1
|
Us AE, Kirbay FO, Guldu OK, Medine EI, Odaci D. Optical detection based spot test on electrospun nanofibers for glioblastoma cells. Talanta 2025; 285:127303. [PMID: 39637774 DOI: 10.1016/j.talanta.2024.127303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Paper-based diagnosis is enabled to be used in many applications in global health due to its low cost and simplicity of operation. Electrospun nanofibers (ESNFs) are useful platforms to prepare paper-based diagnostics. Herein, bead-free ESNFs were formed by electrospinning using polystyrene (PS) and poly (ethylene glycol) (PEG) polymers as a paper-based substrate. PS:PEG ESNFs were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), identification of swelling behavior, and Brunauer-Emmett-Teller (BET) analysis. Synthesized gold nanoparticles (AuNPs) were used as a colorimetric probe and GMT8 aptamer was conjugated on the surface of AuNPs. AuNP and AuNP-GMT8 were characterized by dynamic light scattering (DLS), UV-Visible spectrometry, and X-Ray photoelectron spectroscopy (XPS). The interaction of AuNP-GMT8 bioconjugates with glioblastoma cells was examined. The colored spots for the mixture of glioblastoma (U87-MG) cells and AuNP-GMT8 were optically monitored both in the microplate wells and on the PS:PEG ESNFs. The linear range of colorimetric analysis on PS:PEG ESNFs was determined to be between 101-106 U87-MG cells/mL by smartphone using RGB color analysis.
Collapse
Affiliation(s)
- Aybuke Elif Us
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, 35100, İzmir, Turkiye
| | - Fatma Ozturk Kirbay
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkiye
| | - Ozge Kozgus Guldu
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, 35100, İzmir, Turkiye.
| | - Emin Ilker Medine
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, 35100, İzmir, Turkiye
| | - Dilek Odaci
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, 35100, İzmir, Turkiye; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkiye.
| |
Collapse
|
2
|
Cheng T, Chai K, Liang K, Ji Y. Evaluating the strategies to improve strength and water-resistance of chitin nanofibril assembled structures: Molecule-bridging, heat-treatment and deacidifying. Int J Biol Macromol 2024; 281:135683. [PMID: 39349330 DOI: 10.1016/j.ijbiomac.2024.135683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Chitin nanofibril (ChiNF) is a promising building block used to fabricate chitin fibers, films or gels via self-assembly from its aqueous suspension. Although mechanical strengthening of its assembled structures has made great advances, the unsatisfactory water-resistance is still a crucial obstacle to practical application and even rarely referred to. Herein, ChiNF was prepared via deacetylation-ultrasonication treatment and the strategies of molecule-bridging, heat-treatment and deacidifying that aiming to improve the strength and water-resistance of its assembled films were evaluated. Molecule-bridging, including tannic acid (TA) or/and chitosan (CS), improved the mechanical properties to some extent, but had no obvious positive effects on water-resistance; heat-treatment was a useful route to enhance both strength and water-resistance; interestingly, deacidifying was more efficient than heat-treatment with respect to improving strength and water-resistance, implying the presence of acid was the major reason for deteriorating assembled structures. Combining molecule-bridging, deacidifying and heat-treatment produced a strong ChiNF-TA/CS cast film with excellent water-resistance. Different from the commonly-used approach of vacuum filtration, these strategies are very suitable for large-scale production of the ChiNF-based self-supported films or coatings via solution casting. Furthermore, the reverse dialysis deacidification simultaneously produced highly concentrated suspensions suitable for dry-spinning, and thus strong chitin macrofibers were successfully fabricated.
Collapse
Affiliation(s)
- Tai Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Kaiyan Chai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Kai Liang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Mehrzad A, Verdian A, Sarabi-Jamab M. Smart nano-inks based on natural food colorant for screen-printing of dynamic shelf life of shrimp. Food Chem 2024; 447:138963. [PMID: 38492301 DOI: 10.1016/j.foodchem.2024.138963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Intelligent packaging embedded with food freshness indicators can monitor food quality and be deployed for food safety and cutting food waste. The innovative nano-inks for dynamic shelf-life printing based on natural food colorant with application in real-time monitoring of shrimp freshness were prepared. Co-assembly of saffron petal anthocyanin (SPA) with hydrophobic curcumin (Cur) into chitin nano-scaffold (particle sizes around 26 ± 8 nm) could deliver hindering SPA leaching, confirmed by FT-IR, FE-SEM, AFM, and color stability test. The best response to pH-sensitivity was found in a ratio of (1:4) Cur/SPA (30% (v/w) in ChNFs that was correlated with the chemical and microbial changes of shrimp during shrimp freshness. However, smart screen-printed inks signified higher responsiveness to pH changes than FFI films. Therefore, smart-printed indicators introduced the excellent potential for a short response time, easy, cost-effective, eco-friendly, co-assembly, great color stabilities, and lifetime for nondestructively freshness monitoring foods and supplements.
