1
|
Barbuti PA, Guardia-Laguarta C, Yun T, Chatila ZK, Flowers X, Wong C, Santos BFR, Larsen SB, Lotti JS, Hattori N, Bradshaw E, Dettmer U, Fanning S, Menon V, Reddy H, Teich AF, Krüger R, Area-Gomez E, Przedborski S. The role of alpha-synuclein in synucleinopathy: Impact on lipid regulation at mitochondria-ER membranes. NPJ Parkinsons Dis 2025; 11:103. [PMID: 40307230 PMCID: PMC12043847 DOI: 10.1038/s41531-025-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
The protein alpha-synuclein (αSyn) plays a pivotal role in the pathogenesis of synucleinopathies, including Parkinson's disease and multiple system atrophy, with growing evidence indicating that lipid dyshomeostasis is a key phenotype in these neurodegenerative disorders. Previously, we identified that αSyn localizes, at least in part, to mitochondria-associated endoplasmic reticulum membranes (MAMs), which are transient functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data reveal region- and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed in multiple system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn regulates phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. These findings support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Cristina Guardia-Laguarta
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Taekyung Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, Spain
| | - Zena K Chatila
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY, USA
| | - Chantel Wong
- Department of Neuroscience, Barnard College of Columbia University, New York, NY, USA
| | - Bruno F R Santos
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Disease Modelling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Simone B Larsen
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - James S Lotti
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Elizabeth Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Hasini Reddy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, Spain
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neuroscience, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Chen L, Banfield DK. Unremodeled GPI-anchored proteins at the plasma membrane trigger aberrant endocytosis. Life Sci Alliance 2025; 8:e202402941. [PMID: 39578075 PMCID: PMC11584325 DOI: 10.26508/lsa.202402941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The plasma membrane has a complex organization that includes the polarized distribution of membrane proteins and lipids. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are ubiquitously expressed in eukaryotes and represent a functionally diverse, extensively remodeled, ER-derived group of proteins critical for the organization and function of the plasma membrane. Little is known about how the transport of incompletely remodeled GPI-APs to the plasma membrane affects cell function. Here, we investigated how failure to remodel mannose 2 (Man2) of the GPI moiety impacted endocytic activity on the plasma membrane. We find that Man2 unremodeled GPI-APs increased membrane disorder and generated a stress response that triggered abnormal ubiquitin- and clathrin-dependent endocytosis. The resulting stress-induced endocytosis disrupted the trafficking repertoire of a subset of plasma membrane proteins, which were redirected, via the multivesicular body, to numerous small vacuoles for degradation. Our findings highlight the critical importance of GPI-AP Man2 remodeling for maintaining the integrity and homeostasis of the plasma membrane.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
| |
Collapse
|
3
|
Guan X, Wang T, Gao Y, Zhai H, Jiang F, Hou Q, Yang X, Wu H, Li LF, Luo Y, Li S, Sun Y, Qiu HJ, Li Y. The CP123L protein of African swine fever virus is a membrane-associated, palmitoylated protein required for viral replication. J Virol 2025; 99:e0144524. [PMID: 39714165 PMCID: PMC11784412 DOI: 10.1128/jvi.01445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and often lethal disease caused by African swine fever virus (ASFV) in pigs. Protein palmitoylation is a prevalent posttranslational lipid modification that can modulate viral replication. In this study, we investigated the palmitoylation of ASFV proteins. The results revealed that the CP123L protein (pCP123L) of ASFV was palmitoylated at the cysteine residue at position 18 (C18). To further elucidate the functional significance of this posttranslational modification, abolishing palmitoylation through a cysteine-to-serine mutation at C18 (C18S) of pCP123L (pCP123L/C18S) or treatment with 2-bromopalmitate (2-BP), a palmitoylation inhibitor, led to altered cytomembrane localization and migration rate of pCP123L. Furthermore, depalmitoylation achieved through 2-BP treatment significantly suppressed ASFV replication and exerted a profound impact on virus budding. Remarkably, blocking pCP123L palmitoylation via the C18S mutation resulted in decreased replication of ASFV. Our study represents the first evidence for the presence of palmitoylation in ASFV proteins and underscores its crucial role in viral replication. IMPORTANCE African swine fever (ASF) poses a significant threat to the global pig industry. The causative agent of ASF is African swine fever virus (ASFV), which encodes more than 165 proteins. Protein palmitoylation, a common posttranslational lipid modification, can modulate viral infection. To date, the ASFV proteins that undergo palmitoylation and their impacts on viral replication remain elusive. In this study, the CP123L protein (pCP123L) of ASFV was identified as a palmitoylated protein, and the cysteine residue at position 18 of pCP123L is responsible for its palmitoylation. Notably, our findings demonstrate that palmitoylation plays significant roles in ASFV protein functions and facilitates viral replication.
