1
|
Pan J, Wang J, Wang W, Liu Z, Huo S, Yan L, Jiang W, Shao F, Gu Y. Renal-clearable and mitochondria-targeted metal-engineered carbon dot nanozymes for regulating mitochondrial oxidative stress in acute kidney injury. Mater Today Bio 2025; 32:101717. [PMID: 40242480 PMCID: PMC12002839 DOI: 10.1016/j.mtbio.2025.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondrial dysfunction-induced oxidative stress is a key pathogenic factor in acute kidney injury (AKI). Despite this, current mitochondrial-targeted antioxidant therapies have shown limited efficacy in clinical settings. In this study, we introduce a novel renal-clearable and mitochondria-targeted antioxidant nanozyme (TPP@RuCDzyme) designed to precisely modulate mitochondrial oxidative stress and mitigate AKI progression. TPP@RuCDzyme was synthesized by integrating ruthenium-doped carbon dots (CDs) with triphenylphosphine (TPP), a mitochondria-targeting moiety. This nanozyme system exhibits cascade enzyme-like activities, mimicking superoxide dismutase (SOD) and catalase (CAT), to efficiently convert cytotoxic superoxide (O2•-) and hydrogen peroxide (H2O2) into non-toxic water (H2O) and oxygen (O2). This dual-enzyme mimicry effectively alleviates mitochondrial oxidative damage, restores mitochondrial function, and inhibits apoptosis. Compared to RuCDzyme alone, TPP@RuCDzyme demonstrated significantly enhanced efficacy in alleviating glycerol-induced AKI by inhibiting oxidative stress. By leveraging the catalytic activity derived from the integration of CDs and a metallic element, this study presents a promising therapeutic strategy for AKI and other renal diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiangpeng Pan
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Juntao Wang
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Wei Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Ziyang Liu
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Shuai Huo
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
| | - Lei Yan
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Wei Jiang
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
| | - Fengmin Shao
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Yue Gu
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
2
|
Raypah ME, Jamlos MF, Muncan J, Khalif KMNK, Saruchi SA, Ali MM, Yee CS, Nugroho A, Puranto P. Multivariate Analysis of pH-Dependent Carbon Dots Sensitivity for Fe 3⁺ Ions Detection Using UV-VIS Spectroscopy. J Fluoresc 2025:10.1007/s10895-025-04358-z. [PMID: 40369315 DOI: 10.1007/s10895-025-04358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Fluorescent carbon dots (CDs) have become a potent and adaptable nanomaterial in recent years for the sensitive and specific detection of heavy metal ions. Ferric ion (Fe3+) is one of the most damaging metal ions that can infiltrate the human body and the environment. In this study, blue-emitting carbon dots (CDs) were successfully synthesized from lemon juice using a hydrothermal process. The sensitivity of CDs to Fe3+ ions was examined using various concentrations of Fe3+ (0-400 µM) under different pH conditions (3, 5, 7, 9, 11, and 13) by measuring UV-Vis absorbance at 200-700 nm. The findings showed that the interaction between CDs and Fe3+ is significantly influenced by pH, resulting in varying absorbance enhancement responses. To get more profound insights into this pH-dependent performance, multivariate analysis techniques, including principal component analysis (PCA), linear discriminant analysis (LDA), and partial least squares regression (PLSR) were utilized. By combining these techniques with experimental data, significant correlations between pH levels, π - π ∗ and n - π ∗ electronic transitions of CDs, and Fe3⁺ sensing performance were identified. According to the PLSR model, pH 7 is ideal for real-world uses since it offers the optimum balance between Fe3⁺ solubility and CDs sensing capabilities, closely matching environmental and physiological conditions. This work contributes to the knowledge of CDs-based sensing mechanisms and emphasizes the value of multivariate analysis in boosting material performance for real-world applications in the biochemical and environmental domains.
Collapse
Affiliation(s)
- Muna E Raypah
- Centre for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Gambang, Malaysia.
| | - Mohd Faizal Jamlos
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Malaysia.
- Centre for Automotive Engineering, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Malaysia.
| | - Jelena Muncan
- Aquaphotomics Research Field, Graduate School of Agriculture, Kobe University, Kobe, Japan
| | - Ku Muhammad Naim Ku Khalif
- Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Gambang, Malaysia
| | - Sarah Atifah Saruchi
- Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Malaysia
| | - Munira Mohd Ali
- Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600, Pekan, Malaysia
| | - Chin Sim Yee
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Gambang, Malaysia
| | - Agus Nugroho
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Prabowo Puranto
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| |
Collapse
|
3
|
Mallik A, Patra S, Patra A, Pandey A, Hazra M, Sahoo GP. Isolation, structural characterization of (1 → 4), (1 → 6)-α-D-glucan from Dioscorea Alata and synthesis and catalytic activity studies of (1 → 4), (1 → 6)-α-D-glucan derived carbon dots. Carbohydr Res 2025; 549:109383. [PMID: 39813971 DOI: 10.1016/j.carres.2025.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Herein, a straightforward, productive protocol was adopted for the synthesis of carbon dots (CDs) by a simple microwave-assisted technique from (1 → 4), (1 → 6)-α-D-glucan polysaccharide (DAPS). The isolation and structural characterization of (1 → 4), (1 → 6)-α-D-glucan from the aqueous extracting of the Diascorea Alata was described here. The photo-physical and morphological studies of the prepared high quantum yield (27.70 %) CDs were systematically characterized using different analytical techniques: TEM, DLS, XPS, XRD, FT-IR, TCSPC, EDX, Fluorescence and UV-vis spectroscopy. In our study the carbon dots (CDs) obtained are non-toxic, highly water-soluble, spherical-shaped negatively charged particles with an average diameter of 3.28 nm. The photo-catalytic activity of carbon dots (CDs) was tested under the sunlight for photo-degradation of crystal violet (CV), a pollutant organic dye. Carbon dots (CDs) showed outstanding results regarding the photo degradation of CV (achieving 99.9 % degradation within 8 min) under sunlight.
Collapse
Affiliation(s)
- Arnab Mallik
- Department of Chemistry (UG and PG), Midnapore College (Autonomous), Midnapore, 721101, India
| | - Sukesh Patra
- Department of Chemistry (UG and PG), Midnapore College (Autonomous), Midnapore, 721101, India
| | - Animesh Patra
- Department of Chemistry (UG and PG), Midnapore College (Autonomous), Midnapore, 721101, India
| | - Akhil Pandey
- Department of Botany, Midnapore College (Autonomous), Midnapore, 721101, India
| | - Madhumita Hazra
- Department of Chemistry, PRMS Mahavidyalaya, Jamboni, Bankura, 722150, India
| | - Gobinda Prasad Sahoo
- Department of Chemistry (UG and PG), Midnapore College (Autonomous), Midnapore, 721101, India.
| |
Collapse
|
4
|
Karami MH, Abdouss M, Kalaee M, Jazani OM, Zamanian A. Functionalized Carbon Quantum Dots for Nanobioimaging: a Comprehensive Review. BIONANOSCIENCE 2025; 15:67. [DOI: 10.1007/s12668-024-01663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 01/03/2025]
|
5
|
Pandey PK, Sathyavageeswaran A, Holmlund N, Perry SL. Polyelectrolyte-Carbon Dot Complex Coacervation. ACS Macro Lett 2025; 14:43-50. [PMID: 39701962 PMCID: PMC11756532 DOI: 10.1021/acsmacrolett.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This Letter presents complex coacervation between the biopolymer diethylaminoethyl dextran hydrochloride (DEAE-Dex) and carbon dots. The formation of these coacervates was dependent on both DEAE-Dex concentration and solution ionic strength. Fluorescence spectroscopy revealed that the blue fluorescence of the carbon dots was unaffected by coacervation. Additionally, microrheological studies were conducted to determine the viscosity of these coacervates. These complex coacervates, formed through the interaction of nanoparticles and polyelectrolytes, hold a promising role for future applications where the combination of optical properties from the carbon dots and encapsulation via coacervation can be leveraged.
