1
|
Gao L, Meng Y, Luo X, Chen J, Wang X. ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation. TOXICS 2024; 12:724. [PMID: 39453144 PMCID: PMC11511357 DOI: 10.3390/toxics12100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs' toxicity.
Collapse
Affiliation(s)
- Lifeng Gao
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Yuguang Meng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Xiaowen Luo
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Jiangyuan Chen
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Xuxia Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
| |
Collapse
|
2
|
Ma Y, Wu M, Jin J, Qin S, Liu Q, Sun Y, Yang Z. Photoperiod-dependent effects of zinc oxide nanoparticles on the growth and reproduction of Daphnia pulex. CHEMOSPHERE 2024; 365:143394. [PMID: 39307469 DOI: 10.1016/j.chemosphere.2024.143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
The discharge of metal nanoparticles into the water inevitably poses a threat to aquatic organisms and the balance of the aquatic ecosystem. Photoperiod is one of the most important ecological factors for the development of cladocerans. In addition, different light conditions can also affect the toxicity of metal nanoparticles. In this study, we studied the effects of four photoperiods (8L/16D, 10L/14D, 14L/10D, and 16L/8D) combined with three concentrations of ZnO NPs (0 mg L-1, 0.05 mg L-1, and 0.10 mg L-1) on the growth and reproduction of Daphnia pulex. With the increase of photoperiod, the maternal body size and growth rate increased first and then decreased; the first time to reproduction was advanced, and broods and the total offspring also increased. Under the influence of ZnO NPs, growth rate and reproductive capacity were inhibited. The photoperiod 8L/16D and 16L/8D interacted with ZnO NPs on the growth of D. pulex, which significantly decreased the growth rate. Besides, the interaction between photoperiod 8L/16D and ZnO NPs decreased the reproduction ability of D. pulex. These results suggest that the effects of zinc oxide nanoparticles on the growth and reproduction of D. pulex is photoperiod dependent, which is useful for assessing the risk of pollutants to cladoceras under different light conditions.
Collapse
Affiliation(s)
- Yiqing Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Mengfan Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jin Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Bui QTN, Kim T, Kim HS, Lee S, Lee S, Ki JS. Sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus and environmental implications. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11128. [PMID: 39267330 DOI: 10.1002/wer.11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Microalgae are unicellular, photosynthetic organisms in aquatic environments and are sensitive to water quality and contaminants. While green algae and diatoms are widely used for toxicity assessments, there is a relatively limited amount of toxicity data available for freshwater dinoflagellates. Here, we evaluated the sub-lethal effects of the metals Cu, Cr, Ni, and Zn and the herbicides atrazine and S-metolachlor on the freshwater dinoflagellate Palatinus apiculatus. Based on the 72-h median effective concentration (EC50), P. apiculatus showed sensitive responses to metals in the order of Cu (0.052 mg L-1), Cr (0.085 mg L-1), Zn (0.098 mg L-1), and Ni (0.13 mg L-1). Among the tested herbicides, P. apiculatus was more sensitive to atrazine (0.0048 mg L-1) than S-metolachlor (0.062 mg L-1). In addition, we observed morphological alterations and significant increases in reactive oxygen species (ROS) production in cells exposed to 0.05 mg L-1 of Cu and 0.005 mg L-1 of atrazine. These indicated that metals and pesticides induced oxidative stress in cellular metabolic processes and consequently caused severe physiological damage to the cells. Our results provide baseline data on the toxic effects of typical environmental contaminants on freshwater dinoflagellate, suggesting that P. apiculatus could be used as a bioindicator in freshwater toxicity assessments. PRACTITIONER POINTS: The sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus were evaluated. Palatinus sensitively responded to metals and pesticides; of test chemicals, atrazine (0.0048 mg L-1 of EC50) was the most sensitive. Metals and pesticides induced oxidative stress and consequently caused severe physiological damage to the Palatinus cells. The freshwater dinoflagellate Palatinus can be used as a bioindicator in freshwater toxicity assessments.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Seokmin Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, South Korea
| | - Seungjun Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea
| |
Collapse
|
4
|
Henke AH, Flores K, Goodman AJ, Magurany K, LeVanseler K, Ranville J, Gardea-Torresdey JL, Westerhoff PK. Interlaboratory comparison of centrifugal ultrafiltration with ICP-MS detection in a first-step towards methods to screen for nanomaterial release during certification of drinking water contact materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168686. [PMID: 38000751 DOI: 10.1016/j.scitotenv.2023.168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.
Collapse
Affiliation(s)
- Austin H Henke
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Kenneth Flores
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry & Biochemistry, Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Aaron J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | - James Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Jorge L Gardea-Torresdey
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry & Biochemistry, Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul K Westerhoff
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
5
|
Sun A, Wang WX. Reducing Gut Dissolution of Zinc Oxide Nanoparticles by Secondary Microplastics with Consequent Impacts on Barnacle Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1484-1494. [PMID: 38198516 DOI: 10.1021/acs.est.3c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The environmental impact of sunscreen is a growing concern, yet the combined effects of its components on marine animals are poorly understood. In this study, we investigated the combined effects of sunscreen-extracted zinc oxide nanoparticles (nZnO) and microplastics (MPs) on the development of barnacle larvae, focusing on the different roles played by primary microplastics (PMPs) and secondary microplastics (SMPs) generated through the phototransformation of PMPs. Our findings revealed that a lower concentration of nZnO (50 μg/L) enhanced molting and eye development in barnacle larvae, while a higher concentration (500 μg/L) inhibited larval growth. Co-exposure to PMPs had no significant effect on larval development, whereas SMPs mitigated the impact of nZnO by restricting the in vivo transformation to ionic Zn. Accumulated SMPs reduced gut dissolution of nZnO by up to 40%, lowering gut acidity by 85% and buffering the in vivo dissolution of nZnO. We further identified a rough-surfaced Si-5 fragment in SMPs that damaged larval guts, resulting in decreased acidity. Another Si-32 resisted phototransformation and had no discernible effects. Our study presented compelling evidence of the impacts of SMPs on the bioeffect of nZnO, highlighting the complex interactions between sunscreen components and their combined effects on marine organisms.
