1
|
Chethan GE, Garkhal J, Sircar S, Malik YPS, Mukherjee R, Sahoo NR, Agarwal RK, De UK. Immunomodulatory potential of β-glucan as supportive treatment in porcine rotavirus enteritis. Vet Immunol Immunopathol 2017; 191:36-43. [PMID: 28895864 DOI: 10.1016/j.vetimm.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 01/26/2023]
Abstract
A non-blinded randomized clinical trial was conducted to assess the immunomodulatory potential of β-glucan (BG) in piglet diarrhoea associated with type A rotavirus infection. A total of 12 rotavirus-infected diarrheic piglets were randomly divided into two groups: wherein six rotavirus-infected piglets were treated with supportive treatment (ST) and other six rotavirus-infected piglets were treated with BG along with ST (ST-BG). Simultaneously, six healthy piglets were also included in the study which served as control. In rotavirus-infected piglets, marked increase of Intestinal Fatty Acid Binding Protein-2 (I-FABP2), nitric oxide (NOx), Interferon-γ (IFN-γ) concentrations and decrease of immunoglobulin G (IgG) were noticed compared to healthy piglets. The faecal consistency and dehydration scores were significantly higher in rotavirus-infected piglets than healthy piglets. The ST-BG treatment progressively reduced the I-FABP2 and increased the IgG concentrations over the time in rotavirus-infected piglets compared to piglets received only ST. A pronounced enhancement of NOx and IFN-γ concentrations was observed initially on day 3 and thereafter the values reduced on day 5 in ST-BG treated piglets in comparison to piglets which received only ST. Additionally, ST-BG treatment significantly reduced faecal consistency and dehydration scores on day 3 compared to ST in rotavirus-infected piglets. These findings point that BG represents a potential additional therapeutic option to improve the health condition and reduce the piglet mortality from rotavirus associated diarrhoea where porcine rotavirus vaccine is not available.
Collapse
Affiliation(s)
- Gollahalli Eregowda Chethan
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Jugal Garkhal
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Shubhankar Sircar
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Yash Pal Singh Malik
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Reena Mukherjee
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Nihar Ranjan Sahoo
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Rajesh Kumar Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ujjwal Kumar De
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch 2017; 469:1093-1105. [PMID: 28488023 DOI: 10.1007/s00424-017-1987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Rotavirus causes severe diarrhea in small children and is typically treated using glucose-containing oral rehydration solutions; however, glucose may have a detrimental impact on these patients, because it increases chloride secretion and presumably water loss. The rotavirus enterotoxin nonstructural protein 4 (NSP4) directly inhibits glucose-mediated sodium absorption. We examined the effects of NSP4 and glucose on sodium and chloride transport in mouse small intestines and Caco-2 cells. Mouse small intestines and Caco-2 cells were incubated with NSP4114-135 in the presence/absence of glucose. Absorption and secretion of sodium and chloride, fluid movement, peak amplitude of intracellular calcium fluorescence, and expression of Ano1 and sodium-glucose cotransporter 1 were assessed. NHE3 activity increased, and chloride secretory activity decreased with age. Net chloride secretion increased, and net sodium absorption decreased in the intestines of 3-week-old mice compared to 8-week-old mice with NSP4. Glucose increased NSP4-stimulated chloride secretion. Glucose increased NSP4-stimulated increase in short-circuit current measurements (I sc) and net chloride secretion. Ano1 cells with siRNA knockdown showed a significant difference in I sc in the presence of NSP4 and glucose without a significant difference in peak calcium fluorescence intracellular when compared to non-silencing (N.S.) cells. The failure of glucose to stimulate significant sodium absorption was likely due to the inhibition of sodium-hydrogen exchange and sodium-glucose cotransport by NSP4. Since glucose enhances intestinal chloride secretion and fails to increase sodium absorption in the presence of NSP4, glucose-based oral rehydration solutions may not be ideal for the management of rotaviral diarrhea.
Collapse
Affiliation(s)
- Liangjie Yin
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Rejeesh Menon
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Reshu Gupta
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Lauren Vaught
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol J 2013; 10:336. [PMID: 24220211 PMCID: PMC3924327 DOI: 10.1186/1743-422x-10-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
Background Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction. Methods A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study. Results Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea. Conclusions These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.
Collapse
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
4
|
Gaunt ER, Zhang Q, Cheung W, Wakelam MJO, Lever AML, Desselberger U. Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms. J Gen Virol 2013; 94:1576-1586. [PMID: 23515026 PMCID: PMC3709634 DOI: 10.1099/vir.0.049635-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses (RVs) cause acute gastroenteritis in infants and young children, and are globally distributed. Within the infected host cell, RVs establish replication complexes in viroplasms (‘viral factories’) to which lipid droplet organelles are recruited. To further understand this recently discovered phenomenon, the lipidomes of RV-infected and uninfected MA104 cells were investigated. Cell lysates were subjected to equilibrium ultracentrifugation through iodixanol gradients. Fourteen different classes of lipids were differentiated by mass spectrometry. The concentrations of virtually all lipids were elevated in RV-infected cells. Fractions of low density (1.11–1.15 g ml−1), in which peaks of the RV dsRNA genome and lipid droplet- and viroplasm-associated proteins were observed, contained increased amounts of lipids typically found concentrated in the cellular organelle lipid droplets, confirming the close interaction of lipid droplets with viroplasms. A decrease in the ratio of the amounts of surface to internal components of lipid droplets upon RV infection suggested that the lipid droplet–viroplasm complexes became enlarged.