Collapse
Affiliation(s)
- Pankaj Kumar Pandey
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nickolas Holmlund
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Guo ZL, Niu KK, Lv YG, Xing LB. Carbon dot-based type I photosensitizers for photocatalytic oxidation reaction of arylboric acid and N-phenyl tetrahydroisoquinoline. MOLECULAR CATALYSIS 2024; 569:114625. [DOI: 10.1016/j.mcat.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Khan AH, Basak A, Zaman A, Das PK. Inherently targeted estradiol-derived carbon dots for selective killing of ER (+) breast cancer cells via oridonin-triggered p53 pathway activation. J Mater Chem B 2024; 12:11708-11720. [PMID: 39435655 DOI: 10.1039/d4tb01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most prevalent cancers globally is breast cancer and approximately two thirds of the breast cancers are hormone receptor positive with estrogen receptors (ER) being a prominent target. Notably, p53 that controls several cellular functions and prevents tumor formation, gets suppressed in breast cancers. Reactivation of p53 can lead to cell cycle arrest as well as apoptosis. Therefore, targeting the estrogen receptor for selective delivery of anticancer drugs that can reactivate p53 in ER (+) breast cancers can be a crucial method in breast cancer therapy. Herein, we have designed and developed estradiol-derived inherently targeted specific carbon dots (E2-CA-CD) from 17β-estradiol and citric acid following a solvothermal method. The synthesized carbon dots were characterized using spectroscopic and microscopic techniques. The water soluble, intrinsically fluorescent E2-CA-CD showed excellent biocompatibility in MCF-7, MDA-MB-231 as well as NIH3T3 cells and demonstrated target specific bioimaging in ER (+) MCF-7 cells due to the overexpressed ER receptors. Furthermore, oridonin, a well-known hydrophobic anticancer drug capable of upregulating the p53 pathway, was loaded on the carbon dots to increase its bioavailability. E2-CA-CD-Ori caused ∼2.2 times higher killing in ER (+) MCF-7 cells compared to ER (-) MDA-MB-231 cells and normal cells NIH3T3. Also, E2-CA-CD-Ori showed ∼3 fold better killing in MCF-7 cells compared to native oridonin. E2-CA-CD-Ori-induced killing of MCF-7 cells took place through the early to late apoptotic pathway along with the elevation of the intracellular ROS level. Importantly, E2-CA-CD-Ori triggered the activation of the p53 pathway in MCF-7 cells, which in turn induced apoptosis involving the upregulation of Bax and downregulation of Bcl-2 leading to the selective and efficient killing of ER (+) MCF-7 cells.
Collapse
Affiliation(s)
- Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Ambalika Basak
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|
8
|
Deng HH, Huang KY, Zhong Y, Li Y, Huang HX, Fang XY, Sun WM, Yao Q, Chen W, Xie J. Enzyme-activatable charge transfer in gold nanoclusters. Chem Sci 2024; 15:8922-8933. [PMID: 38873061 PMCID: PMC11168102 DOI: 10.1039/d4sc01509f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Surface-protecting ligands, as a major component of metal nanoclusters (MNCs), can dominate molecular characteristics, performance behaviors, and biological properties of MNCs, which brings diversity and flexibility to the nanoclusters and largely promotes their applications in optics, electricity, magnetism, catalysis, biology, and other fields. We report herein the design of a new kind of water-soluble luminescent gold nanoclusters (AuNCs) for enzyme-activatable charge transfer (CT) based on the ligand engineering of AuNCs with 6-mercaptopurine ribonucleoside (MPR). This elaborately designed cluster, Au5(MPR)2, can form a stable intramolecular CT state after light excitation, and exhibits long-lived color-tunable phosphorescence. After the cleavage by purine nucleoside phosphorylase (PNP), the CT triplet state can be easily directed to a low-lying energy level, leading to a bathochromic shift of the emission band accompanied by weaker and shorter-lived luminescence. Remarkably, these ligand-engineered AuNCs show high affinity towards PNP as well as decent performance for analyzing and visualizing enzyme activity and related drugs. The work of this paper provides a good example for diversifying physicochemical properties and application scenarios of MNCs by rational ligand engineering, which will facilitate future interest and new strategies to precisely engineer solution-based nanocluster materials.
Collapse
Affiliation(s)
- Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Yu Zhong
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Ye Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Hong-Xiang Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Xiang-Yu Fang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Wei-Ming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University Fuzhou 350004 China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
9
|
Singh P, Bhankar V, Kumar S, Kumar K. Biomass-derived carbon dots as significant biological tools in the medicinal field: A review. Adv Colloid Interface Sci 2024; 328:103182. [PMID: 38759449 DOI: 10.1016/j.cis.2024.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Early disease detection is crucial since it raises the likelihood of treatment and considerably lowers the cost of therapy. Therefore, the improvement of human life and health depends on the development of quick, efficient, and credible biosensing methods. For improving the quality of biosensors, distinct nanostructures have been investigated; among these, carbon dots have gained much interest because of their great performance. Carbon dots, the essential component of fluorescence nanoparticles, having outstanding chemical characteristics, superb biocompatibility, chemical inertness, low toxicity and potential optical characteristics have attracted the researchers from every corner of the globe. Several carbon dots applications have been thoroughly investigated in recent decade, from optoelectronics to biomedical investigations. This review study primarily emphasizes the recent advancements in the field of biomass-derived carbon dots-based drug delivery, gene delivery and bioimaging, and highlights achievements in two major areas: in vivo applications that involve carbon dots absorption in zebrafish and mice, tumour therapeutics, and imaging-guided drug delivery. Additionally, the possible advantages, difficulties, and future possibilities of using carbon dots for biological applications are also explored.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat 131039, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad 121006, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat 131039, Haryana, India.
| |
Collapse
|
10
|
Medina-Berríos N, Pantoja-Romero W, Lavín Flores A, Díaz Vélez S, Martínez Guadalupe AC, Torres Mulero MT, Kisslinger K, Martínez-Ferrer M, Morell G, Weiner BR. Synthesis and Characterization of Carbon-Based Quantum Dots and Doped Derivatives for Improved Andrographolide's Hydrophilicity in Drug Delivery Platforms. ACS OMEGA 2024; 9:12575-12584. [PMID: 38524434 PMCID: PMC10955586 DOI: 10.1021/acsomega.3c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 03/26/2024]
Abstract
Carbon-based quantum dots (CBQDs), sulfur-doped carbon-based quantum dots (S-CBQDs), and nitrogen-doped carbon-based quantum dots (N-CBQDs) have strong potential for drug delivery platforms. They were conjugated with andrographolide, a well-known hydrophobic drug, to study the concomitant changes in hydrophilicity. The interactions between these nanomaterials and the drug were studied by characterizing the optical and structural properties of the nanoparticles before and after coupling with the drug. It was found that the interaction of the drug with these nanomaterials produced noticeable changes in their optical and structural properties. Moreover, the partition coefficient for the nanocomposites was determined by NMR. The results indicate that conjugating the drug with the nanoparticles significantly enhanced its affinity for the aqueous phase, from 2.632 to 0.1117, thereby opening the possibility of using this approach for developing an effective drug delivery platform for this hydrophobic drug.