Collapse
Affiliation(s)
- Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Yuxuan Gao
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Fengwei Jiang
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Qinghe Hou
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, CAAS Harbin Veterinary Research Institute, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Golysheva EA, Kashnik AS, Baranov DS, Dzuba SA. Nanoclusters of Guest Molecules in Lipid Rafts of a Model Membrane Revealed by Pulsed Dipolar EPR Spectroscopy. J Phys Chem B 2025; 129:650-658. [PMID: 39772603 DOI: 10.1021/acs.jpcb.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules. To extend the possibilities of DEER in the study of molecule clusters, its joint application with the simple two-pulse electron spin echo (2p ESE) method is carried out here. We studied spin-labeled ibuprofen (ibuprofen-SL) diluted in bilayers composed of equimolar mixtures of dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC) phospholipids, with added cholesterol, a system known as a raft-mimicking. The data obtained show that ibuprofen-SL molecules in this system form isolated clusters of about 4 nm in size, containing 6-8 molecules spaced at least 1.3 nm apart. These results indicate the interaction of ibuprofen-SL molecules with lipid rafts, for which the existence of nanoscale substructures at the boundaries of which adsorption of these molecules occurs is suggested.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Sánchez-Sánchez L, Fernández R, Astigarraga E, Barreda-Gómez G, Ganfornina MD. Microarray-Based Methodology for Lipid Profiling, Enzymatic Activity, And Binding Assays in Printed Lipid Raft Membranes from Astrocytes and Neurons. Anal Chem 2025; 97:86-95. [PMID: 39718364 PMCID: PMC11740170 DOI: 10.1021/acs.analchem.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Lipid rafts are liquid-ordered domains in which specific enzymes and receptors are located. These membrane platforms play crucial roles in a variety of signaling pathways. Alterations in the lipid environment, such as those elicited by oxidative stress, can lead to important functional disruptions in membrane proteins. Cell membrane microarrays have emerged in the past decade as a powerful methodology for the study of both lipids and membrane proteins at large scales. Based on that technology and the importance of liquid-ordered subdomains, we have developed a new printed lipid raft technology with a preserved native protein structure and lipid environment. To validate this technology and evaluate its potential for different aims, raft membrane microarrays (RMMAs) containing two different cell types (astrocytes and neurons) and three different conditions (astrocytes in control situation, metabolic stress, and oxidative stress) were developed. To study differences in lipid profiles between raft domains, the MALDI-MS assay was performed on RMMAs. To evaluate the preservation of native protein activities (enzymatic activity and ligand binding) in the printed raft domains, differences in NADH oxidoreductase, GAPDH, cholinesterase activities, and sigma-1 and sigma-2 binding assays were performed. We demonstrate the performance of this new microarray technology, adapted to membrane subdomains, as valid to explore changes in lipid composition and protein activities in raft domains from brain cell lines under different stress conditions relevant for neuropathology.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- IMG
Pharma Biotech S.L, Zamudio 48170, Spain
- Instituto
de Biomedicina y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid 47003, Spain
| | | | | | | | - María Dolores Ganfornina
- Instituto
de Biomedicina y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid 47003, Spain
| |
Collapse
|
6
|
Li Y, Uhelski ML, North RY, Farson LB, Bankston CB, Roland GH, Fan DH, Sheffield KN, Jia A, Orlando D, Heles M, Yaksh TL, Miller YI, Kosten TA, Dougherty PM. ApoA-I binding protein (AIBP) regulates transient receptor potential vanilloid 1 (TRPV1) activity in rat dorsal root ganglion neurons by selective disruption of toll-like receptor 4 (TLR4)-lipid rafts. Brain Behav Immun 2025; 123:644-655. [PMID: 39414176 DOI: 10.1016/j.bbi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.
Collapse
Affiliation(s)
- Yan Li
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Megan L Uhelski
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Robert Y North
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, the United States of America
| | - Luke B Farson
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Christopher B Bankston
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Gavin H Roland
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Dwight H Fan
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | | | - Amy Jia
- Northwestern University, Evanston, IL 60208, the United States of America
| | - Dana Orlando
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Mario Heles
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Tony L Yaksh
- The Department of Anesthesiology, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Yury I Miller
- Department of Medicine, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Therese A Kosten
- Department of Psychology, Health Building 1, 4349 Martin Luther King Blvd, Houston, TX 77204, the United States of America
| | - Patrick M Dougherty
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America.
| |
Collapse
|
7
|
Ayuyan AG, Cherny VV, Chaves G, Musset B, Cohen FS, DeCoursey TE. Interaction with stomatin directs human proton channels into cholesterol-dependent membrane domains. Biophys J 2024; 123:4180-4190. [PMID: 38444158 DOI: 10.1016/j.bpj.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Many membrane proteins are modulated by cholesterol. Here we report profound effects of cholesterol depletion and restoration on the human voltage-gated proton channel, hHV1, in excised patches but negligible effects in the whole-cell configuration. Despite the presence of a putative cholesterol-binding site, a CARC motif in hHV1, mutation of this motif did not affect cholesterol effects. The murine HV1 lacks a CARC sequence but displays similar cholesterol effects. These results argue against a direct effect of cholesterol on the HV1 protein. However, the data are fully explainable if HV1 preferentially associates with cholesterol-dependent lipid domains, or "rafts." The rafts would be expected to concentrate in the membrane/glass interface and to be depleted from the electrically accessible patch membrane. This idea is supported by evidence that HV1 channels can diffuse between seal and patch membranes when suction is applied. Simultaneous truncation of the large intracellular N and C termini of hHV1 greatly attenuated the cholesterol effect, but C truncation alone did not; this suggests that the N terminus is the region of attachment to lipid domains. Searching for abundant raft-associated proteins led to stomatin. Co-immunoprecipitation experiment results were consistent with hHV1 binding to stomatin. The stomatin-mediated association of HV1 with cholesterol-dependent lipid domains provides a mechanism for cells to direct HV1 to subcellular locations where it is needed, such as the phagosome in leukocytes.
Collapse
Affiliation(s)
- Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois.
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois
| | - Gustavo Chaves
- Institut für Physiologie, Pathophysiologie und Biophysik, CPPB, Paracelsus Medical University, Nürnberg, Germany
| | - Boris Musset
- Institut für Physiologie, Pathophysiologie und Biophysik, CPPB, Paracelsus Medical University, Nürnberg, Germany
| | - Fredric S Cohen
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois.
| |
Collapse
|
8
|
Basu S, Farago O. Mixing small proteins with lipids and cholesterol. J Chem Phys 2024; 161:224902. [PMID: 39651818 DOI: 10.1063/5.0239257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
Many ternary mixtures composed of saturated and unsaturated lipids with cholesterol (Chol) exhibit a region of coexistence between liquid-disordered (Ld) and liquid-ordered (Lo) domains, bearing some similarities to lipid rafts in biological membranes. However, biological rafts also contain many proteins that interact with the lipids and modify the distribution of lipids. Here, we extend a previously published lattice model of ternary DPPC/DOPC/Chol mixtures by introducing a small amount of small proteins (peptides). We use Monte Carlo simulations to explore the mixing phase behavior of the components as a function of the interaction parameter representing the affinity between the proteins and the saturated DPPC chains and for different mixture compositions. At moderate fractions of DPPC, the system is in a two-phase Ld + Lo coexistence, and the proteins exhibit a simple partition behavior between the phases that depends on the protein-lipid affinity parameter. At low DPPC compositions, the mixture is in Ld phase with local nanoscopic ordered domains. The addition of proteins with sufficiently strong attraction to the saturated lipids can induce the separation of a distinct Lo large domain with tightly packed gel-like clusters of proteins and saturated lipids. Consistent with the theory of phase transitions, we observe that the domain sizes grow when the mixture composition is in the vicinity of the critical point. Our simulations show that the addition of a small amount of proteins to such mixtures can cause their size to grow even further and lead to the formation of metastable dynamic Lo domains with sizes comparable to biological rafts.