Collapse
Affiliation(s)
- Eleanor R Gaunt
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Winsome Cheung
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
5
|
Zambrano JL, Sorondo O, Alcala A, Vizzi E, Diaz Y, Ruiz MC, Michelangeli F, Liprandi F, Ludert JE. Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton. PLoS One 2012; 7:e47612. [PMID: 23082182 PMCID: PMC3474729 DOI: 10.1371/journal.pone.0047612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022] Open
Abstract
Rotavirus infection induces an increase in [Ca2+]cyto, which in turn may affect the distribution of the cytoskeleton proteins in the infected cell. Changes in microfilaments, including the formation of stress fibers, were observed starting at 0.5 h.p.i. using fluorescent phalloidin. Western blot analysis indicated that RhoA is activated between 0.5 and 1 h.p.i. Neither the phosphorylation of RhoA nor the formation of stress fibers were observed in cells infected with virions pre-treated with an anti-VP5* non-neutralizing mAb, suggesting that RhoA activation is stimulated by the interaction of the virus with integrins forming the cell receptor complex. In addition, the structure of the tubulin cytoskeleton was also studied. Alterations of the microtubules were evident starting at 3 h.p.i. and by 7 h.p.i. when microtubules were markedly displaced toward the periphery of the cell cytoplasm. Loading of rotavirus-infected cells with either a Ca2+ chelator (BAPTA) or transfection with siRNAs to silence NSP4, reversed the changes observed in both the microfilaments and microtubules distribution, but not the appearance of stress fibers. These results indicate that alterations in the distribution of actin microfilaments are initiated early during infection by the activation of RhoA, and that latter changes in the Ca2+ homeostasis promoted by NSP4 during infection may be responsible for other alterations in the actin and tubulin cytoskeleton.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
- * E-mail: (JLZ); (JL)
| | - Orlando Sorondo
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
- Escuela de Biología, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Ana Alcala
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Esmeralda Vizzi
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Yuleima Diaz
- University of Bergen Thormøhlensgate 55, Bergen, Norway
| | - Marie Christine Ruiz
- Instituto Venezolano de Investigaciones Científicas (IVIC), CBB. Caracas, Venezuela
| | - Fabian Michelangeli
- Instituto Venezolano de Investigaciones Científicas (IVIC), CBB. Caracas, Venezuela
| | - Ferdinando Liprandi
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Juan E. Ludert
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
- * E-mail: (JLZ); (JL)
| |
Collapse
|
6
|
Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides. JOURNAL OF AMINO ACIDS 2012; 2012:575180. [PMID: 22500212 PMCID: PMC3303745 DOI: 10.1155/2012/575180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/16/2011] [Indexed: 01/19/2023]
Abstract
Rotavirus (RV) NSP4, the first described viral enterotoxin, is a multifunctional glycoprotein that contributes to viral pathogenesis, morphogenesis, and replication. NSP4 binds both termini of caveolin-1 and is isolated from caveolae fractions that are rich in anionic phospholipids and cholesterol. These interactions indicate that cholesterol/caveolin-1 plays a role in NSP4 transport to the cell surface, which is essential to its enterotoxic activity. Synthetic peptides were utilized to identify target(s) of intervention by exploring the NSP4-caveolin-1 and -cholesterol interactions. NSP4112–140 that overlaps the caveolin-1 binding domain and a cholesterol recognition amino acid consensus (CRAC) motif and both termini of caveolin-1 (N-caveolin-12–20, 19–40 and C-caveolin-1161–180) were synthesized. Direct fluorescence-binding assays were employed to determine binding affinities of the NSP4-caveolin-1 peptides and cholesterol. Intracellular cholesterol alteration revealed a redistribution of NSP4 and disintegration of viroplasms. These data further imply interruption of NSP4112–140-N-caveolin-119–40 and cholesterol interactions may block NSP4 intracellular transport, hence enterotoxicity.
