1
|
Krishna A, Babulal A, Sajeev M, Ravi N, Raj G, Antony A, Dev Narendradev N, Murty Srinivasula S, Varghese R. Self-Assembly of Antisense DNA-Camptothecin Amphiphile into Glutathione-Responsive Nanoparticles for Combination Cancer Therapy. Chemistry 2025; 31:e202404068. [PMID: 39878452 DOI: 10.1002/chem.202404068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion. Herein, we show a supramolecular approach for the direct delivery of hydrophobic chemo drug and cell impermeable antisense oligonucleotide into a cancer cell in a targeted fashion. Synthesis of an amphiphile (DNA1-CPT) consist of hydrophobic camptothecin (CPT) conjugated to an antisense oligonucleotide (DNA1) via glutathione-responsive disulphide linker is reported. Self-assembly of DNA1-CPT results in the formation of GSH-responsive NPs with CPT as the hydrophobic core and DNA1 as the hydrophilic shell. Self-assembled NPs exhibits excellent cellular internalization via endocytosis pathway, and the high concentration of glutathione inside the cancer cells causes the cleavage of disulphide bond of the NPs and trigger the simultaneous release of CPT and DNA1a. Enhanced cytotoxicity is observed for the NPs due to the synergetic combination of chemo and antisense DNA therapies.
Collapse
Affiliation(s)
- Anusree Krishna
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Anupama Babulal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Mareena Sajeev
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Nidhin Ravi
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Anitta Antony
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Nikhil Dev Narendradev
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695 551
| |
Collapse
|
2
|
Biswal S, Mallick B. Unlocking the potential of signature-based drug repurposing for anticancer drug discovery. Arch Biochem Biophys 2024; 761:110150. [PMID: 39265695 DOI: 10.1016/j.abb.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Cancer is the leading cause of death worldwide and is often associated with tumor relapse even after chemotherapeutics. This reveals malignancy is a complex process, and high-throughput omics strategies in recent years have contributed significantly in decoding the molecular mechanisms of these complex events in cancer. Further, the omics studies yield a large volume of cancer-specific molecular signatures that promote the discovery of cancer therapy drugs by a method termed signature-based drug repurposing. The drug repurposing method identifies new uses for approved drugs beyond their intended initial therapeutic use, and there are several approaches to it. In this review, we discuss signature-based drug repurposing in cancer, how cancer omics have revolutionized this method of drug discovery, and how one can use the cancer signature data for repurposed drug identification by providing a step-by-step procedural handout. This modern approach maximizes the use of existing therapeutic agents for cancer therapy or combination therapy to overcome chemotherapeutics resistance, making it a pragmatic and efficient alternative to traditional resource-intensive and time-consuming methods.
Collapse
Affiliation(s)
- Sruti Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
3
|
Tang H, Dilimulati D, Yang Z, Zhou K, Chen X, Sun R, Wang N, Liang Z, Bian S, Zhao J, Song P, Zheng S, Wang H, Xie H. Chemically engineered mTOR-nanoparticle blockers enhance antitumour efficacy. EBioMedicine 2024; 103:105099. [PMID: 38604089 PMCID: PMC11017279 DOI: 10.1016/j.ebiom.2024.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).
Collapse
Affiliation(s)
- Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaona Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jialing Zhao
- Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Hangxiang Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
4
|
Yu J, Xu J, Jiang R, Yuan Q, Ding Y, Ren J, Jiang D, Wang Y, Wang L, Chen P, Zhang L. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int J Biol Macromol 2024; 265:130709. [PMID: 38462120 DOI: 10.1016/j.ijbiomac.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Renliang Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Qinglan Yuan
- University Hospital, Jiujiang University, Jiujiang 332005, China
| | - Yuanyuan Ding
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Yiqiu Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
5
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023; 30:2183821. [PMID: 36861451 PMCID: PMC9987780 DOI: 10.1080/10717544.2023.2183821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
Affiliation(s)
- Shiyun Xian
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| | - Jiabin Zhu
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Yuchen Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| |
Collapse
|
6
|
Dai Y, Qian M, Li Y. Structural Modification Endows Small-Molecular SN38 Derivatives with Multifaceted Functions. Molecules 2023; 28:4931. [PMID: 37446591 DOI: 10.3390/molecules28134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
As a camptothecin derivative, 7-ethyl-10-hydroxycamptothecin (SN38) combats cancer by inhibiting topoisomerase I. SN38 is one of the most active compounds among camptothecin derivatives. In addition, SN38 is also a theranostic reagent due to its intrinsic fluorescence. However, the poor water solubility, high systemic toxicity and limited action against drug resistance and metastasis of tumor cells of SN38 indicates that there is great space for the structural modification of SN38. From the perspective of chemical modification, this paper summarizes the progress of SN38 in improving solubility, increasing activity, reducing toxicity and possessing multifunction and analyzes the strategies of structure modification to provide a reference for drug development based on SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qian
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yan Li
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
7
|
Yu J, Wang L, Ling Y, Xiao X, Gong J, Jin H, Xu J, Chen P, Xie X, Zhang L. Peptide-modified bioresponsive chondroitin sulfate micelles for targeted doxorubicin delivery in triple-negative breast cancer. Colloids Surf B Biointerfaces 2023; 227:113381. [PMID: 37257299 DOI: 10.1016/j.colsurfb.2023.113381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Triple-negative breast cancer is an offensive tumor that is highly challenging to cure. In this study, we developed novel polymeric nanoparticles that target dual receptors and respond to reducing conditions for chemotherapeutic drug release in the treatment of triple-negative breast cancer. Then we synthesized and characterized a targeted peptide-grafted chondroitin sulfate A-ss-deoxycholic acid (TCSSD) copolymer and prepare doxorubicin (DOX)-loaded TCSSD (TCSSD-D) micelles high-loading content. The bioresponsive drug release of TCSSD-D nanoparticles was demonstrated in a glutathione-containing phosphate buffer solution. We found that TCSSD-D effectively targeted CD44 and P-selectin receptors both in vitro and in vivo. TCSSD-D micelles were higher cytotoxicity and cellular uptake than unmodified DOX-containing micelles in MDA-MB-231 cells. Furthermore, TCSSD-D micelles showed the strongest suppression of tumor growth among three DOX-based formulations in triple-negative MDA-MB-231-bearing nude mice. These results suggest that amphiphilic TCSSD nanoparticles can serve as a targeted and intelligent delivery vehicle for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China; Jiangxi Provincial Key Laboratory of System Biomedicine, Jiujiang University, Jiujiang 332000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Yun Ling
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Xin Xiao
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Juntao Gong
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Hongguang Jin
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Xin Xie
- Jiangxi Provincial Key Laboratory of System Biomedicine, Jiujiang University, Jiujiang 332000, China.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
8
|