Collapse
Affiliation(s)
- Subhadip Basu
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Oded Farago
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
9
|
Pinigin KV. Local Stress in Cylindrically Curved Lipid Membrane: Insights into Local Versus Global Lateral Fluidity Models. Biomolecules 2024; 14:1471. [PMID: 39595647 PMCID: PMC11591742 DOI: 10.3390/biom14111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Lipid membranes, which are fundamental to cellular function, undergo various mechanical deformations. Accurate modeling of these processes necessitates a thorough understanding of membrane elasticity. The lateral shear modulus, a critical parameter describing membrane resistance to lateral stresses, remains elusive due to the membrane's fluid nature. Two contrasting hypotheses, local fluidity and global fluidity, have been proposed. While the former suggests a zero local lateral shear modulus anywhere within lipid monolayers, the latter posits that only the integral of this modulus over the monolayer thickness vanishes. These differing models lead to distinct estimations of other elastic moduli and affect the modeling of biological processes, such as membrane fusion/fission and membrane-mediated interactions. Notably, they predict distinct local stress distributions in cylindrically curved membranes. The local fluidity model proposes isotropic local lateral stress, whereas the global fluidity model predicts anisotropy due to anisotropic local lateral stretching of lipid monolayers. Using molecular dynamics simulations, this study directly investigates these models by analyzing local stress in a cylindrically curved membrane. The results conclusively demonstrate the existence of static local lateral shear stress and anisotropy in local lateral stress within the monolayers of the cylindrical membrane, strongly supporting the global fluidity model. These findings have significant implications for the calculation of surface elastic moduli and offer novel insights into the fundamental principles governing lipid membrane elasticity.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
10
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 PMCID: PMC11530833 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
11
|
Felipe R, Sarmiento-Jiménez J, Camafeita E, Vázquez J, López-Corcuera B. Role of palmitoylation on the neuronal glycine transporter GlyT2. J Neurochem 2024; 168:2056-2072. [PMID: 39032066 DOI: 10.1111/jnc.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
The neuronal glycine transporter GlyT2 removes glycine from the synaptic cleft through active Na+, Cl-, and glycine cotransport contributing to the termination of the glycinergic signal as well as supplying substrate to the presynaptic terminal for the maintenance of the neurotransmitter content in synaptic vesicles. Patients with mutations in the human GlyT2 gene (SLC6A5), develop hyperekplexia or startle disease (OMIM 149400), characterized by hypertonia and exaggerated startle responses to trivial stimuli that may have lethal consequences in the neonates as a result of apnea episodes. Post-translational modifications in cysteine residues of GlyT2 are an aspect of structural interest we analyzed. Our study is compatible with a reversible and short-lived S-acylation in spinal cord membranes, detectable by biochemical and proteomics methods (acyl-Rac binding and IP-ABE) confirmed with positive and negative controls (palmitoylated and non-palmitoylated proteins). According to a short-lived modification, direct labeling using click chemistry was faint but mostly consistent. We have analyzed the physiological properties of a GlyT2 mutant lacking the cysteines with high prediction of palmitoylation and the mutant is less prone to be included in lipid rafts, an effect also observed upon treatment with the palmitoylation inhibitor 2-bromopalmitate. This work demonstrates there are determinants of lipid raft inclusion associated with the GlyT2 mutated cysteines, which are presumably modified by palmitoylation.
Collapse
Affiliation(s)
- R Felipe
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - J Sarmiento-Jiménez
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - E Camafeita
- Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - J Vázquez
- Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - B López-Corcuera
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
12
|
Hanada K. Metabolic channeling of lipids via the contact zones between different organelles. Bioessays 2024; 46:e2400045. [PMID: 38932642 DOI: 10.1002/bies.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Various lipid transfer proteins (LTPs) mediate the inter-organelle transport of lipids. By working at membrane contact zones between donor and acceptor organelles, LTPs achieve rapid and accurate inter-organelle transfer of lipids. This article will describe the emerging paradigm that the action of LTPs at organelle contact zones generates metabolic channeling events in lipid metabolism, mainly referring to how ceramide synthesized in the endoplasmic reticulum is preferentially metabolized to sphingomyelin in the distal Golgi region, how cholesterol and phospholipids receive specific metabolic reactions in mitochondria, and how the hijacking of host LTPs by intracellular pathogens may generate new channeling-like events. In addition, the article will discuss how the function of LTPs is regulated, exemplified by a few representative LTP systems, and will briefly touch on experiments that will be necessary to establish the paradigm that LTP-mediated inter-organelle transport of lipids is one of the mechanisms of compartmentalization-based metabolic channeling events.
Collapse
Affiliation(s)
- Kentaro Hanada
- Center for Quality Management Systems, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Barbuti PA, Guardia-Laguarta C, Yun T, Chatila ZK, Flowers X, Santos BFR, Larsen SB, Hattori N, Bradshaw E, Dettmer U, Fanning S, Vilas M, Reddy H, Teich AF, Krüger R, Area-Gomez E, Przedborski S. The Role of Alpha-Synuclein in Synucleinopathy: Impact on Lipid Regulation at Mitochondria-ER Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599406. [PMID: 38948777 PMCID: PMC11212931 DOI: 10.1101/2024.06.17.599406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson's disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.
Collapse
Affiliation(s)
- Peter A. Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
| | - Cristina Guardia-Laguarta
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taekyung Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Zena K. Chatila
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY 10032, USA
| | - Bruno FR. Santos
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
- Disease Modelling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg RRID:SCR_025237
| | - Simone B. Larsen
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Elizabeth Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University, New York, NY 10032, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manon Vilas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Hasini Reddy
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew F. Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445, Luxembourg
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Biological Research (CIB), - Margarita Salas, CSIC, Madrid, 28040, Spain
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Koster KP, Fyke Z, Nguyen TTA, Niqula A, Noriega-González LY, Woolfrey KM, Dell’Acqua ML, Cologna SM, Yoshii A. Akap5 links synaptic dysfunction to neuroinflammatory signaling in a mouse model of infantile neuronal ceroid lipofuscinosis. Front Synaptic Neurosci 2024; 16:1384625. [PMID: 38798824 PMCID: PMC11116793 DOI: 10.3389/fnsyn.2024.1384625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.
