiochemical properties of fine-tuned secondary nanoarchitectures contribute to the superior bactericidal actions of metal oxide structures. However, it is still challenging to construct secondary structures through mild green manufacturing methods. Here, we report the preferred antibacterial ZnO nanocrystal clusters formed by a green structure-tuning synthesis process, in which the primary ZnO nanoparticles with sizes <10 nm were assembled into different forms of clusters depending on the zinc salt concentration and temperature. ZnO clusters with a stable loose-assembly structure and a rougher surface exhibited better bactericidal ability with minimal inhibitory concentrations of 0.5 and 0.1 mg/mL against Escherichia coli and Staphylococcus aureus, respectively. The underlying mechanism is related to enhancing contact with bacteria, releasing small ZnO nanoparticles, and generating additional reactive oxygen species, which could aggravate the damage to bacterial cell membrane and eventually lead to bacterial death. Furthermore, attachment of phenolic compounds from olive leaf extract would promote membrane penetration by ZnO nanoparticles, resulting in the improvement of antibacterial activities, which profit from the green route mediated by Olea europaea leaf extract that could structure-tune ZnO nanocrystal clusters in one simple step that retains the active ingredients on the nanoparticles. This work proposes a feasible and clean strategy to improve the structure-bioactivity relationship of ZnO by controlling its growth into a preferable structure, and the developed ZnO clusters have a good prospect in antibacterial applications because of their excellent performance and green fabrication method.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yameng Song
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
45
|
Bai L, Shi E, Li Y, Yang M, Li C, Li C, Wang Y, Wang Y. Oxyhemoglobin-Based Nanophotosensitizer for Specific and Synergistic Photothermal and Photodynamic Therapies against Porphyromonas gingivalis Oral Infection. ACS Biomater Sci Eng 2023; 9:485-497. [PMID: 36507692 DOI: 10.1021/acsbiomaterials.2c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are emerging alternative antibacterial approaches. However, due to the lack of selectivity of photosensitizers for pathogenic bacteria, these methods often show more or less different degrees of in vivo toxicity. Moreover, it is difficult for PDT to exert effective antibacterial effects against anaerobic infections due to the oxygen deficiency. As one of the major anaerobic pathogens in oral infections, Porphyromonas gingivalis (P. gingivalis) acquires iron and porphyrin mainly from hemoglobin in the host. Hence, we developed a nanophotosensitizer named as oxyHb@IR820 through stable complexation between oxyhemoglobin and IR820, which is a photosensitizer possessing both PTT and PDT performance, for fighting P. gingivalis oral infection specifically and efficiently. Owing to hydrophobic interaction, oxyHb@IR820 had much stronger photoabsorption at 808 nm than free IR820, and thus exhibited significantly enhanced photothermal conversion efficiency. As an oxygen donor, oxyHb played an important role in enhancing the photodynamic efficiency of oxyHb@IR820. More importantly, oxyHb@IR820 showed efficient and specific uptake in P. gingivalis and exerted synergistic PTT/PDT performance against P. gingivalis and oral infection in golden hamsters. In summary, this study provides an efficient strategy for delivering photosensitizers specifically to P. gingivalis and augmenting antibacterial PDT against anaerobic infections.
Collapse
Affiliation(s)
- Liya Bai
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| | - Enyu Shi
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Yunan Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| | - Meng Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin300070, China
| | - Changyi Li
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Yue Wang
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Yinsong Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| |
Collapse
|
46
|
Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, Akhavan O, Zarrintaj P, Hejna A, Saeb MR, Zarrabi A, Sharifi E, Yousefiasl S, Zare EN. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med 2023; 8:e10347. [PMID: 36684103 PMCID: PMC9842069 DOI: 10.1002/btm2.10347] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Collapse
Affiliation(s)
- Negin Jalilinejad
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | | | - Reza Salarian
- Biomedical Engineering DepartmentMaziar UniversityRoyanMazandaranIran
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐guPohangGyeongbukSouth Korea
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Aleksander Hejna
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | | |
Collapse
|
47
|
Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS NANO 2022; 16:19840-19872. [PMID: 36441973 DOI: 10.1021/acsnano.2c08262] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance. This review discusses a particular family of stimuli-activable metal-bearing nanomaterials (denoted as SAMNs) and the associated on-demand antibacterial strategies. The various SAMN-enabled antibacterial strategies stem from basic light and magnet activation, with the addition of bacterial microenvironment responsiveness and/or bacteria-targeting selectivity and therefore offer higher spatiotemporal controllability. The discussion focuses on nanomaterial design principles, antibacterial mechanisms, and antibacterial performance, as well as emerging applications that desire on-demand and selective activation (i.e., medical antibacterial treatments, surface anti-biofilm, water disinfection, and wearable antibacterial materials). The review concludes with the authors' perspectives on the challenges and future directions for developing industrial translatable next-generation antibacterial strategies.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, 117543 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| |
Collapse
|
48
|
Shi K, Zhang H, Gu Y, Liang Z, Zhou H, Liu H, Liu J, Xie G. Electric Spark Deposition of Antibacterial Silver Coating on Microstructured Titanium Surfaces with a Novel Flexible Brush Electrode. ACS OMEGA 2022; 7:47108-47119. [PMID: 36570305 PMCID: PMC9773945 DOI: 10.1021/acsomega.2c06253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Infection caused by orthopedic titanium implants, which results in tissue damage, is a key factor in endosseous implant failure. Given the seriousness of implant infections and the limitations of antibiotic therapy, surface microstructures and antimicrobial silver coatings have emerged as prominent research areas and have displayed certain antimicrobial effects. Researchers are now working to combine the two to produce more effective antimicrobial surfaces. However, building robust and homogeneous coatings on complex microstructured surfaces is a tough task due to the limits of surface modification techniques. In this study, a novel flexible electrode brush (silver brush) instead of a traditional hard electrode was designed with electrical discharge machining, which has the ability to adapt to complex groove interiors. The results showed that the use of flexible electrode brush allowed silver to be deposited uniformly in titanium alloy microgrooves. On the surface of Ag-TC4, a uniformly covered deposit was visible, and it slowly released silver ions into a liquid environment. In vitro bacterial assays showed that a Ag-TC4 microstructured surface reduced bacterial adhesion and bacterial biofilm formation, and the antibacterial activity of Ag-TC4 against Staphylococcus aureus and Escherichia coli was 99.68% ± 0.002 and 99.50% ± 0.007, respectively. This research could lay the groundwork for the study of antimicrobial metal bound to microstructured surfaces and pave the way for future implant surface design.