Collapse
Affiliation(s)
- Nataniel Medina-Berríos
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Wenndy Pantoja-Romero
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Alexis Lavín Flores
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Sebastián
C. Díaz Vélez
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Anna C. Martínez Guadalupe
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Mariana T. Torres Mulero
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Kim Kisslinger
- Brookhaven
National Lab, Upton, New York 11973, United States
| | - Magaly Martínez-Ferrer
- Division
of Cancer Biology, University of Puerto
Rico Comprehensive Cancer Center, San Juan 00936-3027, Puerto Rico
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan 00925-253, Puerto Rico
| | - Gerardo Morell
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Brad R. Weiner
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| |
Collapse
|
11
|
Niu KK, Zhang RZ, Yang XZ, Ma CQ, Liu H, Yu S, Xing LB. Nitrogen-doped Carbon Dots as Efficient Photocatalysts for High Selectivity of Dehalogenative Oxyalkylation of Styrene. CHEMSUSCHEM 2023:e202301686. [PMID: 38135666 DOI: 10.1002/cssc.202301686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Carbon dots (CDs) are a type of carbon-based luminescent material with a zero-dimensional structure and a size of less than 10 nm, which are composed of sp2 /sp3 hybrid carbon nuclei and surface functional groups. Because CDs has strong photoluminescence and good light absorption in the ultraviolet and near visible regions, it is an excellent candidate for photocatalytic applications. However, the use of nonmetallic doped CDs as photosensitizers for direct photocatalytic organic reactions has been limited to several scattered reports. Herein, we present nitrogen-doped carbon dots (N-CDs) that has a capability for not only produce reactive oxygen species (ROS), including superoxide anion radical (O2 ⋅- ) and singlet oxygen (1 O2 ), but also provide an unprecedented high activity of dehalogenative oxyalkylation of styrene with a yield of 93 %. This work develops a novel opportunity to utilize cost-effective and easily accessible CDs for the advancement of photocatalysis.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Chao-Qun Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| |
Collapse
|
12
|
Yeşilyurt ATM, Wu X, Tapio K, Bald I, Huang JS. Nanoscale Hotspot-Induced Emitters in DNA Origami-Assisted Nanoantennas. J Am Chem Soc 2023; 145:25928-25932. [PMID: 38010132 DOI: 10.1021/jacs.3c07647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report the observation of hotspot-induced emitters and photoluminescence enhancement of up to 42-fold from DNA origami-assisted plasmonic dimer nanoantennas upon excess polarized laser illumination. The presence of DNA and laser polarization alignment along the dimer axis are critical for the generation of bright emitters responsible for the observed PL increase. The emission spectrum reveals characteristic Raman peaks of amorphous carbon, suggesting the formation of carbon-based emitters in the nanoantenna due to the plasmonic hotspots at the longitudinal antenna resonance.
Collapse
Affiliation(s)
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Kosti Tapio
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena 07743, Germany
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Mazahir F, Sharma R, Yadav AK. Bioinspired theranostic quantum dots: Paving the road to a new paradigm for cancer diagnosis and therapeutics. Drug Discov Today 2023; 28:103822. [PMID: 37949429 DOI: 10.1016/j.drudis.2023.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Despite extensive research, a complete cure remains lacking for most types of cancer. Nanotechnology-based carriers, such as liposomes, nanoparticles (NPs), dendrimers, nanoemulsions, and other nanocarriers, can target cancer cells, but their in vivo fate is unpredictable. Bioinspired quantum dots (BQDs) offer enhanced aqueous solubility, exceptionally low toxicity, biocompatibility, easy biofunctionalization, and selective cancer targeting. Due to their photoluminescence, high longitudinal relaxation value, photothermal effect upon laser irradiation, generation of singlet oxygen, and production of H2S for gas therapy, BQDs are excellent cancer theranostic agents. In this review, we highlight the theranostic application of, and existing challenges relating to BQDs.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow 226002, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, India
| | - Awesh Kumar Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow 226002, India.
| |
Collapse
|
14
|
Luo C, Chen X, Li P, Huang C. A Photoelectrochemical Sensor Based on DNA Bio-Dots-Induced Aggregation of AuNPs for Methionine Detection. Molecules 2023; 28:7740. [PMID: 38067471 PMCID: PMC10707855 DOI: 10.3390/molecules28237740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Based on DNA bio-dots-induced aggregation of gold nanoparticles (AuNPs), a methionine (Met) photoelectrochemical (PEC) sensor with CS-GSH-CuNCs/TiO2 NPs as the photoelectric conversion element and AuNPs as the specific recognition element was constructed. First, a TiO2 NPs/ITO electrode and CS-GSH-CuNCs were prepared, and then the CS-GSH-CuNCs/TiO2 NPs/ITO photosensitive electrode was obtained by self-assembly. Next, DNA bio-dots were modified to the upper surface of the electrode using a coupling reaction to assemble the DNA bio-dots/CS-GSH-CuNCs/TiO2 NPs electrode. Amino-rich DNA bio-dots were used to induce the aggregation of AuNPs on the electrode surface via Au-N interactions and prepare the AuNPs/DNA bio-dots/CS-GSH-CuNCs/TiO2 NPs electrode. Due to the fluorescence resonance energy transfer (FRET) between CS-GSH-CuNCs and AuNPs, the complexation chance of electron-hole (e--h+) pair in CS-GSH-CuNCs increased, which, in turn, led to a decrease in photocurrent intensity. When Met was present, AuNPs aggregated on the electrode surface were shed and bound to Met since the Au-S interaction is stronger than the Au-N interaction, resulting in the recovery of the photocurrent signal. Under optimal conditions, the photocurrent intensity of the PEC sensor showed good linearity with the logarithm of Met concentration in the range of 25.0 nmol/L-10.0 μmol/L with the limit of detection (LOD) of 5.1 nmol/L (S/N = 3, n = 10).
Collapse
Affiliation(s)
- Chen Luo
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China;
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China; (X.C.); (P.L.)
| | - Xiaoxiao Chen
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China; (X.C.); (P.L.)
| | - Pu Li
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China; (X.C.); (P.L.)
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China;
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China; (X.C.); (P.L.)
| |
Collapse
|
15
|
Chen M, Yang F, Hou D, Zheng Y, Liu C, Lin X, Li Y, Sun H. Preparation of Multicolor Fluorescent Carbon Dots Based on Catechol and o-Phthalaldehyde. Molecules 2023; 28:5303. [PMID: 37513177 PMCID: PMC10386174 DOI: 10.3390/molecules28145303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
As the foremost category of carbon materials, carbon dots (CDs) have been extensively applied in many domains because of their special fluorescence features and outstanding biocompatibility. However, in early studies of fluorescent CDs, as the fluorescence wavelength of most CDs was restricted to the blue or green region and was excitation dependent, the application of CDs was limited. In this study, three representative CDs, fluorescing yellow, green, and blue, were synthesized under alkaline, neutral, and acidic circumstances, respectively, while using a hydrothermal method in which catechol and phthalaldehyde acted as carbon sources and methanol functioned as the reaction solvent. The carbon nuclei of the three fluorescent CDs all had comparable graphite structures. The diversity of photoluminescence (PL) emission from these three CDs was attributed mainly to the different sizes of the sp2 conjugated structures among them. Mixing synthesized CDs with epoxy resin, three colors (yellow, green, and blue) of LED using CIE coordinates (0.40, 0.44), (0.33, 0.46), and (0.21, 0.22), respectively, were successfully prepared.