Collapse
Affiliation(s)
- Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran; Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Mahboobe Sarabi-Jamab
- Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
4
|
Wu J, Wu J, Wei W, Zhang Y, Chen Q. Upconversion Nanoparticles Based Sensing: From Design to Point-of-Care Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311729. [PMID: 38415811 DOI: 10.1002/smll.202311729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) have achieved a wide range of applications in the sensing field due to their unique anti-Stokes luminescence property, minimized background interference, excellent biocompatibility, and stable physicochemical properties. However, UCNPs-based sensing platforms still face several challenges, including inherent limitations from UCNPs such as low quantum yields and narrow absorption cross-sections, as well as constraints related to energy transfer efficiencies in sensing systems. Therefore, the construction of high-performance UCNPs-based sensing platforms is an important cornerstone for conducting relevant research. This work begins by providing a brief overview of the upconversion luminescence mechanism in UCNPs. Subsequently, it offers a comprehensive summary of the sensors' types, design principles, and optimized design strategies for UCNPs sensing platforms. More cost-effective and promising point-of-care testing applications implemented based on UCNPs sensing systems are also summarized. Finally, this work addresses the future challenges and prospects for UCNPs-based sensing platforms.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Jiaxi Wu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| |
Collapse
|
5
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Li J, Liu X, Sun H, Xi J, Chang C, Deng L, Yang Y, Li X. Optical fiber sensing probe for detecting a carcinoembryonic antigen using a composite sensitive film of PAN nanofiber membrane and gold nanomembrane. OPTICS EXPRESS 2024; 32:20024-20034. [PMID: 38859121 DOI: 10.1364/oe.523513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
An optical fiber sensing probe using a composite sensitive film of polyacrylonitrile (PAN) nanofiber membrane and gold nanomembrane is presented for the detection of a carcinoembryonic antigen (CEA), a biomarker associated with colorectal cancer and other diseases. The probe is based on a tilted fiber Bragg grating (TFBG) with a surface plasmon resonance (SPR) gold nanomembrane and a functionalized polyacrylonitrile (PAN) PAN nanofiber coating that selectively binds to CEA molecules. The performance of the probe is evaluated by measuring the spectral shift of the TFBG resonances as a function of CEA concentration in buffer. The probe exhibits a sensitivity of 0.46 dB/(µg/ml), a low limit of detection of 505.4 ng/mL in buffer, and a good selectivity and reproducibility. The proposed probe offers a simple, cost-effective, and a novel method for CEA detection that can be potentially applied for clinical diagnosis and monitoring of CEA-related diseases.
Collapse
|
7
|
Kadokawa JI. A Mini-Review: Fabrication of Polysaccharide Composite Materials Based on Self-Assembled Chitin Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1898. [PMID: 38673255 PMCID: PMC11052074 DOI: 10.3390/ma17081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This mini-review presents the fabrication methods for polysaccharide composite materials that employ self-assembled chitin nanofibers (ChNFs) as functional components. Chitin is one of the most abundant polysaccharides in nature. However, it is mostly not utilized because of its poor feasibility and processability. Self-assembled ChNFs are efficiently obtained by a regenerative bottom-up process from chitin ion gels using an ionic liquid, 1-allyl-3-methylimodazolium bromide. This is accomplished by immersing the gels in methanol. The resulting dispersion is subjected to filtration to isolate the regenerated materials, producing ChNF films with a morphology defined by highly entangled nanofibers. The bundles are disintegrated by electrostatic repulsion among the amino groups on the ChNFs in aqueous acetic acid to produce thinner fibers known as scaled-down ChNFs. The self-assembled and scaled-down ChNFs are combined with other chitin components to fabricate chitin-based composite materials. ChNF-based composite materials are fabricated through combination with other polysaccharides.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Zhang L, Zhan B, Yan L. Preparation of nanochitin using deep eutectic solvents. iScience 2024; 27:109312. [PMID: 38496292 PMCID: PMC10943438 DOI: 10.1016/j.isci.2024.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Chitin is an abundant and renewable non-wood biopolymer. Nanochitin is formed by the assembly of chitin molecules, which has the advantages of large tensile strength, high specific surface area, and biodegradability, so it has been widely used. However, the traditional methods of preparing nanochitin have many drawbacks. As the new generation of green solvents, deep eutectic solvents (DESs) have been successfully applied in the fields of chitin dissolution, extraction, and nanochitin preparation. In this review, the relevant knowledge of chitin, nanochitin, and DESs was first introduced. Then, the application status of DESs in the fields of chitin was summarized, with a focus on the preparation of nanochitin using DESs. In conclusion, this review provided a comprehensive analysis of the published literature and proposed insights and development trends in the field of preparation of nanochitin using DESs, aiming to provide guidance and assistance for future researchers.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Jinzhai road, Hefei 230026, Anhui, China
| | - Boxiang Zhan
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Jinzhai road, Hefei 230026, Anhui, China
| | - Lifeng Yan
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Jinzhai road, Hefei 230026, Anhui, China
| |
Collapse
|
9
|
Dubey N, Chandra S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. BIOSENSORS 2024; 14:116. [PMID: 38534223 DOI: 10.3390/bios14030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Electrospun nanofibers possess a large surface area and a three-dimensional porous network that makes them a perfect material for embedding functional nanoparticles for diverse applications. Herein, we report the trends in embedding upconversion nanoparticles (UCNPs) in polymeric nanofibers for making an advanced miniaturized (bio)analytical device. UCNPs have the benefits of several optical properties, like near-infrared excitation, anti-Stokes emission over a wide range from UV to NIR, narrow emission bands, an extended lifespan, and photostability. The luminescence of UCNPs can be regulated using different lanthanide elements and can be used for sensing and tracking physical processes in biological systems. We foresee that a UCNP-based nanofiber sensing platform will open opportunities in developing cost-effective, miniaturized, portable and user-friendly point-of-care sensing device for monitoring (bio)analytical processes. Major challenges in developing microfluidic (bio)analytical systems based on UCNPs@nanofibers have been reviewed and presented.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
10
|
Arghavani S, Mohseni‐Shahri FS, Moeinpour F. Anthocyanin-loaded bacterial cellulose nanofiber as a green sensor for monitoring the selective naked eye and visual detection of Al(III) Ions. ANALYTICAL SCIENCE ADVANCES 2023; 4:324-334. [PMID: 38715651 PMCID: PMC10989543 DOI: 10.1002/ansa.202300014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 08/05/2024]
Abstract
The present study developed a green metallochromic sensor that detects aluminium (Al(III)) ions in solution and solid state using anthocyanin extract from purple onion peels embedded in bacterial cellulose nanofibers (BCNFs). The CIE Lab colour parameters demonstrated that Al(III) binding causes a sensible change in colour. A variety of metal ions including K+, Mn2+, Cu2+, Hg2+, Cr2+, Pb2+ and Ni2+ were used to challenge the sensor to determine its selectivity. The findings demonstrated that the suggested sensor showed excellent selectivity toward Al(III) ion. Al(III) is quantitatively detected by the sensing method with detection limits in the range between 30-200 and 20-300 ppm in solution and solid state, respectively, and through observation with naked eye. The fabricated green metallochromic sensor is promising to be a simple, cheap, mobile and easily operable for real-time and on-site detection of Al(III) ions in food matrices.