Dai Y, Zhang Y, Ye T, Chen Y. Synthesis and Antitumor Evaluation of Biotin-SN38-Valproic Acid Conjugates. Molecules 2023; 28:molecules28093936. [PMID: 37175346 PMCID: PMC10179906 DOI: 10.3390/molecules28093936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the strong anticancer activity of SN38 (7-ethyl-10-hydroxy-camptothecin), the severe side effects and loss of anticancer activity caused by the lack of selectivity to cancer cells and hydrolysis of ring E prevent its clinical application. To address the issue, herein a multifunctional SN38 derivative (compound 9) containing biotin (tumor-targeting group) and valproic acid (histone deacetylase inhibitor, HDACi) was synthesized via click chemistry and evaluated using MTT assay. The in vitro cytotoxicity study showed that compound 9 exhibited superior cytotoxicity than irinotecan against human cervical cancer HeLa cells, albeit it was inferior to SN38. More significantly, compound 9 significantly reduced toxicity in mouse embryonic fibroblast NIH3T3 cells, indicating that compound 9 had the capacity to enhance tumor targeting due to its cell selectivity. Further studies demonstrated that, compared with irinotecan, compound 9 induced similar apoptosis of cancer cells. Consequently, compound 9 can not only improve its tumor-targeting ability mediated by biotin but also exert potent anticancer activity through the effect of SN38 and valproic acid, indicating that the design concept is an effective strategy for the structural modification of SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Tianxiang Ye
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yue Chen
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
9
|
Detappe A, Nguyen HVT, Jiang Y, Agius MP, Wang W, Mathieu C, Su NK, Kristufek SL, Lundberg DJ, Bhagchandani S, Ghobrial IM, Ghoroghchian PP, Johnson JA. Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma. NATURE NANOTECHNOLOGY 2023; 18:184-192. [PMID: 36702954 PMCID: PMC10032145 DOI: 10.1038/s41565-022-01310-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 12/06/2022] [Indexed: 05/19/2023]
Abstract
Cancer therapies often have narrow therapeutic indexes and involve potentially suboptimal combinations due to the dissimilar physical properties of drug molecules. Nanomedicine platforms could address these challenges, but it remains unclear whether synergistic free-drug ratios translate to nanocarriers and whether nanocarriers with multiple drugs outperform mixtures of single-drug nanocarriers at the same dose. Here we report a bottlebrush prodrug (BPD) platform designed to answer these questions in the context of multiple myeloma therapy. We show that proteasome inhibitor (bortezomib)-based BPD monotherapy slows tumour progression in vivo and that mixtures of bortezomib, pomalidomide and dexamethasone BPDs exhibit in vitro synergistic, additive or antagonistic patterns distinct from their corresponding free-drug counterparts. BPDs carrying a statistical mixture of three drugs in a synergistic ratio outperform the free-drug combination at the same ratio as well as a mixture of single-drug BPDs in the same ratio. Our results address unanswered questions in the field of nanomedicine, offering design principles for combination nanomedicines and strategies for improving current front-line monotherapies and combination therapies for multiple myeloma.
Collapse
Affiliation(s)
- Alexandre Detappe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Hung V-T Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Window Therapeutics, Boston, MA, USA
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Window Therapeutics, Boston, MA, USA
| | - Michael P Agius
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Clelia Mathieu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nang K Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sachin Bhagchandani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - P Peter Ghoroghchian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
11
|
Bian S, Dong H, Zhao L, Li Z, Chen J, Zhu X, Qiu N, Jia X, Song W, Li Z, Zheng S, Wang H, Song P. Antihypertension Nanoblockers Increase Intratumoral Perfusion of Sequential Cytotoxic Nanoparticles to Enhance Chemotherapy Efficacy against Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201931. [PMID: 36026578 PMCID: PMC9561769 DOI: 10.1002/advs.202201931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the worst prognosis types of tumors, is characterized by dense extracellular matrix, which compresses tumor vessels and forms a physical barrier to inhibit therapeutic drug penetration and efficacy. Herein, losartan, an antihypertension agent, is applied as a tumor stroma modulator and developed into a nanosystem. A series of lipophilic losartan prodrugs are constructed by esterification of the hydroxyl group on losartan to fatty acids. Based on the self-assembly ability and hydrodynamic diameter, the losartan-linoleic acid conjugate is selected for further investigation. To improve the stability in vivo, nanoassemblies are refined with PEGylation to form losartan nanoblocker (Los NB), and administered via intravenous injection for experiments. On murine models of pancreatic cancer, Los NB shows a greater ability to remodel the tumor microenvironment than free losartan, including stromal depletion, vessel perfusion increase, and hypoxia relief. Furthermore, Los NB pretreatment remarkably enhances the accumulation and penetration of 7-ethyl-10-hydroxycamptothecin (SN38)-loaded nanodrugs (SN38 NPs) in tumor tissues. Expectedly, overall therapeutic efficacy of SN38 NPs is significantly enhanced after Los NB pretreatment. Since losartan is one of the most commonly used antihypertension agents, this study may provide a potential for clinical transformation in stroma-rich PDAC treatment.
Collapse
|
12
|
Wang P, Li M, Zhou F, Yang Y, Yin X, Zhang XB, Song G. COF-based nanoreactors for click-activated prodrug delivery and precise anti-vascular therapy. Chem Commun (Camb) 2022; 58:11107-11110. [PMID: 36102676 DOI: 10.1039/d2cc03931a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a new click-activated prodrug, CA4V, and a bioorthogonal nanoreactor, CA4V/ZIF-90@TzCOF@Apt, which consists of a ZIF-90 core, tetrazine-based covalent organic framework (COF) shells and an aptamer polymer coating. When targeting a tumor, the acid-causing collapse of ZIF-90 initiates a nanoconfined bioorthogonal reaction in defined COF cages, which boosts the click efficiency of CA4V activation and therapeutic effects in vivo.
Collapse
Affiliation(s)
- Peng Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. .,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mili Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Fang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. .,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yue Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Guosheng Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
13
|
Wang Y, Xiang M, Zhang H, Lu Y. Decreased complement 4d increases poor prognosis in patients with non‑small cell lung cancer combined with gastrointestinal lymph node metastasis. Exp Ther Med 2022; 24:560. [PMID: 35978919 PMCID: PMC9366274 DOI: 10.3892/etm.2022.11497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is a common malignancy that is difficult to treat and has a high risk of mortality. Although gastrointestinal lymph node metastasis has long been known to exert major impact on the prognosis of lung cancer, the mechanism of its occurrence and potential biological markers remain elusive. Therefore, the present study retrospectively analyzed data from 132 patients with non-small cell lung cancer (NSCLC) combined with lymph node metastasis between February 2010 and April 2019 from the First Affiliated Hospital of Soochow University (Suzhou, China) and Sichuan Cancer Hospital (Chengdu, China). Overall survival was assessed using Kaplan-Meier analysis and Cox logistic regression model. In addition, a prediction model was constructed based on immune indicators such as complement C3b and C4d (measured by ELISA), before the accuracy of this model was validated using calibration curves for 5-year OS. Among the 132 included patients, a total of 92 (70.0%) succumbed to the disease within 5 years. Multifactorial analysis revealed that complement C3b deficiency increased the risk of mortality by nearly two-fold [hazard ratio (HR)=2.23; 95% CI=1.20-4.14; P=0.017], whilst complement C4d deficiency similarly increased the risk of mortality by two-fold (HR=2.14; 95% CI=1.14-4.00; P=0.012). The variables were subsequently screened using Cox model to construct a prediction model based on complement C3b and C4d levels before a Nomogram plotted. By internal validation for the 132 patients, the Nomogram accurately estimated the risk of mortality, with a corrected C-index of 0.810. External validation of the model in another 50 patients from Sichuan Cancer Hospital revealed an accuracy of 77.0%. Overall, this mortality risk prediction model constructed based on complement levels showed accuracy in assessing the prognosis of patients with metastatic NSCLC. Therefore, complement C3b and C4d have potential for use as biomarkers to predict the risk of mortality in such patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Mengqi Xiang
- Department of Medical Oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yongda Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
14
|