Collapse
Affiliation(s)
- Anqi Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Ghafarifarsani H, Hedayati SA, Yousefi M, Hoseinifar SH, Yarahmadi P, Mahmoudi SS, Van Doan H. Toxic and bioaccumulative effects of zinc nanoparticle exposure to goldfish, Carassius auratus (Linnaeus, 1758). Drug Chem Toxicol 2023; 46:984-994. [PMID: 36120942 DOI: 10.1080/01480545.2022.2115509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
The widespread use of produced metal oxide nanoparticles (NPs) has increased major concerns about their impact on human as well as aquatic animal health. The present study shows that exposure to different concentrations of zinc oxide (ZnO) NPs led to high accumulations of Zn ions in the metabolic organs of fish (liver and gills), resulting in severe oxidative stress in Carassius auratus. The goldfish (C. auratus) was chosen as an aquatic species for the evaluation of the potential toxicity of aqueous ZnO-NPs (Treatments of hemoglobin and neutrophils (0, 0.5, 1, and 1.5 mg L- 1) following 14 days of exposure. A range of histological and hematological factors were examined. Exposure to the NPs produced significant reduction of red blood cell and white blood cell counts, hematocrit) were found to produce no significant differences in lymphocyte, monocyte, and eosinophil counts; as well as the mean corpuscular hemoglobin concentrations index (P > 0.05). Moreover, the results revealed significant alterations in serum biochemical parameters, hepatic enzyme levels, and immune and antioxidant responses; except for total protein and superoxide dismutase (SOD) of C. auratus exposed to ZnO-NPs, particularly at the 1 and 1.5 mg L- 1 concentrations. Fish exposed to 1 and 1.5 mg L-1 ZnO-NPs displayed a significant reduction in alternative complement pathway activity, lysozyme, and total protein contents of mucus compared to those in the control group. The results showed that hepatic SOD and catalase, and gill catalase activity were significantly decreased, and their malondialdehyde levels increased at 1 and 1.5 mg L-1 ZnO-NPs compared to the control group (P < 0.05). Significant accumulations of ZnO-NPs were observed in the liver, kidney, and gill tissues of fish leading to severe histopathological alterations in these organs. These results suggest that water-borne ZnO-NPs can easily accumulate in metabolic organs and lead to oxidative stress and destructive effects on the physiological features of C. auratus.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Seyed Aliakbar Hedayati
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Peyman Yarahmadi
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Sanpradit P, Byeon E, Lee JS, Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109720. [PMID: 37586582 DOI: 10.1016/j.cbpc.2023.109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
The world has faced climate change that affects hydrology and thermal systems in the aquatic environment resulting in temperature changes, which directly affect the aquatic ecosystem. Elevated water temperature influences the physico-chemical properties of chemicals in freshwater ecosystems leading to disturbing living organisms. Owing to the industrial revolution, the mass production of zinc oxide (ZnO) has been led to contaminated environments, and therefore, the toxicological effects of ZnO become more concerning under climate change scenarios. A comprehensive understanding of its toxicity influenced by main factors driven by climate change is indispensable. This review summarized the detrimental effects of ZnO with a single ZnO exposure and combined it with key climate change-associated factors in many aspects (i.e., oxidative stress, energy reserves, behavior and life history traits). Moreover, this review tried to point out ZnO kinetic behavior and corresponding mechanisms which pose a problem of observed detrimental effects correlated with the alteration of elevated temperature.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
9
|
Valadbeigi H, Sadeghifard N, Kaviar VH, Haddadi MH, Ghafourian S, Maleki A. Effect of ZnO nanoparticles on biofilm formation and gene expression of the toxin-antitoxin system in clinical isolates of Pseudomonas aeruginosa. Ann Clin Microbiol Antimicrob 2023; 22:89. [PMID: 37798613 PMCID: PMC10557154 DOI: 10.1186/s12941-023-00639-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Biofilm formation by Pseudomonas aeruginosa (P. aeruginosa) is known to be characteristic of this organism. This bacterium is considered one of the most life-threatening bacteria and has been identified as a priority pathogen for research by WHO. Biofilm-producing P. aeruginosa is a concern in many parts of the world due to antibiotic resistance. Alginate also plays an important role in the biofilm formation of P. aeruginosa as well as the emergence of antibiotic resistance in biofilms. In addition, the systems of toxin-antitoxin( TA) play an important role in biofilm formation. Metal nanoparticle(NP) such as zinc oxide (ZnO) also have extensive biological properties, especially anti-biofilm properties. Therefore, this study was conducted in relation to the importance of zinc oxide nanoparticles (ZnO NPs) in biofilm formation and also the correlation of gene expression of TA systems in clinical isolates of P. aeruginosa. METHODS A total of 52 P. aeruginosa isolates were collected from burns (n = 15), UTI (n = 31), and trachea (n = 6) in hospitals in Ilam between May 2020 and October 2020. Biofilm formation was assessed using a microtiter plate assay. MIC and sub-MIC concentrations of ZnO NPs (10-30 nm with purity greater than 99.8%) in P. aeruginosa were determined. Subsequently, biofilm formation was investigated using sub-MIC concentrations of ZnO NPs. Finally, total RNA was extracted and RT- qPCR was used to determine the expression levels of genes of mazEF, mqsRA, and higBA of TA systems. RESULTS Six isolates of P. aeruginosa were found to form strong biofilms. The results showed that ZnO NPs were able to inhibit biofilm formation. In our experiments, we found that the sub-MIC concentration of ZnO NPs increased the gene expression of antitoxins mazE and mqsA and toxin higB of TA systems treated with ZnO NPs. CONCLUSIONS In the present study, ZnO NPs were shown to effectively inhibit biofilm formation in P. aeruginosa. Our results support the relationship between TA systems and ZnO NPs in biofilm formation in P. aeruginosa. Importantly, the expression of antitoxins mazE and mqsA was high after treatment with ZnO NPs, but not that of antitoxin higA.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Sobhan Ghafourian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
10
|
Ji X, Han Y, Wu Y, Liang B, Zheng J, Ma S, Li C, Xu H, Guo S. Synthesis of nano-Fe 3O 4/ZnO composites with enhanced antibacterial properties and plant growth promotion via one-pot reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87016-87027. [PMID: 37420151 DOI: 10.1007/s11356-023-28534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Bordeaux mixture is commonly used in agricultural production due to its certain antibacterial activity. However, it has been observed to promote plant growth at a slow pace. Therefore, it is crucial to explore an effective antibacterial agent that can enhance the antibacterial activity and promote plant growth in commercially available Bordeaux mixture, which can significantly contribute to the development of the agricultural economy. The investigation into inorganic agents with both bacteriostatic and plant-promoting properties has a broad application potential in agriculture. Fe3O4/ZnO (FZ) composites were synthesized from FeCl3, ZnCl2, and NaAc in a "one-pot approach" and analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a vibrating sample magnetometer (VSM). To investigate the antibacterial activity and mechanism of FZ nanocomposites, Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were used as model bacteria, and human mammary epithelial cells and model plant mung bean were used as targets to study the effects of FZ on human and plant growth. The results revealed that at 300 µg/mL for 80 min, the antibacterial efficacy of FZ composites was 99.8% against E. coli, which was 20% greater than that of Bordeaux liquid (FC), and 99.9% against S. aureus, which was 28.6% higher than that of FC. The inhibitory mechanism demonstrated that the substance could efficiently damage the bacterial cell wall of a concentration of 300 µg/mL. The IC50 of the material to human mammary epithelial cells was 49.518 µg/mL, and it also increased mung bean germination, root growth, and chlorophyll content, indicating that the application performance was 1.5 times better than that of FC. Its exceptional performance can be used to treat agricultural diseases.