Collapse
|
7
|
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, Schroeder ME, Schroeder F, Ball JM. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol J 2011; 8:278. [PMID: 21645398 PMCID: PMC3129587 DOI: 10.1186/1743-422x-8-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
Collapse
Affiliation(s)
- Thomas F Gibbons
- Department of Pathobiology Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Studies on the molecular biology of rotavirus, the major etiologic agent of gastroenteritis in infants and young children worldwide, have so far led to a large but not exhaustive knowledge of the mechanisms by which rotavirus replicates in the host cell. While the role of rotavirus structural proteins in the replication cycle is well defined, the functions of nonstructural proteins remain poorly understood. Recent experiments of RNA interference have clearly indicated the phases of the replication cycle for which the nonstructural proteins are essentially required. In addition, biochemical studies of their interactions with other viral proteins, together with immunofluorescence experiments on cells expressing recombinant proteins in different combinations, are providing new indications of their functions. This article contains a critical collection of the most recent achievements and the current hypotheses about the roles of nonstructural proteins in virus replication.
Collapse
Affiliation(s)
- Francesca Arnoldi
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
9
|
Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A 2008; 105:8811-8. [PMID: 18587047 DOI: 10.1073/pnas.0803934105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rotavirus NSP4 is a viral enterotoxin capable of causing diarrhea in neonatal mice. This process is initiated by the binding of extracellular NSP4 to target molecule(s) on the cell surface that triggers a signaling cascade leading to diarrhea. We now report that the integrins alpha1beta1 and alpha2beta1 are receptors for NSP4. NSP4 specifically binds to the alpha1 and alpha2 I domains with apparent K(d) = 1-2.7 muM. Binding is mediated by the I domain metal ion-dependent adhesion site motif, requires Mg(2+) or Mn(2+), is abolished with EDTA, and an NSP4 point mutant, E(120)A, fails to bind alpha2 integrin I domain. NSP4 has two distinct integrin interaction domains. NSP4 amino acids 114-130 are essential for binding to the I domain, and NSP4 peptide 114-135 blocks binding of the natural ligand, collagen I, to integrin alpha2. NSP4 amino acids 131-140 are not associated with the initial binding to the I domain, but elicit signaling that leads to the spreading of attached C2C12-alpha2 cells, mouse myoblast cells stably expressing the human alpha2 integrin. NSP4 colocalizes with integrin alpha2 on the basolateral surface of rotavirus-infected polarized intestinal epithelial (Caco-2) cells as well as surrounding noninfected cells. NSP4 mutants that fail to bind or signal through integrin alpha2 were attenuated in diarrhea induction in neonatal mice. These results indicate that NSP4 interaction with integrin alpha1 and alpha2 is an important component of enterotoxin function and rotavirus pathogenesis, further distinguishing this viral virulence factor from other microbial enterotoxins.
Collapse
|
10
|
Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J Virol 2008; 82:5815-24. [PMID: 18400845 DOI: 10.1128/jvi.02719-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rotavirus infection of cells in culture induces major changes in Ca(2+) homeostasis. These changes include increases in plasma membrane Ca(2+) permeability, cytosolic Ca(2+) concentration, and total cell Ca(2+) content and a reduction in the amount of Ca(2+) released from intracellular pools sensitive to agonists. Various lines of evidence suggest that the nonstructural glycoprotein NSP4 and possibly the major outer capsid glycoprotein VP7 are responsible for these effects. In order to evaluate the functional roles of NSP4 and other rotavirus proteins in the changes in Ca(2+) homeostasis observed in infected cells, the expressions of NSP4, VP7, and VP4 were silenced using the short interfering RNA (siRNA) technique. The transfection of specific siRNAs resulted in a strong and specific reduction of the expression of NSP4, VP7, and VP4 and decreased the yield of new viral progeny by more than 90%. Using fura-2 loaded cells, we observed that knocking down the expression of NSP4 totally prevented the increase in Ca(2+) permeability of the plasma membrane and cytosolic Ca(2+) concentration measured in infected cells. A reduction in the levels of VP7 expression partially reduced the effect of infection on plasma membrane Ca(2+) permeability and Ca(2+) pools released by agonist (ATP). In addition, the increase of total Ca(2+) content (as measured by (45)Ca(2+) uptake) observed in infected cells was reduced to the levels in mock-infected cells when NSP4 and VP7 were silenced. Finally, when the expression of VP4 was silenced, none of the disturbances of Ca(2+) homeostasis caused by rotaviruses in infected cells were affected. These data altogether indicate that NSP4 is the main protein responsible for the changes in Ca(2+) homeostasis observed in rotavirus-infected cultured cells. Nevertheless, VP7 may contribute to these effects.