Jaiswal S, Roy R, Dutta SB, Bishnoi S, Kar P, Joshi A, Nayak D, Gupta S. Role of Doxorubicin on the Loading Efficiency of ICG within Silk Fibroin Nanoparticles. ACS Biomater Sci Eng 2022; 8:3054-3065. [PMID: 35709526 DOI: 10.1021/acsbiomaterials.1c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effective loading or encapsulation of multimodal theranostic agents within a nanocarrier system plays an important role in the clinical development of cancer therapy. In recent years, the silk fibroin protein-based delivery system has been drawing significant attention to be used in nanomedicines due to its biocompatible and biodegradable nature. In this study, silk fibroin nanoparticles (SNPs) have been synthesized by a novel and cost-effective ultrasonic atomizer-based technique for the first time. The fabricated SNPs were coencapsulated by the FDA-approved indocyanine green (ICG) dye and the chemotherapeutic drug doxorubicin (DOX). The synthesized SNPs are spherical, with an average diameter of ∼37 ± 4 nm, and the ICG-DOX-coencapsulated SNPs (ID-SNPs) have a diameter size of ∼47 ± 6 nm. For the first time, here we demonstrate that DOX helps in the higher loading of ICG within the ID-SNPs, which enhances the encapsulation efficiency of ICG by ∼99%. This could be attributed to the interaction of ICG and DOX molecules with the silk fibroin protein, which helps ICG to get loaded more efficiently within these nanoparticles. The overall finding of this study suggests that the ID-SNPs could be utilized for enhanced ICG-complemented multimodal deep-tissue bioimaging and synergistic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Saumya Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Surjendu Bikash Dutta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Suman Bishnoi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
15
|
Sun G, Zuo M, Xu Z, Wang K, Wang L, Hu XY. Orthogonal Design of Supramolecular Prodrug Vesicles via Water-Soluble Pillar[5]arene and Betulinic Acid Derivative for Dual Chemotherapy. ACS APPLIED BIO MATERIALS 2022; 5:3320-3328. [PMID: 35486958 DOI: 10.1021/acsabm.2c00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular prodrug vesicles with efficient property for dual chemotherapy have been successfully constructed based on the orthogonal self-assembly between a water-soluble pillar[5]arene host (WP5) and a betulinic acid guest (BA-D) as well as doxorubicin (DOX). Under the acidic microenvironment of cancer cells, both the encapsulated anticancer drug DOX and prodrug BA-D can be effectively released from DOX-loaded WP5⊃BA-D prodrug vesicles for combinational chemotherapy. Furthermore, bioexperiments indicate that DOX-loaded prodrug vesicles can obviously enhance the anticancer efficiency based on the cooperative effect of DOX and BA-D, while remarkably reducing the systematic toxicity in tumor-mice, displaying great potential applications in combinational chemotherapy for cancer treatments.
Collapse
Affiliation(s)
- Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zuqiang Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
16
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
17
|
Li T, Huang J, Wang M, Wang H. Microfluidic assembly of small-molecule prodrug cocktail nanoparticles with high reproducibility for synergistic combination of cancer therapy. Int J Pharm 2021; 608:121088. [PMID: 34530101 DOI: 10.1016/j.ijpharm.2021.121088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Therapeutic nanoparticles (NPs) self-assembled from small molecular (pro)drug entities, opens up novel avenues for the generation of a wide range of drug delivery systems. Particularly, cocktail NPs created by co-assembly of multiple therapeutics often show profound efficacy beyond their individual agents. However, fabrication of synergistic NPs with high reproducibility and capability to deliver multiple therapeutics in a predefined ratio remains a challenge, which deters NP therapeutics from further clinical translation. In this work, a simple but versatile strategy has been developed to combine drug reconstitution and supramolecular nanoassembly to prodrug cocktail nanoparticle fabrication with microfluidics. Prodrugs reconstructed by PUFAylation were self-assembled into hybrid nanoparticles via microfluidic chip to synergistically deliver two chemotherapeutic drugs, 7-ethyl-10-hydroxy camptothecin (SN38) and paclitaxel (PTX), in a single nanoparticle container. In vitro cell-based assays demonstrate that the combinatorial chemotherapy is superior to each prodrug used alone while reduces the dosage of both drugs at the same time. Furthermore, the double-drug combination suppresses colon tumors by 86% at a total dosage of 16.7 mg/kg through synergy, and histological analysis indicates the safety of the hybrid nanoparticles. In general, this work shows that the nanomedicine synthesized by microfluidics provides considerable advantages including better size control and reproducibility, and great potential in effective combination therapy. It is expected to be applied to the fabrication of more chemical agent combination for other cancer types.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Jiangling Huang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Min Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| |
Collapse
|
18
|
Abstract
Cancer is a multidimensional and challenging disease to handle. Current statistics reveal that we are far from satisfying cancer treatment. Taking advantage of different therapeutic agents that affect multiple pathways has been established as highly productive. Nevertheless, owing to several hindrances to conventional combination therapy, such as lack of tumor targeting, non-uniform pharmacokinetic of the combined drugs, and off-target side effects, it is well documented that this treatment approach is unlikely to address all the difficulties observed in monotherapy. Co-delivery systems could enhance the therapeutic efficacy of the combination therapy by targeting cancer cells and improving the pharmacokinetic and physicochemical properties of the therapeutic agents. Nevertheless, it seems that present knowledge in responding to the challenges in cancer treatment is still inadequate and far from optimal treatment, which highlights the urgent need for systematic studies direct to identify various aspects of co-delivery systems. Accordingly, to gather informative data, save time, and achieve superior results, the following steps are necessary: (1) implementing computational methods to predict drug-drug interactions (DDIs) in vitro and in vivo, (2) meticulous cancer studies at the cellular and molecular levels to obtain specific criteria for selecting preclinical and clinical models, (3) extensive physiological and pharmacokinetic study of nanocarriers behavior in preclinical models, and (4) finding the optimal formulation and analyzing its behavior in cellular and animal models facilitates bridging in vivo models to clinical trials. This review aims to deliver an overview of co-delivery systems, rationales, and suggestions for further studies in this field.
Collapse
|
19
|
Mai NXD, Nguyen THT, Vong LB, Dang MHD, Nguyen TTT, Nguyen LHT, Ta HKT, Nguyen TH, Phan TB, Doan TLH. Tailoring chemical compositions of biodegradable mesoporous organosilica nanoparticles for controlled slow release of chemotherapeutic drug. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112232. [PMID: 34225873 DOI: 10.1016/j.msec.2021.112232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Biodegradable periodic mesoporous organosilica nanoparticles (B-PMO) are an outstanding nanocarrier due to their biodegradability and high drug load capacities. The present study describes a synthesis of a phenylene-containing tetrasulfide based B-PMO, named P4S. The incorporation of aromatic phenylene groups into the framework creates a strong interaction between nanoparticles (NPs) with aromatic rings in the cordycepin molecules. This results in the low release profile under various conditions. In addition, the replacement of this linker slowed the degradation of nanoparticles. The physicochemical properties of the nanoparticles are evaluated and compared with a biodegradable ethane-containing tetrasulfide based PMO and a non-degradable MCM-41. The biodegradability of P4S is also demonstrated in a reducing environment and the 100 nm spherical nanoparticles completely decomposed within 14 days. The porous structure of P4S has a high loading of hydrophilic cordycepin (approximately 731.52 mg g-1) with a slow releasing speed. The release rates of P4S NPs are significantly lower than other materials, such as liposomes, gelatin nanoparticles, and photo-crosslinked hyaluronic acid methacrylate hydrogels, in the same solution. This specific release behavior could guarantee drug therapeutic effects with minimum side-effects and optimized drug dosages. Most importantly, according to the in vitro cytotoxicity study, cordycepin-loaded P4S NPs could retain the toxicity against liver cancer cell (HepG2) while suppressed the cytotoxicity against normal cells (BAEC).