Collapse
Affiliation(s)
- Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Yuanyuan Han
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Yinghua Wu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Ben Liang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Jinli Zheng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Shuting Ma
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Chen Li
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Haitao Xu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Shaobo Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China.
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China.
| |
Collapse
|
11
|
Umar E, Ikram M, Haider J, Nabgan W, Imran M, Nazir G. A State-of-Art Review of the Metal Oxide-Based Nanomaterials Effect on Photocatalytic Degradation of Malachite Green Dyes and a Bibliometric Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300001. [PMID: 37287595 PMCID: PMC10242535 DOI: 10.1002/gch2.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 06/09/2023]
Abstract
A wide range of hard contaminants in wastewater is generated from different industries as byproducts of the organic compound. In this review, various metal oxide-based nanomaterials are employed for the photocatalytic removal of malachite green (MG) dye from wastewater. Some cost-effective and appropriate testing conditions are used for degrading these hard dyes to get higher removal efficiency. The effects of specific parameters are considered such as how the catalyst is made, how much dye is in the solution at first, how much nanocatalyst is needed to break down the dye, the initial pH of the dye solution, the type of light source used, the year of publications, and how long the dye has to be exposed to light to be removed. This study suggests that Scopus-based core collected data employ bibliometric methods to provide an objective analysis of global MG dye from 2011 to 2022 (12 years). The Scopus database collects all the information (articles, authors, keywords, and publications). For bibliometric analysis, 658 publications are retrieved corresponding to MG dye photodegradation, and the number of publications increases annually. A bibliometric study reveals a state-of-art review of metal oxide-based nanomaterials' effects on photocatalytic degradation of MG dyes (12 years).
Collapse
Affiliation(s)
- Ehtisham Umar
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Imran
- Department of ChemistryGovernment College University FaisalabadPakpattan RoadSahiwalPunjab57000Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| |
Collapse
|
12
|
Alallam B, Doolaanea AA, Alfatama M, Lim V. Phytofabrication and Characterisation of Zinc Oxide Nanoparticles Using Pure Curcumin. Pharmaceuticals (Basel) 2023; 16:269. [PMID: 37259414 PMCID: PMC9960272 DOI: 10.3390/ph16020269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 09/02/2023] Open
Abstract
Zinc oxide and curcumin, on their own and in combination, have the potential as alternatives to conventional anticancer drugs. In this work, zinc oxide nanoparticles (ZnO NPs) were prepared by an eco-friendly method using pure curcumin, and their physicochemical properties were characterised. ATR-FTIR spectra confirmed the role of curcumin in synthesising zinc oxide curcumin nanoparticles (Green-ZnO-NPs). These nanoparticles exhibited a hexagonal wurtzite structure with a size and zeta potential of 27.61 ± 5.18 nm and -16.90 ± 0.26 mV, respectively. Green-ZnO-NPs showed good activity towards studied bacterial strains, including Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. The minimum inhibitory concentration of Green-ZnO-NPs was consistently larger than that of chemically synthesised ZnO NPs (Std-ZnO-NPs) or mere curcumin, advocating an additive effect between the zinc oxide and curcumin. Green-ZnO-NPs demonstrated an efficient inhibitory effect towards MCF-7 cells with IC50 (20.53 ± 5.12 μg/mL) that was significantly lower compared to that of Std-ZnO-NPs (27.08 ± 0.91 μg/mL) after 48 h of treatment. When Green-ZnO-NPs were tested against Artemia larvae, a minimised cytotoxic effect was observed, with LC50 being almost three times lower compared to that of Std-ZnO-NPs (11.96 ± 1.89 μg/mL and 34.60 ± 9.45 μg/mL, respectively). This demonstrates that Green-ZnO-NPs can be a potent, additively enhanced combination delivery/therapeutic agent with the potential for anticancer therapy.
Collapse
Affiliation(s)
- Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kolej Universiti Antarabangsa Maiwp, Taman Batu Muda, Batu Caves, Kuala Lumpur 68100, Selangor, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| |
Collapse
|
13
|
Sun Y, Qian Y, Geng S, Wang P, Zhang L, Yang Z. Joint effects of microplastics and ZnO nanoparticles on the life history parameters of rotifers and the ability of rotifers to eliminate harmful phaeocystis. CHEMOSPHERE 2023; 310:136939. [PMID: 36273615 DOI: 10.1016/j.chemosphere.2022.136939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The rising concentration of microplastics and nanoparticles coexisting simultaneously in marine may bring joint harm to zooplankton. Rotifer is an important functional group of marine zooplankton, which plays an important role in the energy flow of marine ecosystem. To evaluate the comprehensive effects of nano-sized microplastics and metal oxide nanoparticles on life history parameters of rotifers and population dynamics of rotifers during eliminating harmful algae Phaeocystis, we exposed rotifers Brachionus plicatilis to the multiple combinations of different concentrations of nanoplastics and ZnO nanoparticles. Results showed that rotifer maturation time was prolonged and the total offspring was decreased significantly with rising ZnO nanoparticles and microplastics concentrations, and microplastics and ZnO nanoparticles had significant interaction, which brought more serious joint deleterious effects on survival, development, and reproduction. At the population level, ZnO nanoparticles exacerbated the delayed effect of microplastics on the elimination of Phaeocystis by rotifers, although eventually rotifers also completely eliminated Phaeocystis in the closed system. This study provided new insights into revealing the comprehensive impact of microplastics and ZnO nanoparticles on zooplankton not only from the perspective of life history parameters of rotifers but also from the perspective of population dynamics of rotifers controlling harmful algae, which is of great significance to understand the impact of mixed pollutants on marine ecosystem.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yiqing Qian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shenhui Geng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
14
|
Advances in Rubber Compounds Using ZnO and MgO as Co-Cure Activators. Polymers (Basel) 2022; 14:polym14235289. [PMID: 36501682 PMCID: PMC9737580 DOI: 10.3390/polym14235289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
Zinc oxide performs as the best cure activator in sulfur-based vulcanization of rubber, but it is regarded as a highly toxic material for aquatic organisms. Hence, the toxic cure activator should be replaced by a non-toxic one. Still, there is no suitable alternative industrially. However, binary activators combining ZnO and another metal oxide such as MgO can largely reduce the level of ZnO with some improved benefits in the vulcanization of rubber as investigated in this research. Curing, mechanical, and thermal characteristics were investigated to find out the suitability of MgO in the vulcanization of rubber. Curing studies reveal that significant reductions in the optimum curing times are found by using MgO as a co-cure activator. Especially, the rate of vulcanization with conventional 5 phr (per hundred grams) ZnO can be enhanced by more than double, going from 0.3 Nm/min to 0.85 Nm/min by the use of a 3:2 ratio of MgO to ZnO cure activator system that should have high industrial importance. Mechanical and thermal properties investigations suggest that MgO as a co-cure activator used at 60% can provide 7.5% higher M100 (modulus at 100% strain) (0.58 MPa from 0.54 MPa), 20% higher tensile strength (23.7 MPa from 19.5 MPa), 15% higher elongation at break (1455% from 1270%), 68% higher fracture toughness (126 MJ/m3 from 75 MJ/m3), and comparable thermal stability than conventionally using 100 % ZnO. Especially, MgO as a co-cure activator could be very useful for improving the fracture toughness in rubber compounds compared to ZnO as a single-site curing activator. The significant improvements in the curing and mechanical properties suggest that MgO and ZnO undergo chemical interactions during vulcanization. Such rubber compounds can be useful in advanced tough and stretchable applications.