Collapse
Affiliation(s)
- Ming Chen
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Yan Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
16
|
Lu T, Chen J, Zhang Q, Zhang M, Li Y, Qi Z. Surfactant-mediated mobility of carbon dots in saturated soil: comparison between anionic and cationic surfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37622-37633. [PMID: 36572776 DOI: 10.1007/s11356-022-24878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Understanding the mobility, retention, and fate of carbon dots (CDs) is critical for the risk management of this emerging carbon material. However, the influences of surfactants on CDs' transport through subsurface media are still poorly understood. Herein, column experiments were conducted to explore the different influences of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the CDs' transport in water-saturated soil. In the Na+ background electrolyte, both surfactants facilitated the transport of CDs at pH 7.0. The trend stemmed from steric hindrance, a decline in the straining effect, and competitive deposition between CDs and surfactant molecules. Additionally, SDBS increased the electrostatic repulsion of CDs and soil. Interestingly, in the divalent cation background electrolytes (i.e., Ca2+ or Cu2+), SDBS suppressed CDs' mobility, whereas CTAB had the opposite effect. The transport-inhibited effect of SDBS was mainly due to anionic surfactant ion (DBS-) precipitation with metal cations and the formation of adsorbed SDBS-Cu2+/Ca2+-CDs complexes. The enhanced effect of CTAB resulted from the CTAB coating on soil grains, which suppressed the cation bridging between CDs and soil. Furthermore, the magnitude of the SDBS promotion effect was pH-dependent. Surprisingly, CTAB could inhibit CDs' mobility at pH 9.0, owing to the binding cationic surfactant's strong hydrophobicity effect on the soil surface. Moreover, the experimental breakthrough curves of CDs were well described using a two-site transport model. Overall, the observations obtained from this study shed light on the relative mobility of CDs with different surfactants in typical groundwater conditions.
Collapse
Affiliation(s)
- Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiuyan Chen
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mengli Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, 250014, China
| | - Zhichong Qi
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Jing HH, Bardakci F, Akgöl S, Kusat K, Adnan M, Alam MJ, Gupta R, Sahreen S, Chen Y, Gopinath SCB, Sasidharan S. Green Carbon Dots: Synthesis, Characterization, Properties and Biomedical Applications. J Funct Biomater 2023; 14:27. [PMID: 36662074 PMCID: PMC9863160 DOI: 10.3390/jfb14010027] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Carbon dots (CDs) are a new category of crystalline, quasi-spherical fluorescence, "zero-dimensional" carbon nanomaterials with a spatial size between 1 nm to 10 nm and have gained widespread attention in recent years. Green CDs are carbon dots synthesised from renewable biomass such as agro-waste, plants or medicinal plants and other organic biomaterials. Plant-mediated synthesis of CDs is a green chemistry approach that connects nanotechnology with the green synthesis of CDs. Notably, CDs made with green technology are economical and far superior to those manufactured with physicochemical methods due to their exclusive benefits, such as being affordable, having high stability, having a simple protocol, and being safer and eco-benign. Green CDs can be synthesized by using ultrasonic strategy, chemical oxidation, carbonization, solvothermal and hydrothermal processes, and microwave irradiation using various plant-based organic resources. CDs made by green technology have diverse applications in biomedical fields such as bioimaging, biosensing and nanomedicine, which are ascribed to their unique properties, including excellent luminescence effect, strong stability and good biocompatibility. This review mainly focuses on green CDs synthesis, characterization techniques, beneficial properties of plant resource-based green CDs and their biomedical applications. This review article also looks at the research gaps and future research directions for the continuous deepening of the exploration of green CDs.
Collapse
Affiliation(s)
- Hong Hui Jing
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Turkey
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
| | - Kevser Kusat
- Department of Chemistry, Faculty of Science, DokuzEylül University, Izmir 35390, Turkey
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Reena Gupta
- Department of Pharmacognosy, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Pulau Pinang 11800, Malaysia
| |
Collapse
|
18
|
Shi S, Zhang P, Chu X, Liu Y, Feng W, Zhou N, Shen J. Combination of Carbon Dots for the Design of Superhydrophobic Fluorescent Materials with Bioinspired Micro-Nano Multiscale Hierarchical Structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Wu J, Lu Q, Wang H, Huang B. Passivator-Free Microwave–Hydrothermal Synthesis of High Quantum Yield Carbon Dots for All-Carbon Fluorescent Nanocomposite Films. NANOMATERIALS 2022; 12:nano12152624. [PMID: 35957054 PMCID: PMC9370708 DOI: 10.3390/nano12152624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023]
Abstract
Based on the self-passivation function of chitosan, an efficient, and green synthesis strategy was applied to prepare chitosan carbon dots (CDs). The quantum yield of carbon dots reached 35% under the conditions of hydrothermal temperature of 200 °C, hydrothermal time of 5 h, and chitosan concentration of 2%. Moreover, the obtained carbon dots had high selectivity and sensitivity to Fe3+. Based on the Schiff base reaction between the aldehyde groups of dialdehyde cellulose nanofibrils (DNF) and the amino groups of CDs, a chemically cross-linked, novel, fluorescent composite film, with high transparency and high strength, was created using one-pot processing. Knowing that the fluorescence effect of the composite film on Fe3+ had a linear relationship in the concentration range of 0–100 μM, a fluorescent probe can be developed for quantitative analysis and detection of Fe3+. Owing to their excellent fluorescent and mechanical properties, the fluorescent nanocomposite films have potential applications in the fields of Fe3+ detection, fluorescent labeling, and biosensing.
Collapse
Affiliation(s)
- Jiayin Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Qilin Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Correspondence: (Q.L.); (B.H.)
| | - Hanchen Wang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Biao Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Correspondence: (Q.L.); (B.H.)
| |
Collapse
|
20
|
Imani M, Mohajeri N, Rastegar M, Zarghami N. Synthesis and Characterization of N-rich Fluorescent Bio-dots as a Reporter in the Design of Dual-labeled FRET Probe for TaqMan PCR: a Feasibility Study. Biotechnol Appl Biochem 2022; 70:645-658. [PMID: 35900086 DOI: 10.1002/bab.2387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
DNA-based analytical techniques have provided an advantageous sensing assay in the realm of biotechnology. Bio-inspired fluorescent nanodots are a novel type of biological staining agent with excellent optical properties widely used for cellular imaging and diagnostics. In the present research, we successfully synthesized bio-dots with excellent optical properties and high-quantum yield from DNA sodium salt through the hydrothermal method. We conjugated the bio-dots with 3' Eclipse® Dark Quencher (Eclipse) labeled single strand oligodeoxyribonucleotide according to carbodiimide chemistry, to design a fluorescence resonance energy transfer (FRET) probe. The results confirmed the prosperous synthesis and surface functionalization of the bio-dot. Analysis of size, zeta potential, and FTIR spectroscopy verified successful bioconjugation of the bio-dots with probes. UV-Visibility analysis and fluorescence intensity profile of the bio-dot and bio-dot@probes represented a concentration-dependent quenching of fluorescent signal of bio-dot by Eclipse after probe conjugation. The results demonstrated that TaqMan PCR was not feasible using the designed bio-dot@probes. Our results indicated that bio-dot can be used as an efficient fluorescent tag in the design of fluorescently labeled oligonucleotides with high biocompatibility and optical features. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mahsa Imani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
21
|
Li X, Lu Y, Li J, Zhou S, Wang Y, Li L, Zhao F. Photoluminescent carbon dots (PCDs) from sour apple: a biocompatible nanomaterial for preventing UHMWPE wear-particle induced osteolysis via modulating Chemerin/ChemR23 and SIRT1 signaling pathway and its bioimaging application. J Nanobiotechnology 2022; 20:301. [PMID: 35761350 PMCID: PMC9235131 DOI: 10.1186/s12951-022-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Photoluminescent nanomaterials have been widely employed in several biological applications both in vitro and in vivo. For the first time, we report a novel application of sour apple-derived photoluminescent carbon dots (PCDs) for reducing ultra-high molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis using mouse calvarial model. Generally, aseptic prosthetic loosening seems to be a significant postoperative problem for artificial joints replacement, which is mainly contributed by UHMWPE-induced osteolysis. Hence, inhibiting osteoclastic bone-resorption could minimize UHMWPE-induced osteolysis for implant loosening. Prior to osteolysis studies, the prepared sour apple-derived PCDs were employed for bioimaging application. As expected, the prepared PCDs effectively inhibited the UHMWPE particle-induced osteoclastogenesis in vitro. The PCDs treatment effectively inhibited the UHMWPE-induced osteoclast differentiation, F-actin ring pattern, and bone resorption in vitro. Also, the PCDs reduced the UHMWPE-induced ROS stress as well as the expression level of pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-8. Further, the qPCR and western blot results hypothesized that PCDs inhibited the UHMWPE wear particle-induced osteolysis through suppressing chemerin/ChemR23 signaling and NFATc1 pathway, along with upregulation of SIRT1 expression. Overall, these findings suggest that the synthesized PCDs could be a potential therapeutic material for minimizing UHMWPE particle-induced periprosthetic osteolysis to avoid postoperative complications.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