Collapse
Affiliation(s)
- Ngoc Xuan Dat Mai
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Viet Nam
| | - Thu-Ha Thi Nguyen
- Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam; School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
| | - Long Binh Vong
- Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam; School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
| | - Minh-Huy Dinh Dang
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Trang Thi Thu Nguyen
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Linh Ho Thuy Nguyen
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Hanh Kieu Thi Ta
- Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Viet Nam
| | - Thi-Hiep Nguyen
- Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam; School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Sonkar C, Malviya N, Sinha N, Mukherjee A, Pakhira S, Mukhopadhyay S. Selective anticancer activities of ruthenium(II)-tetrazole complexes and their mechanistic insights. Biometals 2021; 34:795-812. [PMID: 33900532 DOI: 10.1007/s10534-021-00308-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Ruthenium-based metallotherapeutics is an interesting alternative for platinum complexes acting as anticancer agents after the entry of KP1019, NAMI-A, and TLD1339 in clinical trials. Herein, we have synthesized three new arene ruthenium(II)-tetrazole complexes viz. [Ru2(η6-p-cymene)2(2-pytz)2Cl2] (1), [Ru2(η6-p-cymene)2(3-pytz)Cl3] (2), [Ru2(η6-p-cymene)2(4-pytz)Cl3] (3) [2-pytzH = 2-pyridyl tetrazole; 3-pytzH = 3-pyridyl tetrazole; 4-pytzH = 4-pyridyl tetrazole] which have been characterized by different analytical techniques. To aid the understanding of the complex formation, reactions of the arene ruthenium(II) dimer with tetrazoles were investigated using the first principles-based Density Functional Theory (DFT) B3LYP method. Electronic structures, equilibrium geometries of the reactants and products with the first-order saddle points, reactions mechanism, the changes of enthalpy (∆H) and free energy (∆G), chemical stability, and reaction barriers of the complexes were computed using the B3LYP DFT approach. The in vitro cytotoxicity of these complexes was investigated by MTT assay on different cancer cell lines which reveal complex 2 as the most significant cytotoxic agent toward the HeLa cell line. The complexes have also shown a strong binding affinity towards CT-DNA and albumin proteins (HSA and BSA) as analyzed through spectroscopic techniques. Investigation of the mechanism of cell death by complex 2 was further performed by various staining techniques, flow cytometry, and gene expression analysis by RT-PCR. Inhibition of cell migration study has been also revealed the possibility of complex 2 to act as a prospective anti-metastatic agent.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India
| | - Novina Malviya
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India
| | - Nilima Sinha
- Department of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Indore, MP, 453552, India
| | - Attreyee Mukherjee
- Department of Chemistry, Ananda Mohan College, Kolkata, WB, 700 009, India
| | - Srimanta Pakhira
- Department of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Indore, MP, 453552, India.
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore, MP, 453552, India.
- Centre for Advanced Electronics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore, MP, 453552, India.
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India.
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
21
|
Zhan C, Lin G, Huang Y, Wang Z, Zeng F, Wu S. A dopamine-precursor-based nanoprodrug for in-situ drug release and treatment of acute liver failure by inhibiting NLRP3 inflammasome and facilitating liver regeneration. Biomaterials 2020; 268:120573. [PMID: 33260093 DOI: 10.1016/j.biomaterials.2020.120573] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a severe liver disease with high mortality rate. Inflammasome is a newly-found and promising target for effective treatment of immunity-associated diseases including liver disease, and dopamine has recently been proved as an inhibitor for NLRP3 inflammasome. This work demonstrates a diselenide-based nanodrug for ALF treatment through inhibiting NLRP3 inflammasome activation and enhancing liver regeneration. A diselenide-containing molecule (DSeSeD) has been synthesized via covalently linking two l-Dopa molecules to a diselenide linker, and the resultant molecules form stable nanoparticles in aqueous media and encapsulate SW033291 (an inhibitor of prostaglandin-degrading enzyme that hampers liver regeneration) to produce the nanodrug (SW@DSeSeD). As a nanoscale prodrug, SW@DSeSeD protects its payloads from decomposition in bloodstream upon administration, accumulates in liver of ALF mice, then responds to the overexpressed ROS and thereby releases SW033291 as well as a stable dopamine precursor that can transform into dopamine in hepatic cells, thus achieving significant therapeutic efficacy against ALF through inhibiting NLRP3 inflammasome activation and enhancing hepatic regeneration. Moreover, multiple contrast agents have been loaded onto the nanodrug to achieve fluorescence, optoacoustic and magnetic resonance imaging for nanodrug location and disease evaluation.
Collapse
Affiliation(s)
- Chenyue Zhan
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Guifang Lin
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Yong Huang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Ziqian Wang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| |
Collapse
|
22
|
Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chem Rev 2020; 121:3352-3389. [PMID: 33152247 DOI: 10.1021/acs.chemrev.0c00356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance has profoundly limited the success of cancer treatment, driving relapse, metastasis, and mortality. Nearly all anticancer drugs and even novel immunotherapies, which recalibrate the immune system for tumor recognition and destruction, have succumbed to resistance development. Engineers have emerged across mechanical, physical, chemical, mathematical, and biological disciplines to address the challenge of drug resistance using a combination of interdisciplinary tools and skill sets. This review explores the developing, complex, and under-recognized role of engineering in medicine to address the multitude of challenges in cancer drug resistance. Looking through the "lens" of intrinsic, extrinsic, and drug-induced resistance (also referred to as "tolerance"), we will discuss three specific areas where active innovation is driving novel treatment paradigms: (1) nanotechnology, which has revolutionized drug delivery in desmoplastic tissues, harnessing physiochemical characteristics to destroy tumors through photothermal therapy and rationally designed nanostructures to circumvent cancer immunotherapy failures, (2) bioengineered tumor models, which have benefitted from microfluidics and mechanical engineering, creating a paradigm shift in physiologically relevant environments to predict clinical refractoriness and enabling platforms for screening drug combinations to thwart resistance at the individual patient level, and (3) computational and mathematical modeling, which blends in silico simulations with molecular and evolutionary principles to map mutational patterns and model interactions between cells that promote resistance. On the basis that engineering in medicine has resulted in discoveries in resistance biology and successfully translated to clinical strategies that improve outcomes, we suggest the proliferation of multidisciplinary science that embraces engineering.
Collapse
Affiliation(s)
- Morgan Craig
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Bumseok Namgung
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Luke P Lee
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| |
Collapse
|
23
|
Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichoń T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol 2020; 891:173692. [PMID: 33130277 DOI: 10.1016/j.ejphar.2020.173692] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor blood vessel formation is a key process for tumor expansion. Tumor vessels are abnormal and differ from normal vessels in architecture and components. Besides oxygen and nutrients supply, the tumor vessels system, due to its abnormality, is responsible for: hypoxia formation, and metastatic routes. Tumor blood vessels can be a target of anti-cancer therapies. There are two types of therapies that target tumor vessels. The first one is the inhibition of the angiogenesis process. However, the inhibition is often ineffective because of alternative angiogenesis mechanism activation. The second type is a specific targeting of existing tumor blood vessels by vascular disruptive agents (VDAs). There are three groups of VDAs: microtubule destabilizing drugs, flavonoids with anti-vascular functions, and tumor vascular targeted drugs based on endothelial cell receptors. However, VDAs possess some limitations. They may be cardiotoxic and their application in therapy may leave viable residual, so called, rim cells on the edge of the tumor. However, it seems that a well-designed combination of VDAs with other anti-cancer drugs may bring a significant therapeutic effect. In this article, we describe three groups of vascular disruptive agents with their advantages and disadvantages. We mention VDAs clinical trials. Finally, we present the current possibilities of VDAs combination with other anti-cancer drugs.