Collapse
|
15
|
Synthesis of Zinc Oxide Nanoparticles with Bioflavonoid Rutin: Characterisation, Antioxidant and Antimicrobial Activities and In Vivo Cytotoxic Effects on Artemia Nauplii. Antioxidants (Basel) 2022; 11:antiox11101853. [PMID: 36290575 PMCID: PMC9598060 DOI: 10.3390/antiox11101853] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
This study aims to synthesise zinc oxide nanoparticles with rutin (ZnO-R NPs) using a green synthesis approach and characterise the nanostructures for diverse biomedical applications. In this study, the optical and chemical properties of synthesised ZnO-R NPs were verified through Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy. The FTIR spectroscopy revealed a symmetric bending vibration peak of 460 cm−1 for ZnO-R NPs, whereas UV-Vis spectroscopy showed a distinct absorption band at 395 nm. Moreover, the oval-shaped morphology of ZnO-R NPs was verified through scanning electron microscopy and transmission electron microscopy. The synthesised nanoformulation revealed a wurtzite structure with a crystallite size of 13.22 nm; however, the zeta potential value was recorded as −8.50 ± 0.46 mV for ZnO-R NPs. According to an antioxidant study, ZnO-R NPs demonstrated lower free-radical scavenging activity than pure rutin. The cytotoxicity study was conducted using a human breast cancer cell line (MCF-7). In vitro analysis verified that ZnO-R NPs exhibited significantly higher anticancer and microbial growth inhibition activities than standard ZnO NPs (ZnO Std NPs) and pure rutin. In addition, ZnO-R NPs revealed a significantly lower IC50 value than the commercial ZnO Std NPs and pure rutin in MCF-7 cells (16.39 ± 6.03 μg/mL, 27 ± 0.91 μg/mL and 350 ± 30.1 μg/mL, respectively) after 48 h. However, synthesised ZnO-R NPs demonstrated no significant toxicity towards Artemia nauplii. These results highlight the synthesis of rutin-mediated ZnO NPs and their possible chemotherapeutic potential.
Collapse
|
16
|
Choi TJ, An HE, Kim CB. Machine Learning Models for Identification and Prediction of Toxic Organic Compounds Using Daphnia magna Transcriptomic Profiles. Life (Basel) 2022; 12:1443. [PMID: 36143479 PMCID: PMC9503646 DOI: 10.3390/life12091443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of environmental factors heavily impact aquatic ecosystems, in turn, affecting human health. Toxic organic compounds resulting from anthropogenic activity are a source of pollution in aquatic ecosystems. To evaluate these contaminants, current approaches mainly rely on acute and chronic toxicity tests, but cannot provide explicit insights into the causes of toxicity. As an alternative, genome-wide gene expression systems allow the identification of contaminants causing toxicity by monitoring the organisms' response to toxic substances. In this study, we selected 22 toxic organic compounds, classified as pesticides, herbicides, or industrial chemicals, that induce environmental problems in aquatic ecosystems and affect human-health. To identify toxic organic compounds using gene expression data from Daphnia magna, we evaluated the performance of three machine learning based feature-ranking algorithms (Learning Vector Quantization, Random Forest, and Support Vector Machines with a Linear kernel), and nine classifiers (Linear Discriminant Analysis, Classification And Regression Trees, K-nearest neighbors, Support Vector Machines with a Linear kernel, Random Forest, Boosted C5.0, Gradient Boosting Machine, eXtreme Gradient Boosting with tree, and eXtreme Gradient Boosting with DART booster). Our analysis revealed that a combination of feature selection based on feature-ranking and a random forest classification algorithm had the best model performance, with an accuracy of 95.7%. This is a preliminary study to establish a model for the monitoring of aquatic toxic substances by machine learning. This model could be an effective tool to manage contaminants and toxic organic compounds in aquatic systems.
Collapse
Affiliation(s)
| | | | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
17
|
A Simple Model to Estimate the Number of Metal Engineered Nanoparticles in Samples Using Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2022; 27:molecules27185810. [PMID: 36144546 PMCID: PMC9506279 DOI: 10.3390/molecules27185810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate determination of the size and the number of nanoparticles plays an important role in many different environmental studies of nanomaterials, such as fate, toxicity, and occurrence in general. This work presents an accurate model that estimates the number of nanoparticles from the mass and molar concentration of gold nanoparticles (AuNPs) in water. Citrate-capped AuNPs were synthesized and characterized using transmission electron microscopy (TEM) and ultraviolet–visible spectroscopy (UV-vis). A mimic of environmental matrices was achieved by spiking sediments with AuNPs, extracted with leachate, and separated from the bulk matrix using centrifuge and phase transfer separation techniques. The quantification of AuNPs’ molar concentration on the extracted residues was achieved by inductively coupled plasma optical emission spectroscopy (ICP-OES). The molar concentrations, an average diameter of 27 nm, and the colloidal suspension volumes of AuNPs enable the calculation of the number of nanoparticles in separated residues. The plot of the number of AuNPs against the mass of AuNPs yielded a simple linear model that was used to estimate the number of nanoparticles in the sample using ICP-OES. According to the authors’ knowledge, this is the first adaptation of the gravimetric method to ICP-OES for estimating the number of nanoparticles after separation with phase transfer.