Collapse
|
11
|
Rodríguez-Díaz J, Rubilar-Abreu E, Spitzner M, Hedlund KO, Liprandi F, Svensson L. Design of a multiplex nested PCR for genotyping of the NSP4 from group A rotavirus. J Virol Methods 2008; 149:240-5. [PMID: 18353449 DOI: 10.1016/j.jviromet.2008.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/19/2022]
Abstract
A novel PCR method was developed to discriminate amongst genotypes A-C of the rotavirus non-structural protein 4 (NSP4). Genotype-specific primers were designed that correctly identified the NSP4 genotype when evaluated as a multiplex PCR with cell culture adapted rotavirus strains. Rotavirus strains B223 SGIG6P6[1], NCDV SGIG6P6[1] and SA11 SGIG3P5B[2] were used as control for NSP4 genotype A; A34 SGIG5P14[23], Gottfried SGIIG4P2B[6] and Wa SGIIG1P1A[8] for NSP4 genotype B; RRV SGIG3P5B[3] for NSP4 genotype C. Subsequently, the same set of specific primers was used to genotype a set of 77 Swedish clinical samples. The results showed that all human clinical samples analyzed belong to the NSP4 genotype B and the VP6 subgroup II.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Division of Molecular Virology, School of Medicine, Linköping University, Linköping, Sweden. ,
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has been intensely investigated since its discovery in 1983 as the cause of acquired immune deficiency syndrome (AIDS). With relatively few proteins made by the virus, it is able to accomplish many tasks, with each protein serving multiple functions. The Envelope glycoprotein, composed of the two noncovalently linked subunits, SU (surface glycoprotein) and TM (transmembrane glycoprotein) is largely responsible for host cell recognition and entry respectively. While the roles of the N-terminal residues of TM is well established as a fusion pore and anchor for Env into cell membranes, the role of the C-terminus of the protein is not well understood and is fiercely debated. This review gathers information on TM in an attempt to shed some light on the functional regions of this protein.
Collapse
Affiliation(s)
- Joshua M Costin
- Biotechnology Research Group, Department of Biology, Florida Gulf Coast University, 10501 FGCU Blvd, S., Fort Myers, Fl 33965, USA.
| |
Collapse
|
13
|
Borghan MA, Mori Y, El-Mahmoudy AB, Ito N, Sugiyama M, Takewaki T, Minamoto N. Induction of nitric oxide synthase by rotavirus enterotoxin NSP4: implication for rotavirus pathogenicity. J Gen Virol 2007; 88:2064-2072. [PMID: 17554041 DOI: 10.1099/vir.0.82618-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rotavirus non-structural protein (NSP) 4 can induce aqueous secretion in the gastrointestinal tract of neonatal mice through activation of an age- and Ca(2+)-dependent plasma membrane anion permeability. Accumulating evidence suggests that nitric oxide (NO) plays a role in the modulation of aqueous secretion and the barrier function of intestinal cells. This study investigated transcriptional changes in inducible NO synthase (iNOS), an enzyme responsible for NO production, after rotavirus infection in mice and after treatment of intestinal cells with NSP4. Diarrhoea was observed in 5-day-old CD-1 mice from days 1 to 3 after inoculation with 10(7) focus-forming units of different rotavirus strains. Ileal iNOS mRNA expression was induced as early as 6 h post-inoculation, before the onset of clinical diarrhoea in infected mice, and was upregulated during the course of rotavirus-induced diarrhoea. Ex vivo treatment of ilea excised from CD-1 suckling mice with NSP4 resulted in upregulation of ileal iNOS mRNA expression within 4 h. Furthermore, NSP4 was able to induce iNOS expression and NO production in murine peritoneal macrophages and RAW264.7 cells. The specificity of NSP4 inducibility was confirmed by the inhibitory effect of anti-NSP4 serum. Using a series of truncated NSP4s, the domain responsible for iNOS induction in macrophages was mapped to the reported enterotoxin domain, aa 109-135. Thus, rotavirus infection induces ileal iNOS expression in vivo and rotavirus NSP4 also induces iNOS expression in the ileum and macrophages. Together, these findings suggest that NO plays a role in rotavirus-induced diarrhoea.
Collapse
Affiliation(s)
- Mohamed A Borghan
- Laboratory of Zoonotic Diseases, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshio Mori
- Research Institute for Microbial Diseases, Osaka University, Japan
| | - Abu-Baker El-Mahmoudy
- Laboratory of Physiology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tadashi Takewaki
- Laboratory of Physiology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Nobuyuki Minamoto
- Laboratory of Zoonotic Diseases, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
14
|
Storey SM, Gibbons TF, Williams CV, Parr RD, Schroeder F, Ball JM. Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique. J Virol 2007; 81:5472-83. [PMID: 17376898 PMCID: PMC1900257 DOI: 10.1128/jvi.01862-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 03/16/2007] [Indexed: 12/12/2022] Open
Abstract
Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Pathobiology, TVMC, Texas A and M University, TAMU 4467, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mir KD, Parr RD, Schroeder F, Ball JM. Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res 2007; 126:106-15. [PMID: 17379346 PMCID: PMC1978065 DOI: 10.1016/j.virusres.2007.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/29/2007] [Accepted: 02/05/2007] [Indexed: 11/25/2022]
Abstract
Rotavirus NSP4 plays multiple roles in viral pathogenesis, morphogenesis and replication. We previously reported a direct interaction between full-length NSP4 and the enterotoxic peptide composed of NSP4 residues 114-135 with full-length caveolin-1, the structural protein of caveolae. Caveolin-1 forms a hairpin loop in the cytoplasmic leaflet of plasma membrane caveolae. This unique orientation results in both termini of caveolin-1 exposed to the cytoplasm. The goal of this study was to map the caveolin-1 residues that interact with NSP4 to obtain a more complete picture of this binding event. Utilizing reverse yeast two-hybrid analyses and direct peptide binding assays, the NSP4 binding site was localized to caveolin-1 residues 2-22 and 161-178, at the amino- and carboxyl-termini, respectively. However, NSP4 binding to one of the termini was sufficient for the interaction.