Collapse
Affiliation(s)
- Sima Arghavani
- Department of Chemistry, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran
| | | | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran
| |
Collapse
|
11
|
Sharifi AR, Ardalan S, Tabatabaee RS, Soleimani Gorgani S, Yousefi H, Omidfar K, Kiani MA, Dincer C, Naghdi T, Golmohammadi H. Smart Wearable Nanopaper Patch for Continuous Multiplexed Optical Monitoring of Sweat Parameters. Anal Chem 2023; 95:16098-16106. [PMID: 37882624 DOI: 10.1021/acs.analchem.3c02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Notwithstanding the substantial progress in optical wearable sensing devices, developing wearable optical sensors for simultaneous, real-time, and continuous monitoring of multiple biomarkers is still an important, yet unmet, demand. Aiming to address this need, we introduced for the first time a smart wearable optical sensor (SWOS) platform combining a multiplexed sweat sensor sticker with its IoT-enabled readout module. We employed our SWOS system for on-body continuous, real-time, and simultaneous fluorimetric monitoring of sweat volume (physical parameter) and pH (chemical marker). Herein, a variation in moisture (5-45 μL) or pH (4.0-7.0) causes a color/fluorescence change in the copper chloride/fluorescein immobilized within a transparent chitin nanopaper (ChNP) in a selective and reversible manner. Human experiments conducted on athletic volunteers during exercise confirm that our developed SWOS platform can be efficiently exploited for smart perspiration analysis toward personalized health monitoring. Moreover, our system can be further extended for the continuous and real-time multiplexed monitoring of various biomarkers (metabolites, proteins, or drugs) of sweat or other biofluids (for example, analyzing exhaled breath by integrating onto a facemask).
Collapse
Affiliation(s)
- Amir Reza Sharifi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Sina Ardalan
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Sara Soleimani Gorgani
- Biosensor Research Center, Endocrinology and Metabolism Cellular and Molecular Sciences Institute, Tehran University of Medical Sciences, 14395/1179 Tehran, Iran
| | - Hossein Yousefi
- Laboratory of Sustainable Nanomaterials, Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Cellular and Molecular Sciences Institute, Tehran University of Medical Sciences, 14395/1179 Tehran, Iran
| | - Mohammad Ali Kiani
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Can Dincer
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg 79110, Germany
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
12
|
Jung S, Kim J, Bang J, Jung M, Park S, Yun H, Kwak HW. pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohydr Polym 2023; 317:121090. [PMID: 37364959 DOI: 10.1016/j.carbpol.2023.121090] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants. The ionic dye removal capacity was 372.0 mg/g for anionic AO and 140.5 mg/g for cationic MB. The surface charge conversion ability according to pH could be easily applied to the desorption of the removed contaminants, and as a result, it showed an excellent contaminant removal efficiency of 95.1 % or more even in the repeated reuse process 5 times. Overall, the eco-friendly biopolymeric nanofibrillar pH-sensitive hydrogel shows potential for complex wastewater treatment and long-term use.
Collapse
Affiliation(s)
- Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Li J, Liu X, Xi J, Deng L, Yang Y, Li X, Sun H. Recent Development of Polymer Nanofibers in the Field of Optical Sensing. Polymers (Basel) 2023; 15:3616. [PMID: 37688242 PMCID: PMC10489887 DOI: 10.3390/polym15173616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, owing to the continuous development of polymer nanofiber manufacturing technology, various nanofibers with different structural characteristics have emerged, allowing their application in the field of sensing to continually expand. Integrating polymer nanofibers with optical sensors takes advantage of the high sensitivity, fast response, and strong immunity to electromagnetic interference of optical sensors, enabling widespread use in biomedical science, environmental monitoring, food safety, and other fields. This paper summarizes the research progress of polymer nanofibers in optical sensors, classifies and analyzes polymer nanofiber optical sensors according to different functions (fluorescence, Raman, polarization, surface plasmon resonance, and photoelectrochemistry), and introduces the principles, structures, and properties of each type of sensor and application examples in different fields. This paper also looks forward to the future development directions and challenges of polymer nanofiber optical sensors, and provides a reference for in-depth research of sensors and industrial applications of polymer nanofibers.
Collapse
Affiliation(s)
- Jinze Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xin Liu
- School of Physics, Xidian University, Xi'an 710071, China
| | - Jiawei Xi
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Li Deng
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Yanxin Yang
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xiang Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Hao Sun
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| |
Collapse
|
14
|
Minabi-Nezhad M, Moeinpour F, Mohseni-Shahri FS. Development of a green metallochromic indicator for selective and visual detection of copper(II) ions. Sci Rep 2023; 13:12501. [PMID: 37532750 PMCID: PMC10397238 DOI: 10.1038/s41598-023-39556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Heavy metal ions, i.e., copper(II) (Cu(II)), are harmful to the environment and our health. The current research established an eco-friendly and efficient metal-sensitive indicator, which can identify Cu(II) ions in both liquid and solid forms, by utilizing anthocyanin extract obtained from jambolao fruit (Syzgium cumini) that is incorporated within bacterial cellulose nanofibers (BCNF).The CIE Lab color parameters demonstrated that Cu(II) binding causes a sensible change in color. It was observed that the visible color altered with an increase in the Cu(II) concentration. The bacterial cellulose nanofibers that were altered with anthocyanin were analyzed using ATR-FTIR and FESEM. The sensor's selectivity was tested by using a range of metal ions such as lead (Pb2+), cobalt (Co2+), cadmium (Cd2+), nickel (Ni2+), aluminium (Al3+), barium (Ba2+), manganese (Mn2+), zinc (Zn2+), mercury (Hg2+) and sodium (Na+). The findings demonstrated that the suggested sensor showed excellent selectivity toward Cu(II) ion. Cu(II) can be accurately identified using the sensing technique, with detection limits ranging from 10-400 ppm and 50-500 ppm for liquid and solid samples, respectively, and through observation with naked eye. The fabricated green metallochromic sensor is promising to be a simple, cheap, mobile and easily operable for the real-time and on-site detection of Cu(II) ion.