22
|
Luo F, Fu Z, Ren Y, Wang W, Huang Y, Shu X. Self-assembly CuO-loaded nanocomposite involving functionalized DNA with dihydromyricetin for water-based efficient and controllable antibacterial action. BIOMATERIALS ADVANCES 2022; 137:212847. [PMID: 35929276 DOI: 10.1016/j.bioadv.2022.212847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
With the antibiotic crisis intensifies, the defense and treatment of pathogen infections in safe and effective fashion has become a critical issue. Herein, we report a novel and advanced type of sterilization agent designed via the functionalization DNA nanocarriers based on dihydromyricetin and CuO-loaded nanoparticles (DNA/DMY-CuO). Firstly, a pure dihydromyricetin (DMY) isolated from Ampelopsis grossedentata is used as a bridge to the stimulate the construction of DNA cross-linking networks by hydrogen bonding. Subsequently, a 3D spherical CuO-loaded nanocomposite (204.39 nm) is customized using the DNA/DMY network as a biological template through a simple coordination-assisted self-assembly method, which exhibits a high dispersibility, water-solubility and physiological stability. The reversible physical interactions in nanocarriers allows the selective separation and automatic release of CuO NPs from DNA/DMY-CuO in neutral and wound exudate environments, thereby extending the survival period of CuO NPs by nearly 24 h. Meanwhile, the nanocarriers system relied on the strong binding ability of DMY to the outer membrane of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) achieves controlled drug delivery onto the pathogen wall. The advanced antibacterial action of DNA/DMY-CuO also reflected in membrane destruction, cytoplasmic constituent leakages and ATP synthetic pathway cessation, thereby halting cytosolic metalloregulatory mechanisms and minimizing drug-resistant bacteria. In summary, such multi-functional CuO-loaded nanocomposite provides a water-dispersibility, controllable, low cytotoxicity and long-effective platform to address the ever-growing threats of bacterial infections.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhihuan Fu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanli Ren
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenxiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yunmao Huang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| |
Collapse
|
23
|
Naik K, Chaudhary S, Ye L, Parmar AS. A Strategic Review on Carbon Quantum Dots for Cancer-Diagnostics and Treatment. Front Bioeng Biotechnol 2022; 10:882100. [PMID: 35662840 PMCID: PMC9158127 DOI: 10.3389/fbioe.2022.882100] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The understanding of the genesis of life-threatening cancer and its invasion calls for urgent development of novel technologies for real-time observations, early diagnosis, and treatment. Quantum dots (QDs) grabbed the spotlight in oncology owing to their excellent photostability, bright fluorescence, high biocompatibility, good electrical and chemical stability with minimum invasiveness. Recently, carbon QDs (CQDs) have become popular over toxic inorganic QDs in the area of bioimaging, biosensing, and drug delivery. Further, CQDs derived from natural sources like biomolecules and medicinal plants have drawn attention because of their one-pot, low-cost and ease of synthesis, along with remarkable tunable optical properties and biocompatibility. This review introduces the synthesis and properties of CQDs derived from natural sources, focusing on the applicability of CQD-based technologies as nano-theranostics for the diagnosis and treatment of cancer. Furthermore, the current issues and future directions for the transformation of CQDs-based nanotechnologies to clinical applications are highlighted.
Collapse
Affiliation(s)
- Kaustubh Naik
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Chandigarh, India
| | - Lei Ye
- Division of Pure & Applied Biochemistry, Lund University, Lund, Sweden
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
- Center for Biomaterial and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
24
|
Naik VM, Bhosale SV, Kolekar GB. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:877-891. [PMID: 35174374 DOI: 10.1039/d1ay02105b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Since their discovery in 2004, fluorescent carbon nanoparticles have been tremendously studied due to their tunable optical properties. Recent studies on the synthesis and application of doped carbon dots highlight the effortless doping strategy with high quantum yields and applications in diverse fields. Among these, nitrogen doped carbon dots (NCDs) have been extensively investigated for their potential analytical and biological applications. This review features the synthetic methods and important characterisation studies required to verify successful synthesis of nitrogen doped carbon dots. Analytical applications of NCDs in metal ion, biomolecule, temperature, pH and gas sensing along with cell imaging and drug delivery applications are also discussed.
Collapse
Affiliation(s)
- Vaibhav M Naik
- P. E. S's. Ravi S. Naik College of Arts and Science, Farmagudi, Ponda, Goa, India
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| |
Collapse
|
25
|
Wu J, Chen X, Zhang Z, Zhang J. "Off-on" fluorescence probe based on green emissive carbon dots for the determination of Cu 2+ ions and glyphosate and development of a smart sensing film for vegetable packaging. Mikrochim Acta 2022; 189:131. [PMID: 35239060 PMCID: PMC8893061 DOI: 10.1007/s00604-022-05241-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
An ultra-sensitive glyphosate nanosensor, based on carbon dots (CDs), was successfully developed with excellent long-wavelength emission (530 nm), a high quantum yield (41.3%), and an impressive detection limit (0.8 ng·mL-1). This is the lowest value for glyphosate detection achieved by CD-based fluorescence analysis. The sensor was derived from a separate precursor, 1,4-dihydroxyanthraquinone, and was based on the "off-on" fluorescence analysis, where Cu2+ acts as a dynamic quencher and glyphosate as a fluorescence restorer (excitation wavelength 460 nm). Trace detection of glyphosate is possible with a wide detection range of 50-1300 ng·mL-1 and spiked recoveries between 93.3 and 110.0%. Exploration in depth confirmed that (1) the fluorescence of CDs was derived from the carbon core, (2) the large sp2 conjugated domain consisting of graphitic carbon and nitrogen contributed to the long-wavelength emission, and (3) CDs had an impressive binding interaction with Cu2+, which endow high sensitivity to glyphosate detection. The nanosensor has also be used as a dual-mode visual sensor and a smart sensing membrane that can identify glyphosate on the surface of vegetables, thus showing good practical applicability. Synthetic methods of G-CDs and its detection mechanisms for glyphosate.
Collapse
Affiliation(s)
- Jiajie Wu
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Xiaoyong Chen
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
- The Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, 030051, China.
| | - Zeyu Zhang
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Jiamin Zhang
- The School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
26
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
27
|
Behi M, Gholami L, Naficy S, Palomba S, Dehghani F. Carbon dots: a novel platform for biomedical applications. NANOSCALE ADVANCES 2022; 4:353-376. [PMID: 36132691 PMCID: PMC9419304 DOI: 10.1039/d1na00559f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) are a recently synthesised class of carbon-based nanostructures known as zero-dimensional (0D) nanomaterials, which have drawn a great deal of attention owing to their distinctive features, which encompass optical properties (e.g., photoluminescence), ease of passivation, low cost, simple synthetic route, accessibility of precursors and other properties. These newly synthesised nano-sized materials can replace traditional semiconductor quantum dots, which exhibit significant toxicity drawbacks and higher cost. It is demonstrated that their involvement in diverse areas of chemical and bio-sensing, bio-imaging, drug delivery, photocatalysis, electrocatalysis and light-emitting devices consider them as flawless and potential candidates for biomedical application. In this review, we provide a classification of CDs within their extended families, an overview of the different methods of CDs preparation, especially from natural sources, i.e., environmentally friendly and their unique photoluminescence properties, thoroughly describing the peculiar aspects of their applications in the biomedical field, where we think they will thrive as the next generation of quantum emitters. We believe that this review covers a niche that was not reviewed by other similar publications.
