1
|
Jayakody T, Budagoda DK, Mendis K, Dilshan WD, Bethmage D, Dissasekara R, Dawe GS. Biased agonism in peptide-GPCRs: A structural perspective. Pharmacol Ther 2025; 269:108806. [PMID: 39889970 DOI: 10.1016/j.pharmthera.2025.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane receptors that transduce extracellular signals to the cell interior by forming a ligand-receptor-effector (ternary) complex that functions via allosterism. Peptides constitute an important class of ligands that interact with their cognate GPCRs (peptide-GPCRs) to form the ternary complex. "Biased agonism", a therapeutically relevant phenomenon exhibited by GPCRs owing to their allosteric nature, has also been observed in peptide-GPCRs, leading to the development of selective therapeutics with fewer side effects. In this review, we have focused on the structural basis of signalling bias at peptide-GPCRs of classes A and B, and reviewed the therapeutic relevance of bias at peptide-GPCRs, with the hope of contributing to the discovery of novel biased peptide drugs.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Duvindu Bethmage
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Rashmi Dissasekara
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka; The Graduate School, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Cary BP, Hager MV, Mariam Z, Morris RK, Belousoff MJ, Deganutti G, Sexton PM, Wootten D, Gellman SH. Prolonged signaling of backbone-modified glucagon-like peptide- 1 analogues with diverse receptor trafficking. Proc Natl Acad Sci U S A 2025; 122:e2407574122. [PMID: 40168114 PMCID: PMC12002026 DOI: 10.1073/pnas.2407574122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
Signal duration and subcellular location are emerging as important facets of G protein-coupled receptor (GPCR) function. The glucagon-like peptide-1 receptor (GLP-1R), a clinically relevant class B1 GPCR, stimulates production of the second messenger cyclic adenosine monophosphate (cAMP) upon activation by the native hormone, GLP-1. cAMP production continues after the hormone-receptor complex has been internalized via endocytosis. Here, we report GLP-1 analogues that induce prolonged signaling relative to GLP-1. A single β-amino acid substitution at position 18, with the residue derived from (S,S)-trans-2-aminocyclopentanecarboxylic acid (ACPC), enhances signaling duration with retention of receptor endocytosis. Pairing ACPC at position 18 with a second substitution, α-aminoisobutyric acid (Aib) at position 16, abrogates endocytosis, but prolonged signaling is maintained. Prolonged signaling is sensitive to the structure of the β residue at position 18. Cryoelectron microscopy structures of two GLP-1 analogues bound to the GLP-1R:Gs complex suggest substantial alterations to bound peptide structure and dynamics compared to the GLP-1:GLP-1R:Gs complex. These structural findings strengthen an emerging view that agonist dynamics in the receptor-bound state influence signaling profiles. Our results advance understanding of the structural underpinnings of receptor activation and introduce tools for exploring the impact of spatiotemporal signaling profiles following GLP-1R activation.
Collapse
Affiliation(s)
- Brian P. Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Marlies V. Hager
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Rylie K. Morris
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
3
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
4
|
Wu Z, Qiu C, Liu Y, Yan X, Li Q, Jiang S, Xu J, Pan X, Ye F, Zhang Z, Ning P, Zhang B, Xu L, Cheng B, Xiang X, Qian C, Du Y, Chen G. Structural insights into prolactin-releasing peptide receptor signaling and G-protein coupling selectivity. Cell Rep 2025; 44:115337. [PMID: 39977266 DOI: 10.1016/j.celrep.2025.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Prolactin-releasing peptide receptor (PrRPR), a notable member of the class A peptide-GPCR (G-protein-coupled receptor) family, regulates diverse physiology functions upon activation by PrRP. Herein, we reveal that PrRPR could engage with not only the Gq/11 pathway but also the Gi/o pathway. We further resolve the structures of the PrRPR-Gq and PrRPR-Gi complexes using cryoelectron microscopy (cryo-EM), with PrRP31 as the endogenous ligand. These high-resolution structures enhance our understanding of PrRPR-ligand interactions, aiding the development of targeted drugs aiming at this crucial peptide-receptor system. Comparing these structures with counterparts of other RF-amide peptide receptors accentuates the crucial function of the RF-amide motif in activating receptors and sheds light on the universal mechanism for RF-amide motif detection by RF-amide receptors. Furthermore, structural and functional analysis indicates that conformational alterations in the intracellular loops (ICLs), along with the "wavy hook" of Gα, may explain the selective coupling of G proteins in PrRPR signaling.
Collapse
Affiliation(s)
- Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China; The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Chen Qiu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yiming Liu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaoyi Yan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Qiaohui Li
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Shirui Jiang
- The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Pan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Fang Ye
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Lezhi Xu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bangning Cheng
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Xufu Xiang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Casiraghi M, Wang H, Brennan PC, Habrian C, Hübner H, Schmidt MF, Maul L, Pani B, Bahriz SMFM, Xu B, Staffen N, Assafa TE, Chen B, White E, Sunahara RK, Inoue A, Xiang YK, Lefkowitz RJ, Isacoff EY, Nucci N, Gmeiner P, Lerch MT, Kobilka BK. Structure and dynamics determine G protein coupling specificity at a class A GPCR. SCIENCE ADVANCES 2025; 11:eadq3971. [PMID: 40106559 DOI: 10.1126/sciadv.adq3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
G protein-coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The β2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.
Collapse
Affiliation(s)
- Marina Casiraghi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick C Brennan
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chris Habrian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW, Erlangen, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW, Erlangen, Germany
| | - Luis Maul
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW, Erlangen, Germany
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Nico Staffen
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW, Erlangen, Germany
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Bohan Chen
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Elizabeth White
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- HHMI, Duke University Medical Center, Durham, NC, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Nathaniel Nucci
- Department of Physics and Astronomy and Department of Biological and Biomedical Biosciences, Rowan University, Glassboro, NJ, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW, Erlangen, Germany
| | - Michael T Lerch
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Gumpper RH, Jain MK, Kim K, Sun R, Sun N, Xu Z, DiBerto JF, Krumm BE, Kapolka NJ, Kaniskan HÜ, Nichols DE, Jin J, Fay JF, Roth BL. The structural diversity of psychedelic drug actions revealed. Nat Commun 2025; 16:2734. [PMID: 40108183 PMCID: PMC11923220 DOI: 10.1038/s41467-025-57956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
There is currently a resurgence in exploring the utility of classical psychedelics to treat depression, addiction, anxiety disorders, cluster headaches, and many other neuropsychiatric disorders. A biological target of these compounds, and a hypothesized target for their therapeutic actions, is the 5-HT2A serotonin receptor. Here, we present 7 cryo-EM structures covering all major compound classes of psychedelic and non-psychedelic agonists, including a β-arrestin-biased compound RS130-180. Identifying the molecular interactions between various psychedelics and the 5-HT2A receptor reveals both common and distinct motifs among the examined psychedelic chemotypes. These findings lead to a broader mechanistic understanding of 5-HT2A activation, which can catalyze the development of novel chemotypes with potential therapeutic utility and fewer side effects.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, Korea
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ning Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhongli Xu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- EvE Bio, LLC, Durham, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David E Nichols