Collapse
Affiliation(s)
- Mehran Minabi-Nezhad
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran.
| | - Fatemeh S Mohseni-Shahri
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran
| |
Collapse
|
15
|
Xu Z, Song C, Chen Z, Zeng C, Lv T, Wang L, Liu B. A portable paper-based testing device for fast and on-site determination of nitroxynil in food. Anal Chim Acta 2023; 1260:341201. [PMID: 37121652 DOI: 10.1016/j.aca.2023.341201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
Nitroxynil (NTX) is a common anthelmintic veterinary drug for the management of fascioliasis in food-producing sheep and cattle. Since excessive NTX residue in food can lead to several adverse side effects, such as allergic skin reaction and respiratory irritation, it is of great importance to develop an efficient analytical method for NTX determination. Herein, we report a simple fluorescent detection method based on a novel supramolecular probe capable of detecting NTX with a fast response (5 s), high sensitivity (107 nM), high selectivity, and acceptable anti-interference property. Moreover, the portable paper-based test strips were facilely prepared and successfully realized on-site determination of NTX in real edible animal products simply with the aid of a smartphone. To the best of our knowledge, this is the very first report on the portable detection of NTX. This study also provides a promising strategy for the fast and portable detection of analyte based on the host-guest system, which will lead to improved fluorescent probe design for food analysis.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Chao Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zihao Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Conghui Zeng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
16
|
Parizadeh P, Moeinpour F, Mohseni-Shahri FS. Anthocyanin-induced color changes in bacterial cellulose nanofibers for the accurate and selective detection of Cu(II) in water samples. CHEMOSPHERE 2023; 326:138459. [PMID: 36940832 DOI: 10.1016/j.chemosphere.2023.138459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The environment and our health are negatively impacted by heavy metal ions, like Cu(II). The present study developed a green and effective metallochromic sensor that detects copper (Cu(II)) ions in solution and solid state using anthocyanin extract from black eggplant peels embedded in bacterial cellulose nanofibers (BCNF). Cu(II) is quantitatively detected by the sensing method with detection limits between 10-400 ppm and 20-300 ppm in solution and solid state, respectively. In the solution state, we depicted a sensor for Cu(II) ions in aqueous matrices in the pH range from 3.0 to 11.0, with the capability to produce a visual color change from brown to light blue and dark blue depending on the Cu(II) concentration. Additionally, BCNF-ANT film can act as a sensor for Cu(II) ions in the pH range of 4.0-8.0. Neutral pH was selected from the standpoint of high selectivity. It was found that visible color changed when Cu(II) concentration was increased. Bacterial cellulose nanofibers modified with anthocyanin were characterized with ATR-FTIR and FESEM. Various metal ions, including Pb2+, Co2+, Zn2+, Ni2+, Al3+, Ba2+, Hg2+, Mg2+, and Na+, were used to challenge the sensor to determine its selectivity. Anthocyanin solution and BCNF-ANT sheet were employed in the actual tap water sample successfully. The results also clarified that the various foreign ions did not significantly interfere with Cu(II) ions detection at optimum conditions. Compared to previously developed sensors, no electronic components, trained personnel, or sophisticated equipment were needed to apply the colorimetric sensor developed in this research. Cu(II) contamination in food matrices and water can be monitored on-site easily.
Collapse
Affiliation(s)
- Pegah Parizadeh
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran.
| | - Fatemeh S Mohseni-Shahri
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran
| |
Collapse
|
17
|
Kadokawa JI. Hydrogelation from Self-Assembled and Scaled-Down Chitin Nanofibers by the Modification of Highly Polar Substituents. Gels 2023; 9:432. [PMID: 37367103 DOI: 10.3390/gels9060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Chitin nanofibers (ChNFs) with a bundle structure were fabricated via regenerative self-assembly at the nanoscale from a chitin ion gel with an ionic liquid using methanol. Furthermore, the bundles were disentangled by partial deacetylation under alkaline conditions, followed by cationization and electrostatic repulsion in aqueous acetic acid to obtain thinner nanofibers called scaled-down ChNFs. This review presents a method for hydrogelation from self-assembled and scaled-down ChNFs by modifying the highly polar substituents on ChNFs. The modification was carried out by the reaction of amino groups on ChNFs, which were generated by partial deacetylation, with reactive substituent candidates such as poly(2-oxazoline)s with electrophilic living propagating ends and mono- and oligosaccharides with hemiacetallic reducing ends. The substituents contributed to the formation of network structures from ChNFs in highly polar dispersed media, such as water, to produce hydrogels. Moreover, after the modification of the maltooligosaccharide primers on ChNFs, glucan phosphorylase-catalyzed enzymatic polymerization was performed from the primer chain ends to elongate the amylosic graft chains on ChNFs. The amylosic graft chains formed double helices between ChNFs, which acted as physical crosslinking points to construct network structures, giving rise to hydrogels.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
18
|
Pathak R, Punetha VD, Bhatt S, Punetha M. Multifunctional role of carbon dot-based polymer nanocomposites in biomedical applications: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:6419-6443. [PMID: 37065681 PMCID: PMC10044123 DOI: 10.1007/s10853-023-08408-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/29/2023]
Abstract
Carbon-based 0D materials have shown tremendous potential in the development of biomedical applications of the next generation. The astounding results are primarily motivated by their distinctive nanoarchitecture and unique properties. Integrating these properties of 0D carbon nanomaterials into various polymer systems has orchestrated exceptional potential for their use in the development of sustainable and cutting-edge biomedical applications such as biosensors, bioimaging, biomimetic implants and many more. Specifically, carbon dots (CDs) have gained much attention in the development of biomedical devices due to their optoelectronic properties and scope of band manipulation upon surface revamping. The role of CDs in reinforcing various polymeric systems has been reviewed along with discussing unifying concepts of their mechanistic aspects. The study also discussed CDs optical properties via the quantum confinement effect and band gap transition which is further useful in various biomedical application studies.