Collapse
Affiliation(s)
- Kiran D. Mir
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
| | - Rebecca D. Parr
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
| | - Friedhelm Schroeder
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Physiology and Pharmacology, College Station, TX 77843
| | - Judith M. Ball
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
- *corresponding author Phone: (979) 845-9710, Fax: (979) 845-9231, , Texas A&M University, TVMC, TAMU 4467, College Station, TX 77843
| |
Collapse
|
16
|
Fischer T, Lu L, Haigler HT, Langen R. Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes. J Biol Chem 2007; 282:9996-10004. [PMID: 17267400 DOI: 10.1074/jbc.m611180200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of membrane curvature plays an important role in many membrane trafficking and fusion events. Recent studies have begun to identify some of the proteins involved in controlling and sensing the curvature of cellular membranes. A mechanistic understanding of these processes is limited, however, as structural information for the membrane-bound forms of these proteins is scarce. Here, we employed a combination of biochemical and biophysical approaches to study the interaction of annexin B12 with membranes of different curvatures. We observed selective and Ca(2+)-independent binding of annexin B12 to negatively charged vesicles that were either highly curved or that contained lipids with negative intrinsic curvature. This novel curvature-dependent membrane interaction induced major structural rearrangements in the protein and resulted in a backbone fold that was different from that of the well characterized Ca(2+)-dependent membrane-bound form of annexin B12. Following curvature-dependent membrane interaction, the protein retained a predominantly alpha-helical structure but EPR spectroscopy studies of nitroxide side chains placed at selected sites on annexin B12 showed that the protein underwent inside-out refolding that brought previously buried hydrophobic residues into contact with the membrane. These structural changes were reminiscent of those previously observed following Ca(2+)-independent interaction of annexins with membranes at mildly acidic pH, yet they occurred at neutral pH in the presence of curved membranes. The present data demonstrate that annexin B12 is a sensor of membrane curvature and that membrane curvature can trigger large scale conformational changes. We speculate that membrane curvature could be a physiological signal that induces the previously reported Ca(2+)-independent membrane interaction of annexins in vivo.
Collapse
Affiliation(s)
- Torsten Fischer
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033
| | - Lucy Lu
- Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Harry T Haigler
- Department of Physiology and Biophysics, University of California, Irvine, California 92697.
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
17
|
McIntosh AL, Atshaves BP, Huang H, Gallegos AM, Kier AB, Schroeder F, Xu H, Zhang W, Wang S, Liu JC. Multiphoton laser-scanning microscopy and spatial analysis of dehydroergosterol distributions on plasma membrane of living cells. Methods Mol Biol 2007; 398:85-105. [PMID: 18214376 DOI: 10.1007/978-1-59745-513-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiphoton laser-scanning microscopy (MPLSM) imaging in combination with advanced image analysis techniques provides unique opportunities to visualize the arrangement of cholesterol in the plasma membrane (PM) of living cells. MPLSM makes possible the use of a naturally occurring sterol, dehydroergosterol (DHE), for observing sterol-enriched areas of the PM. Pure DHE has properties similar to cholesterol as observed in model and cellular membranes but with a conjugated double-bond system that fluoresces at ultraviolet wavelengths. MPLSM enables the excitation of DHE at infrared wavelengths that many laser-scanning microscopy systems are able to transmit effectively and that are less harmful to the cell. Thus, with the incorporation of DHE into living cells and the advent of MPLSM, real-time images of the cellular distribution of DHE can be obtained. In juxtaposition, notably the application of newly advanced techniques in image analysis, aids not only the identification and segmentation of sterol-rich regions of the PM of cells, but also the elucidation of the statistical nature of the observed patterns. In studies involving murine L-cell (Larpt-+K-) fibroblasts, DHE is shown to exhibit strong cluster patterns within the PM.