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Fan L, Wang S. Biased GPCR Signaling: Possible Mechanisms and Therapeutic Applications. Biochemistry 2025; 64:1180-1192. [PMID: 40016120 DOI: 10.1021/acs.biochem.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Biased signaling refers to the phenomenon where a ligand selectively activates specific downstream pathways of G protein-coupled receptors (GPCRs), such as the G protein-mediated pathway or the β-arrestin-mediated pathway. This mechanism can be influenced by receptor bias, ligand bias, system bias and spatial bias, all of which are shaped by the receptor's conformational distinctions and kinetics. Since GPCRs are the largest class of drug targets, signaling bias garnered significant attention for its potential to enhance therapeutic efficacy while minimizing side effects. Despite intensive investigation, a major challenge lies in translating in vitro ligand efficacy into in vivo biological responses due to the dynamic and multifaceted nature of the in vivo environment. This review delves into the current understanding of GPCR-biased signaling, examining the role of structural bias at the molecular level, the impact of kinetic context on system and observational bias, and the challenges of applying these insights in drug development. It further explores future directions for advancing biased signaling applications, offering valuable perspectives on how to bridge the gap between in vitro studies and in vivo therapeutic design, ultimately accelerating the development of viable, biased therapeutics.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Provasi D, Filizola M. Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs. Biochemistry 2025; 64:1328-1337. [PMID: 40056143 DOI: 10.1021/acs.biochem.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to the receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs─defined as the dose range that provides effective therapy with minimal side effects─stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand. Accurately predicting safer compounds, through either low intrinsic efficacy or ligand bias, would greatly advance drug development. While AI models hold promise for such predictions, the development of deep learning models capable of reliably forecasting GPCR ligands with defined bioactivities remains challenging, largely due to the limited availability of high-quality data. To address this, we pretrained a model on receptor sequences and ligand data sets across all class A GPCRs and then refined it to predict low-efficacy compounds or biased agonists for individual class A GPCRs. This was achieved using transfer learning and a neural network incorporating natural language processing of target sequences and receptor mutation effects on signaling. These two fine-tuned models─one for low-efficacy agonists and one for biased agonists─are available on demand for each class A GPCR and enable virtual screening of large chemical libraries, thereby facilitating the discovery of compounds with potentially improved safety profiles.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
9
|
Tian L, Qiang T, Liu S, Zhang B, Zhang Y, Zhang B, Hu J, Zhang J, Lu Q, Ke C, Xia J, Liang C. Cannabinoid receptor 1 ligands: Biased signaling mechanisms driving functionally selective drug discovery. Pharmacol Ther 2025; 267:108795. [PMID: 39828030 DOI: 10.1016/j.pharmthera.2025.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects. Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases. This review examines the structural conformations of CB1 coupling to different signaling pathways and explores the mechanisms underlying biased signaling, which are critical for the design of functionally selective ligands. We discuss the structure-function relationships of endogenous cannabinoids (eCBs), phytocannabinoids, and synthetic cannabinoid ligands with biased properties. Challenges such as the complexity of ligand bias screening, the limited availability of distinctly biased ligands, and the variability in receptor signaling profiles in vivo have hindered clinical progress. Although the therapeutic potential of biased ligands in various clinical conditions remains in its infancy, retrospective identification of such molecules provides a strong foundation for further development. Recent advances in CB1 crystallography, particularly insights into its conformations with G proteins and β-arrestins, now offer a framework for structure-based drug design. While there is still a long way to go before biased CB1 ligands can be widely used in clinical practice, ongoing multidisciplinary research shows promise for achieving functional selectivity in targeting specific pathways. These progress could lead to the development of safer and more effective cannabinoid-based therapies in the future.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Sundian Liu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Boxin Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yunfei Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bingxing Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinrong Hu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiayun Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qi Lu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Changhua Ke
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Juan Xia
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Chengyuan Liang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Motulsky HJ, Head T, Clarke PBS. Analyzing lognormal data: A nonmathematical practical guide. Pharmacol Rev 2025; 77:100049. [PMID: 40153903 DOI: 10.1016/j.pharmr.2025.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/12/2025] [Indexed: 04/01/2025] Open
Abstract
Lognormal distributions are pervasive in pharmacology and elsewhere in biomedical science, arising naturally when biological effects multiply rather than add. Despite their ubiquity in pharmacological parameters (eg, EC50, IC50, Kd, and Km), lognormal distributions are often overlooked or misunderstood, leading to flawed data analysis. This largely nonmathematical review explains why lognormal distributions are common, how to recognize them, and how to analyze them appropriately. We show that many measured variables are lognormal. So are many derived parameters, particularly those defined as ratios of lognormal variables. Through examples and simulations accessible to working scientists, we demonstrate how misidentifying lognormal distributions as normal leads to reduced statistical power, unnecessarily large sample sizes, false identification of outliers, and inappropriate reporting of effects as differences rather than ratios. We challenge the common practice of using normality tests to decide how to analyze data, showing that many data sets pass both normality and lognormality tests, especially with small sample sizes. Instead, we advocate for assuming lognormality based on the nature of the variable. This review provides practical guidance on recognizing and presenting lognormal data, and comparing data sets sampled from lognormal distributions. Based on Monte Carlo simulations, we recommend the lognormal Welch's t test or nonparametric Brunner-Munzel test for comparing 2 unpaired groups, the lognormal ratio paired t test for paired comparisons, and lognormal ANOVA for ≥3 groups. By recognizing and properly handling lognormal distributions, pharmacologists can design more efficient experiments, obtain more reliable statistical inferences, and communicate their results more effectively. SIGNIFICANCE STATEMENT: Lognormal distributions are common in pharmacology and many scientific fields, but they are often misunderstood or overlooked. This review provides a detailed guide to recognizing and analyzing lognormal data, aiming to help pharmacologists perform more appropriate and more powerful statistical analyses, draw more meaningful conclusions from their data, and communicate their results more effectively.
Collapse
Affiliation(s)
| | | | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Kim H, Park G, Shin HG, Kwon D, Kim H, Baek IY, Nam MH, Cho IJ, Kim J, Seong J. Optogenetic Control of Dopamine Receptor 2 Reveals a Novel Aspect of Dopaminergic Neurotransmission in Motor Function. J Neurosci 2025; 45:e1473242024. [PMID: 39562043 DOI: 10.1523/jneurosci.1473-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Dopaminergic neurotransmission plays a crucial role in motor function through the coordination of dopamine receptor (DRD) subtypes, such as DRD1 and DRD2, thus the functional imbalance of these receptors can lead to Parkinson's disease. However, due to the complexity of dopaminergic circuits in the brain, it is limited to investigating the individual functions of each DRD subtype in specific brain regions. Here, we developed a light-responsive chimeric DRD2, OptoDRD2, which can selectively activate DRD2-like signaling pathways with spatiotemporal resolution. OptoDRD2 was designed to include the light-sensitive component of rhodopsin and the intracellular signaling domain of DRD2. Upon illumination with blue light, OptoDRD2 triggered DRD2-like signaling pathways, such as Gαi/o subtype recruitment, a decrease in cAMP levels, and ERK phosphorylation. To explore unknown roles of DRD2 in glutamatergic cell populations of basal ganglia circuitry, OptoDRD2 was genetically expressed in excitatory neurons in lateral globus pallidus (LGP) of the male mouse brain. The optogenetic stimulation of OptoDRD2 in the LGP region affected a wide range of locomotion-related parameters, such as increased frequency of movement and decreased immobility time, resulting in the facilitation of motor function of living male mice. Therefore, our findings indicate a potentially novel role for DRD2 in the excitatory neurons of the LGP region, suggesting that OptoDRD2 can be a valuable tool enabling the investigation of unknown roles of DRD2 at specific cell types or brain regions.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyo Geun Shin
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Duwan Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Heejung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il-Joo Cho
- Departments of Convergence Medicine, Korea University, Seoul 02841, Republic of Korea
- Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Provasi D, Filizola M. Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627102. [PMID: 39713468 PMCID: PMC11661127 DOI: 10.1101/2024.12.07.627102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs - defined as the dose range that provides effective therapy with minimal side effects - stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand. Accurately predicting safer compounds, whether through low intrinsic efficacy or ligand bias, would greatly advance drug development. While AI models hold promise for such predictions, the development of deep learning models capable of reliably forecasting GPCR ligands with defined bioactivities remains challenging, largely due to the limited availability of high-quality data. To address this, we pre-trained a model on receptor sequences and ligand datasets across all class A GPCRs, and then refined it to predict low-efficacy compounds or biased agonists for individual class A GPCRs. This was achieved using transfer learning and a neural network incorporating natural language processing of target sequences and receptor mutation effects on signaling. These two fine-tuned models-one for low-efficacy agonists and one for biased agonists-are available on demand for each class A GPCR and enable virtual screening of large chemical libraries, thereby facilitating the discovery of compounds with potentially improved safety profiles.