Collapse
Affiliation(s)
- Mohammadreza Behi
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science Mashhad Iran
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
| | - Stefano Palomba
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
| |
Collapse
|
28
|
Rao C, Sharma S, Garg R, Anjum F, Kaushik K, Nandi CK. Mapping the Time Dependent DNA Fragmentation caused by doxorubicin Loaded on PEGylated Carbogenic Nanodots using Fluorescence Lifetime Imaging and Super-resolution microscopy. Biomater Sci 2022; 10:4525-4537. [DOI: 10.1039/d2bm00641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doxorubicin is an anthracycline drug most commonly used in cancer therapy. It intercalates with the nuclear DNA and induces toxicity by causing DNA breaks and histone evictions. However, the kinetics...
Collapse
|
29
|
Cui L, Ren X, Sun M, Liu H, Xia L. Carbon Dots: Synthesis, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3419. [PMID: 34947768 PMCID: PMC8705349 DOI: 10.3390/nano11123419] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are known as the rising star of carbon-based nanomaterials and, by virtue of their unique structure and fascinating properties, they have attracted considerable interest in different fields such as biological sensing, drug delivery, photodynamic therapy, photocatalysis, and solar cells in recent years. Particularly, the outstanding electronic and optical properties of the CDs have attracted increasing attention in biomedical and photocatalytic applications owing to their low toxicity, biocompatibility, excellent photostability, tunable fluorescence, outstanding efficient up-converted photoluminescence behavior, and photo-induced electron transfer ability. This article reviews recent progress on the synthesis routes and optical properties of CDs as well as biomedical and photocatalytic applications. Furthermore, we discuss an outlook on future and potential development of the CDs based biosensor, biological dye, biological vehicle, and photocatalysts in this booming research field.
Collapse
Affiliation(s)
- Lin Cui
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Yuanyang Branch Department, Beijing Jingshan School, Beijing 100040, China
| | - Xin Ren
- International Department, Beijing No. 12 High School, Beijing 100071, China;
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Lixin Xia
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| |
Collapse
|
30
|
Moradi M, Molaei R, Kousheh SA, T Guimarães J, McClements DJ. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Crit Rev Food Sci Nutr 2021; 63:1943-1959. [PMID: 34898337 DOI: 10.1080/10408398.2021.2015283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanotechnology is rapidly becoming a commercial reality for application in food packaging. In particular, the incorporation of nanoparticles into packaging materials is being used to increase the shelf life and safety of foods. Carbon dots (C-dots) have a diverse range of potential applications in food packaging. They can be synthesized from environmentally friendly sources such as microorganisms, food by-products, and waste streams, or they may be generated in foods during normal processing operations, such as cooking. These processes often produce nitrogen- and sulfur-rich heteroatom-doped C-dots, which are beneficial for certain applications. The incorporation of C-dots into food packaging materials can improve their mechanical, barrier, and preservative properties. Indeed, C-dots have been used as antioxidant, antimicrobial, photoluminescent, and UV-light blocker additives in food packaging materials to reduce the chemical deterioration and inhibit the growth of pathogenic and spoilage microorganisms in foods. This article reviews recent progress on the synthesis of C-dots from microorganisms and food by-products of animal origin. It then highlights their potential application for the development of active and intelligent food packaging materials. Finally, a discussion of current challenges and future trends is given.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
31
|
Sun Y, Zhou Q, Sheng X, Li S, Tong Y, Guo J, Zhou B, Zhao J, Liu M, Li Z, Li Y, Qu T, Chen C. Highly selective fluorescence sensor sensing benzo[a]pyrene in water utilizing carbon dots derived from 4-carboxyphenylboronic acid. CHEMOSPHERE 2021; 282:131127. [PMID: 34119727 DOI: 10.1016/j.chemosphere.2021.131127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
4-Carboxyphenylboronic acid was used as the single precursor to facilely prepare fluorescent carbon quantum dots by one-step solvothermal method. The as-obtained carbon dots (CDs) exhibited highly selective and sensitive for benzo[a]pyrene (BaP), and may be a splendid sensor for sensing BaP. The principle was that the as-prepared CDs could form a complex with BaP through hydrophobic interaction which causes the decrease of fluorescence intensity of CDs by static quenching principle. The constructed fluorescent sensor exhibited excellent linearity ranged from 0.002 to 0.06 μg mL-1 and provided a low limit of detection of 0.16 ng mL-1. The experimental results showed that this fluorescent sensor resulted in simplicity, rapidness, low cost, short analytical time, and high sensitivity and stability. Validation with real water samples endowed the sensor high reliability and feasibility for BaP determination in practical application in various samples.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuanying Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Tongxu Qu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
32
|
Yan R, Guo Z, Chen X, Tang L, Wang M, Miao P. Red-emissive carbon nanodots for highly sensitive ferric(III) ion sensing and intracellular imaging. Analyst 2021; 146:6450-6454. [PMID: 34595488 DOI: 10.1039/d1an01451j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferric(III) ions (Fe3+) are one of the most abundant metal ions in environmental and biological systems. The determination of Fe3+ has attracted great attention for healthcare concerns. In this work, we have developed a novel fluorescence method for the sensing and intracellular imaging of Fe3+ based on the prepared red-emissive carbon nanodots. The nanoprobes are synthesized via a microwave method using ammonium fluoride and o-phenylenediamine as carbon precursors, which exhibit excellent optical properties and low toxicity. More importantly, the carbon nanodots show high selectivity towards Fe3+ against other interfering ions. The sensitivity is also high with the limit of detection as low as 0.05 μM. Meanwhile, the carbon nanodots have been successfully used for fluorescence imaging of cells and could be quenched by intracellular Fe3+. These results suggest that the red-emissive carbon nanodots have diverse potential utilities in biomedical fields.
Collapse
Affiliation(s)
- Ruhong Yan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. .,Department of Clinical Laboratory, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. .,Ji Hua Laboratory, Foshan 528200, China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan 250103, China
| | | | | | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. .,Ji Hua Laboratory, Foshan 528200, China
| |
Collapse
|
33
|
Wang Y, Zhang M, Shen X, Wang H, Wang H, Xia K, Yin Z, Zhang Y. Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008079. [PMID: 34142431 DOI: 10.1002/smll.202008079] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure-property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.
Collapse
Affiliation(s)
- Yiliang Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyi Shen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Cavendish Laboratory, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kailun Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhe Yin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
34
|
Zhang Y, Li C, Sun L, Zhang J, Yang X, Ma H. Defects coordination triggers red-shifted photoluminescence in carbon dots and their application in ratiometric Cr(VI) sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Metal Ions Sensing by Biodots Prepared from DNA, RNA, and Nucleotides. BIOSENSORS 2021; 11:333. [PMID: 34562923 PMCID: PMC8466223 DOI: 10.3390/bios11090333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
Nucleic acids that exhibit a high affinity toward noble and transition metal ions have attracted growing attention in the fields of metal ion sensing, toxic metal ion removal, and the construction of functional metal nanostructures. In this study, fluorescent nanoparticles (biodots) were synthesized from DNA, RNA, and RNA nucleotides (AMP, GMP, UMP, and CMP) using a hydrothermal (HT) method, in order to study their metal ion sensing characteristics. The fluorescent properties of biodots differ markedly between those prepared from purine and pyrimidine nucleobases. All biodots demonstrate a high sensitivity to the presence of mercury cations (Hg2+), while biodots prepared from DNA, RNA, and guanosine monophosphate (GMP) are also sensitive to Ag+ and Cu2+ ions, but to a lesser extent. The obtained results show that biodots inherit the metal ion recognition properties of nucleobases, while the nucleobase composition of biodot precursors affects metal ion sensitivity and selectivity. A linear response of biodot fluorescence to Hg2+ concentration in solution was observed for AMP and GMP biodots in the range 0-250 μM, which can be used for the analytic detection of mercury ion concentration. A facile paper strip test was also developed that allows visual detection of mercury ions in solutions.