Collapse
Affiliation(s)
- Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Kyle Czerwinski
- University of Manitoba, Faculty of Science. 66 Chancellors Cir, Winnipeg, Canada.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
24
|
Li Y, Chen Y, Huang Y, Wu W, Liu Y, Zhang J, Huang M, Gou M. Kinetic stability-driven cytotoxicity of small-molecule prodrug nanoassemblies. J Mater Chem B 2020; 7:5563-5572. [PMID: 31465067 DOI: 10.1039/c9tb01270b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nanoassemblies (NAs) of small-molecule lipophilic prodrugs have been widely investigated for efficient drug delivery in cancer therapy, but their kinetic stability has not attracted sufficient attention in the past studies. Herein, we reported that kinetic stability has a great influence on the drug release from the NAs of lipophilic prodrugs in physiologically relevant media. Based on the co-assembled FRET nanosystems of two lipophilic fluorescent prodrugs, we demonstrated that NAs constructed by lipophilic prodrugs containing shorter alkyl chains or those with higher unsaturated degrees displayed poorer kinetic stability, which further resulted in remarkably faster drug release in mouse plasma and various tissue homogenates. More importantly, these kinetically unstable NAs also induced rapid intracellular drug release, resulting in much more potent cytotoxicity. These findings highlight the crucial role of kinetic stability in determining the drug release from the NAs of lipophilic prodrugs, which would effectively guide their rational designs for cancer therapy.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schneible JD, Young AT, Daniele MA, Menegatti S. Chitosan Hydrogels for Synergistic Delivery of Chemotherapeutics to Triple Negative Breast Cancer Cells and Spheroids. Pharm Res 2020; 37:142. [PMID: 32661774 PMCID: PMC7983306 DOI: 10.1007/s11095-020-02864-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - M A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - S Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
- Biomanufacturing Training and Education Center, North Carolina State University, 850 Oval Dr, Raleigh, North Carolina, USA.
| |
Collapse
|
26
|
Rajora AK, Ravishankar D, Zhang H, Rosenholm JM. Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12060592. [PMID: 32630584 PMCID: PMC7356724 DOI: 10.3390/pharmaceutics12060592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional chemotherapy, along with antiangiogenesis drugs (combination cancer therapy), has shown reduced tumor recurrence and improved antitumor effects, as tumor growth and metastasis are often dependent on tumor vascularization. However, the effect of combination chemotherapy, including synergism and additive and even antagonism effects, depends on drug combinations in an optimized ratio. Hence, nanoformulations are ideal, demonstrating a great potential for the combination therapy of chemo-antiangiogenesis for cancer. The rationale for designing various nanocarriers for combination therapy is derived from organic (polymer, lipid), inorganic, or hybrid materials. In particular, hybrid nanocarriers that consist of more than one material construct provide flexibility for different modes of entrapment within the same carrier—e.g., physical adsorption, encapsulation, and chemical conjugation strategies. These multifunctional nanocarriers can thus be used to co-deliver chemo- and antiangiogenesis drugs with tunable drug release at target sites. Hence, this review attempts to survey the most recent advances in nanoformulations and their impact on cancer treatment in a combined regimen—i.e., conventional cytotoxic and antiangiogenesis agents. The mechanisms and site-specific co-delivery strategies are also discussed herein, along with future prospects.
Collapse
Affiliation(s)
- Amit Kumar Rajora
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (A.K.R.); (J.M.R.)
| | - Divyashree Ravishankar
- Bioscience Department, Sygnature Discovery, Bio City, Pennyfoot St, Nottingham NG1 1GR, UK;
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (A.K.R.); (J.M.R.)
| |
Collapse
|
27
|
Schneible JD, Shi K, Young AT, Ramesh S, He N, Dowdey CE, Dubnansky JM, Lilova RL, Gao W, Santiso E, Daniele M, Menegatti S. Modified gaphene oxide (GO) particles in peptide hydrogels: a hybrid system enabling scheduled delivery of synergistic combinations of chemotherapeutics. J Mater Chem B 2020; 8:3852-3868. [PMID: 32219269 PMCID: PMC7945679 DOI: 10.1039/d0tb00064g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scheduled delivery of synergistic drug combinations is increasingly recognized as highly effective against advanced solid tumors. Of particular interest are composite systems that release a sequence of drugs with defined kinetics and molar ratios to enhance therapeutic effect, while minimizing the dose to patients. In this work, we developed a homogeneous composite comprising modified graphene oxide (GO) nanoparticles embedded in a Max8 peptide hydrogel, which provides controlled kinetics and molar ratios of release of doxorubicin (DOX) and gemcitabine (GEM). First, modified GO nanoparticles (tGO) were designed to afford high DOX loading and sustained release (18.9% over 72 h and 31.4% over 4 weeks). Molecular dynamics simulations were utilized to model the mechanism of DOX loading as a function of surface modification. In parallel, a Max8 hydrogel was developed to release GEM with faster kinetics and achieve a 10-fold molar ratio to DOX. The selected DOX/tGO nanoparticles were suspended in a GEM/Max8 hydrogel matrix, and the resulting composite was tested against a triple negative breast cancer cell line, MDA-MB-231. Notably, the composite formulation afforded a combination index of 0.093 ± 0.001, indicating a much stronger synergism compared to the DOX-GEM combination co-administered in solution (CI = 0.396 ± 0.034).