Collapse
|
13
|
Rivas-Santisteban R, Muñoz A, Lillo J, Raïch I, Rodríguez-Pérez AI, Navarro G, Labandeira-García JL, Franco R. Cannabinoid regulation of angiotensin II-induced calcium signaling in striatal neurons. NPJ Parkinsons Dis 2024; 10:220. [PMID: 39548112 PMCID: PMC11568119 DOI: 10.1038/s41531-024-00827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Calcium ion (Ca2+) homeostasis is crucial for neuron function and neurotransmission. This study focused on the actions mediated by the CB1 receptor (CB1R), the most abundant G protein-coupled receptor (GPCR) in central nervous system (CNS) neurons, over by the AT1R, which is one of the few G protein-coupled CNS receptors able to regulate cytoplasmic Ca2+ levels. A functional interaction suggesting a direct association between these receptors was detected. AT1-CB1 receptor heteromers (AT1CB1Hets) were identified in HEK-293T cells by bioluminescence resonance energy transfer (BRET2). Functional interactions within the AT1-CB1 complex and their potential relevance in Parkinson's disease (PD) were assessed. In situ proximity ligation assays (PLA) identified AT1CB1Hets in neurons, in which an important finding was that Ca2+ level increase upon AT1R activation was reduced in the presence of cannabinoids acting on CB1Rs. AT1CB1Het expression was quantified in samples from the 6-hydroxydopamine (6-OHDA) hemilesioned rat model of PD in which a lower expression of AT1CB1Hets was observed in striatal neurons from lesioned animals (versus non-lesioned). AT1CB1Het expression changed depending on both the lesion and the consequences of levodopa administration, i.e., dyskinesias versus lack of involuntary movements. A partial recovery in AT1CB1Het expression was detected in lesioned animals that developed levodopa-induced dyskinesias. These findings support the existence of a compensatory mechanism mediated by AT1CB1Hets that modulates susceptibility to levodopa-induced dyskinesias in PD. Therefore, cannabinoids may be useful in reducing calcium dyshomeostasis in dyskinesia.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain.
| | - Ana Muñoz
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Iu Raïch
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Ana I Rodríguez-Pérez
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - José L Labandeira-García
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Franco
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain.
- Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Kaoullas MG, Thal DM, Christopoulos A, Valant C. Ligand bias at the muscarinic acetylcholine receptor family: Opportunities and challenges. Neuropharmacology 2024; 258:110092. [PMID: 39067666 DOI: 10.1016/j.neuropharm.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the endogenous neurotransmitter, acetylcholine (ACh). Disruption of mAChR signalling has been associated with a variety of neurological disorders and non-neurological diseases. Consequently, the development of agonists and antagonists of the mAChRs has been a major avenue in drug discovery. Unfortunately, mAChR ligands are often associated with on-target side effects for two reasons. The first reason is due to the high sequence conservation at the orthosteric ACh binding site among all five receptor subtypes (M1-M5), making on-target subtype selectivity a major challenge. The second reason is due to on-target side effects of mAChR drugs that are associated with the pleiotropic nature of mAChR signalling at the level of a single mAChR subtype. Indeed, there is growing evidence that within the myriad of signalling events produced by mAChR ligands, some will have therapeutic benefits, whilst others may promote cholinergic side effects. This paradigm of drug action, known as ligand bias or biased agonism, is an attractive feature for next-generation mAChR drugs, as it holds the promise of developing drugs devoid of on-target adverse effects. Although relatively simple to detect and even quantify in vitro, ligand bias, as observed in recombinant systems, does not always translate to in vivo systems, which remains a major hurdle in GPCR drug discovery, including the mAChR family. Here we report recent studies that have attempted to detect and quantify ligand bias at the mAChR family, and briefly discuss the challenges associated with biased agonist drug development. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Michaela G Kaoullas
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia.
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia.
| |
Collapse
|
15
|
Buckley M, Jacob WP, Bortey L, McClain ME, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Nenadovich M, Kutoloski T, Rademacher L, Alva A, Heinecke O, Adkins R, Parkar S, Bhagat R, Lunato J, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission. PLoS Genet 2024; 20:e1011461. [PMID: 39561202 PMCID: PMC11614273 DOI: 10.1371/journal.pgen.1011461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/03/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1-deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1/GαS, acy-1/adenylyl cyclase and sphk-1/sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for intestinal FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
Affiliation(s)
- Morgan Buckley
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - William P. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Letitia Bortey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Makenzi E. McClain
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alyssa L. Ritter
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Amy Godfrey
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Allyson S. Munneke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Julie C. Kolnik
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Sarah Olofsson
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Tanner Kutoloski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Lillian Rademacher
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Alexandra Alva
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Olivia Heinecke
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Ryan Adkins
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Shums Parkar
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Reesha Bhagat
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Jaelin Lunato
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America
| | - Jennifer R. Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America
| |
Collapse
|
16
|
Peng C, Vecchio EA, Nguyen ATN, De Seram M, Tang R, Keov P, Woodman OL, Chen YC, Baell J, May LT, Zhao P, Ritchie RH, Qin CX. Biased receptor signalling and intracellular trafficking profiles of structurally distinct formylpeptide receptor 2 agonists. Br J Pharmacol 2024; 181:4677-4692. [PMID: 39154373 DOI: 10.1111/bph.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models. We aim to characterise the differences in ligand-receptor engagement and downstream signalling and trafficking bias profile. EXPERIMENTAL APPROACH Concentration-response curves to G protein dissociation, β-arrestin recruitment, receptor trafficking and second messenger signalling were generated using FPR2 ligands (BMS-986235, ACT-389949, compound 43 and WKYMVm), in HEK293A cells. Log(τ/KA) was obtained from the operational model for bias analysis using WKYMVm as a reference ligand. Docking of FPR2 ligands into the active FPR2 cryoEM structure (PDBID: 7T6S) was performed using ICM pro software. KEY RESULTS Bias analysis revealed that WKYMVm and ACT-389949 shared a very similar bias profile. In comparison, BMS-986235 and compound 43 displayed approximately 5- to 50-fold bias away from β-arrestin recruitment and trafficking pathways, while being 35- to 60-fold biased towards cAMP inhibition and pERK1/2. Molecular docking predicted key amino acid interactions at the FPR2 shared between WKYMVm and ACT-389949, but not with BMS-986235 and compound 43. CONCLUSION AND IMPLICATIONS In vitro characterisation demonstrated that WKYMVm and ACT-389949 differ from BMS-986235 and compound 43 in their signalling and protein coupling profile. This observation may be explained by differences in the ligand-receptor interactions. In vitro characterisation provided significant insights into identifying the desired bias profile for FPR2-based pharmacotherapy.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mia De Seram
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ruby Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter Keov
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yung-Chih Chen
- Monash Victorian Heart Institute, Blackburn Road Clayton, Monash University, Melbourne, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Vitoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 PMCID: PMC11968146 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
18
|