Collapse
Affiliation(s)
- Kaihui Shi
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Hao Zhang
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Yuyan Gu
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Zhijie Liang
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Huanyu Zhou
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Haojie Liu
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Jiangwen Liu
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Guie Xie
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| |
Collapse
|
49
|
Mahmoud AED, El-Maghrabi N, Hosny M, Fawzy M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ's thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89772-89787. [PMID: 35859234 PMCID: PMC9671977 DOI: 10.1007/s11356-022-21871-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 05/26/2023]
Abstract
In the current work, various concentrations of the aqueous extract of Ziziphus spina-christi were employed for the phytoreduction of graphene oxide (GO). The green synthesized reduced graphene oxide (rGO) was characterized through UV-Vis spectrometry, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDX). Gas chromatography-mass spectrometry (GC-MS) denoted the presence of numerous phytoconstituents including ketones, terpenoids, fatty acids, esters, and flavonoids, which acted as reducing and capping agents. The obtained results indicated the increase in rGO yield and shape with increasing the extract concentration. The optimized rGO was instantaneously ~100% removed methylene blue (MB) from the water at 5 mg L-1. However, the removal efficiency was slightly declined to reach 73.55 and 65.1% at 10 and 15 mg L-1, respectively. A powerful antibacterial activity for rGO particularly against gram-negative bacteria with a high concentration of 2 × 108 CFU mL-1 was confirmed. Furthermore, rGO demonstrated promising and comparable antioxidant efficiency with vitamin C against DPPH free radical scavenging. While vitamin C recorded 13.45 and 48.4%, the optimized rGO attained 13.30 and 45.20% at 12 and 50 μg mL-1, respectively.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mohamed Hosny
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
50
|
A tumor pH-responsive autocatalytic nanoreactor as a H 2O 2 and O 2 self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomater 2022; 154:510-522. [PMID: 36241016 DOI: 10.1016/j.actbio.2022.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Combining the internal force-driven chemodynamic therapy (CDT) and the external energy-triggered photodynamic therapy (PDT) holds great promise to achieve an advanced anticancer effect based on reactive oxygen species (ROS). However, the insufficient oxy-substrates supply in tumor microenvironment, like hydrogen peroxide (H2O2) and oxygen (O2), is the Achilles heel that greatly restricts the efficacy of this ROS-based treatment. Herein, the construction of a copper peroxide-based tumor pH-responsive autocatalytic nanoreactor (CESAR), via an albumin-mediated biomimetic mineralization strategy is described. The decoration of human serum albumin endows the nanoreactor good hydrophilicity and biocompatibility, which is highly desired for the metal-based materials. Upon exposure to acidic tumor microenvironment, CESAR presents a pH-triggered disintegration with Cu2+, H2O2 and O2 generated instantly. The generated H2O2 complements the hyperoxide deficiency and initiates a localized Fenton-like reaction with the assistance of Cu2+ for highly toxic hydroxyl radicals (•OH) production for improving CDT. The evolved O2 gas enables hypoxia relief for enhanced Ce6-mediated PDT. This H2O2/O2 self-supplying strategy significantly amplifies the tumor oxidative damage and gains an optimal treatment outcome, which offers a new paradigm for optimizing the tumor therapeutic options limited by oxide or hyperoxide deficiency, not only for CDT/PDT, but also other oxy-substrates involved strategies. STATEMENT OF SIGNIFICANCE: The shortage of oxy-substrates in the tumor microenvironment remains a great challenge for ROS-based cancer therapy. Herein, we introduce human serum albumin as a scaffold to stabilize copper peroxide nanomaterials for constant production of H2O2 and O2 to enhance chemodynamic/photodynamic therapy. The tumor pH-triggered H2O2/O2 production and Cu2+ release are confirmed, assuring the strategy of a highly precise, effective way to destroy tumor without any side effects. This work lends new and exciting insights into the engineering design of autocatalytic oxy-substrates self-supply nanoreactor for overcoming the bottlenecks, like the oxy-substrates deficiency of CDT/PDT and the poor stability of metal peroxides, to achieve highly effective chemodynamic/photodynamic therapy.
Collapse
|