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Kaihang Shi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Nanfei He
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Clay E Dowdey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Jean Marie Dubnansky
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Radina L Lilova
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Wei Gao
- Department of Textile Engineering, Chemistry, and Science, 1020 Main Campus Drive, Raleigh, North Carolina, USA
| | - Erik Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, USA and Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| |
Collapse
|
28
|
Wang Y, Fan P, Zhu L, Zhuang W, Jiang L, Zhang H, Huang H. Enhanced in vitro antitumor efficacy of a polyunsaturated fatty acid-conjugated pH-responsive self-assembled ion-pairing liposome-encapsulated prodrug. NANOTECHNOLOGY 2020; 31:155101. [PMID: 31846941 DOI: 10.1088/1361-6528/ab62d1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of clinical chemotherapeutics is always challenging due to the toxicity and side effects of drugs not only for tumor cells but also for normal cells. Therefore, nano-drug delivery systems and prodrug strategies have been applied to address this challenge. Herein, we report a liposome-encapsulated small-molecule prodrug nanosystem, self-assembled by doxorubicin (DOX) and mixed polyunsaturated fatty acid (MPUFA) ion-pairing (MPUFAs-DOX@Liposomes), which has a high omega-3 PUFA content. The increased lipophilicity of ion-paired MPUFAs-DOX can significantly improve the drug loading efficiency (∼97%). Electrostatic interaction, the hydrophobic effect and hydrogen bonding between the ion-pairing agents led to superior pH-responsive release of DOX from liposomes over DOX-loaded liposomes (DOX@Liposomes), with a more rapid release rate at pH 5.0 than at pH 7.4, which is beneficial for decreasing the toxicity of DOX under physiological conditions. Finally, the in vitro antitumor effects were investigated for two tumor cell types, A549 and MCF-7, and the results demonstrated that MPUFAs-DOX@Liposomes showed the highest cytotoxicity compared with free DOX and DOX@Liposomes because of the ready uptake under the effect of PUFAs. Hence, liposomes loaded with ion-paired MPUFAs-DOX is a promising formulation for combination cancer therapy.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wu L, Zhang F, Chen X, Wan J, Wang Y, Li T, Wang H. Self-Assembled Gemcitabine Prodrug Nanoparticles Show Enhanced Efficacy against Patient-Derived Pancreatic Ductal Adenocarcinoma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3327-3340. [PMID: 31872760 DOI: 10.1021/acsami.9b16209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Effective new therapies for pancreatic ductal adenocarcinoma (PDAC) are desperately needed as the prognosis of PDAC patients is dismal and treatment remains a major challenge. Gemcitabine (GEM) is commonly used to treat PDAC; however, the clinical use of GEM has been greatly compromised by its low delivery efficacy and drug resistance. Here, we describe a very simple yet cost-effective approach that synergistically combines drug reconstitution, supramolecular nanoassembly, and tumor-specific targeting to address the multiple challenges posed by the delivery of the chemotherapeutic drug GEM. Using our developed PUFAylation technology, the GEM prodrug was able to spontaneously self-assemble into colloidal stable nanoparticles with sub-100 nm size on covalent attachment of hydrophobic linoleic acid via amide linkage. The prodrug nanoassemblies could be further refined by PEGylation and PDAC-specific peptide ligand for preclinical studies. In vitro cell-based assays showed that not only were GEM nanoparticles superior to free GEM but also the decoration with PDAC-homing peptide facilitated the intracellular uptake of nanoparticles and thereby augmented the cytotoxic activity. In two separate xenograft models of human PDAC, one of which was a patient-derived xenograft model, the administration of targeted nanoparticles resulted in marked inhibition of tumor progression as well as alleviated systemic toxicity. Together, these data unequivocally confirm that the hydrophilic and rapidly metabolized drug GEM can be feasibly transformed into a pharmacologically efficient nanomedicine through exploiting the PUFAylation technology. This strategy could also potentially be applied to rescue many other therapeutics that show unfavorable outcomes in the preclinical studies because of pharmacologic obstacles.
Collapse
Affiliation(s)
- Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
| | - Fu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
| | - Xiaona Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
| | - Jianqin Wan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
| | - Yuchen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
- Department of Chemical Engineering , Zhejiang University , Hangzhou 310027 , PR China
| | - Tongyu Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
| | - Hangxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine , Zhejiang University , Hangzhou 310003 , PR China
| |
Collapse
|
30
|
Han W, Shi L, Xie B, Wan J, Ren L, Wang Y, Chen X, Wang H. Supramolecular Engineering of Molecular Inhibitors in an Adaptive Cytotoxic Nanoparticle for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1707-1720. [PMID: 31816241 DOI: 10.1021/acsami.9b20178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combinatorial regimens that rationally pair molecular inhibitors with standard cytotoxic chemotherapeutics are used to improve therapeutic outcomes. Simultaneously engineering these therapies within a single nanocarrier that spans cytotoxic, antiangiogenic, and anti-invasive mechanisms and that enables the delivery of unique drug combinations remains a technical challenge. In this study, we developed a simple and broadly applicable strategy in which ultrastable cytotoxic nanoparticles with an established excellent antitumor efficacy and π-rich inner core structure supramolecularly stabilized the antiangiogenic molecular inhibitor apatinib to create a synergistic drug delivery system (termed sTKI-pSN38). This small-sized nanoparticle accomplished the sequential release of both encapsulated drugs to exert antimetastatic, antivascular, and cytotoxic activities simultaneously. In xenograft models of hepatocellular carcinoma, a single intravenous administration of sTKI-pSN38 elicited robust and durable tumor reduction and suppressed metastasis to lymph nodes. Interestingly, sTKI-pSN38 treatment alleviated intratumoral hypoxia, which could contribute to impaired tumor metastasis and reduced drug resistance. Collectively, this nanotherapeutic platform offers a new strategy for cancer therapy by simply engineering a drug cocktail in conventional nanoparticles and by enabling the spatiotemporal modulation of drug release to enhance the synergy of the combined drugs.
Collapse
Affiliation(s)
- Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine , Zhejiang University , Hangzhou , 310016 , PR China
| | - Linlin Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine , Zhejiang University , Hangzhou , 310016 , PR China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine , Zhejiang University , Hangzhou , 310016 , PR China
| | - Jianqin Wan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , 310003 , PR China
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine , Zhejiang University , Hangzhou , 310016 , PR China
| | - Yuchen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , 310003 , PR China
| | - Xiaona Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , 310003 , PR China
| | - Hangxiang Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine , Zhejiang University , Hangzhou , 310016 , PR China
| |
Collapse
|
31
|
Sun M, Qian Q, Shi L, Xu L, Liu Q, Zhou L, Zhu X, Yue JM, Yan D. Amphiphilic drug-drug conjugate for cancer therapy with combination of chemotherapeutic and antiangiogenesis drugs. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9602-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
He J, Wang W, Zhou H, She P, Zhang P, Cao Y, Zhang X. A novel pH-sensitive polymeric prodrug was prepared by SPAAC click chemistry for intracellular delivery of doxorubicin and evaluation of its anti-cancer activity in vitro. J Drug Deliv Sci Technol 2019; 53:101130. [DOI: 10.1016/j.jddst.2019.101130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm 2019; 568:118499. [DOI: 10.1016/j.ijpharm.2019.118499] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
34
|
Cheng G, Zhang X, Chen Y, Lee RJ, Wang J, Yao J, Zhang Y, Zhang C, Wang K, Yu B. Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer. Colloids Surf B Biointerfaces 2019; 181:822-829. [DOI: 10.1016/j.colsurfb.2019.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/26/2023]
|
35
|
Mohamed Subarkhan MK, Ren L, Xie B, Chen C, Wang Y, Wang H. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem 2019; 179:246-256. [PMID: 31255925 DOI: 10.1016/j.ejmech.2019.06.061] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Ruthenium complexes have attracted a surge of interest as anticancer drug candidates because of their low toxicity, diversity in mode-of-actions and non-cross drug resistance with conventional platinum-based agents. Despite remarkable advances, only a limited number of ruthenium complexes have been demonstrated to kill cancer cells and suppress metastasis simultaneously. Here, two organometallic tetranuclear Ru(II) arene complexes (Ru-1 and Ru-2) have been synthesized and evaluated for their in vitro activity against a panel of human cancer cell lines, including a cisplatin-resistant human lung cancer A549 cell line. A superior cytotoxic activity of the ruthenium complexes compared to cisplatin across distinct cell lines was observed. Further examination of the mechanism indicated that anticancer activity was accomplished by inducing apoptosis in cancer cells. In addition, we found that such compounds exhibited promising antimetastatic activity and reduced the invasiveness of cancer cells. Importantly, choosing Ru-1 as a target compound, a significantly enhanced safety profile relative to cisplatin in animals was validated, suggesting that these complexes can be used as promising candidates for cancer therapy and deserve further investigation.