Zangrandi L, Fogli B, Mutti A, Staritzbichler R, Most V, Hildebrand PW, Heilbronn R, Schwarzer C. Structure-function relationship of dynorphin B variants using naturally occurring amino acid substitutions. Front Pharmacol 2024; 15:1484730. [PMID: 39539623 PMCID: PMC11557314 DOI: 10.3389/fphar.2024.1484730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Dynorphins (Dyn) represent the subset of endogenous opioid peptides with the highest binding affinity to kappa opioid receptors (KOPrs). Activation of the G-protein-coupled pathway of KOPrs has strong anticonvulsant effects. Dyn also bind to mu (MOPrs) and delta opioid receptors (DOPrs) with lower affinity and can activate the β-arrestin pathway. To fully exploit the therapeutic potential of dynorphins and reduce potential unwanted effects, increased selectivity for KOPrs combined with reduced activation of the mTOR complex would be favorable. Therefore, we investigated a series of dynorphin B (DynB) variants, substituted in one or two positions with naturally occurring amino acids for differential opioid receptor activation, applying competitive radio binding assays, GTPγS assays, PRESTO-Tango, and Western blotting on single-opioid receptor-expressing cells. Seven DynB derivatives displayed at least 10-fold increased selectivity for KOPrs over either MOPrs or DOPrs. The highest selectivity for KOPrs over MOPrs was obtained with DynB_G3M/Q8H, and the highest selectivity for KOPrs over DOPrs was obtained with DynB_L5S. Increased selectivity for KOPr over MOPr and DOPr was based on a loss of affinity or potency at MOPr and DOPr rather than a higher affinity or potency at KOPr. This suggests that the investigated amino acid exchanges in positions 3, 5, and 8 are of higher importance for binding and activation of MOPr or DOPr than of KOPr. In tests for signal transduction using the GTPγS assay, none of the DynB derivatives displayed increased potency. The three tested variants with substitutions of glycine to methionine in position 3 displayed reduced efficacy and are, therefore, considered partial agonists. The two most promising activating candidates were further investigated for functional selectivity between the G-protein and the β-arrestin pathway, as well as for activation of mTOR. No difference was detected in the respective read-outs, compared to wild-type DynB. Our data indicate that the assessment of affinity to KOPr alone is not sufficient to predict either potency or efficacy of peptidergic agonists on KOPr. Further assessment of downstream pathways is required to allow more reliable predictions of in vivo effects.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Clinic for Neurology and Experimental Neurology, AG Gene Therapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Fogli
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mutti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - René Staritzbichler
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Victoria Most
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Regine Heilbronn
- Clinic for Neurology and Experimental Neurology, AG Gene Therapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zheng X, Ehrlich B, Finlay D, Glass M. No Evidence for Endocannabinoid-Induced G Protein Subtype Selectivity at Human and Rodent Cannabinoid CB 1 Receptors. Cannabis Cannabinoid Res 2024. [PMID: 39373143 DOI: 10.1089/can.2024.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Introduction: The endocannabinoid system (ECS) is a widespread neurotransmitter system. A key characteristic of the ECS is that there are multiple endogenous ligands (endocannabinoids). Of these, the most extensively studied are arachidonoyl ethanolamide (AEA) and 2-arachidonoyl-glycerol (2-AG), both act as agonists at the cannabinoid CB1 receptor. In humans, three CB1 variants have been identified: hCB1, considered the most abundant G protein-coupled receptor in the brain, alongside the less abundant and studied variants, hCB1a and hCB1b. CB1 exhibits a preference for coupling with inhibitory Gi/o proteins, although its interactions with specific members of the Gi/o family remain poorly characterized. This study aimed to compare the AEA and 2-AG-induced activation of various G protein subtypes at CB1. Furthermore, we compared the response of human CB1 (hCB1, hCB1a, hCB1b) and explored species differences by examining rodent receptors (mCB1, rCB1). Materials and Methods: Activation of individual G protein subtypes in HEK293 cells transiently expressing CB1 was measured with G protein dissociation assay utilizing TRUPATH biosensors. The performance of the TRUPATH biosensors was evaluated using Z-factor analysis. Pathway potencies and efficacies were analyzed using the operational analysis of bias to determine G protein subtype selectivity for AEA and 2-AG. Results: Initial screening of TRUPATH biosensors performance revealed variable sensitivities within our system. Based on the biosensor performance, the G protein subtypes pursued for further characterization were Gi1, Gi3, GoA, GoB, GZ, G12, and G13. Across all pathways, AEA demonstrated partial agonism, whereas 2-AG exhibited full or high-efficacy agonism. Notably, we provide direct evidence that the hCB1 receptor couples to G12 and G13 proteins. Our findings do not indicate any evidence of G protein subtype selectivity. Similar observations were made across the human receptor variants (hCB1, hCB1a, hCB1b), as well as at mCB1 and rCB1. Discussion: There was no evidence suggesting G protein subtype selectivity for AEA and 2-AG at CB1, and this finding remained consistent across human receptor variants and different species.
Collapse
Affiliation(s)
- Xiaoxi Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Beth Ehrlich
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Tobin AB. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 2024; 23:743-758. [PMID: 39143241 DOI: 10.1038/s41573-024-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Collapse
Affiliation(s)
- Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Rahman SN, Imhaouran F, Leurs R, Christopoulos A, Valant C, Langmead CJ. Ligand-directed biased agonism at human histamine H 3 receptor isoforms across Gα i/o- and β-arrestin2-mediated pathways. Biochem Pharmacol 2024; 228:115988. [PMID: 38159685 DOI: 10.1016/j.bcp.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. β-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.
Collapse
Affiliation(s)
- Sabrina N Rahman
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia; Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Faissal Imhaouran
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Arthur Christopoulos
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia
| | - Céline Valant
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia.
| | - Christopher J Langmead
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia.
| |
Collapse
|
22
|
Rodríguez-Sarmiento DY, Rondón-Villarreal P, Scarpelli-Pereira PH, Bouvier M. Comprehensive Analysis of Kisspeptin Signaling: Effects on Cellular Dynamics in Cervical Cancer. Biomolecules 2024; 14:923. [PMID: 39199311 PMCID: PMC11352469 DOI: 10.3390/biom14080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/01/2024] Open
Abstract
Kisspeptin, a key neuropeptide derived from the KISS1R gene, is renowned for its critical role in regulating the hypothalamic-pituitary-gonadal axis and reproductive hormone secretion. Beyond its primary function in reproductive biology, emerging research has illuminated its influence in various cancers, mediating significant effects through its interaction with the G protein-coupled receptor, kisspeptin receptor. This interaction has been implicated in modulating cellular processes such as proliferation and metastasis, making it a potential target for therapeutic intervention. Our study initially screened ten kisspeptin-10 analogs through cytotoxic effects of kisspeptin-10 (KP10) and its analogs in several cancer types, including cervical, prostate, breast, and gastric cancers, with a particular focus on cervical cancer, where the most profound effects were observed. Further exploration using kinase array assays revealed that these analogs specifically alter key kinases involved in cancer progression. Migration assays demonstrated a substantial decrease in cell motility, and Bioluminescence Resonance Energy Transfer assays confirmed these analogs' strong interactions with the kisspeptin receptor. Overall, our results indicate that these KP10 analogs not only hinder cervical cancer cell proliferation but also curtail migration through targeted modulation of kinase signaling, suggesting their potential as therapeutic agents in managing cervical cancer progression. This comprehensive approach underscores the therapeutic promise of exploiting kisspeptin signaling in cancer treatment strategies.
Collapse
Affiliation(s)
| | - Paola Rondón-Villarreal
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Bucaramanga 680003, Colombia;
| | - Pedro Henrique Scarpelli-Pereira
- Department of Biochemistry, Institute for Research in Immunology and Cancer (IRIC), Université de Montreal, Montreal, QC H3T 1J4, Canada; (P.H.S.-P.); (M.B.)
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology and Cancer (IRIC), Université de Montreal, Montreal, QC H3T 1J4, Canada; (P.H.S.-P.); (M.B.)
| |
Collapse
|
23
|
Tóth AD, Szalai B, Kovács OT, Garger D, Prokop S, Soltész-Katona E, Balla A, Inoue A, Várnai P, Turu G, Hunyady L. G protein-coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling. Sci Signal 2024; 17:eadi0934. [PMID: 38917219 DOI: 10.1126/scisignal.adi0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of β-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the β-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine β-arrestin recruitment. The ligand-dependent variance in β-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the β-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-β-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-β-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained β-arrestin binding: the V2 vasopressin receptor and a mutant β2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in β-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.