Collapse
Affiliation(s)
- Kevin P. Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T. A. Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amanda Niqula
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
16
|
Koster KP, Flores-Barrera E, Artur de la Villarmois E, Caballero A, Tseng KY, Yoshii A. Loss of Depalmitoylation Disrupts Homeostatic Plasticity of AMPARs in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:8317-8335. [PMID: 37884348 PMCID: PMC10711723 DOI: 10.1523/jneurosci.1113-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Adriana Caballero
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Neurology, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
17
|
Adele BO, Idama C, Ige AO, Odetola AO, Emediong IE, Adewoye EO. Alterations in plasma and erythrocyte membrane fatty acid composition following exposure to toxic copper level affect membrane deformability and fluidity in female wistar rats. J Trace Elem Med Biol 2023; 80:127316. [PMID: 37862897 DOI: 10.1016/j.jtemb.2023.127316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Deformability and fluidity function of the red blood cell membrane are properties defined by the lipid composition. Toxic copper level induces membrane lipid peroxidation which could cause membrane instability. This study therefore investigated the effect of exposure to toxic copper level for 30 days on red blood cell membrane deformability and fluidity in female Wistar rats. METHODS Twelve (12) female Wistar rats (160 ± 10 g) were randomly grouped (n = 6) into control (given 0.1 ml distilled water p.o.) and copper-toxic (100 mg/kg Copper Sulphate, p.o.), and treated for 30 days. Plasma obtained and RBC membrane prepared from blood collected over EDTA post-treatment were assayed for total cholesterol (TC), phospholipids and fatty acid profile using spectrophotometry and Gas chromatography while heparinized blood was subjected to fragility test. Data were analyzed using student T-test for statistical significance at p < 0.05. RESULTS AND CONCLUSION Plasma TC increased by 4.33% while RBC membrane TC decreased by 20.32% in copper-toxic group compared to control. Compared to control, excess copper significantly increased membrane phospholipids level (0.72 ± 0.01 vs 0.59 ± 0.04 mg/dL) but reduced membrane cholesterol/phospholipid ratio (46.61 ± 4.72 vs 72.66 ± 6.47) and stability (by 23.53%). Number of cis- and saturated fatty acids increased in copper-treated plasma and RBC membrane compared to control. Exposure to toxic copper level alters erythrocyte membrane fluidity and deformability by disrupting membrane lipid composition, saturation, bond configuration in phospholipids and permeability.
Collapse
Affiliation(s)
- Bernard Omokheshi Adele
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Chidimma Idama
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Abayomi O Ige
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Anthony Olusoji Odetola
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria; Department of Human Physiology, Faculty of Health Sciences, Nnamdi Azikwe University, Anambra State, Nigeria
| | - Idara Emmanuel Emediong
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Elsie Olufunke Adewoye
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| |
Collapse
|
18
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
19
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1-42) Molecular Mechanisms of Action. Molecules 2023; 28:7138. [PMID: 37894616 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1-42). The formation of His6/Aβ(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1-42) and Aβ(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
21
|
Yucel BP, Al Momany EM, Evans AJ, Seager R, Wilkinson KA, Henley JM. Coordinated interplay between palmitoylation, phosphorylation and SUMOylation regulates kainate receptor surface expression. Front Mol Neurosci 2023; 16:1270849. [PMID: 37868810 PMCID: PMC10585046 DOI: 10.3389/fnmol.2023.1270849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Kainate receptors (KARs) are key regulators of neuronal excitability and synaptic transmission. KAR surface expression is tightly controlled in part by post-translational modifications (PTMs) of the GluK2 subunit. We have shown previously that agonist activation of GluK2-containing KARs leads to phosphorylation of GluK2 at S868, which promotes subsequent SUMOylation at K886 and receptor endocytosis. Furthermore, GluK2 has been shown to be palmitoylated. However, how the interplay between palmitoylation, phosphorylation and SUMOylation orchestrate KAR trafficking remains unclear. Here, we used a library of site-specific GluK2 mutants to investigate the interrelationship between GluK2 PTMs, and their impact on KAR surface expression. We show that GluK2 is basally palmitoylated and that this is decreased by kainate (KA) stimulation. Moreover, a non-palmitoylatable GluK2 mutant (C858/C871A) shows enhanced S868 phosphorylation and K886 SUMOylation under basal conditions and is insensitive to KA-induced internalisation. These results indicate that GluK2 palmitoylation contributes to stabilising KAR surface expression and that dynamic depalmitoylation promotes downstream phosphorylation and SUMOylation to mediate activity-dependent KAR endocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Varela L, van de Lest CHA, Boere J, Libregts SFWM, Lozano-Andrés E, van Weeren PR, Wauben MHM. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159367. [PMID: 37473834 DOI: 10.1016/j.bbalip.2023.159367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H A van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janneke Boere
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sten F W M Libregts
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division of Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Pinigin KV, Akimov SA. The Membrane-Mediated Interaction of Liquid-Ordered Lipid Domains in the Presence of Amphipathic Peptides. MEMBRANES 2023; 13:816. [PMID: 37887988 PMCID: PMC10608175 DOI: 10.3390/membranes13100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
The lipid membranes of living cells are composed of a large number of lipid types and can undergo phase separation with the formation of nanometer-scale liquid-ordered lipid domains, also called rafts. Raft coalescence, i.e., the fusion of lipid domains, is involved in important cell processes, such as signaling and trafficking. In this work, within the framework of the theory of elasticity of lipid membranes, we explore how amphipathic peptides adsorbed on lipid membranes may affect the domain-domain fusion processes. We show that the elastic deformations of lipid membranes drive amphipathic peptides to the boundary of lipid domains, which leads to an increase in the average energy barrier of the domain-domain fusion, even if the surface concentration of amphipathic peptides is low and the domain boundaries are only partially occupied by the peptides. This inhibition of the fusion of lipid domains may lead to negative side effects of using amphipathic peptides as antimicrobial agents.