Collapse
Affiliation(s)
- Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, GETCO, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, GETCO, Kosamba-Surat, Gujarat 394125 India
| | - Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, GETCO, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, GETCO, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
19
|
Aguado RJ, Mazega A, Fiol N, Tarrés Q, Mutjé P, Delgado-Aguilar M. Durable Nanocellulose-Stabilized Emulsions of Dithizone/Chloroform in Water for Hg 2+ Detection: A Novel Approach for a Classical Problem. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12580-12589. [PMID: 36821826 PMCID: PMC9999351 DOI: 10.1021/acsami.2c22713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The use of dithizone (DTZ) for colorimetric heavy-metal detection is approximately one century old. However, its pending stability issues and the need for simple indicators justify further research. Using cellulose nanofibers, we attained DTZ-containing emulsions with high stability. These emulsions had water (at least 95 wt %) and acetic acid (1-8 mL/L) conforming the continuous phase, while dispersed droplets of diameter <1 μm contained chloroform-solvated DTZ (3 wt %). The solvation cluster was computed by molecular dynamics simulations, suggesting that chloroform slightly reduces the dihedral angle between the two sides of the thiocarbazone chain. Nanocellulose concentrations over 0.2 wt % sufficed to obtain macroscopically homogeneous mixtures with no phase separation. Furthermore, the rate of degradation of DTZ in the nanocellulose-stabilized emulsion did not differ significantly from a DTZ/chloroform solution, outperforming DTZ/toluene and DTZ/acetonitrile. Not only is the emulsion readily and immediately responsive to mercury(II), but it also decreases interferences from other ions and from natural samples. Unexpectedly, neither lead(II) nor cadmium(II) triggered a visual response at trace concentrations. The limit of detection of these emulsions is 15 μM or 3 mg/L, exceeding WHO limits for mercury(II) in drinking water, but they could be effective at raising alarms.
Collapse
Affiliation(s)
- Roberto J. Aguado
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
- Department
of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - André Mazega
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
- Department
of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Núria Fiol
- Department
of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Quim Tarrés
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
- Department
of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Pere Mutjé
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
- Department
of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS
Research Group, University of Girona, C/ Maria Aurèlia Capmany,
61, 17003 Girona, Spain
- Department
of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
20
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
21
|
Crespo-Cuevas V, Ferguson VL, Vernerey F. Poroviscoelasto-plasticity of agarose-based hydrogels. SOFT MATTER 2023; 19:790-806. [PMID: 36625244 DOI: 10.1039/d2sm01356h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Agarose gels are excellent candidates for tissue engineering as they are tunable, viscoelastic, and show a pronounced strain-stiffening response. These characteristics make them ideal to create in vitro environments to grow cells and develop tissues. As in many other biopolymers, viscoelasticity and poroelasticity coexist as time-dependent behaviors in agarose gels. While the viscoelastic behavior of these hydrogels has been considered using both phenomenological and continuum models, there remains a lack of connection between the underlying physics and the macroscopic material response. Through a finite element analysis and complimentary experiments, we evaluated the complex time-dependent mechanical response of agarose gels in various conditions. We then conceptualized these gels as a dynamic network where the global dissociation/association rate of intermolecular bonds is described as a combination of a fast rate native to double helices forming between aligned agarose molecules and a slow rate of the agarose molecules present in the clusters. Using the foundation of the transient network theory, we developed a physics-based constitutive model that accurately describes agarose behavior. Integrating experimental results and model prediction, we demonstrated that the fast dissociation/association rate follows a nonlinear force-dependent response, whose exponential evolution agrees with Eyring's model based on the transition state theory. Overall, our results establish a more accurate understanding of the time-dependent mechanics of agarose gels and provide a model that can inform design of a variety of biopolymers with a similar network topology.
Collapse
Affiliation(s)
- Victor Crespo-Cuevas
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Franck Vernerey
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
22
|
Lee S, Hao LT, Park J, Oh DX, Hwang DS. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203325. [PMID: 35639091 DOI: 10.1002/adma.202203325] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanochitin and nanochitosan (with random-copolymer-based multiscale architectures of glucosamine and N-acetylglucosamine units) have recently attracted immense attention for the development of green, sustainable, and advanced functional materials. Nanochitin and nanochitosan are multiscale materials from small oligomers, rod-shaped nanocrystals, longer nanofibers, to hierarchical assemblies of nanofibers. Various physical properties of chitin and chitosan depend on their molecular- and nanostructures; translational research has utilized them for a wide range of applications (biomedical, industrial, environmental, and so on). Instead of reviewing the entire extensive literature on chitin and chitosan, here, recent developments in multiscale-dependent material properties and their applications are highlighted; immune, medical, reinforcing, adhesive, green electrochemical materials, biological scaffolds, and sustainable food packaging are discussed considering the size, shape, and assembly of chitin nanostructures. In summary, new perspectives for the development of sustainable advanced functional materials based on nanochitin and nanochitosan by understanding and engineering their multiscale properties are described.