Collapse
MESH Headings
- Endocytosis/physiology
- Humans
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- beta-Arrestins/metabolism
- beta-Arrestins/genetics
- HEK293 Cells
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Endosomes/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Animals
- Ligands
- Protein Binding
- Protein Transport
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Szentkirályi utca 46, H-1088 Budapest, Hungary
| | - Bence Szalai
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Orsolya T Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Computational Health Center, Helmholtz Munich, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Eszter Soltész-Katona
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 Japan
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
24
|
Feng J, Dong H, Lischinsky JE, Zhou J, Deng F, Zhuang C, Miao X, Wang H, Li G, Cai R, Xie H, Cui G, Lin D, Li Y. Monitoring norepinephrine release in vivo using next-generation GRAB NE sensors. Neuron 2024; 112:1930-1942.e6. [PMID: 38547869 PMCID: PMC11364517 DOI: 10.1016/j.neuron.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/21/2024] [Accepted: 03/01/2024] [Indexed: 06/22/2024]
Abstract
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
Collapse
Affiliation(s)
- Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Shen S, Wu C, Lin G, Yang X, Zhou Y, Zhao C, Miao Z, Tian X, Wang K, Yang Z, Liu Z, Guo N, Li Y, Xia A, Zhou P, Liu J, Yan W, Ke B, Yang S, Shao Z. Structure-based identification of a G protein-biased allosteric modulator of cannabinoid receptor CB1. Proc Natl Acad Sci U S A 2024; 121:e2321532121. [PMID: 38830102 PMCID: PMC11181136 DOI: 10.1073/pnas.2321532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and β-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.
Collapse
Affiliation(s)
- Siyuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Guifeng Lin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Yangli Zhou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhiyu Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Nihong Guo
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Yueshan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Anjie Xia
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Pei Zhou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Jingming Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| |
Collapse
|
26
|
Meqbil YJ, Aguilar J, Blaine AT, Chen L, Cassell RJ, Pradhan AA, van Rijn RM. Identification of 1,3,8-Triazaspiro[4.5]Decane-2,4-Dione Derivatives as a Novel δ Opioid Receptor-Selective Agonist Chemotype. J Pharmacol Exp Ther 2024; 389:301-309. [PMID: 38621994 PMCID: PMC11125782 DOI: 10.1124/jpet.123.001735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
δ opioid receptors (DORs) hold potential as a target for neurologic and psychiatric disorders, yet no DOR agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the DOR are unclear. However, it is known that certain DOR agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)/4-[(αR*)-α-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl]-N,N-diethylbenzamide chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel DOR agonists. We used a β-arrestin assay to screen a small G-protein coupled receptors (GPCR)-focused chemical library. We identified a novel chemotype of DOR agonists that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the DOR over a panel of 167 other GPCRs, is slightly biased toward G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious β-arrestin recruiters and may suggest this novel class of DOR agonists could be expanded on to develop a clinical candidate drug. SIGNIFICANCE STATEMENT: δ opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high-throughput screening assay, this study identified a novel δ opioid receptor agonist chemotype, which may serve as alternative for the current analgesic clinical candidates.
Collapse
Affiliation(s)
- Yazan J Meqbil
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Jhoan Aguilar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Arryn T Blaine
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Lan Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Robert J Cassell
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Amynah A Pradhan
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Richard M van Rijn
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| |
Collapse
|
27
|
Kenakin T. Bias translation: The final frontier? Br J Pharmacol 2024; 181:1345-1360. [PMID: 38424747 DOI: 10.1111/bph.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024] Open
Abstract
Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Nelic D, Chetverikov N, Hochmalová M, Diaz C, Doležal V, Boulos J, Jakubík J, Martemyanov K, Janoušková-Randáková A. Agonist-selective activation of individual G-proteins by muscarinic receptors. Sci Rep 2024; 14:9652. [PMID: 38671143 PMCID: PMC11053168 DOI: 10.1038/s41598-024-60259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.
Collapse
Affiliation(s)
- Dominik Nelic
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Nikolai Chetverikov
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Hochmalová
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Christina Diaz
- Department of Physical Sciences, Barry University, Miami Shores, Miami, FL, USA
| | - Vladimír Doležal
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - John Boulos
- Department of Physical Sciences, Barry University, Miami Shores, Miami, FL, USA
| | - Jan Jakubík
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kirill Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Alena Janoušková-Randáková
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
29
|
Labani N, Gbahou F, Lian S, Liu J, Jockers R. 2023 Julius Axelrod Symposium: Plant-Derived Molecules Acting on G Protein-Coupled Receptors. Mol Pharmacol 2024; 105:328-347. [PMID: 38458772 DOI: 10.1124/molpharm.123.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Florence Gbahou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Shuangyu Lian
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Ralf Jockers
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| |
Collapse
|
30
|
Ryalls B, Patel M, Sparkes E, Banister SD, Finlay DB, Glass M. Investigating selectivity and bias for G protein subtypes and β-arrestins by synthetic cannabinoid receptor agonists at the cannabinoid CB 1 receptor. Biochem Pharmacol 2024; 222:116052. [PMID: 38354957 DOI: 10.1016/j.bcp.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and β-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and β-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of β-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and β-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards β-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.
Collapse
Affiliation(s)
- Beth Ryalls
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Monica Patel
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Eric Sparkes
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Samuel D Banister
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David B Finlay
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Michelle Glass
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand; Institute of Environmental Science and Research Limited (ESR) Kenepuru Science Centre: 34 Kenepuru Drive, Kenepuru, Porirua 5022, New Zealand.
| |
Collapse
|
31
|
Kelly TJ, Bonniwell EM, Mu L, Liu X, Hu Y, Friedman V, Yu H, Su W, McCorvy JD, Liu QS. Psilocybin analog 4-OH-DiPT enhances fear extinction and GABAergic inhibition of principal neurons in the basolateral amygdala. Neuropsychopharmacology 2024; 49:854-863. [PMID: 37752222 PMCID: PMC10948882 DOI: 10.1038/s41386-023-01744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Psychedelics such as psilocybin show great promise for the treatment of depression and PTSD, but their long duration of action poses practical limitations for patient access. 4-OH-DiPT is a fast-acting and shorter-lasting derivative of psilocybin. Here we characterized the pharmacological profile of 4-OH-DiPT and examined its impact on fear extinction learning as well as a potential mechanism of action. First, we profiled 4-OH-DiPT at all 12 human 5-HT GPCRs. 4-OH-DiPT showed strongest agonist activity at all three 5-HT2A/2B/2C receptors with near full agonist activity at 5-HT2A. Notably, 4-OH-DiPT had comparable activity at mouse and human 5-HT2A/2B/2C receptors. In a fear extinction paradigm, 4-OH-DiPT significantly reduced freezing responses to conditioned cues in a dose-dependent manner with a greater potency in female mice than male mice. Female mice that received 4-OH-DiPT before extinction training had reduced avoidance behaviors several days later in the light dark box, elevated plus maze and novelty-suppressed feeding test compared to controls, while male mice did not show significant differences. 4-OH-DiPT produced robust increases in spontaneous inhibitory postsynaptic currents (sIPSCs) in basolateral amygdala (BLA) principal neurons and action potential firing in BLA interneurons in a 5-HT2A-dependent manner. RNAscope demonstrates that Htr2a mRNA is expressed predominantly in BLA GABA interneurons, Htr2c mRNA is expressed in both GABA interneurons and principal neurons, while Htr2b mRNA is absent in the BLA. Our findings suggest that 4-OH-DiPT activates BLA interneurons via the 5-HT2A receptor to enhance GABAergic inhibition of BLA principal neurons, which provides a potential mechanism for suppressing learned fear.
Collapse
Affiliation(s)
- Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wantang Su
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
32
|
Tsai MHM, Chen L, Baumann MH, Canals M, Javitch JA, Lane JR, Shi L. In Vitro Functional Profiling of Fentanyl and Nitazene Analogs at the μ-Opioid Receptor Reveals High Efficacy for Gi Protein Signaling. ACS Chem Neurosci 2024; 15:854-867. [PMID: 38345920 PMCID: PMC11890208 DOI: 10.1021/acschemneuro.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as μ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G-protein-biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains the reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at the MOR using adenylate cyclase inhibition and β-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and β-arrestin2 recruitment pathways. Compared to the reference agonist [d-Ala2,N-MePhe4,Gly-ol5]enkephalin, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting β-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and β-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. In addition, the extremely high potency of many NSOs now infiltrating illicit drug markets further contributes to the danger posed to public health.