Collapse
Affiliation(s)
- Maofei Wang
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Masaki Tsukamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Vladimir G. Sergeyev
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| |
Collapse
|
36
|
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Fluorescent Nanoparticles Synthesized from DNA, RNA, and Nucleotides. NANOMATERIALS 2021; 11:nano11092265. [PMID: 34578581 PMCID: PMC8471148 DOI: 10.3390/nano11092265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Ubiquitous on Earth, DNA and other nucleic acids are being increasingly considered as promising biomass resources. Due to their unique chemical structure, which is different from that of more common carbohydrate biomass polymers, materials based on nucleic acids may exhibit new, attractive characteristics. In this study, fluorescent nanoparticles (biodots) were prepared by a hydrothermal (HT) method from various nucleic acids (DNA, RNA, nucleotides, and nucleosides) to establish the relationship between the structure of precursors and fluorescent properties of biodots and to optimize conditions for preparation of the most fluorescent product. HT treatment of nucleic acids results in decomposition of sugar moieties and depurination/depyrimidation of nucleobases, while their consequent condensation and polymerization gives fluorescent nanoparticles. Fluorescent properties of DNA and RNA biodots are drastically different from biodots synthesized from individual nucleotides. In particular, biodots synthesized from purine-containing nucleotides or nucleosides show up to 50-fold higher fluorescence compared to analogous pyrimidine-derived biodots. The polymeric nature of a precursor disfavors formation of a bright fluorescent product. The reported effect of the structure of the nucleic acid precursor on the fluorescence properties of biodots should help designing and synthesizing brighter fluorescent nanomaterials with broader specification for bioimaging, sensing, and other applications.
Collapse
Affiliation(s)
- Maofei Wang
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Masaki Tsukamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Vladimir G. Sergeyev
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
- Correspondence: ; Tel.: +81-52-789-4771
| |
Collapse
|
38
|
Gavalas S, Kelarakis A. Towards Red Emissive Systems Based on Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2089. [PMID: 34443920 PMCID: PMC8400426 DOI: 10.3390/nano11082089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Carbon dots (C-dots) represent an emerging class of nontoxic nanoemitters that show excitation wavelength-dependent photoluminescence (PL) with high quantum yield (QY) and minimal photobleaching. The vast majority of studies focus on C-dots that exhibit the strongest PL emissions in the blue/green region of the spectrum, while longer wavelength emissions are ideal for applications such as bioimaging, photothermal and photodynamic therapy and light-emitting diodes. Effective strategies to modulate the PL emission of C-dot-based systems towards the red end of the spectrum rely on extensive conjugation of sp2 domains, heteroatom doping, solvatochromism, surface functionalization and passivation. Those approaches are systematically presented in this review, while emphasis is given on important applications of red-emissive suspensions, nanopowders and polymer nanocomposites.
Collapse
Affiliation(s)
| | - Antonios Kelarakis
- UCLan Research Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| |
Collapse
|
39
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
40
|
Su Q, Jiang C, Gou D, Long Y. Surface Plasmon-Assisted Fluorescence Enhancing and Quenching: From Theory to Application. ACS APPLIED BIO MATERIALS 2021; 4:4684-4705. [PMID: 35007020 DOI: 10.1021/acsabm.1c00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The integration of surface plasmon resonance and fluorescence yields a multiaspect improvement in surface fluorescence sensing and imaging, leading to a paradigm shift of surface plasmon-assisted fluorescence techniques, for example, surface plasmon enhanced field fluorescence spectroscopy, surface plasmon coupled emission (SPCE), and SPCE imaging. This Review aims to characterize the unique optical property with a common physical interpretation and diverse surface architecture-based measurements. The fundamental electromagnetic theory is employed to comprehensively unveil the fluorophore-surface plasmon interaction, and the associated surface-modification design is liberally highlighted to balance the surface plasmon-induced fluorescence-enhancement efforts and the surface plasmon-caused fluorescence-quenching effects. In particular, all types of surface structures, for example, silicon, carbon, protein, DNA, polymer, and multilayer, are systematically interrogated in terms of component, thickness, stiffness, and functionality. As a highly interdisciplinary and expanding field in physics, optics, chemistry, and surface chemistry, this Review could be of great interest to a broad readership, in particular, among physical chemists, analytical chemists, and in surface-based sensing and imaging studies.
Collapse
Affiliation(s)
- Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China.,School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | - Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yi Long
- Clinical Research Center, Southern University of Science and Technology Hospital, 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
41
|
Sethuraman V, Janakiraman K, Krishnaswami V, Kandasamy R. Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems. Curr Drug Targets 2021; 22:947-966. [PMID: 33511953 DOI: 10.2174/1389450122999210128180058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive nanocarriers are gaining much attention due to their versatile multifunctional activities, including disease diagnosis and treatment. Recently, clinical applications of nano-drug delivery systems for cancer treatment pose a challenge due to their limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues, researchers are focussing on stimuli-responsive systems. Nanocarriers elicit their role through endogenous (pH, temperature, enzyme, and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform for the generation of pH-sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli-responsive behavior-based drug delivery systems. Herein, the present review will focus specifically on the significance of various pH-responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic-based pH-sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH-based stimuli-responsive drug delivery systems with special emphasis on our reported stimuli-responsive systems for cancer treatment.
Collapse
Affiliation(s)
- Vaidevi Sethuraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Kumar Janakiraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Department of Allied Health Sciences, Noorul Islam Center for Higher Education (Deemed University), Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
42
|
Zhang Z, Fan Z. Application of cerium–nitrogen co-doped carbon quantum dots to the detection of tetracyclines residues and bioimaging. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Zhang Z, Fan Z. Morphological analysis of chromium in carbon quantum dots pairs Co-doped with zirconium and nitrogen and their applications in imaging of living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119248. [PMID: 33288432 DOI: 10.1016/j.saa.2020.119248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
As a new nanomaterial in the biochemistry field, carbon quantum dots (CDs) have been widely applied by scientists. In this study, CDs co-doped with zirconium and nitrogen (Zr-N-CDs) were synthesized quickly with lemon, ethylenediamine, and zirconium chloride through a hydrothermal method. The yield of Zr-N-CDs reached as high as 82.7%. The Zr-N-CDs showed outstanding water solubility in aqueous solution. The formation of Zr-N-CDs was verified by characterization technologies, such as high-resolution transmission electron microscopy (HRTEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Moreover, the optical properties of Zr-N-CDs were investigated through fluorophotometer and ultraviolet spectroscopy. The synthesized Zr-N-CDs were applied to test hexavalent chromium (Cr (VI)), which showed a good linear relationship with the fluorescence quenching of Zr-N-CDs. The limit of detection was 0.52 µM. An analytical method for Cr morphology in natural water areas was developed in this experiment. The sensor showed good stability. The results demonstrate that the sensor detected 98.35%-100.9% Cr (VI) recovery rate in water samples. Based on the cytotoxicity of Zr-N-CDs to human cervical cancer cells (HeLa cells), the Zr-N-CDs had no evident cytotoxicity. The applications of Zr-N-CDs in bioimaging of cells were determined through laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Ziting Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China
| | - Zhefeng Fan
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China.
| |
Collapse
|
44
|
Deng Y, Qian J, Zhou Y, Niu Y. Preparation of N/S doped carbon dots and their application in nitrite detection. RSC Adv 2021; 11:10922-10928. [PMID: 35423586 PMCID: PMC8695884 DOI: 10.1039/d0ra10766b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 11/26/2022] Open
Abstract
Detection of carcinogens is generally recognized to be meaningful, especially for nitrites (NO2−). Here blue-green fluorescent carbon dots (CDs) were successfully synthesized by using p-aminobenzenesulfonic acid, and their surfaces were identified to be abundant in the functional groups of amino, hydroxyl, and sulfuric acid. Importantly, the sulfuric acid group and aromatic primary ammonia groups on the surfaces of CDs showed the interactions with the nitrites to cause fluorescence quenching. The novel CDs showed high sensitivity and selectivity for NO2− detection with a low detection limit of 0.03 mM in water due to the fluorescence quenching effect of the CDs. Consequently, the proposed CDs here may provide a new way of monitoring NO2− in the target samples. Detection of carcinogens is generally recognized to be meaningful, especially for nitrites (NO2−).![]()
Collapse
Affiliation(s)
- Yafeng Deng
- School of Printing and Packaging, Wuhan University Wuhan 430079 Hubei China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University Wuhan 430079 Hubei China
| | - Yihua Zhou
- School of Printing and Packaging, Wuhan University Wuhan 430079 Hubei China
| | - Yifan Niu
- School of Printing and Packaging, Wuhan University Wuhan 430079 Hubei China
| |
Collapse
|
45
|
Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111756. [PMID: 33545897 DOI: 10.1016/j.msec.2020.111756] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.