Collapse
Affiliation(s)
- Suyoung Lee
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeyoung Park
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| |
Collapse
|
23
|
Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203193. [PMID: 35737931 DOI: 10.1002/adma.202203193] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the electronics industry and proliferation of electronic materials and telecommunications technologies has led to the release of a massive amount of untreated electronic waste (e-waste) into the environment. Consequently, catastrophic environmental damage at the microbiome level and serious human health diseases threaten the natural fate of the planet. Currently, the demand for wearable electronics for applications in personalized medicine, electronic skins (e-skins), and health monitoring is substantial and growing. Therefore, "green" characteristics such as biodegradability, self-healing, and biocompatibility ensure the future application of wearable electronics and e-skins in biomedical engineering and bioanalytical sciences. Leveraging the biodegradability, sustainability, and biocompatibility of natural materials will dramatically influence the fabrication of environmentally friendly e-skins and wearable electronics. Here, the molecular and structural characteristics of biological skins and artificial e-skins are discussed. The focus then turns to the biodegradable materials, including natural and synthetic-polymer-based materials, and their recent applications in the development of biodegradable e-skin in wearable sensors, robotics, and human-machine interfaces (HMIs). Finally, the main challenges and outlook regarding the preparation and application of biodegradable e-skins are critically discussed in a near-future scenario, which is expected to lead to the next generation of biodegradable e-skins.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
24
|
Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 2023; 299:120142. [PMID: 36876773 DOI: 10.1016/j.carbpol.2022.120142] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Collapse
|
25
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
26
|
Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers (Basel) 2022; 14:polym14193989. [PMID: 36235937 PMCID: PMC9571330 DOI: 10.3390/polym14193989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Crustacean shells are a sustainable source of chitin. Extracting chitin from crustacean shells is ongoing research, much of which is devoted to devising a sustainable process that yields high-quality chitin with minimal waste. Chemical and biological methods have been used extensively for this purpose; more recently, methods based on ionic liquids and deep eutectic solvents have been explored. Extracted chitin can be converted into chitosan or nanochitin. Once chitin is obtained and modified into the desired form, it can be used in a wide array of applications, including as a filler material, in adsorbents, and as a component in biomaterials, among others. Describing the extraction of chitin, synthesis of chitosan and nanochitin, and applications of these materials is the aim of this review. The first section of this review summarizes and compares common chitin extraction methods, highlighting the benefits and shortcomings of each, followed by descriptions of methods to convert chitin into chitosan and nanochitin. The second section of this review discusses some of the wide range of applications of chitin and its derivatives.
Collapse
|
27
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
28
|
Jeevanandam J, Pan S, Rodrigues J, Elkodous MA, Danquah MK. Medical applications of biopolymer nanofibers. Biomater Sci 2022; 10:4107-4118. [PMID: 35788587 DOI: 10.1039/d2bm00701k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A wide array of biomedical applications, extending from the fabrication of implant materials to targeted drug delivery, can be attributed to polymers. The utilization of chemical monomers to form polymers, such as polypropylene, polystyrene, and polyethylene, can provide high mechanical stability to them and they can be utilized for diverse electronic or thermal applications. However, certain chemical-based synthetic polymers are toxic to humans, animals, plants, and microbial cells. Thus, biopolymers have been introduced as an alternative to make them utilizable for biomedical applications. Even though biopolymers possess beneficial biomedical applications, they are not stable in biological fluids and exhibit toxicity in certain cases. Recent advances in nanotechnology have expanded its applicational significance in various domains, especially in the evolution of biopolymers to transform them into nanoparticles for numerous biomedical applications. In particular, biopolymers are fabricated as nanofibers to enhance their biological properties and to be utilized for exclusive biomedical applications. The aim of this review is to present an overview of various biopolymer nanofibers and their distinct synthesis approaches. In addition, the medical applications of biopolymer nanofibers, including antimicrobial agents, drug delivery systems, biosensor production, tissue engineering, and implant fabrication, are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - João Rodrigues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza 16453, Egypt
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403, USA
| |
Collapse
|
29
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
30
|
Su W, Zhang M, Wei W, Wang H, Zhang W, Li Z, Tan M, Chen Z. Microfluidics-assisted electrospinning of aligned nanofibers for modeling intestine barriers. PeerJ 2022; 10:e13513. [PMID: 35694381 PMCID: PMC9186328 DOI: 10.7717/peerj.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/08/2022] [Indexed: 01/17/2023] Open
Abstract
During electrospinning, the fibers deposited on the collector are usually randomly oriented in a disordered form. Researchers hope to generate periodic structures to expand the application of electrospinning, including improving the sensing properties of electronic and photonic devices, improving the mechanical properties of solid polymer composites and directional growth of human tissues. Here, we propose a technique to control the preparation of aligned foodborne nanofibers by placing dielectric polymers on microfluidic devices, which does not require the use of metal collectors. This study was conducted by introduced PEDOT:PSS polymer as a ground collector to prepare aligned foodborne nanofibers directly on the microfluidic platform. The fluidity of the electrolytic polymer collector makes it possible to shape the grounding collector according to the shape of the microcavity, thus forming a space adjustable nanofiber membrane with a controllable body. The simplicity of dismantling the collector also enables it extremely simple to obtain a complete electrospun fiber membrane without any additional steps. In addition, nanofibers can be easily stacked into a multi-layer structure with controllable hierarchical structures. The Caco-2 cells that grow on the device formed a compact intestinal epithelial layer that continuously expresses the tightly bound protein ZO-1. This intestinal barrier, which selectively filters small molecules, has a higher level of TEER, reproducing intestinal filtration functions similar to those of in vivo models. This method provides new opportunities for the design and manufacture of various tissue scaffolds, photonic and electronic sensors.