Collapse
Affiliation(s)
- Meng-Hua M. Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Jonathan A. Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
33
|
Jayakody T, Inoue A, Kannan S, Nakamura G, Kawakami K, Mendis K, Nguyen TB, Li J, Herr DR, Verma CS, Dawe GS. Mechanisms of biased agonism by Gα i/o-biased stapled peptide agonists of the relaxin-3 receptor. Sci Signal 2024; 17:eabl5880. [PMID: 38349968 DOI: 10.1126/scisignal.abl5880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
The neuropeptide relaxin-3 is composed of an A chain and a B chain held together by disulfide bonds, and it modulates functions such as anxiety and food intake by binding to and activating its cognate receptor RXFP3, mainly through the B chain. Biased ligands of RXFP3 would help to determine the molecular mechanisms underlying the activation of G proteins and β-arrestins downstream of RXFP3 that lead to such diverse functions. We showed that the i, i+4 stapled relaxin-3 B chains, 14s18 and d(1-7)14s18, were Gαi/o-biased agonists of RXFP3. These peptides did not induce recruitment of β-arrestin1/2 to RXFP3 by GPCR kinases (GRKs), in contrast to relaxin-3, which enabled the GRK2/3-mediated recruitment of β-arrestin1/2 to RXFP3. Relaxin-3 and the previously reported peptide 4 (an i, i+4 stapled relaxin-3 B chain) did not exhibit biased signaling. The staple linker of peptide 4 and parts of both the A chain and B chain of relaxin-3 interacted with extracellular loop 3 (ECL3) of RXFP3, moving it away from the binding pocket, suggesting that unbiased ligands promote a more open conformation of RXFP3. These findings highlight roles for the A chain and the N-terminal residues of the B chain of relaxin-3 in inducing conformational changes in RXFP3, which will help in designing selective biased ligands with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | - Gaku Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Thanh-Binh Nguyen
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jianguo Li
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- Department of Biological Sciences, National University of Singapore, 6 Science Drive 4, Singapore 117558
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
34
|
Buckley M, Jacob WP, Bortey L, McClain M, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Adkins R, Kutoloski T, Rademacher L, Heinecke O, Alva A, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycopeptide hormone receptor FSHR-1 regulates cholinergic neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.578699. [PMID: 38405708 PMCID: PMC10888917 DOI: 10.1101/2024.02.10.578699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1- deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1 / Gα S , acy-1 /adenylyl cyclase and sphk-1/ sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
|
35
|
Onaran HO, Costa T. Why classical receptor theory, which ignores allostery, can effectively measure the strength of an allosteric effect as agonist's efficacy. Br J Pharmacol 2024. [PMID: 38343142 DOI: 10.1111/bph.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/17/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The classical theory of receptor action has been used for decades as a powerful tool to estimate molecular determinants of ligand-induced receptor activation (i.e., affinity and efficacy) from experimentally observable biological responses. However, it is also a well-recognized fact that the receptor-binding and activation mechanisms, and the parameters thereof, described in the classical theory contradict with the modern view of receptor activation based on allosteric principles. EXPERIMENTAL APPROACH We used mathematical analysis, along with some numerical simulations, to answer the key question as to what extent the classical theory is compatible-if at all-with the modern understanding of receptor activation. KEY RESULTS Here, we showed conclusively that (1) receptor activation equations based on allosteric principles contain the logic of the classical theory in disguise, and therefore, (2) estimates of "intrinsic efficacy" (ε) obtained by means of classical techniques (i.e., null methods or fitting the operational model to concentration-response data) are equivalent to the allosteric coupling factors that represent the molecular efficacy of ligands. CONCLUSION AND IMPLICATIONS Thus, we conclude that despite the justified criticisms it has received so far, the classical theory may continue to be useful in estimating ligand efficacy from experimental data, if used properly. Here, we also provide rigorous criteria for the proper use of the theory. These findings not only have implications for ligand classification but also resolve some long lasting discussions in the field of bias agonism in GPCR, which requires reasonable estimates of relative ligand efficacies at different signalling pathways.
Collapse
Affiliation(s)
- H Ongun Onaran
- Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Tommaso Costa
- Istituto Superiore di Sanità (retired), Viale America 111, Rome, Italy
| |
Collapse
|
36
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
37
|
Ham S, Mukaida S, Sato M, Keov P, Bengtsson T, Furness S, Holliday ND, Evans BA, Summers RJ, Hutchinson DS. Role of G protein-coupled receptor kinases (GRKs) in β 2 -adrenoceptor-mediated glucose uptake. Pharmacol Res Perspect 2024; 12:e1176. [PMID: 38332691 PMCID: PMC10853676 DOI: 10.1002/prp2.1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Truncation of the C-terminal tail of the β2 -AR, transfection of βARKct or over-expression of a kinase-dead GRK mutant reduces isoprenaline-stimulated glucose uptake, indicating that GRK is important for this response. We explored whether phosphorylation of the β2 -AR by GRK2 has a role in glucose uptake or if this response is related to the role of GRK2 as a scaffolding protein. CHO-GLUT4myc cells expressing wild-type and mutant β2 -ARs were generated and receptor affinity for [3 H]-CGP12177A and density of binding sites determined together with the affinity of isoprenaline and BRL37344. Following receptor activation by β2 -AR agonists, cAMP accumulation, GLUT4 translocation, [3 H]-2-deoxyglucose uptake, and β2 -AR internalization were measured. Bioluminescence resonance energy transfer was used to investigate interactions between β2 -AR and β-arrestin2 or between β2 -AR and GRK2. Glucose uptake after siRNA knockdown or GRK inhibitors was measured in response to β2 -AR agonists. BRL37344 was a poor partial agonist for cAMP generation but displayed similar potency and efficacy to isoprenaline for glucose uptake and GLUT4 translocation. These responses to β2 -AR agonists occurred in CHO-GLUT4myc cells expressing β2 -ARs lacking GRK or GRK/PKA phosphorylation sites as well as in cells expressing the wild-type β2 -AR. However, β2 -ARs lacking phosphorylation sites failed to recruit β-arrestin2 and did not internalize. GRK2 knock-down or GRK2 inhibitors decreased isoprenaline-stimulated glucose uptake in rat L6 skeletal muscle cells. Thus, GRK phosphorylation of the β2 -AR is not associated with isoprenaline- or BRL37344-stimulated glucose uptake. However, GRKs acting as scaffold proteins are important for glucose uptake as GRK2 knock-down or GRK2 inhibition reduces isoprenaline-stimulated glucose uptake.
Collapse
Affiliation(s)
- Seungmin Ham
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Saori Mukaida
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Masaaki Sato
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Peter Keov
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Tore Bengtsson
- Atrogi ABStockholmSweden
- Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholmSweden
| | - Sebastian Furness
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Nicholas D. Holliday
- School of Life Sciences, The Medical School, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Excellerate Bioscience, BiocityNottinghamUK
| | - Bronwyn A. Evans
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Roger J. Summers
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Dana S. Hutchinson
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
38
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
39
|
Hinds CE, Peace E, Chen S, Davies I, El Eid L, Tomas A, Tan T, Minnion J, Jones B, Bloom SR. Abolishing β-arrestin recruitment is necessary for the full metabolic benefits of G protein-biased glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab 2024; 26:65-77. [PMID: 37795639 DOI: 10.1111/dom.15288] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
AIM Earlier studies have shown that peptide glucagon-like peptide-1 receptor (GLP-1R) agonists with reduced β-arrestin recruitment show enhanced anti-hyperglycaemic efficacy through avoidance of GLP-1R desensitization. However, the ligand modifications needed to decrease β-arrestin recruitment usually also reduces GLP-1R affinity, therefore higher doses are needed. Here we aimed to develop new, long-acting, G protein-biased GLP-1R agonists with acute signalling potency comparable with semaglutide, to provide insights into specific experimental and therapeutic scenarios. MATERIALS AND METHODS New GLP-1R agonist peptides were assessed using a variety of in vitro and in vivo assays. RESULTS First, we show that very substantial reductions in β-arrestin recruitment efficacy are required to realize fully the benefits of GLP-1R agonism on blood glucose lowering in mice, with more moderate reductions being less effective. Secondly, our lead compound (SRB107) performs substantially better than semaglutide for effects on blood glucose and weight loss, which may be jointly attributable to its biased agonist action and protracted pharmacokinetics. Thirdly, we show that biased agonist-specific GLP-1R internalization profiles occur at clinically relevant pharmacological concentrations. Finally, we show that SRB107 cAMP signalling is differentially modulated by single and double GLP1R coding variants seen in human populations, with implications for GLP-1R agonist pharmacogenomics. CONCLUSIONS Completely abolishing β-arrestin recruitment improves the anti-hyperglycaemic effects of GLP-1R agonists in mice.