Collapse
Affiliation(s)
- Konstantin V. Pinigin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
24
|
Ji G, Wu R, Zhang L, Yao J, Zhang C, Zhang X, Liu Z, Liu Y, Wang T, Fang C, Lu H. Global Analysis of Endogenously Intact S-Acylated Peptides Reveals Localization Differentiation of Heterogeneous Lipid Chains in Mammalian Cells. Anal Chem 2023; 95:13055-13063. [PMID: 37611173 DOI: 10.1021/acs.analchem.3c01484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
S-acylation is a widespread lipidation form in eukaryotes in which various fatty acids can be covalently attached to specific cysteine residues. However, due to the low reactivity of the lipid moieties and lack of specific antibodies, purification of intact S-acylated peptides remains challenging. Here, we developed a pretreatment method for direct separation and global analysis of endogenously intact S-acylated peptides by nanographite fluoride-based solid-phase extraction (nGF-SPE), together with the investigation and optimization of the enrichment procedure as well as the LC-MS/MS analysis process. Consequently, we performed the first global profiling of endogenously intact S-acylated peptides, with 701 S-palmitoylated peptides from HeLa cell lysates in a restricted search. Furthermore, coupling the nGF-SPE method with open search mode, altogether 1119 intact S-acylated peptides were identified with the attached palmitate, palmitoleate, myristate, and octanoate chain, respectively, providing a global insight into the endogenously heterogeneous modification state. Notably, we found and validated that S-palmitoleoylation (C16:1) provided less affinity toward lipid rafts compared with S-palmitoylation (C16:0). This study developed the first straightforward way to characterize endogenously intact S-acylated peptides on a proteome-wide scale, providing the modified residues together with their attached lipid moieties simultaneously, which paves the way for further understanding of protein S-acylation.
Collapse
Affiliation(s)
- Guanghui Ji
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Roujun Wu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Jun Yao
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Xiaoqin Zhang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Zhiyong Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Yang Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| | - Ting Wang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Caiyun Fang
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
25
|
Abstract
The formation of membrane vesicles is a common feature in all eukaryotes. Lipid rafts are the best-studied example of membrane domains for both eukaryotes and prokaryotes, and their existence also is suggested in Archaea membranes. Lipid rafts are involved in the formation of transport vesicles, endocytic vesicles, exocytic vesicles, synaptic vesicles and extracellular vesicles, as well as enveloped viruses. Two mechanisms of how rafts are involved in vesicle formation have been proposed: first, that raft proteins and/or lipids located in lipid rafts associate with coat proteins that form a budding vesicle, and second, vesicle budding is triggered by enzymatic generation of cone-shaped ceramides and inverted cone-shaped lyso-phospholipids. In both cases, induction of curvature is also facilitated by the relaxation of tension in the raft domain. In this Review, we discuss the role of raft-derived vesicles in several intracellular trafficking pathways. We also highlight their role in different pathways of endocytosis, and in the formation of intraluminal vesicles (ILVs) through budding inwards from the multivesicular body (MVB) membrane, because rafts inside MVB membranes are likely to be involved in loading RNA into ILVs. Finally, we discuss the association of glycoproteins with rafts via the glycocalyx.
Collapse
Affiliation(s)
- Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| |
Collapse
|
26
|
Harant K, Čajka T, Angelisová P, Pokorná J, Hořejší V. Composition of raft-like cell membrane microdomains resistant to styrene-maleic acid copolymer (SMA) solubilization. Biophys Chem 2023; 296:106989. [PMID: 36898346 DOI: 10.1016/j.bpc.2023.106989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
An advantageous alternative to the use of detergents in biochemical studies on membrane proteins are the recently developed styrene-maleic acid (SMA) amphipathic copolymers. In our recent study [1] we demonstrated that using this approach, most T cell membrane proteins were fully solubilized (presumably in small nanodiscs), while two types of raft proteins, GPI-anchored proteins and Src family kinases, were mostly present in much larger (>250 nm) membrane fragments markedly enriched in typical raft lipids, cholesterol and lipids containing saturated fatty acid residues. In the present study we demonstrate that disintegration of membranes of several other cell types by means of SMA copolymer follows a similar pattern and we provide a detailed proteomic and lipidomic characterization of these SMA-resistant membrane fragments (SRMs).
Collapse
Affiliation(s)
- Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, Prague 2 CZ-128 01, Czechia.
| | - Tomáš Čajka
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia.
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia
| | - Jana Pokorná
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia.
| |
Collapse
|
27
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
28
|
Wirth A, Ponimaskin E. Lipidation of small GTPase Cdc42 as regulator of its physiological and pathophysiological functions. Front Physiol 2023; 13:1088840. [PMID: 36699687 PMCID: PMC9868626 DOI: 10.3389/fphys.2022.1088840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
The protein cell division cycle 42 (Cdc42) is a small GTPase of the Rho family regulating a plethora of physiological functions in a tissue, cell and subcellular-specific manner via participating in multiple signaling pathways. Since the corresponding signaling hubs are mainly organized along the cellular membranes, cytosolic proteins like Cdc42 need to be properly targeted and held at the membrane. Here, lipid modifications come into play: Cdc42 can be associated with membranes by different lipid anchors including prenylation (Cdc42-prenyl) and palmitoylation (Cdc42-palm). While Cdc42-prenyl is ubiquitously expressed, Cdc42-palm splicing variant in mainly expressed in the brain. Mechanisms underlying Cdc42 lipidation as well as its regulation are the main topic of this review. Furthermore, we will discuss the functional importance of Cdc42 lipid modifications with the focus on the role of different lipids in regulating defined Cdc42 functions. Finally, we will provide an overview of the possible implementation of Cdc42 lipidation in pathological conditions and different diseases.
Collapse
|
29
|
Pedersen GB, Blaschek L, Frandsen KEH, Noack LC, Persson S. Cellulose synthesis in land plants. MOLECULAR PLANT 2023; 16:206-231. [PMID: 36564945 DOI: 10.1016/j.molp.2022.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.
Collapse
Affiliation(s)
- Gustav B Pedersen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lise C Noack
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:87-108. [PMID: 36648750 DOI: 10.1007/5584_2022_759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane is not a uniform phospholipid bilayer; it has specialized membrane nano- or microdomains called lipid rafts. Lipid rafts are small cholesterol and sphingolipid-rich plasma membrane islands. Although their existence was long debated, their presence in the plasma membrane of living cells is now well accepted with the advent of super-resolution imaging techniques. It is interesting to note that lipid rafts function to compartmentalize receptors and their regulators and substantially modulate cellular signaling. In this review, we will examine the role of lipid rafts and caveolae-lipid raft-like microdomains with a distinct 3D morphology-in cellular signaling. Moreover, we will investigate how raft compartmentalized signaling regulates diverse physiological processes such as proliferation, apoptosis, immune signaling, and development. Also, the deregulation of lipid raft-mediated signaling during tumorigenesis and metastasis will be explored.