Collapse
Affiliation(s)
- Wentao Su
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China,Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Miao Zhang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China,Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wei Zhang
- Research Center for Clinical Pharmacology, Southern Medical University, Guangzhou, China
| | | | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China,Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China,Research Center for Clinical Pharmacology, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Wysokowski M, Nowacki K, Jaworski F, Niemczak M, Bartczak P, Sandomierski M, Piasecki A, Galiński M, Jesionowski T. Ionic liquid-assisted synthesis of chitin-ethylene glycol hydrogels as electrolyte membranes for sustainable electrochemical capacitors. Sci Rep 2022; 12:8861. [PMID: 35614197 PMCID: PMC9132938 DOI: 10.1038/s41598-022-12931-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
A novel chitin–ethylene glycol hybrid gel was prepared as a hydrogel electrolyte for electrical double-layer capacitors (EDLCs) using 1-butyl-3-methylimidazolium acetate [Bmim][Ac] as a chitin solvent. Examination of the morphology and topography of the chitin–EG membrane showed a homogeneous and smooth surface, while the thickness of the membrane obtained was 27 µm. The electrochemical performance of the chitin–EG hydrogel electrolyte was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. The specific capacitance value of the EDLC with chitin–EG hydrogel electrolyte was found to be 109 F g−1 in a potential range from 0 to 0.8 V. The tested hydrogel material was electrochemically stable and did not decompose even after 10,000 GCD cycles. Additionally, the EDLC test cell with chitin–EG hydrogel as electrolyte exhibited superior capacitance retention after 10,000 charge/discharge cycles compared with a commercial glass fiber membrane.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| | - Krzysztof Nowacki
- Institute of Chemistry and Applied Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Filip Jaworski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Przemysław Bartczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Piotrowo 3, 61138, Poznan, Poland
| | - Maciej Galiński
- Institute of Chemistry and Applied Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| |
Collapse
|
32
|
Wu XX, Lu CY, Huang TY. Creating hot spots within air for better sensitivity through design of oblique-wire-bundle metamaterial perfect absorbers. Sci Rep 2022; 12:3557. [PMID: 35241730 PMCID: PMC8894341 DOI: 10.1038/s41598-022-07338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Better sensitivity of a biosensor could boost up the detection limit of analytes, thus a must in the fields of bio-sensing and bio-detection. To further enhance the sensitivity of a biosensor, in this work, we design an oblique-flat-sheet metamaterial perfect absorber (MPA) to concentrate the hot spots within air between the oblique flat sheet and the continuous ground metal, thus enabling fully interaction between analytes and hot spots. The corresponding field distributions in simulation corroborated our assumption and its sensitivity could be up to 1049 nm/RIU. Then, we fabricated the sample by e-beam lithography process for a seed layer and simply tilting the sample during deposition to obtain oblique flat sheets. When considering the stochastic nature of the deposited multiple oblique flat sheets, we modified the metallic upper resonator of the MPA from the single oblique-flat-sheet into randomly distributed oblique-wire-bundle (OWB) and in simulation, its sensitivity is boosted up to 3319 nm/RIU. In experiments, the measured sensitivity is 1329 nm/RIU under different concentrations of glucose solutions that is four times larger than the 330 nm/RIU of the planar MPA. The higher sensitivity was attributed to that the OWB MPA could provide hot spots within air not only between OWB and grounded metal but also among wires. Moreover, the OWB could also trap and concentrate the analytes locally.
Collapse
Affiliation(s)
- Xin-Xian Wu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Cheng-Yu Lu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Tsung-Yu Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| |
Collapse
|
33
|
Priyanto A, Hapidin DA, Suciati T, Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Kadokawa JI. Preparation of Composite Materials from Self-Assembled Chitin Nanofibers. Polymers (Basel) 2021; 13:polym13203548. [PMID: 34685305 PMCID: PMC8538764 DOI: 10.3390/polym13203548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Although chitin is a representative abundant polysaccharide, it is mostly unutilized as a material source because of its poor solubility and processability. Certain specific properties, such as biodegradability, biocompatibility, and renewability, make nanofibrillation an efficient approach for providing chitin-based functional nanomaterials. The composition of nanochitins with other polymeric components has been efficiently conducted at the nanoscale to fabricate nanostructured composite materials. Disentanglement of chitin microfibrils in natural sources upon the top-down approach and regeneration from the chitin solutions/gels with appropriate media, such as hexafluoro-2-propanol, LiCl/N, N-dimethylacetamide, and ionic liquids, have, according to the self-assembling bottom-up process, been representatively conducted to fabricate nanochitins. Compared with the former approach, the latter one has emerged only in the last one-and-a-half decade. This short review article presents the preparation of composite materials from the self-assembled chitin nanofibers combined with other polymeric substrates through regenerative processes based on the bottom-up approach.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
35
|
Thangaraj B, Solomon PR, Chuangchote S, Wongyao N, Surareungchai W. Biomass‐derived Carbon Quantum Dots – A Review. Part 1: Preparation and Characterization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baskar Thangaraj
- King Mongkut's University of Technology Thonburi Pilot Plant Development and Training Institute Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| | - Pravin Raj Solomon
- SASTRA-Deemed University School of Chemical and Biotechnology 613 402 Thanjavur Tamil Nadu India
| | - Surawut Chuangchote
- King Mongkut's University of Technology Thonburi Research Center of Advanced Materials for Energy and Environmental Technology 126 Prachauthit Road 10140 Bangmod, Bangkok Thailand
- King Mongkut's University of Technology Thonburi Department of Tool and Materials Engineering Faculty of Engineering 126 Prachauthit Road 10140 Bangmod, Thungkru, Bangkok Thailand
| | - Nutthapon Wongyao
- King Mongkut's University of Technology Thonburi Fuel Cells and Hydrogen Research and Engineering Center Pilot Plant Development and Training Institute 10140 Bangkok Thailand
| | - Werasak Surareungchai
- King Mongkut's University of Technology Thonburi School of Bioresources and Technology Nanoscience & Nanotechnology Graduate Programme Faculty of Science Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| |
Collapse
|
36
|
Preparation of Nanochitin/Polystyrene Composite Particles by Pickering Emulsion Polymerization Using Scaled-Down Chitin Nanofibers. COATINGS 2021. [DOI: 10.3390/coatings11060672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigate the Pickering emulsion polymerization of styrene using scaled-down chitin nanofibers (SD-ChNFs) as stabilizers to produce nanochitin/polystyrene composite particles. Prior to emulsion polymerization, an SD-ChNF aqueous dispersion was prepared by disintegrating bundles of the parent ChNFs with an upper hierarchical scale in aqueous acetic acid through ultrasonication. After styrene was added to the resulting dispersions, the mixtures at the desired weight ratios (SD-ChNFs to styrene = 0.1:1–1.4:1) were ultrasonicated to produce Pickering emulsions. Radical polymerization was then conducted in the presence of potassium persulfate as an initiator in the resulting emulsions to fabricate the composite particles. The results show that their average diameters decreased to a minimum of 84 nm as the weight ratios of SD-ChNFs to styrene increased. The IR and 1H-NMR spectra of the composite particle supported the presence of both chitin and polystyrene in the material.