Collapse
Affiliation(s)
- Charlotte E Hinds
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Ellie Peace
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Iona Davies
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Liliane El Eid
- Section of Cell Biology, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology, Imperial College London, London, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
40
|
Hill R, Sanchez J, Lemel L, Antonijevic M, Hosking Y, Mistry SN, Kruegel AC, Javitch JA, Lane JR, Canals M. Assessment of the potential of novel and classical opioids to induce respiratory depression in mice. Br J Pharmacol 2023; 180:3160-3174. [PMID: 37489013 PMCID: PMC10952895 DOI: 10.1111/bph.16199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioid-induced respiratory depression limits the use of μ-opioid receptor agonists in clinical settings and is the main cause of opioid overdose fatalities. The relative potential of different opioid agonists to induce respiratory depression at doses exceeding those producing analgesia is understudied despite its relevance to assessments of opioid safety. Here we evaluated the respiratory depressant and anti-nociceptive effects of three novel opioids and relate these measurements to their in vitro efficacy. EXPERIMENTAL APPROACH Respiration was measured in awake, freely moving male CD-1 mice using whole body plethysmography. Anti-nociception was measured using the hot plate test. Morphine, oliceridine and tianeptine were administered intraperitoneally, whereas methadone, oxycodone and SR-17018 were administered orally. Receptor activation and arrestin-3 recruitment were measured in HEK293 cells using BRET assays. KEY RESULTS Across the dose ranges examined, all opioids studied depressed respiration in a dose-dependent manner, with similar effects at the highest doses, and with tianeptine and oliceridine showing reduced duration of effect, when compared with morphine, oxycodone, methadone and SR-17018. When administered at doses that induced similar respiratory depression, all opioids induced similar anti-nociception, with tianeptine and oliceridine again showing reduced duration of effect. These data were consistent with the in vitro agonist activity of the tested compounds. CONCLUSION AND IMPLICATIONS In addition to providing effective anti-nociception, the novel opioids, oliceridine, tianeptine and SR-17018 depress respiration in male mice. However, the different potencies and kinetics of effect between these novel opioids may be relevant to their therapeutic application in different clinical settings.
Collapse
Affiliation(s)
- Rob Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Mirjana Antonijevic
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery InstituteUniversity ParkNottinghamUK
| | - Yselkla Hosking
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery InstituteUniversity ParkNottinghamUK
| | - Shailesh N. Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery InstituteUniversity ParkNottinghamUK
| | | | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and TherapeuticsColumbia University Vagelos College of Physicians & SurgeonsNew YorkNew YorkUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| |
Collapse
|
41
|
Wirth D, Özdemir E, Hristova K. Quantification of ligand and mutation-induced bias in EGFR phosphorylation in direct response to ligand binding. Nat Commun 2023; 14:7579. [PMID: 37989743 PMCID: PMC10663608 DOI: 10.1038/s41467-023-42926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Signaling bias is the ability of a receptor to differentially activate downstream signaling pathways in response to different ligands. Bias investigations have been hindered by inconsistent results in different cellular contexts. Here we introduce a methodology to identify and quantify bias in signal transduction across the plasma membrane without contributions from feedback loops and system bias. We apply the methodology to quantify phosphorylation efficiencies and determine absolute bias coefficients. We show that the signaling of epidermal growth factor receptor (EGFR) to EGF and TGFα is biased towards Y1068 and against Y1173 phosphorylation, but has no bias for epiregulin. We further show that the L834R mutation found in non-small-cell lung cancer induces signaling bias as it switches the preferences to Y1173 phosphorylation. The knowledge gained here challenges the current understanding of EGFR signaling in health and disease and opens avenues for the exploration of biased inhibitors as anti-cancer therapies.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
42
|
Tsai MHM, Chen L, Baumann MH, Canals M, Javitch JA, Lane JR, Shi L. The in vitro functional profiles of fentanyl and nitazene analogs at the μ-opioid receptor - high efficacy is dangerous regardless of signaling bias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566672. [PMID: 38014284 PMCID: PMC10680598 DOI: 10.1101/2023.11.10.566672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as the μ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G protein biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at MOR using adenylate cyclase inhibition and β-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and β-arrestin2 recruitment pathways. Compared to the reference agonist DAMGO, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting β-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and β-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. Instead, our results show that, regardless of bias, opioids with sufficiently high intrinsic efficacy can be lethal, especially given the extremely high potency of many of these compounds that are now pervading the illicit drug market.
Collapse
Affiliation(s)
- Meng-Hua M. Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Jonathan A. Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
43
|
Ramos-Gonzalez N, Paul B, Majumdar S. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Pharmacol Res 2023; 197:106961. [PMID: 37844653 DOI: 10.1016/j.phrs.2023.106961] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Drugs acting at the opioid receptor family are clinically used to treat chronic and acute pain, though they represent the second line of treatment behind GABA analogs, antidepressants and SSRI's. Within the opioid family mu and kappa opioid receptor are commonly targeted. However, activation of the mu opioid receptor has side effects of constipation, tolerance, dependence, euphoria, and respiratory depression; activation of the kappa opioid receptor leads to dysphoria and sedation. The side effects of mu opioid receptor activation have led to mu receptor drugs being widely abused with great overdose risk. For these reasons, newer safer opioid analgesics are in high demand. For many years a focus within the opioid field was finding drugs that activated the G protein pathway at mu opioid receptor, without activating the β-arrestin pathway, known as biased agonism. Recent advances have shown that this may not be the way forward to develop safer analgesics at mu opioid receptor, though there is still some promise at the kappa opioid receptor. Here we discuss recent novel approaches to develop safer opioid drugs including efficacy vs bias and fine-tuning receptor activation by targeting sub-pockets in the orthosteric site, we explore recent works on the structural basis of bias, and we put forward the suggestion that Gα subtype selectivity may be an exciting new area of interest.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Barnali Paul
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
44
|
Daly C, Guseinov AA, Hahn H, Wright A, Tikhonova IG, Thomsen ARB, Plouffe B. β-Arrestin-dependent and -independent endosomal G protein activation by the vasopressin type 2 receptor. eLife 2023; 12:RP87754. [PMID: 37855711 PMCID: PMC10586804 DOI: 10.7554/elife.87754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
The vasopressin type 2 receptor (V2R) is an essential G protein-coupled receptor (GPCR) in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of β-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the β-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/β-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data imply that β-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of β-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both β-arrestin-dependent and -independent manners.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University BelfastBelfastUnited Kingdom
| | | | - Hyunggu Hahn
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
- NYU Pain Research Center, New York University College of DentistryNew YorkUnited States
| | - Adam Wright
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University BelfastBelfastUnited Kingdom
| | | | - Alex Rojas Bie Thomsen
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
- NYU Pain Research Center, New York University College of DentistryNew YorkUnited States
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University BelfastBelfastUnited Kingdom
| |
Collapse
|
45
|
Randáková A, Nelic D, Jakubík J. A critical re-evaluation of the slope factor of the operational model of agonism: When to exponentiate operational efficacy. Sci Rep 2023; 13:17587. [PMID: 37845324 PMCID: PMC10579308 DOI: 10.1038/s41598-023-45004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023] Open
Abstract
Agonist efficacy denoting the "strength" of agonist action is a cornerstone in the proper assessment of agonist selectivity and signalling bias. The simulation models are very accurate but complex and hard to fit experimental data. The parsimonious operational model of agonism (OMA) has become successful in the determination of agonist efficacies and ranking them. In 1983, Black and Leff introduced the slope factor to the OMA to make it more flexible and allow for fitting steep as well as flat concentration-response curves. First, we performed a functional analysis to indicate the potential pitfalls of the OMA. Namely, exponentiation of operational efficacy may break relationships among the OMA parameters. The fitting of the Black & Leff equation to the theoretical curves of several models of functional responses and the experimental data confirmed the fickleness of the exponentiation of operational efficacy affecting estimates of operational efficacy as well as other OMA parameters. In contrast, fitting The OMA based on the Hill equation to the same data led to better estimates of model parameters. In conclusion, Hill equation-based OMA should be preferred over the Black & Leff equation when functional-response curves differ in the slope factor. Otherwise, the Black & Leff equation should be used with extreme caution acknowledging potential pitfalls.