Collapse
Affiliation(s)
- Ozlem Aybuke Isik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
31
|
Omasta B, Tomaskova J. Cellular Lipids-Hijacked Victims of Viruses. Viruses 2022; 14:1896. [PMID: 36146703 PMCID: PMC9501026 DOI: 10.3390/v14091896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the millions of years-long co-evolution with their hosts, viruses have evolved plenty of mechanisms through which they are able to escape cellular anti-viral defenses and utilize cellular pathways and organelles for replication and production of infectious virions. In recent years, it has become clear that lipids play an important role during viral replication. Viruses use cellular lipids in a variety of ways throughout their life cycle. They not only physically interact with cellular membranes but also alter cellular lipid metabolic pathways and lipid composition to create an optimal replication environment. This review focuses on examples of how different viruses exploit cellular lipids in different cellular compartments during their life cycles.
Collapse
Affiliation(s)
| | - Jana Tomaskova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
32
|
Das T, Yang X, Lee H, Garst EH, Valencia E, Chandran K, Im W, Hang HC. S-Palmitoylation and Sterol Interactions Mediate Antiviral Specificity of IFITMs. ACS Chem Biol 2022; 17:2109-2120. [PMID: 35861660 PMCID: PMC10597057 DOI: 10.1021/acschembio.2c00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interferon-induced transmembrane proteins (IFITM1, 2, and 3) are important antiviral proteins that are active against many viruses, including influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV), and severe acute respiratory syndrome coronavirus (SARS-CoV). IFITM proteins exhibit specificity in activity, but their distinct mechanisms of action and regulation are unclear. Since S-palmitoylation and cholesterol homeostasis are crucial for viral infections, we investigated IFITM interactions with cholesterol by photoaffinity cross-linking in mammalian cells along with molecular dynamic simulations and nuclear magnetic resonance analysis in vitro. These studies suggest that cholesterol can directly interact with S-palmitoylated IFITMs in cells and alter the conformation of IFITMs in membrane bilayers. Notably, we discovered that the S-palmitoylation levels regulate differential IFITM protein interactions with cholesterol in mammalian cells and specificity of antiviral activity toward IAV, SARS-CoV-2, and EBOV. Our studies suggest that modulation of IFITM S-palmitoylation levels and cholesterol interaction influence host susceptibility to different viruses.
Collapse
Affiliation(s)
- Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Hwayoung Lee
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Emma H. Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, United States
| |
Collapse
|
33
|
Barylko B, Hedde PN, Taylor CA, Binns DD, Huang YK, Molinaro G, Huber KM, Jameson DM, Albanesi JP. Palmitoylation-regulated interactions of the pseudokinase calmodulin kinase-like vesicle-associated with membranes and Arc/Arg3.1. Front Synaptic Neurosci 2022; 14:926570. [PMID: 35965782 PMCID: PMC9371321 DOI: 10.3389/fnsyn.2022.926570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Calmodulin kinase-like vesicle-associated (CaMKv), a pseudokinase belonging to the Ca2+/calmodulin-dependent kinase family, is expressed predominantly in brain and neural tissue. It may function in synaptic strengthening during spatial learning by promoting the stabilization and enrichment of dendritic spines. At present, almost nothing is known regarding CaMKv structure and regulation. In this study we confirm prior proteomic analyses demonstrating that CaMKv is palmitoylated on Cys5. Wild-type CaMKv is enriched on the plasma membrane, but this enrichment is lost upon mutation of Cys5 to Ser. We further show that CaMKv interacts with another regulator of synaptic plasticity, Arc/Arg3.1, and that the interaction between these two proteins is weakened by mutation of the palmitoylated cysteine in CamKv.
Collapse
Affiliation(s)
- Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Per Niklas Hedde
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, United States
| | - Clinton A. Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Derk D. Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yu-Kai Huang
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, United States
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Roncato R, Angelini J, Pani A, Talotta R. Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection? Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159140. [PMID: 35248801 PMCID: PMC8894694 DOI: 10.1016/j.bbalip.2022.159140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a carattere Scientifico (IRCCS), via Gallini, 33081 Aviano (PN), Italy
| | - Jacopo Angelini
- Clinical Pharmacology Institute, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), via Pozzuolo, 33100 Udine, Italy
| | - Arianna Pani
- Toxicology Department of Oncology and Hemato-Oncology, University of Milan, via Vanvitelli, 20133 Milan, Italy
| | - Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, 98100 Messina, Italy
| |
Collapse
|
35
|
Mesa-Herrera F, Marín R, Torrealba E, Santos G, Díaz M. Neuronal ER-Signalosome Proteins as Early Biomarkers in Prodromal Alzheimer's Disease Independent of Amyloid-β Production and Tau Phosphorylation. Front Mol Neurosci 2022; 15:879146. [PMID: 35600079 PMCID: PMC9119323 DOI: 10.3389/fnmol.2022.879146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
There exists considerable interest to unveil preclinical period and prodromal stages of Alzheimer's disease (AD). The mild cognitive impairment (MCI) is characterized by significant memory and/or other cognitive domains impairments, and is often considered the prodromal phase of AD. The cerebrospinal fluid (CSF) levels of β-amyloid (βA), total tau (t-tau), and phosphorylated tau (p-tau) have been used as biomarkers of AD albeit their significance as indicators during early stages of AD remains far from accurate. The new biomarkers are being intensively sought as to allow identification of pathological processes underlying early stages of AD. Fifty-three participants (75.4 ± 8.3 years) were classified in three groups as cognitively normal healthy controls (HC), MCI, and subjective memory complaints (SMC). The subjects were subjected to a battery of neurocognitive tests and underwent lumbar puncture for CSF extraction. The CSF levels of estrogen-receptor (ER)-signalosome proteins, βA, t-tau and p-tau, were submitted to univariate, bivariate, and multivariate statistical analyses. We have found that the components of the ER-signalosome, namely, caveolin-1, flotilin-1, and estrogen receptor alpha (ERα), insulin growth factor-1 receptor β (IGF1Rβ), prion protein (PrP), and plasmalemmal voltage dependent anion channel 1 (VDAC) could be detected in the CSF from all subjects of the HC, MCI, and SMC groups. The six proteins appeared elevated in MCI and slightly increased in SMC subjects compared to HC, suggesting that signalosome proteins undergo very early modifications in nerve cells. Using a multivariate approach, we have found that the combination of ERα, IGF-1Rβ, and VDAC are the main determinants of group segregation with resolution enough to predict the MCI stage. The analyses of bivariate relationships indicated that collinearity of ER-signalosome proteins vary depending on the stage, with some pairs displaying opposed relationships between HC and MCI groups, and the SMC stage showing either no relationships or behaviors similar to either HC or MCI stages. The multinomial logistic regression models of changes in ER-signalosome proteins provide reliable predictive criteria, particularly for the MCI. Notably, most of the statistical analyses revealed no significant relationships or interactions with classical AD biomarkers at either disease stage. Finally, the multivariate functions were highly correlated with outcomes from neurocognitive tests for episodic memory. These results demonstrate that alterations in ER-signalosome might provide useful diagnostic information on preclinical stages of AD, independently from classical biomarkers.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine Section, Health Sciences School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Associate Research Unit ULL-CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”, University of La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Guido Santos