Collapse
Affiliation(s)
- Avery L McIntosh
- Dept. of Physiology and Pharmacology, Texas A & M University, College Station 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lorrot M, Vasseur M. Rotavirus NSP4 114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane. Virol J 2006; 3:94. [PMID: 17101044 PMCID: PMC1657008 DOI: 10.1186/1743-422x-3-94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 11/13/2006] [Indexed: 12/24/2022] Open
Abstract
The direct effect of the rotavirus NSP4114-135 and Norovirus NV464-483 peptides on 36Cl uptake was studied by using villus cell brush border membrane (BBM) isolated from young rabbits. Both peptides inhibited the Cl-/H+ symport activity about equally and partially. The interaction involved one peptide-binding site per carrier unit. Whereas in vitro NSP4114-135 caused nonspecific inhibition of the Cl-/H+ symporter, the situation in vivo is different. Because rotavirus infection in young rabbits accelerated both Cl- influx and Cl- efflux rates across villi BBM without stimulating Cl- transport in crypt BBM, we conclude that the NSP4114-135 peptide, which causes diarrhea in young rodents, did not have any direct, specific effect on either intestinal absorption or secretion of chloride. The lack of direct effect of NSP4 on chloride transport strengthens the hypothesis that NSP4 would trigger signal transduction pathways to enhance net chloride secretion at the onset of rotavirus diarrhea.
Collapse
Affiliation(s)
- Mathie Lorrot
- Hôpital Robert Debré, Service de Pédiatrie Générale, Paris, F-75019, France
| | - Monique Vasseur
- INSERM, UMR 756, Université de Paris XI, Faculté de Pharmacie, Châtenay-Malabry, F-92296, France
| |
Collapse
|
19
|
Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, Ball JM. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 2006; 80:2842-54. [PMID: 16501093 PMCID: PMC1395425 DOI: 10.1128/jvi.80.6.2842-2854.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022] Open
Abstract
Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4(114-135)) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.
Collapse
Affiliation(s)
- Rebecca D Parr
- Department of Pathobiology, Texas A&M University 4467, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
We review here recent advances in our knowledge on trafficking and assembly of rotavirus and rotaviral proteins in intestinal cells. Assembly of rotavirus has been extensively studied in nonpolarized kidney epithelial MA104 cells, where several data indicate that most if not all the steps of rotavirus assembly take place within the endoplasmic reticulum (ER) and that rotavirus is release upon cell lysis. We focus here on data obtained in intestinal cells that argue for another scheme of rotavirus assembly, where the final steps seem to take place outside the ER with an apically polarized release of rotavirus without significant cell lysis. One of the key observations made by different groups is that VP4 and other structural proteins interact substantially with specialized membrane microdomains enriched in cholesterol and sphingolipids termed rafts. In addition, recent data point to the fact that VP4 does not localize within the ER or the Golgi apparatus in infected intestinal cells. The mechanisms by which VP4, a cytosolic protein, may be targeted to the apical membrane in these cells and assembles with the other structural proteins are discussed. The identification of cellular proteins such as Hsp70, flotillin, rab5, PRA1 and cytoskeletal components that interact with VP4 may help to define an atypical polarized trafficking pathway to the apical membrane of intestinal cells that will be raft-dependent and by-pass the classical exocytic route.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| |
Collapse
|
21
|
Rødland I, Halskau Ø, Martínez A, Holmsen H. alpha-Lactalbumin binding and membrane integrity--effect of charge and degree of unsaturation of glycerophospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:11-20. [PMID: 16271262 DOI: 10.1016/j.bbamem.2005.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 02/04/2023]
Abstract
Several studies have shown that the physical state of the phospholipid membrane has an important role in protein-membrane interactions, involving both electrostatic and hydrophobic forces. We have investigated the influence of the interaction of the calcium-depleted, (apo)-conformation of bovine alpha-lactalbumin (BLA) on the integrity of anionic glycerophospholipid vesicles by leakage experiments using fluorescence spectroscopy. The stability of the membranes was also studied by measuring surface tension/molecular area relationships with phospholipid monolayers. We show that the degree of unsaturation of the acyl chains and the proportion of charged phospholipid species in the membranes made of neutral and acidic glycerophospholipids are determinants for the association of BLA with liposomes and for the impermeability of the bilayer. Particularly, tighter packing counteracted interaction with BLA, while unsaturation-leading to looser packing-promoted interaction and leakage of contents. Equimolar mixtures of neutral and acidic glycerophospholipids were more permeable upon protein binding than pure acidic lipids. The effect of lipid structure on BLA-membrane interaction and bilayer integrity may throw new light on the membrane disrupting mechanism of a conformer of human alpha-lactalbumin (HAMLET) that induces death of tumour cells but not of normal cells.
Collapse
Affiliation(s)
- Ingunn Rødland
- Department of Biomedicine, Section for Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|
22
|
Chenal A, Vernier G, Savarin P, Bushmarina NA, Gèze A, Guillain F, Gillet D, Forge V. Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: a case study of the effects of pH, calcium, lipid membrane curvature and charge. J Mol Biol 2005; 349:890-905. [PMID: 15893324 DOI: 10.1016/j.jmb.2005.04.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/08/2005] [Accepted: 04/18/2005] [Indexed: 11/20/2022]
Abstract
The study of the conformational changes of bovine alpha-lactalbumin, switching from soluble states to membrane-bound states, deepens our knowledge of the behaviour of amphitropic proteins. The binding and the membrane-bound conformations of alpha-lactalbumin are highly sensitive to environmental factors, like calcium and proton concentrations, curvature and charge of the lipid membrane. The interactions between the protein and the membrane result from a combination of hydrophobic and electrostatic interactions and the respective weights of these interactions depend on the physicochemical conditions. As inferred by macroscopic as well as residue-level methods, the conformations of the membrane-bound protein range from native-like to molten globule-like states. However, the regions anchoring the protein to the membrane are similar and restricted to amphiphilic alpha-helices. H/(2)H-exchange experiments also yield residue-level data that constitute comprehensive information providing a new point of view on the thermodynamics of the interactions between the protein and the membrane.