Collapse
|
18
|
Feiner N, Radersma R, Vasquez L, Ringnér M, Nystedt B, Raine A, Tobi EW, Heijmans BT, Uller T. Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species. iScience 2022; 25:104303. [PMID: 35573201 PMCID: PMC9097707 DOI: 10.1016/j.isci.2022.104303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas (Daphnia magna) to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) in F1 individuals whose mothers were exposed to a natural stressor. Roughly half of these environmentally induced DMPs persisted until generation F4. In contrast, treatment with the drug demonstrated that pervasive hypomethylation upon exposure is reset almost completely after one generation. These results suggest that environmentally induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of freshwater communities.
Collapse
Affiliation(s)
| | - Reinder Radersma
- Department of Biology, Lund University, Lund, Sweden
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Louella Vasquez
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elmar W. Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Qi Q, Li Q, Li J, Mo J, Tian Y, Guo J. Transcriptomic analysis and transgenerational effects of ZnO nanoparticles on Daphnia magna: Endocrine-disrupting potential and energy metabolism. CHEMOSPHERE 2022; 290:133362. [PMID: 34933032 DOI: 10.1016/j.chemosphere.2021.133362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The widespread application of zinc oxide nanoparticles (ZnO NPs) has raised concerns over the adverse effects on aquatic species. In this study, transcriptomic analysis was applied to evaluate the chronic toxicity of ZnO NPs on the freshwater invertebrate Daphnia magna and the intergenerational effects were then further investigated. Parent daphnia (F0) were exposed to ZnO NPs at 3, 60, and 300 μg L-1 for 21 days. ZnO NPs significantly inhibited the reproduction (first pregnancy and spawning time, total number of offspring) and growth (molting frequency and body length) of F0. Here, differentially expressed genes (DEGs) involved in lysosomal and phagosome, energy metabolism and endocrine disruption pathways were significantly downregulated. Furthermore, disruption on the transport and catabolic processes probably resulted in the particle accumulation. The inhibited pathways related to energy metabolism may partially account for the body length, molting and reproductive restriction. The suppression of growth and reproduction may attribute to the down-regulation of insulin secretion and ovarian steroidogenesis pathways, respectively. Partial recovery of growth and reproductive inhibition in F1 - F3 descended from the F0 generation exposure did not support constant transgenerational effects. This study unravels the molecular mechanisms and transgenerational consequences of the toxicity of nanoparticles on Daphnia.
Collapse
Affiliation(s)
- Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jing Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
20
|
Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. CHEMOSPHERE 2022; 291:132941. [PMID: 34793845 DOI: 10.1016/j.chemosphere.2021.132941] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Synthesis of a Lignin/Zinc Oxide Hybrid Nanoparticles System and Its Application by Nano-Priming in Maize. NANOMATERIALS 2022; 12:nano12030568. [PMID: 35159913 PMCID: PMC8839687 DOI: 10.3390/nano12030568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Nanotechnologies are attracting attention in various scientific fields for their technological and application potential, including their use as bio-activators and nanocarriers in agriculture. This work aimed to synthesize a hybrid material (ZnO@LNP) consisting of lignin nanoparticles containing zinc oxide (4 wt %). The synthesized ZnO hybrid material showed catalytic effect toward thermal degradation, as evidenced by the TGA investigation, while both spectroscopic and contact angle measurements confirmed a modification of surface hydrophilicity for the lignin nanoparticles due to the presence of hydrophobic zinc oxide. In addition, the antioxidant activity of the ZnO@LNP and the zinc release of this material were evaluated. At the application level, this study proposes for the first time the use of such a hybrid system to prime maize seeds by exploiting the release characteristics of this material. Concerning the dosage applied, ZnO@LNP promoted inductive effects on the early stages of seed development and plant growth and biomass development of young seedlings. In particular, the ZnO@LNP stimulated, in the primed seeds, a higher content of chlorophyll, carotenoids, anthocyanins, total phenols, and a better antioxidant activity, as supported by the lower levels of lipid peroxidation found when compared to the control samples.
Collapse
|
22
|
Xiao Y, Tang W, Peijnenburg WJGM. Particle-Specific Toxicity of Copper Nanoparticles to Soybean (Glycine max L.): Effects of Nanoparticle Concentration and Natural Organic Matter. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2825-2835. [PMID: 34289521 DOI: 10.1002/etc.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
For the soluble metallic nanoparticles (NPs), which forms (particles [NP(particle) ] vs. dissolved ions [NP(ion) ]) are the main cause of toxicity of the NP suspension (NP(total) ) remains uncertain. In the present study, soybean was exposed to Cu NPs in a hydroponic system to determine how natural organic matter (NOM; 10 mg/l) and concentration of Cu NP(total) (2-50 mg/l) affect the relative contributions of Cu NP(particle) and Cu NP(ion) to the overall toxicity. We found that NOM mitigated the phytotoxicity of Cu NP(particle) more significantly than that of Cu salt. When no NOM was added, Cu NP(particle) rather than Cu NP(ion) was the main contributor to the observed toxicity regardless of the concentration of Cu NP(total) . However, NOM tended to reduce the relative contribution of Cu NP(particle) to the toxicity of Cu NP(total) . Especially at a low concentration of Cu NP(total) (2 mg/l), the toxicity of Cu NP(total) mainly resulted from Cu NP(ion) in the presence of NOM (accounting for ≥70% of the overall toxicity). This might be attributable to the combined effects of increased dissolution of Cu NPs and steric-electrostatic hindrance between Cu NP(particle) and the soybean roots caused by NOM. Fulvic acids (FAs) tended to reduce the role of Cu NP(particle) in the overall toxicity more effectively than humic acids (HAs), which might partially be due to the higher extent of Cu NP dissolution on FA treatment than in HA treatment. Our results suggest that because of the relatively low metallic NP concentration and the presence of NOM in natural water, NP(ion) are likely problematic, which can inform management and mitigation actions. Environ Toxicol Chem 2021;40:2825-2835. © 2021 SETAC.