- Systems Biology and Mathematical Modelling Group, Department of Department of Biochemistry, Microbiology, Cell Biology and Genetics Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Mario Díaz
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Department of Physics, Faculty of Sciences, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
36
|
Millette MA, Roy S, Salesse C. Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids Surf B Biointerfaces 2022; 211:112315. [PMID: 35026543 DOI: 10.1016/j.colsurfb.2021.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
37
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
38
|
Liu X, Hoft DF, Peng G. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol 2022; 43:132-147. [PMID: 34973923 PMCID: PMC8810659 DOI: 10.1016/j.it.2021.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023]
Abstract
Metabolic reprogramming of cancer cells creates a unique tumor microenvironment (TME) characterized by the limited availability of nutrients, which subsequently affects the metabolism, differentiation, and function of tumor-infiltrating T lymphocytes (TILs). TILs can also be inhibited by tumor-derived metabolic waste products and low oxygen. Therefore, a thorough understanding of how such unique metabolites influence mammalian T cell differentiation and function can inform novel anticancer therapeutic approaches. Here, we highlight the importance of these metabolites in modulating various T cell subsets within the TME, dissecting how these changes might alter clinical outcomes. We explore potential TME metabolic determinants that might constitute candidate targets for cancer immunotherapies, ideally leading to future strategies for reprogramming tumor metabolism to potentiate anticancer T cell functions.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA.
| |
Collapse
|
39
|
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. MEMBRANES 2022; 12:89. [PMID: 35054615 PMCID: PMC8781805 DOI: 10.3390/membranes12010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein-protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions-they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein-protein interactions in membrane domains with different bilayer thicknesses.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
40
|
Shi Y, Ye Z, Lu G, Yang N, Zhang J, Wang L, Cui J, del Pozo MA, Wu Y, Xia D, Shen HM. Cholesterol-enriched membrane micro-domaindeficiency induces doxorubicin resistancevia promoting autophagy in breast cancer. Mol Ther Oncolytics 2021; 23:311-329. [PMID: 34786475 PMCID: PMC8573103 DOI: 10.1016/j.omto.2021.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 10/27/2022] Open
Abstract
Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Naidi Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, Jiangsu Province 211800, China
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Miguel A. del Pozo
- Integrin Signaling Laboratory, Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
41
|
Gorelova V, Sprakel J, Weijers D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. NATURE PLANTS 2021; 7:1548-1559. [PMID: 34887521 DOI: 10.1038/s41477-021-01021-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.
Collapse
Affiliation(s)
- Vera Gorelova
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
42
|
Morrison KA, Heesom KJ, Edler KJ, Doutch J, Price GJ, Koumanov F, Whitley P. Development of Methodology to Investigate the Surface SMALPome of Mammalian Cells. Front Mol Biosci 2021; 8:780033. [PMID: 34869600 PMCID: PMC8637157 DOI: 10.3389/fmolb.2021.780033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Extraction of membrane proteins from biological membranes has traditionally involved detergents. In the past decade, a new technique has been developed, which uses styrene maleic acid (SMA) copolymers to extract membrane proteins into nanodiscs without the requirement of detergents. SMA nanodiscs are compatible with analytical techniques, such as small-angle scattering, NMR spectroscopy, and DLS, and are therefore an attractive medium for membrane protein characterization. While mass spectrometry has also been reported as a technique compatible with copolymer extraction, most studies have focused on lipidomics, which involves solvent extraction of lipids from nanodiscs prior to mass-spectrometry analysis. In this study, mass spectrometry proteomics was used to investigate whether there are qualitative or quantitative differences in the mammalian plasma membrane proteins extracted with SMA compared to a detergent control. For this, cell surface proteins of 3T3L1 fibroblasts were biotinylated and extracted using either SMA or detergent. Following affinity pull-down of biotinylated proteins with NeutrAvidin beads, samples were analyzed by nanoLC-MS. Here, we report for the first time, a global proteomics protocol for detection of a mammalian cell "SMALPome", membrane proteins incorporated into SMA nanodiscs. Removal of SMA from samples prior to processing of samples for mass spectrometry was a crucial step in the protocol. The reported surface SMALPome of 3T3L1 fibroblasts consists of 205 integral membrane proteins. It is apparent that the detergent extraction method used is, in general, quantitatively more efficient at extracting proteins from the plasma membrane than SMA extraction. However, samples prepared following detergent extraction contained a greater proportion of proteins that were considered to be "non-specific" than in samples prepared from SMA extracts. Tantalizingly, it was also observed that proteins detected uniquely or highly preferentially in pull-downs from SMA extracts were primarily multi-spanning membrane proteins. These observations hint at qualitative differences between SMA and detergent extraction that are worthy of further investigation.
Collapse
Affiliation(s)
- Kerrie A. Morrison
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre for Sustainable Circular Technologies, University of Bath, Bath, United Kingdom
| | - Kate J. Heesom
- University of Bristol, Proteomics Facility, Bristol, United Kingdom
| | - Karen J. Edler
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - James Doutch
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron and Muon Source, Harwell Oxford, United Kingdom
| | - Gareth J. Price
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Paul Whitley
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
43
|
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, Liu Z, Feng J, Zhu M, Yan X. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest 2021; 131:e148568. [PMID: 34491908 DOI: 10.1172/jci148568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Jing
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Ma
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daji Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianquan Xiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Zheng Liu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Pinigin KV, Galimzyanov TR, Akimov SA. Amphipathic Peptides Impede Lipid Domain Fusion in Phase-Separated Membranes. MEMBRANES 2021; 11:membranes11110797. [PMID: 34832026 PMCID: PMC8618981 DOI: 10.3390/membranes11110797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Cell membranes are heterogeneous in lipid composition which leads to the phase separation with the formation of nanoscopic liquid-ordered domains, also called rafts. There are multiple cell processes whereby the clustering of these domains into a larger one might be involved, which is responsible for such important processes as signal transduction, polarized sorting, or immune response. Currently, antimicrobial amphipathic peptides are considered promising antimicrobial, antiviral, and anticancer therapeutic agents. Here, within the framework of the classical theory of elasticity adapted for lipid membranes, we investigate how the presence of the peptides in a phase-separated membrane influences the fusion of the domains. We show that the peptides tend to occupy the boundaries of liquid-ordered domains and significantly increase the energy barrier of the domain-domain fusion, which might lead to misregulation of raft clustering and adverse consequences for normal cell processes.