Collapse
Affiliation(s)
- Alexandre Chenal
- Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 5090, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chapter 1 Lipid Rafts and Caveolae Organization. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1569-2558(05)36001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
24
|
Rodríguez-Díaz J, Montava R, García-Díaz A, Buesa J. Humoral immune response to rotavirus NSP4 enterotoxin in Spanish children. J Med Virol 2005; 77:317-22. [PMID: 16121377 DOI: 10.1002/jmv.20450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rotavirus non-structural protein 4 (NSP4) has been shown to play a crucial role in rotavirus-induced diarrhea, acting as a viral enterotoxin. It has also been demonstrated that antibody to NSP4 can reduce the severity of rotavirus-induced diarrhea in newborn mice. Two recombinant baculoviruses, expressing the NSP4 protein from the SA11 and Wa rotavirus strains, genotypes A and B, respectively, were used to produce and purify these glycoproteins, which were applied as antigen in an enzyme-linked immunosorbent assay (ELISA) to test the specific antibody response to NSP4 in human sera. Serum samples from 30 children convalescing from a rotavirus infection, from 54 healthy children under 5-years-old, and from 49 adults were tested to determine the presence of antibodies to the viral enterotoxin and to rotavirus structural proteins. Seventy percent of the sera from rotavirus-infected children showed an IgG antibody response to either one or both NSP4 proteins used in this study, although the response was weak. However, IgG antibodies towards either one or both NSP4 proteins were only detected in 26% of the non-convalescent healthy children and in only 18% of the adults. No serum IgA antibodies towards NSP4 were found in this study. IgG antibody recognition of the NSP4 protein from the SA11 and Wa rotavirus strains was not always heterotypic.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, Hospital Clínico Universitario, University of Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
25
|
Huang H, Schroeder F, Estes MK, McPherson T, Ball JM. Interaction(s) of rotavirus non-structural protein 4 (NSP4) C-terminal peptides with model membranes. Biochem J 2004; 380:723-33. [PMID: 15012630 PMCID: PMC1224213 DOI: 10.1042/bj20031789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 03/09/2004] [Accepted: 03/10/2004] [Indexed: 01/18/2023]
Abstract
Rotavirus is the major cause of dehydrating gastroenteritis in children and young animals. NSP4 (non-structural protein 4), a rotaviral non-structural glycoprotein and a peptide NSP4(114-135) (DKLTTREIEQVELLKRIYDKLT), corresponding to NSP4 amino acids 114-135, induce diarrhoeal disease in a neonatal mouse model and interact with model membranes that mimic caveolae. Correlation of the mechanisms of diarrhoea induction and membrane interactions by NSP4 protein and peptide remain unclear. Several additional NSP4 peptides were synthesized and their interactions with membranes studied by (i) CD, (ii) a filtration-binding assay and (iii) a fluorescent molecule leakage assay. Model membranes that varied in lipid compositions and radius of curvature were utilized to determine the compositional and structural requirements for optimal interaction with the peptides of NSP4. Similar to the intact protein and NSP4(114-135), peptides overlapping residues 114-135 had significantly higher affinities to membranes rich in negatively charged lipids, rich in cholesterol and with a high radius of curvature. In the leakage assay, small and large unilamellar vesicles loaded with the fluorophore/quencher pair 8-aminonaphthalene-1,3,6-trisulphonic acid disodium salt/p -xylene-bis-pyridinium bromide were incubated with the NSP4 peptides and monitored for membrane disruption by lipid reorganization or by pore formation. At a peptide concentration of 15 microM, none of the NSP4 peptides caused leakage. These results confirm that NSP4 interacts with caveolae-like membranes and the alpha-helical region of NSP4(114-135) comprises a membrane interaction domain that does not induce membrane disruption at physiological concentrations.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pharmacology and Physiology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
26
|
Delmas O, Durand-Schneider AM, Cohen J, Colard O, Trugnan G. Spike protein VP4 assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 cells. J Virol 2004; 78:10987-94. [PMID: 15452219 PMCID: PMC521830 DOI: 10.1128/jvi.78.20.10987-10994.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotavirus assembly is a multistep process that requires the successive association of four major structural proteins in three concentric layers. It has been assumed until now that VP4, the most external viral protein that forms the spikes of mature virions, associates with double-layer particles within the endoplasmic reticulum (ER) in conjunction with VP7 and with the help of a nonstructural protein, NSP4. VP7 and NSP4 are two glycosylated proteins. However, we recently described a strong association of VP4 with raft-type membrane microdomains, a result that makes the ER a highly questionable site for the final assembly of rotavirus, since rafts are thought to be absent from this compartment. In this study, we used tunicamycin (TM), a drug known to block the first step of protein N glycosylation, as a tool to dissect rotavirus assembly. We show that, as expected, TM blocks viral protein glycosylation and also decreases virus infectivity. In the meantime, viral particles were blocked as enveloped particles in the ER. Interestingly, TM does not prevent the targeting of VP4 to the cell surface nor its association with raft membranes, whereas the infectivity associated with the raft fractions strongly decreased. VP4 does not colocalize with the ER marker protein disulfide-isomerase even when viral particles were blocked by TM in this compartment. These results strongly support a primary role for raft membranes in rotavirus final assembly and the fact that VP4 assembly with the rest of the particle is an extrareticular event.