Collapse
Affiliation(s)
- Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, PR China
| | - Wei Tang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, PR China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, The Netherlands
| |
Collapse
|
23
|
Trombini C, Kazakova J, Montilla-López A, Fernández-Cisnal R, Hampel M, Fernández-Torres R, Bello-López MÁ, Abril N, Blasco J. Assessment of pharmaceutical mixture (ibuprofen, ciprofloxacin and flumequine) effects to the crayfish Procambarus clarkii: A multilevel analysis (biochemical, transcriptional and proteomic approaches). ENVIRONMENTAL RESEARCH 2021; 200:111396. [PMID: 34062201 DOI: 10.1016/j.envres.2021.111396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The knowledge about the effects of pharmaceuticals on aquatic organisms has been increasing in the last decade. However, due to the variety of compounds presents in the aquatic medium, exposure scenarios and exposed organisms, there are still many gaps in the knowledge on how mixtures of such bioactive compounds affect exposed non target organisms. The crayfish Procambarus clarkii was used to analyze the toxicity effects of mixtures of ciprofloxacin, flumequine and ibuprofen at low and high concentrations (10 and 100 μg/L) over 21 days of exposure and to assess the recovery capacity of the organism after a depuration phase following exposure during additional 7 days in clean water. The crayfish accumulated the three compounds throughout the entire exposure in the hepatopancreas. The exposure to the mixture altered the abundance of proteins associated with different cells functions such as biotransformation and detoxification processes (i.e. catalase and glutathione transferase), carbohydrate metabolism and immune responses. Additionally changes in expression of genes encoding antioxidant enzymes and in activity of the corresponding enzymes (i.e. superoxide dismutase, glutathione peroxidase and glutathione transferase) were reported. Alterations at different levels of biological organization did not run in parallel under all circumstances and can be related to changes in the redox status of the target tissue. No differences were observed between control and exposed organisms for most of selected endpoints after a week of depuration, indicating that exposure to the drug mixture did not produce permanent damage in the hepatopancreas of P. clarkii.
Collapse
Affiliation(s)
- Chiara Trombini
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Alejandro Montilla-López
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | | | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
24
|
Kulasza M, Skuza L. Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168361. [PMID: 34444111 PMCID: PMC8394891 DOI: 10.3390/ijerph18168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
Metal nanoparticles are used in various branches of industry due to their physicochemical properties. However, with intensive use, most of the waste and by-products from industries and household items, and from weathering of products containing nanoparticles, end up in the waters. These pollutants pose a risk to aquatic organisms, one of which is a change in the expression of various genes. Most of the data that focus on metal nanoparticles and their effects on aquatic organisms are about copper and silver nanoparticles, which is due to their popularity in general industry, but information about other nanoparticulate metals can also be found. This review aims to evaluate gene expression patterns in aquatic organisms by metal nanoparticles, specifying details about the transcription changes of singular genes and, if possible, comparing the changes in the expression of the same genes in different organisms. To achieve this goal, available publications tackling this problem are studied and summarized. Nanometals were found to have a modulatory effect on gene expression in different aquatic organisms. Data show both up-regulation and down-regulation of genes. Nano silver, nano copper, and nano zinc show a regulatory effect on genes involved in inflammation and apoptosis, cell cycle regulation and ROS defense as well as in general stress response and have a negative effect on the expression of genes involved in development. Nano gold, nano titanium, nano zinc, and nano iron tend to elevate the transcripts of genes involved in response to ROS, but also pro-apoptotic genes and down-regulate DNA repair-involved genes and anti-apoptotic-involved genes. Nano selenium showed a rare effect that is protective against harmful effects of other nanoparticles, but also induced up-regulation of stress response genes. This review focuses only on the effects of metal nanoparticles on the expression of various genes of aquatic organisms from different taxonomic groups.
Collapse
Affiliation(s)
- Mateusz Kulasza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 71-415 Szczecin, Poland
| |
Collapse
|
25
|
Lai RWS, Kang HM, Zhou GJ, Yung MMN, He YL, Ng AMC, Li XY, Djurišić AB, Lee JS, Leung KMY. Hydrophobic Surface Coating Can Reduce Toxicity of Zinc Oxide Nanoparticles to the Marine Copepod Tigriopus japonicus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6917-6925. [PMID: 33961412 DOI: 10.1021/acs.est.1c01300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coated zinc oxide nanoparticles (ZnO-NPs) are more commonly applied in commercial products but current risk assessments mostly focus on bare ZnO-NPs. To investigate the impacts of surface coatings, this study examined acute and chronic toxicities of six chemicals, including bare ZnO-NPs, ZnO-NPs with three silane coatings of different hydrophobicity, zinc oxide bulk particles (ZnO-BKs), and zinc ions (Zn-IONs), toward a marine copepod, Tigriopus japonicus. In acute tests, bare ZnO-NPs and hydrophobic ZnO-NPs were less toxic than hydrophilic ZnO-NPs. Analyses of the copepod's antioxidant gene expression suggested that such differences were governed by hydrodynamic size and ion dissolution of the particles, which affected zinc bioaccumulation in copepods. Conversely, all test particles, except the least toxic hydrophobic ZnO-NPs, shared similar chronic toxicity as Zn-IONs because they mostly dissolved into zinc ions at low test concentrations. The metadata analysis, together with our test results, further suggested that the toxicity of coated metal-associated nanoparticles could be predicted by the hydrophobicity and density of their surface coatings. This study evidenced the influence of surface coatings on the physicochemical properties, toxicity, and toxic mechanisms of ZnO-NPs and provided insights into the toxicity prediction of coated nanoparticles from their coating properties to improve their future risk assessment and management.
Collapse
Affiliation(s)
- Racliffe Weng Seng Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Hye-Min Kang
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Guang-Jie Zhou
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mana Man Na Yung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Ling He
- Department of Physics, The Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | - Alan Man Ching Ng
- Department of Physics, The Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | | | - Jae-Seong Lee
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Del Buono D, Di Michele A, Costantino F, Trevisan M, Lucini L. Biogenic ZnO Nanoparticles Synthesized Using a Novel Plant Extract: Application to Enhance Physiological and Biochemical Traits in Maize. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1270. [PMID: 34065934 PMCID: PMC8151215 DOI: 10.3390/nano11051270] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
The need to increase crop productivity and resistance directs interest in nanotechnology. Indeed, biogenic metal oxide nanoparticles can promote beneficial effects in plants, while their synthesis avoids the environmental impacts of conventional synthetic procedures. In this context, this research aimed to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) using, for the first time, an extract of a wild and spontaneous aquatic species, Lemna minor (duckweed). The effectiveness of this biogenic synthesis was evidenced for comparison with non-biogenic ZnO-NPs (obtained without using the plant extract), which have been synthesized in this research. XRD (X-ray diffraction), FE-SEM (field emission gun electron scanning microscopy), EDX (energy dispersive x-ray spectroscopy), TEM (transmission electron microscope) and UV-vis (ultraviolet-visible spectrophotometry) showed the biogenic approach effectiveness. The duckweed extract was subjected to UHPLC-ESI/QTOF-MS (ultra high-pressure liquid chromatography quadrupole time of flight mass spectrometry) phenolic profiling. This untargeted characterization highlighted a high and chemically diverse content in the duckweed extract of compounds potentially implicated in nanoparticulation. From an application standpoint, the effect of biogenic nanoparticles was investigated on some traits of maize subjected to seed priming with a wide range of biogenic ZnO-NPs concentrations. Inductive effects on the shoot and root biomass development were ascertained concerning the applied dosage. Furthermore, the biogenic ZnO-NPs stimulated the content of chlorophylls, carotenoids, and anthocyanin. Finally, the study of malondialdehyde content (MDA) as a marker of the oxidative status further highlighted the beneficial and positive action of the biogenic ZnO-NPs on maize.