Collapse
Affiliation(s)
- Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Chao Chen
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
36
|
Hou KT, Liu TI, Chiu HC, Chiang WH. DOX/ICG-carrying γ-PGA-g-PLGA-based polymeric nanoassemblies for acid-triggered rapid DOX release combined with NIR-activated photothermal effect. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Yildiz T, Gu R, Zauscher S, Betancourt T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int J Nanomedicine 2018; 13:6961-6986. [PMID: 30464453 PMCID: PMC6217908 DOI: 10.2147/ijn.s174068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Despite significant progress in the field of oncology, cancer remains one of the leading causes of death. Chemotherapy is one of the most common treatment options for cancer patients but is well known to result in off-target toxicity. Theranostic nanomedicines that integrate diagnostic and therapeutic functions within an all-in-one platform can increase tumor selectivity for more effective chemotherapy and aid in diagnosis and monitoring of therapeutic responses. MATERIAL AND METHODS In this work, theranostic nanoparticles were synthesized with commonly used biocompatible and biodegradable polymers and used as cancer contrast and therapeutic agents for optical imaging and treatment of breast cancer. These core-shell nanoparticles were prepared by nanoprecipitation of blends of the biodegradable and biocompatible amphiphilic copolymers poly(lactic-co-glycolic acid)-b-poly-l-lysine and poly(lactic acid)-b-poly(ethylene glycol). Poly-l-lysine in the first copolymer was covalently decorated with near-infrared fluorescent Alexa Fluor 750 molecules. RESULTS The spherical nanoparticles had an average size of 60-80 nm. The chemotherapeutic drug doxorubicin was encapsulated in the core of nanoparticles at a loading of 3% (w:w) and controllably released over a period of 30 days. A 33-fold increase in near-infrared fluorescence, mediated by protease-mediated cleavage of the Alexa Fluor 750-labeled poly-l-lysine on the surface of the nanoparticles, was observed upon interaction with the model protease trypsin. The cytocompatibility of drug-free nanoparticles and growth inhibition of drug-loaded nanoparticles on MDA-MB-231 breast cancer cells were investigated with a luminescence cell-viability assay. Drug-free nanoparticles were found to cause minimal toxicity, even at high concentrations (0.2-2,000 µg/mL), while doxorubicin-loaded nanoparticles significantly reduced cell viability at drug concentrations >10 µM. Finally, the interaction of the nanoparticles with breast cancer cells was studied utilizing fluorescence microscopy, demonstrating the potential of the nanoparticles to act as near-infrared fluorescence optical imaging agents and drug-delivery carriers. CONCLUSION Doxorubicin-loaded, enzymatically activatable nanoparticles of less than 100 nm were prepared successfully by nanoprecipitation of copolymer blends. These nanoparticles were found to be suitable as controlled drug delivery systems and contrast agents for imaging of cancer cells.
Collapse
Affiliation(s)
- Tugba Yildiz
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX,
| | - Renpeng Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Tania Betancourt
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX,
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA,
| |
Collapse
|
38
|
Bioinspired mimics: Self-assembly of redox-activated phosphorylcholine–based biodegradable copolymers for enhancing antitumor efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:401-412. [DOI: 10.1016/j.msec.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
|
39
|
Roshini A, Jagadeesan S, Arivazhagan L, Cho YJ, Lim JH, Doh YH, Kim SJ, Na J, Choi KH. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:477-488. [PMID: 30184773 DOI: 10.1016/j.msec.2018.06.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/03/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Abstract
Most cancer patients die as a consequence of distant metastases, which are frequently unresponsive to cancer therapy. This study focuses on the anti-tumorigenic and anti-metastatic properties of tangeretin-zinc oxide quantum dots (Tan-ZnO QDs) against the NCI-H358 cell line. Tan-ZnO QDs are pH-sensitive and capitalize on the acidic pH maintained in the tumor microenvironment; therefore, targeted drug delivery is directed specifically to cancer cells, leaving the normal cells less affected. Tan was loaded into synthesized ZnO QDs, and drug loading was analyzed using Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-Vis) spectrometry. Crystalline phase and particle size were measured using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Drug release was evaluated in buffered solutions with differing pH for up to 15 h. The results confirmed stable drug release (80%) in an acidic pH. Tan-ZnO QDs induced significant cytotoxicity in NCI-H358 metastatic cells, while not markedly affecting HK-2 human normal cells. Morphology of treated H358 cells analyzed via atomic force microscopy (AFM) showed an increased surface roughness and pores. Further, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells increased after treatment with Tan-ZnO QDs. DNA fragmentation was also induced after treatment with increasing concentrations of Tan-ZnO QDs in H358 cells. We also confirmed regulation of apoptosis via expression levels of Bax and Bcl-2 proteins; G2/M phase cell cycle arrest was observed. Additionally, cell proliferation and migration drastically decreased, and cell invasion and migration, hallmarks of metastasis, were significantly inhibited in H358 cells. Matrix metalloproteinase (MMP)2 and MMP9, markers of metastasis, as well as vascular endothelial growth factor (VEGF), a marker of angiogenesis, were significantly downregulated upon treatment with Tan-ZnO QDs. In conclusion, our novel formulation destabilized H358 cells by using its acidic tumor microenvironment, thereby regulating cell apoptosis, proliferation, and metastatic properties.
Collapse
Affiliation(s)
- A Roshini
- Department of Mechatronics Engineering, Jeju National University, 63243, South Korea
| | - Srikanth Jagadeesan
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, South Korea
| | - Lakshmi Arivazhagan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, 13620, South Korea
| | - Jong-Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, 63243, South Korea.
| | - Yang-Hoi Doh
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, South Korea.
| | - Sang-Jae Kim
- Nanomaterials and System Lab, Department of Mechatronics Engineering, Jeju National University, 63243, South Korea.
| | - Jinhee Na
- Biophilic Ltd., 152, Juggunro, Youngin-si, Gyunggi-do, South Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 63243, South Korea; Department of Advanced Convergence Technology and Science, Jeju National University, 63243, South Korea.
| |
Collapse
|
40
|
Wang H, Zhou L, Xie K, Wu J, Song P, Xie H, Zhou L, Liu J, Xu X, Shen Y, Zheng S. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 2018; 8:3949-3963. [PMID: 30083272 PMCID: PMC6071539 DOI: 10.7150/thno.26161] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have been extensively explored for cancer treatment, and their efficacies have arguably been proven in various cancer cell-derived xenograft (CDX) mouse models. However, they generally fail to show such therapeutic advantages in patients because of the huge pathological differences between human tumors and CDX models. Methods: In this study, we fabricated colloidal ultrastable nanomedicines from polymeric prodrugs and compared the therapeutic efficacies in hepatocellular carcinoma (HCC) CDX and clinically relevant patient-derived xenograft (PDX) mouse models, which closely mimic human tumor pathological properties. Working towards this goal, we esterified a highly potent SN38 (7-ethyl-10-hydroxycamptothecin) agent using oligo- or polylactide (oLA or PLA) segments with varying molecular weights. Results: The resulting SN38 conjugates assembled with polyethylene glycol-block-polylactic acid to form systemically injectable nanomedicines. With increasing PLA chain length, the SN38 conjugates showed extended retention in the nanoparticles and superior antitumor activity, completely eradicating xenografted tumors in both mouse models. Our data implicate that these small-sized and ultrastable nanomedicines might also efficaciously treat cancer in patients. More interestingly, the systemically delivered nanomedicines notably alleviated the incidence of bloody diarrhea. Conclusion: Our studies demonstrate that the appropriate molecular editing of anticancer drugs enables the generation of better tolerated cytotoxic nanotherapy for cancer, which represents a potentially useful scaffold for further clinical translation.