Collapse
Affiliation(s)
- Olivier Delmas
- INSERM-UPMC UMR 538, CHU Saint-Antoine, Université Pierre et Marie Curie, 27 Rue Chaligny, 75012 Paris, France
| | | | | | | | | |
Collapse
|
27
|
Delmas O, Gardet A, Chwetzoff S, Breton M, Cohen J, Colard O, Sapin C, Trugnan G. Different ways to reach the top of a cell. Analysis of rotavirus assembly and targeting in human intestinal cells reveals an original raft-dependent, Golgi-independent apical targeting pathway. Virology 2004; 327:157-61. [PMID: 15351202 DOI: 10.1016/j.virol.2004.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 11/11/2003] [Accepted: 06/09/2004] [Indexed: 12/23/2022]
Affiliation(s)
- Olivier Delmas
- INSERM U 538, CHU Saint Antoine, Université Pierre et Marie Curie, 75012 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1670-1673. [DOI: 10.11569/wcjd.v11.i11.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Cuadras MA, Greenberg HB. Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology 2003; 313:308-21. [PMID: 12951042 DOI: 10.1016/s0042-6822(03)00326-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pathway by which rotavirus is released from the cell is poorly understood but recent work has shown that, prior to cell lysis, rotavirus is released almost exclusively from the apical surface of the infected cell. By virtue of their unique biochemical and physical properties, viruses have exploited lipid rafts for host cell entry and/or assembly. Here we characterized the association of rhesus rotavirus (RRV) with lipid rafts during the rotavirus replication cycle. We found that newly synthesized infectious virus associates with rafts in vitro and in vivo. RRV proteins cosegregated with rafts on density gradients. Viral infectivity and genomic dsRNA also cosegregated with the raft fractions. Confocal microscopic analysis of raft and RRV virion proteins demonstrated colocalization within the cell. In addition, cholesterol depletion interfered with the association of RRV particles with rafts and reduced the release of infectious particles from the cell. Furthermore, murine rotavirus associates with lipid rafts in intestinal epithelial cells during a natural infection in vivo. Our results confirm the association of rotavirus infectious particles with rafts during replication in vitro and in vivo and strongly support the conclusion that this virus uses these microdomains for transport to the cell surface during replication.
Collapse
Affiliation(s)
- Mariela A Cuadras
- Department of Microbiology and Immunology, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
30
|
II, 8. Effects of rotavirus infection on the structure and functions of intestinal cells. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0168-7069(03)09015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
II, 7. Interaction of the rotavirus nonstructural glycoprotein NSP4 with viral and cellular components. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0168-7069(03)09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Mori Y, Borgan MA, Ito N, Sugiyama M, Minamoto N. Sequential analysis of nonstructural protein NSP4s derived from Group A avian rotaviruses. Virus Res 2002; 89:145-51. [PMID: 12367757 DOI: 10.1016/s0168-1702(02)00112-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We determined the NSP4 sequences of turkey rotavirus strains Ty-1 and Ty-3 and a chicken rotavirus, strain Ch-1, and compared these sequences with those of a pigeon rotavirus, strain PO-13, and mammalian rotaviruses. The turkey strains and PO-13 were found to be closely related (90-97% homologies). Ch-1 NSP4 was distinctly different from other avian rotavirus NSP4s, with 78-79% homologies. The NSP4 sequences of avian rotaviruses were found to be 6-7 amino acids shorter than those of all mammalian strains and to have considerably low identities (31-37%) with them. Therefore, it seems highly likely that the NSP4 genes of avian rotaviruses are classified into two NSP4 genotypes distinct from those of mammalian rotaviruses. The enterotoxin domain in NSP4 is conserved in terms of its sequential and structural properties despite extremely low homologies in the full lengths of NSP4s in avian and mammalian rotaviruses.
Collapse
Affiliation(s)
- Yoshio Mori
- Department of Veterinary Public Health, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- A Guarino
- Department of Pediatrics, University of Naples, Italy
| | | | | |
Collapse
|