Collapse
Affiliation(s)
- Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy;
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, via Elce di Sotto, 06123 Perugia, Italy;
| | - Ferdinando Costantino
- Dipartimento di Chimica, Biologia e Biotecnologia, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.T.); (L.L.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.T.); (L.L.)
| |
Collapse
|
27
|
Singh N, Bhuker A, Jeevanadam J. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1067-1089. [PMID: 33660031 DOI: 10.1007/s00210-021-02057-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The increasing population of the world requires novel techniques to feed everyone, which can replace or work along with traditional methods to increase production of agricultural crops. In recent times, nanotechnology is considered as a promising and emerging approach to be incorporated in agriculture to improve productivity of different crops by the administration of nanoparticles through seed treatment, foliar spray on plants, nano-fertilizers for balanced crop nutrition, nano-herbicides for effective weed control, nanoinsecticides for plant protection, early detection of plant diseases and nutrient deficiencies using diagnostics kits, and nano-pheromones for effective monitoring of pests. Further, distinct nanoparticles with unique physicochemical and biological properties are used in agriculture to increase the percentage of seed germination, which is the initial step to increase the crop yield. In the context of agricultural crops, nanoparticles have both positive effects on seed quality parameters, such as germination percentage, seedling length, seedling dry weight and vigor indices, as well as negative impacts of causing toxicity toward the environment. Thus, the aim of this review article is to provide a comprehensive overview on the effects of super-dispersive metal powders, such as zinc, silver, and titanium nanoparticles on the seed quality parameters of different crops. In addition, the drawback of conventional seed growth enhancers, impact of metal nanoparticles toward seeds, and mechanism of nanoparticles to increase seed germination were also discussed.
Collapse
Affiliation(s)
- Nirmal Singh
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Axay Bhuker
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Jaison Jeevanadam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
28
|
Prato E, Parlapiano I, Biandolino F, Rotini A, Manfra L, Berducci MT, Maggi C, Libralato G, Paduano L, Carraturo F, Trifuoggi M, Carotenuto M, Migliore L. Chronic sublethal effects of ZnO nanoparticles on Tigriopus fulvus (Copepoda, Harpacticoida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30957-30968. [PMID: 31814077 DOI: 10.1007/s11356-019-07006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
This study investigated for the first time the effects of ZnO nanoparticle (NP) chronic exposure (28 days) on Tigriopus fulvus. Acute toxicity (48 h) of three Zn chemical forms was assessed as well including the following: (a) ZnO nanoparticles (NPs), (b) Zn2+ from ZnO NP suspension after centrifugation (supernatant) and (c) ZnSO4 H2O. Physical-chemical and electronic microscopies were used to characterize spiked exposure media. Results showed that the dissolution of ZnO NPs was significant, with a complete dissolution at lowest test concentrations, but nano- and micro-aggregates were always present. Acute test evidenced a significant higher toxicity of Zn2+ and ZnSO4 compared to ZnO NPs. The chronic exposure to ZnO NPs caused negative effects on the reproductive traits, i.e. brood duration, brood size and brood number at much lower concentrations (≥ 100 μg/L). The appearance of ovigerous females was delayed at higher concentrations of ZnO NPs, while the time required for offspring release and the percentage of non-viable eggs per female were significantly increased. ZnO NP subchronic exposure evidenced its ability to reduce T. fulvus individual reproductive fitness, suggesting that ZnO NPs use and release must be carefully monitored. Graphical abstract Graphical Abstract.
Collapse
Affiliation(s)
| | | | | | - Alice Rotini
- Department of Biology, Tor Vergata University, Rome, Italy
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Chiara Maggi
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
- CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino (FI), Italy
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Maurizio Carotenuto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano, Salerno, Italy
| | | |
Collapse
|
29
|
Wu J, Wang G, Vijver MG, Bosker T, Peijnenburg WJGM. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114117. [PMID: 32062092 DOI: 10.1016/j.envpol.2020.114117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/25/2023]
Abstract
Whether toxicity of silver nanoparticles (AgNPs) to organisms originates from the nanoparticles themselves or from the dissolved Ag-ions is still debated, with the majority of studies claiming that extracellular release of Ag-ions is the main cause of toxicity. The objective of this study was to determine the contributions of both particles and dissolved ions to toxic responses, and to better understand the underlying mechanisms of toxicity. In addition, the pathways of AgNPs exposure to plants might play an important role and therefore are explicitly studied as well. We systematically assessed the phytotoxicity, internalization, biodistribution, and antioxidant responses in lettuce (Lactuca sativa) following root or foliar exposure to AgNPs and ionic Ag at various concentrations. For each endpoint the relative contribution of the particle-specific versus the ionic form was quantified. The results reveal particle-specific toxicity and uptake of AgNPs in lettuce as the relative contribution of particulate Ag accounted for more than 65% to the overall toxicity and the Ag accumulation in whole plant tissues. In addition, particle toxicity is shown to originate from the accumulation of Ag in plants by blocking nutrient transport, while ion toxicity is likely due to the induction of excess ROS production. Root exposure induced higher toxicity than foliar exposure at comparable exposure levels. Ag was found to be taken up and subsequently translocated from the exposed parts of plants to other portions regardless of the exposure pathway. These findings suggest particle related toxicity, and demonstrate that the accumulation and translocation of silver nanoparticles need to be considered in assessment of environmental risks and of food safety following consumption of plants exposed to AgNPs by humans.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands.