Collapse
Affiliation(s)
- Alena Randáková
- Institute of Physiology Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Prague, Czech Republic
| | - Dominik Nelic
- Institute of Physiology Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Prague, Czech Republic
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Prague, Czech Republic.
| |
Collapse
|
46
|
Muratspahić E, Aslanoglou D, White AM, Draxler C, Kozisek X, Farooq Z, Craik DJ, McCormick PJ, Durek T, Gruber CW. Development of Melanocortin 4 Receptor Agonists by Exploiting Animal-Derived Macrocyclic, Disulfide-Rich Peptide Scaffolds. ACS Pharmacol Transl Sci 2023; 6:1373-1381. [PMID: 37854631 PMCID: PMC10580383 DOI: 10.1021/acsptsci.3c00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 10/20/2023]
Abstract
G protein-coupled receptors are among the most widely studied classes of drug targets. A major challenge in this field is to develop ligands that will selectively modulate a single receptor subtype to overcome the disadvantages of undesired "off target" effects caused by lack of target and thus signaling specificity. In the current study, we explored ligand design for the melanocortin 4 receptor (MC4R) since it is an attractive target for developing antiobesity drugs. Endogenously, the receptor is activated by peptide ligands, i.e., three melanocyte-stimulating hormones (α-MSH, β-MSH, and γ-MSH) and by adrenocorticotropic hormone. Therefore, we utilized a peptide drug design approach, utilizing "molecular grafting" of pharmacophore peptide sequence motifs onto a stable nature-derived peptide scaffold. Specifically, protegrin-4-like-peptide-1 (Pr4LP1) and arenicin-1-like-peptide-1 (Ar3LP1) fully activated MC4R in a functional cAMP assay with potencies of 3.7 and 1.0 nM, respectively. In a nanoluciferase complementation assay with less signal amplification, the designed peptides fully recruited mini-Gs with subnanomolar and nanomolar potencies. Interestingly, these novel peptide MC4R ligands recruited β-arrestin-2 with ∼2-fold greater efficacies and ∼20-fold increased potencies as compared to the endogenous α-MSH. The peptides were inactive at related MC1R and MC3R in a cAMP accumulation assay. These findings highlight the applicability of animal-derived disulfide-rich scaffolds to design pathway and subtype selective MC4R pharmacological probes. In the future, this approach could be exploited to develop functionally selective ligands that could offer safer and more effective obesity drugs.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Despoina Aslanoglou
- Department
of Endocrinology, Queen Mary University
of London, London E1 4NS, U.K.
| | - Andrew M. White
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Claudia Draxler
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Kozisek
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Zara Farooq
- Department
of Endocrinology, Queen Mary University
of London, London E1 4NS, U.K.
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter J. McCormick
- Department
of Endocrinology, Queen Mary University
of London, London E1 4NS, U.K.
| | - Thomas Durek
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
47
|
Karl K, Rajagopal S, Hristova K. Quantitative assessment of ligand bias from bias plots: The bias coefficient "kappa". Biochim Biophys Acta Gen Subj 2023; 1867:130428. [PMID: 37488010 PMCID: PMC10528940 DOI: 10.1016/j.bbagen.2023.130428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
The current methods for quantifying ligand bias involve the construction of bias plots and the calculations of bias coefficients that can be compared using statistical methods. However, widely used bias coefficients can diverge in their abilities to identify ligand bias and can give false positives. As the empirical bias plots are considered the most reliable tools in bias identification, here we develop an analytical description of bias plot trajectories and introduce a bias coefficient, kappa, which is calculated from these trajectories. The new bias coefficient complements the tool-set in ligand bias identification in cell signaling research.
Collapse
Affiliation(s)
- Kelly Karl
- Institute for NanoBioTechnology, Department of Materials Science and Engineering, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Kalina Hristova
- Institute for NanoBioTechnology, Department of Materials Science and Engineering, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States of America.
| |
Collapse
|
48
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
49
|
Ramos‐Gonzalez N, Groom S, Sutcliffe KJ, Bancroft S, Bailey CP, Sessions RB, Henderson G, Kelly E. Carfentanil is a β-arrestin-biased agonist at the μ opioid receptor. Br J Pharmacol 2023; 180:2341-2360. [PMID: 37005796 PMCID: PMC10952505 DOI: 10.1111/bph.16084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The illicit use of fentanyl-like drugs (fentanyls), which are μ opioid receptor agonists, and the many overdose deaths that result, has become a major problem. Fentanyls are very potent in vivo, leading to respiratory depression and death. However, the efficacy and possible signalling bias of different fentanyls is not clearly known. Here, we compared the relative efficacy and bias of a series of fentanyls. EXPERIMENTAL APPROACH For agonist signalling bias and efficacy measurements, Bioluminescence Resonance Energy Transfer experiments were undertaken in HEK293T cells transiently transfected with μ opioid receptors, to assess Gi protein activation and β-arrestin 2 recruitment. Agonist-induced cell surface receptor loss was assessed using an enzyme-linked immunosorbent assay, whilst agonist-induced G protein-coupled inwardly rectifying potassium channel current activation was measured electrophysiologically from rat locus coeruleus slices. Ligand poses in the μ opioid receptor were determined in silico using molecular dynamics simulations. KEY RESULTS Relative to the reference ligand DAMGO, carfentanil was β-arrestin-biased, whereas fentanyl, sufentanil and alfentanil did not display bias. Carfentanil induced potent and extensive cell surface receptor loss, whilst the marked desensitisation of G protein-coupled inwardly rectifying potassium channel currents in the continued presence of carfentanil in neurones was prevented by a GRK2/3 inhibitor. Molecular dynamics simulations suggested unique interactions of carfentanil with the orthosteric site of the receptor that could underlie the bias. CONCLUSIONS AND IMPLICATIONS Carfentanil is a β-arrestin-biased opioid drug at the μ receptor. It is uncertain how such bias influences in vivo effects of carfentanil relative to other fentanyls.
Collapse
Affiliation(s)
| | - Sam Groom
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| | - Katy J. Sutcliffe
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Sukhvinder Bancroft
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Chris P. Bailey
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| | | | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
50
|
Daly C, Guseinov AA, Hahn H, Wright A, Tikhonova IG, Thomsen ARB, Plouffe B. β-arrestin-dependent and -independent endosomal G protein activation by the vasopressin type 2 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535208. [PMID: 37034816 PMCID: PMC10081317 DOI: 10.1101/2023.04.01.535208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vasopressin type 2 receptor (V2R) is an essential GPCR in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of β-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the β-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/β-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data implies that β-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of β-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both β-arrestin-dependent and -independent manners.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Hyunggu Hahn
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, USA
| | - Adam Wright
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Alex Rojas Bie Thomsen
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, USA
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|