Collapse
|
45
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
46
|
Lemus L, Matić Z, Gal L, Fadel A, Schuldiner M, Goder V. Post-ER degradation of misfolded GPI-anchored proteins is linked with microautophagy. Curr Biol 2021; 31:4025-4037.e5. [PMID: 34314677 DOI: 10.1016/j.cub.2021.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are membrane-conjugated cell-surface proteins with diverse structural, developmental, and signaling functions and clinical relevance. Typically, after biosynthesis and attachment to the preassembled GPI anchor, GPI-APs rapidly leave the endoplasmic reticulum (ER) and rely on post-ER quality control. Terminally misfolded GPI-APs end up inside the vacuole/lysosome for degradation, but their trafficking itinerary to this organelle and the processes linked to their uptake by the vacuole/lysosome remain uncharacterized. In a yeast mutant that is lacking Pep4, a key vacuolar protease, several misfolded model GPI-APs accumulated in the vacuolar membrane. In the same mutant, macroautophagy and the multi-vesicular body (MVB) pathway were intact, hinting at a hitherto-unknown trafficking pathway for the degradation of misfolded GPI-APs. To unravel it, we used a genome-wide screen coupled to high-throughput fluorescence microscopy and followed the fate of the misfolded GPI-AP: Gas1∗. We found that components of the early secretory and endocytic pathways are involved in its targeting to the vacuole and that vacuolar transporter chaperones (VTCs), with roles in microautophagy, negatively affect the vacuolar uptake of Gas1∗. In support, we demonstrate that Gas1∗ internalizes from vacuolar membranes into membrane-bound intravacuolar vesicles prior to degradation. Our data link post-ER degradation with microautophagy.
Collapse
Affiliation(s)
- Leticia Lemus
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain.
| | - Zrinka Matić
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain
| | - Lihi Gal
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Meyer Bldg. Room 122, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| | - Veit Goder
- Department of Genetics, University of Seville, Ave Reina Mercedes, 6, 41012 Seville, Spain.
| |
Collapse
|
47
|
Dhasmana D, Veerapathiran S, Azbazdar Y, Nelanuthala AVS, Teh C, Ozhan G, Wohland T. Wnt3 Is Lipidated at Conserved Cysteine and Serine Residues in Zebrafish Neural Tissue. Front Cell Dev Biol 2021; 9:671218. [PMID: 34124053 PMCID: PMC8189181 DOI: 10.3389/fcell.2021.671218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.
Collapse
Affiliation(s)
- Divya Dhasmana
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | | | - Cathleen Teh
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Gök C, Plain F, Robertson AD, Howie J, Baillie GS, Fraser NJ, Fuller W. Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP. Cell Rep 2021; 31:107697. [PMID: 32521252 PMCID: PMC7296346 DOI: 10.1016/j.celrep.2020.107697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The transmembrane sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates cytoplasmic Ca levels by facilitating electrogenic exchange of Ca for Na. Palmitoylation, the only reversible post-translational modification known to modulate NCX1 activity, controls NCX1 inactivation. Here, we show that palmitoylation of NCX1 modifies the structural arrangement of the NCX1 dimer and controls its affinity for lipid-ordered membrane domains. NCX1 palmitoylation occurs dynamically at the cell surface under the control of the enzymes zDHHC5 and APT1. We identify the position of the endogenous exchange inhibitory peptide (XIP) binding site within the NCX1 regulatory intracellular loop and demonstrate that palmitoylation controls the ability of XIP to bind this site. We also show that changes in NCX1 palmitoylation change cytosolic Ca. Our results thus demonstrate the broad molecular consequences of NCX1 palmitoylation and highlight a means to manipulate the inactivation of this ubiquitous ion transporter that could ameliorate pathologies linked to Ca overload via NCX1. NCX1 is dynamically palmitoylated at the cell surface by zDHHC5 and APT1 Palmitoylation modifies the NCX1 dimer’s structure and affinity for lipid rafts We identify the binding site of the endogenous XIP domain in NCX1’s regulatory loop Palmitoylation modifies NCX1 XIP affinity and hence regulates intracellular Ca
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jacqueline Howie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
49
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
50
|
Shakartalla SB, Alhumaidi RB, Shammout ODA, Al Shareef ZM, Ashmawy NS, Soliman SSM. Dyslipidemia in breast cancer patients increases the risk of SAR-CoV-2 infection. INFECTION GENETICS AND EVOLUTION 2021; 92:104883. [PMID: 33905884 PMCID: PMC8079327 DOI: 10.1016/j.meegid.2021.104883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most diagnosed and second leading cause of death among women worldwide. Elevated levels of lipids have been reported in BC patients. On the other hand, lipids play an important role in coronavirus infections including the newly emerged disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and designated COVID-19 by WHO. Cancer patients including BC have been reported to be at higher risk of SARS-CoV-2 infection, which is mostly attributed to the chronic immunosuppressive status of cancer patients along with the use of cytotoxic drugs. Here in this review, we highlighted the role of dyslipidemia associated with BC patients in the incidence and severity of SARS-CoV-2 infection. Elevated levels of lipids namely phospholipids, cholesterol, sphingolipids, and eicosanoids in the serum of BC patients and their re-localization to the alveolar spaces can increase susceptibility and/or severity due to SARA-CoV-2 infection. Therefore, manipulation of dyslipidemia in BC patients should be recommended as prophylactic and therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sarra B Shakartalla
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wadmedani, Sudan
| | - Razan B Alhumaidi
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ola D A Shammout
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Zainab M Al Shareef
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Naglaa S Ashmawy
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|