Collapse
Affiliation(s)
| | - Omid Sedighi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Tabatabaei Rezaei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Abbas Abedini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) London BioScience Innovation Centre 2 Royal College Street, London NW1 0NH, UK.
| |
Collapse
|
46
|
Hailing Y, Xiufang L, Lili W, Baoqiang L, Kaichen H, Yongquan H, Qianqian Z, Chaoming M, Xiaoshuai R, Rui Z, Hui L, Pengfei P, Hong S. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. NANOSCALE 2020; 12:17222-17237. [PMID: 32671377 DOI: 10.1039/d0nr01236j] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we reported a novel and effective cancer treatment strategy by fabricating carbon dot (CD)-polyethylenimine (PEI)-doxorubicin (DOX) antitumor drug complexes from a combination of PEI-passivated CDs (CD-PEI) and DOX. CD-PEI was synthesized by the one-step microwave hydrothermal carbonization of a mixture of glycerol and PEI-25k, enabling simultaneous synthesis and surface passivation of CDs. DOX was loaded onto CD-PEI by electrostatic interactions. The results show that this system not only improves selective drug release but also prolongs the drug release time and improves the killing effect on tumors. Compared with free DOX, the CD-PEI-DOX complex has a stronger killing effect on liver cancer cells (MHCC-97L and Hep3B cells) but a very low killing effect on normal liver cells (L02). Studies have also confirmed that compared with DOX alone, CD-PEI-DOX nanoparticles can effectively inhibit tumors because of the larger amount of drugs localized in tumor cells and the higher apoptosis rate of MHCC-97L cells. In vivo experiments confirmed that CD-PEI-DOX has a stronger inhibitory effect on tumor growth, indicating that CD-PEI-DOX nanomedicine has inhibitory effects on tumors.
Collapse
Affiliation(s)
- Yu Hailing
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province 519000, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ji TH, Li XL, Mao Y, Mei Z, Tian Y. Electron/energy co-transfer behavior and reducibility of Cu-chlorophyllin-bonded carbon-dots. RSC Adv 2020; 10:31495-31501. [PMID: 35520672 PMCID: PMC9056392 DOI: 10.1039/d0ra04958a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022] Open
Abstract
Cu-chlorophyllin-bonded carbon dots (CCPh-CDs) have been synthesized at room temperature, and the energy/electron co-transfer behavior between Cu-chlorophyllin molecules (CCPh) and carbon dots (CDs) is investigated via various techniques. The mean diameters of CDs and CCPh-CDs are 2.8 nm and 3.1 nm, respectively, measured by HRTEM. The absorption spectra of CCPh-CDs show two parts: the absorptions of CDs and CCPh are in the wavelength range of 300-500 nm. The PL spectra of CCPh-CDs exhibit very weak intensities, and with the decreasing of CCPh content on CDs, the corresponding intensity increases. Luminescent decay spectra show that the PL decay times of CCPh and CCPh-CDs with the highest CCPh content are single-exponentially fitted to be 3.20 ns and 12.64 ns, respectively. Furthermore, based on the electron transfer and reducibility of CCPh-CDs, Ag/Ag2O nanoparticles with a mean diameter of 10 nm can be easily prepared at room temperature under ultraviolet irradiation. The PL measurement result reveals that both electron transfer and FRET behavior take place from CCPh-CDs to Ag.
Collapse
Affiliation(s)
- Tian-Hao Ji
- Science College, Beijing Technology and Business University Beijing 100048 China
| | - Xue-Li Li
- Science College, Beijing Technology and Business University Beijing 100048 China
| | - Yongyun Mao
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Zhipeng Mei
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
48
|
Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111944. [DOI: 10.1016/j.jphotobiol.2020.111944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
|
49
|
Zhang Z, Yi G, Li P, Zhang X, Fan H, Zhang Y, Wang X, Zhang C. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. NANOSCALE 2020; 12:13899-13906. [PMID: 32597441 DOI: 10.1039/d0nr03163a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To date, carbon dots (CDs) or carbon quantum dots (CQDs), considered as alternatives to conventional fluorescent materials such as organic dyes and semiconductor quantum dots (QDs), have drawn significant attention from relevant researchers due to their superior properties, including nontoxicity, biocompatibility, low cost and facile synthesis, and high photoluminescence. In particular, doping heteroatoms with CDs can not only dramatically enhance the fluorescence but also greatly improve the electronic structure and doped CDs have been successfully applied in various technological fields. Herein, this minireview summarizes recent advances on the synthesis and optical properties of doped CDs and their promising applications for photocatalysis and electrocatalysis. Finally, some challenging issues as well as future perspectives of this exciting material are discussed.
Collapse
Affiliation(s)
- Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Al-Hashimi B, Rahman HS, Omer KM. Highly Luminescent and Biocompatible P and N Co-Doped Passivated Carbon Nanodots for the Sensitive and Selective Determination of Rifampicin Using the Inner Filter Effect. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2275. [PMID: 32429119 PMCID: PMC7287754 DOI: 10.3390/ma13102275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
The determination of rifampicin in pharmaceutical dosage forms using a rapid, sensitive, selective, biocompatible, and low-cost method is of vital importance in the pharmaceutical analysis field to ensure its concentration is within the effective range when administered. In this study, nitrogen-and-phosphorous-doped carbon nanodots (CNDs) were prepared using a single-step hydrothermal method with ciprofloxacin as the starting material. The CNDs showed a highly intense blue fluorescence emission centered at 450 nm, with a photoluminescence quantum yield of about 51%. Since the absorption of rifampicin was the same as the excitation spectrum of CNDs, inner filter effect (IFE) quenching occurred and it was used as a successful detection platform for the analysis of rifampicin in capsules. The detection platform showed a dynamic linear range from 1 to 100 μM (R2 = 0.9940) and the limit of detection was 0.06 μM (when S/N = 3). The average spike recovery percentage for rifampicin in the capsule samples was 100.53% (n = 5). Moreover, the sub-chronic cytotoxicity of CNDs was evaluated on healthy male mice (Balb/c) drenched with different amounts of CNDs (10 and 50 mg/kg). During this study period, no mortalities or toxicity signs were recorded in any of the experimental subjects. Based on the cytotoxicity experiment, the proposed nano-probe is considered safe and biocompatible.
Collapse
Affiliation(s)
- Baraa Al-Hashimi
- Department of Pharmacology, College of Medicine, University of Sulaimani, Sulaymaniyah 46002, Kurdistan, Iraq;
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah 46002, Kurdistan, Iraq;
| | - Khalid Mohammad Omer
- Department of Chemistry, College of Science, University of Sulaimani, Sulaymaniyah 46002, Kurdistan, Iraq
| |
Collapse
|