Collapse
Affiliation(s)
- Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People's Hospital, Shenzhen 518112, P. R. China
| | - Liqian Zhou
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Ke Xie
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Jiaping Wu
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Penghong Song
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Haiyang Xie
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Lin Zhou
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Jialin Liu
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People's Hospital, Shenzhen 518112, P. R. China
| | - Xiao Xu
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shusen Zheng
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
41
|
Xiao Y, An FF, Chen J, Xiong S, Zhang XH. The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. J Mater Chem B 2018; 6:3692-3702. [PMID: 32254832 DOI: 10.1039/c8tb00427g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo/chemo combination therapy has been demonstrated to be a generally more powerful strategy for treating cancers than a single treatment modality. However, it is unknown whether the timing of light irradiation has any impact on therapeutic efficacy. We designed a carrier-free and self-monitoring nanodrug to monitor the entire dual-drug release profile and determined the impact of photodynamic therapy (PDT) at different time points. The designed nanodrug consists of the chemotherapeutic doxorubicin (DOX) and the photosensitizer pheophorbide A (PhA). The drugs form a fluorescence resonance energy transfer (FRET) pair (DOX transferring energy to PhA) when present at a precise ratio in the combination nanodrug. Due to the FRET effect, the DOX-PhA nanoparticles (NPs) show PhA fluorescence in a normal pH environment (such as cytoplasm). However, the FRET effect is lost when the NPs are disassembled in an acidic environment (such as lysosomes), and the DOX fluorescence is recovered. By real-time fluorescence variation monitoring, we determined the key time points when the drugs reached various subcellular locations, which helped us to determine the PDT-triggering time points and investigate the impact on the therapeutic effect in the combination therapy. Furthermore, the PDT was triggered at these established time points both in vitro and in vivo, which revealed that the best PDT-triggering time point in the combination therapy was achieved after nuclear entry of DOX. The study suggests that the optimization of combination therapy, not only photo/chemo but also chemo/chemo combination therapy, may require not only a controlled drug ratio but also a controlled drug release profile and target arrival time.
Collapse
Affiliation(s)
- Yafang Xiao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
43
|
Xu L, Xu S, Wang H, Zhang J, Chen Z, Pan L, Wang J, Wei X, Xie H, Zhou L, Zheng S, Xu X. Enhancing the Efficacy and Safety of Doxorubicin against Hepatocellular Carcinoma through a Modular Assembly Approach: The Combination of Polymeric Prodrug Design, Nanoparticle Encapsulation, and Cancer Cell-Specific Drug Targeting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3229-3240. [PMID: 29313660 DOI: 10.1021/acsami.7b14496] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intervention is urgently required to improve the therapeutic outcome for patients with unresectable hepatocellular carcinomas (HCCs). However, current chemotherapeutics, such as sorafenib and doxorubicin (DOX), provide only limited therapeutic benefits for this devastating disease. In this context, we present a modular assembly approach to the construction of a systemically injectable nanotherapeutic that can efficiently and safely deliver DOX in vivo. To achieve this goal, we covalently attached DOX to a polylactide (PLA) building block (Mw = 2800, n = 36), yielding DOX-PLA conjugate 1. Due to the lipophilicity imparted by PLA, the conjugate 1 coassembled with an amphiphilic lipid, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000] (DSPE-PEG2000), to form nanoparticles (NPs). To achieve preferential tumor accumulation, we additionally decorated the particle surface with an HCC-specific peptide moiety (i.e., SP94). The resulting HCC-targetable DOX-encapsulating NPs (termed tNP-PLA-DOX) exhibited several unique characteristics, including the feasible fabrication of sub-100 nm NPs, substantially delayed drug release profiles of several weeks, HCC cell-specific uptake and tumor accumulation in an in vivo mouse model, as well as alleviated drug toxicity in animals. Collectively, these results show that the integration of multiple components within a single nanocarrier via modular assembly is cost-effective for the creation of safe anticancer nanotherapeutics. The presented DOX-based nanomedicines have potential for enhancing the therapeutic index in patients.
Collapse
Affiliation(s)
- Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Shengjun Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Hangxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Zun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University , Hangzhou 310003, P. R. China
| |
Collapse
|
44
|
Roles of PFKFB3 in cancer. Signal Transduct Target Ther 2017; 2:17044. [PMID: 29263928 PMCID: PMC5701083 DOI: 10.1038/sigtrans.2017.44] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
The understanding of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFK-2/FBPase 3, PFKFB3) has advanced considerably since its initial identification in human macrophages in the mid-1990s. As a vital regulator of glycolysis, accumulating studies have suggested that PFKFB3 is associated with many aspects of cancer, including carcinogenesis, cancer cell proliferation, vessel aggressiveness, drug resistance and tumor microenvironment. In this review, we summarize current knowledge of PFKFB3 regulation by several signal pathways and its function in cancer development in different cell types in cancer tissues. Ubiquitous PFKFB3 has emerged as a potential target for anti-neoplastic therapy.
Collapse
|
45
|
Yu J, Sun L, Zhou J, Gao L, Nan L, Zhao S, Peng T, Han L, Wang J, Lu W, Zhang L, Wang Y, Yan Z, Yu L. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)–Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma. Bioconjug Chem 2017; 28:2823-2831. [DOI: 10.1021/acs.bioconjchem.7b00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Sun
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jinge Zhou
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lipeng Gao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lijuan Nan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Shimin Zhao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Ting Peng
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Han
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jing Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, P.R. China
| | - Lin Zhang
- Department
of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital of ZheJiang University, Shaoxing 312000, P.R. China
| | - Yiting Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Zhiqiang Yan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
46
|
Xiang S, Yang P, Guo H, Zhang S, Zhang X, Zhu F, Li Y. Green Tea Makes Polyphenol Nanoparticles with Radical-Scavenging Activities. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700446] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Siying Xiang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Peng Yang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Hao Guo
- Chongqing Institute of Forensic Science; Chongqing 400021 China
| | - Shu Zhang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Xiaokang Zhang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Fang Zhu
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Yiwen Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
47
|
Lin W, Zhang W, Sun T, Liu S, Zhu Y, Xie Z. Rational Design of Polymeric Nanoparticles with Tailorable Biomedical Functions for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29612-29622. [PMID: 28812347 DOI: 10.1021/acsami.7b10763] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymeric nanoparticles (NPs) play a key role in nanoscale formulations for bioimaging, cancer treatment, and theranostics. In this work, we designed and synthesized a series of hydrophobic polymers (P1-6) with different pendent groups via one-step multicomponent Passerini reaction. These polymers possessed similar molecular structures and various biomedical functions. Interestingly, they could self-assemble into stable NPs in aqueous media. All formed NPs were redox sensitive because of the existence of disulfide bonds in the backbone. The stability of NPs in aqueous media with or without glutathione was systematically evaluated and compared. The optical performance, including fluorescence resonance energy transfer, was characterized under different conditions for those polymers with fluorescent components. Importantly, all formed NPs showed good cytocompatibility toward HeLa cells and different biological functions, including drug loading and delivery, bioimaging with variable fluorescence, and photodynamic activity, as evidenced by experiments in vitro and in vivo. These results demonstrate the great potential of multicomponent reaction to customize versatile polymeric nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Wei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Yu Zhu
- Department of Chemistry, Northeast Normal University , 5268 Renmin Street, Changchun 130024, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
48
|
Shen S, Liu M, Li T, Lin S, Mo R. Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater Sci 2017; 5:1367-1381. [DOI: 10.1039/c7bm00297a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article highlights the recent progresses in nanomedicine-based combination cancer therapy via site-specific co-delivery strategies.
Collapse
Affiliation(s)
- Shiyang Shen
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Meng Liu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Teng Li
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Shiqi Lin
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|