Collapse
|
37
|
Heidari M, Khomeiri M, Yousefi H, Rafieian M, Kashiri M. Chitin nanofiber-based nanocomposites containing biodegradable polymers for food packaging applications. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
38
|
Zha Y, Lu S, Hu P, Ren H, Liu Z, Gao W, Zhao C, Li Y, Zhou Y. Dual-Modal Immunosensor with Functionalized Gold Nanoparticles for Ultrasensitive Detection of Chloroacetamide Herbicides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6091-6098. [PMID: 33512133 DOI: 10.1021/acsami.0c21760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Convenient and ultrasensitive detection of pesticides is demanded for healthcare and environmental monitoring, which can be realized with a dual-modal strategy. In this paper, based on a biotin-labeled IgG-modified gold nanoparticle (AuNP@IgG-bio) probe, a dual-modal immunosensor was proposed for detecting chloroacetamide herbicides. This platform is relied on the dephosphorylation of ascorbic acid 2-phosphate (AA2P) by alkaline phosphatase (ALP). In addition to this process, ascorbic acid (AA)-triggered deposition of silver on gold nanostars (AuNSs) and the fluorogenic reaction of dehydrogenated AA and o-phenylenediamine (OPD) occur sequentially. Thus, the dual readout of the color change of red-green-blue (RGB) and fluorescence generation in situ induced by crystal growth can be used. The limits of detection (LODs) were as low as 1.20 ng/mL of acetochlor (ATC), 0.89 ng/mL of metolachlor, 1.22 ng/mL of propisochlor, and 0.99 ng/mL of their mixture by a smartphone and 0.44 ng/mL of ATC, 1.59 ng/mL of metolachlor, 2.80 ng/mL of propisochlor, and 0.72 ng/mL of their mixture by a spectrofluorometer. The recoveries from corn were 91.4-105.1% of the colorimetric mode and 92.4-106.2% of the fluorescent mode. Due to its simple observation mode and good performance, this dual-modal immunosensor possesses considerable application prospects.
Collapse
Affiliation(s)
- Yonghong Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Shiying Lu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Pan Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Honglin Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zengshan Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Weihua Gao
- College of Animal Science, Yangtze University, Jingzhou 434023, P. R. China
| | - Chengmin Zhao
- Jingzhou Zhongqiao Biotechnoogy Co., Ltd., Jingzhou 434023, P. R. China
| | - Yansong Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Yu Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
- College of Animal Science, Yangtze University, Jingzhou 434023, P. R. China
| |
Collapse
|
39
|
Das S, Ngashangva L, Goswami P. Carbon Dots: An Emerging Smart Material for Analytical Applications. MICROMACHINES 2021; 12:84. [PMID: 33467583 PMCID: PMC7829846 DOI: 10.3390/mi12010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD's remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD's material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed.
Collapse
Affiliation(s)
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; (S.D.); (L.N.)
| |
Collapse
|
40
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
41
|
Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron 2020; 172:112788. [PMID: 33157407 DOI: 10.1016/j.bios.2020.112788] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
The emergence of the smartphones has brought extensive changes to our lifestyles, from communicating with one another, to shopping and enjoyment of entertainment, and from studying to functioning at the workplace (and in the field). At the same time, this portable device has also provided new possibilities in scientific research and applications. Based on the growing awareness of good health management, researchers have coupled health monitoring to smartphone sensing technologies. Along the way, there have been developed a variety of smartphone-based optical detection platforms for analyzing biological samples, including standalone smartphone units and integrated smartphone sensing systems. In this review, we outline the applications of smartphone-based optical sensors for biosamples. These applications focus mainly on three aspects: Microscopic imaging sensing, colorimetric sensing and luminescence sensing. We also discuss briefly some limitations of the current state of smartphone-based spectroscopy and present prospects of the future applicability of smartphone sensors.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore; Tropical Marine Science Institute, National University of Singapore, S2S Building, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| |
Collapse
|
42
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
43
|
|
44
|
Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron 2020; 168:112450. [PMID: 32877780 DOI: 10.1016/j.bios.2020.112450] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Practical obstacles, such as intricate designs and expensive equipment/materials, in the fabrication of wearable sweat sensors, have limited their feasibility as a personalized healthcare device. Herein, we have fabricated a cellulose-based wearable patch, which further paired with a smartphone-based fluorescence imaging module and a self-developed smartphone app for non-invasive and in situ multi-sensing of sweat biomarkers including glucose, lactate, pH, chloride, and volume. The developed Smart Wearable Sweat Patch (SWSP) sensor comprises highly fluorescent sensing probes embedded in paper substrates, and microfluidic channels consisted of cotton threads to harvest sweat from the skin surface and to transport it to the paper-based sensing probes. The imaging module was fabricated by a 3D printer, equipped with UV-LED lamps and an optical filter to provide the in situ capability of capturing digital images of the sensors via a smartphone. A smartphone app was also designed to quantify the concentration of the biomarkers via a detection algorithm. Additionally, we have recommended an Internet of Things (IoT)-based model for our developed SWSP sensor to promote its potential application for the future. The field studies on human subjects were also conducted to investigate the feasibility of our developed SWSP sensor for the analysis of sweat biomarkers. Our findings convincingly demonstrated the applicability of our developed SWSP sensor as a smart, user-friendly, ultra-low-cost (~0.03 $ per sweat patch), portable, selective, rapid, and non-invasive healthcare monitoring device for immense applications in health personalization, sports performance monitoring, and medical diagnostics.
Collapse
Affiliation(s)
- Sina Ardalan
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Mohammad Hosseinifard
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| | - Maryam Vosough
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|