| | - Guiyin Wang
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; College of Environmental Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
30
|
Xu L, Wang Z, Zhao J, Lin M, Xing B. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114043. [PMID: 32041024 DOI: 10.1016/j.envpol.2020.114043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 05/21/2023]
Abstract
The exposure risk of metal-based nanoparticles (NPs) to marine organisms and related food safety have attracted increasing attention, but the actual concentrations of these NPs in seawater and marine organisms are unknown. In this work, single particle inductively coupled plasma-mass spectrometry (spICP-MS) was used to quantify the concentrations and size distributions of NPs in different marine mollusks (oysters, mussels, scallops, clams, and ark shells) from an offshore aquaculture farm. Results showed that Ti, Cu, Zn, and Ag bearing NPs were detected in all the five mollusks with the mean sizes at 65.4-70.9, 72.2-89.6, 97.8-108.3, and 42.9-51.0 nm, respectively. The particle concentrations of Ti, Cu, Zn, and Ag bearing NPs in all mollusks (0.88-3.26 × 107 particles/g fresh weight) were much higher than that in the seawater (0.46-0.79 × 107 particles/mL), suggesting bio-accumulation of NPs. For all the five mollusks, Ag bearing NPs had the highest number-based bioconcentration factors (NBCFs) in all the tested NPs due to the smallest mean size of Ag bearing NPs in seawater (30.5 nm). In addition, the clams exhibited the lowest NBCFs of the four NPs than other mollusks. All four NPs were mainly accumulated in the gill and digestive gland, and could transfer to adductor muscle of all mollusks. Although all the four metals (Ti, Cu, Zn, Ag) in mollusks were safe for human consumption by the estimated daily intake (EDI) analysis, the risk of NPs remaining in the mollusks should be further considered when evaluating the toxicity of metals for human health. The findings could improve our understanding on the distribution and health risk of NPs in marine mollusks under offshore aquaculture.
Collapse
Affiliation(s)
- Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jian Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China.
| | - Meiqi Lin
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
31
|
Wong SWY, Zhou GJ, Leung PTY, Han J, Lee JS, Kwok KWH, Leung KMY. Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2020; 154:111078. [PMID: 32319911 DOI: 10.1016/j.marpolbul.2020.111078] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The study, for the first time, evaluated the leaching rate of zinc oxide nanoparticles (nZnO) from human skins which were applied with three commercial sunscreens containing nZnO as an active ingredient. The leaching rate of nZnO varied greatly among the sunscreens, with a range of 8-72% (mean ± SD: 45% ± 33%). We further investigated their toxicities to the marine copepod Tigriopus japonicus. We found that 96-h median lethal concentrations of the three sunscreens to T. japonicus were > 5000, 230.6, and 43.0 mg chemical L-1, respectively, equivalent to Zn2+ concentrations at >82.5, 3.2, and 1.2 mg Zn L-1, respectively. Exposure to the individual sunscreens at environmentally realistic concentrations for 96 h led to up-regulation of antioxidant genes in T. japonicus, while they triggered the release of reactive oxygen species based on the results of in vivo assays. Evidently, these nZnO-included sunscreens can cause oxidative stress and hence pose risk to marine organisms.
Collapse
Affiliation(s)
- Stella W Y Wong
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Kevin W H Kwok
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
32
|
Ates M, Cimen ICC, Unal I, Kutlu B, Ertit Tastan B, Danabas D, Aksu O, Arslan Z. Assessment of impact of α-Fe 2 O 3 and γ-Fe 2 O 3 nanoparticles on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata. ENVIRONMENTAL TOXICOLOGY 2020; 35:385-394. [PMID: 31709674 DOI: 10.1002/tox.22875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the impact of alpha-iron oxide (α-Fe2 O3 , 20-40 nm) and gamma iron oxide (γ-Fe2 O3 , 20-40 nm) nanoparticles (NPs) on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata was investigated Characterizations of the NPs were systematically carried out by TEM, dynamic light scattering, zeta potential, X-ray diffraction, SEM, and Fourier transformation infrared spectroscopy. Acute toxicity was tested between 0.2 and 50 mg/L for each NP for a period of 72 hours exposure. γ-Fe2 O3 NP inhibited development of N oculata at the rate of 54% in 0.2 mg/L group with a high mortality rate of up to 82%. α-Fe2 O3 NPs were less toxic that induced 97% mortality on N oculata at 10 mg/L suspensions. In contrast, α-Fe2 O3 NP inhibited growth of S capricornutum strongly (73%) in 0.2 mg/L group. γ-Fe2 O3 NPs showed similar growth inhibition (72%) on S capricornutum in 10 mg/L suspensions. Despite the differential effects, the results indicated acute toxicity of α-Fe2 O3 and γ-Fe2 O3 NPs on N oculata and S capricornutum.
Collapse
Affiliation(s)
- Mehmet Ates
- Department of Biotechnology, Munzur University, Graduate Institute of Education, Tunceli, Turkey
| | | | - Ilkay Unal
- Faculty of Fine Arts, Munzur University, Tunceli, Turkey
| | - Banu Kutlu
- Fisheries Faculty, Munzur University, Tunceli, Turkey
| | | | | | - Onder Aksu
- Fisheries Faculty, Munzur University, Tunceli, Turkey
| | - Zikri Arslan
- Department of Biochemistry and Chemistry, Jackson State University, Jackson, Mississippi
| |
Collapse
|
33
|
Wang Y, Qin S, Li Y, Wu G, Sun Y, Zhang L, Huang Y, Lyu K, Chen Y, Yang Z. Combined effects of ZnO nanoparticles and toxic Microcystis on life-history traits of Daphnia magna. CHEMOSPHERE 2019; 233:482-492. [PMID: 31181495 DOI: 10.1016/j.chemosphere.2019.05.269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Rise in cyanobacterial blooms and massive discharge of nanoparticles (NPs) in aquatic ecosystems cause zooplankton to be exposed in toxic food and NPs simultaneously, which may impact on zooplankton interactively. Therefore, the present study focused on assessing the combined effects of different ZnO NPs levels (0, 0.10, 0.15, 0.20 mg L-1) and different proportions of toxic Microcystis (0%, 10%, 20%, 30%) in the food on a model zooplankton, Daphnia magna. The results showed that both toxic Microcystis and ZnO NPs significantly delayed the development of D. magna to maturation, but there was no significant interaction between the two factors on the times to maturation except the body length at maturation. Both ZnO NPs and toxic Microcystis also significantly decreased the number of neonates in the first brood, total offspring, and number of broods per female, and there was a significant interaction between ZnO NPs and food composition on the reproductive performance of D. magna. Specifically, presence of toxic Microcystis reduced the gap among the effects of different ZnO NPs concentrations on the reproductive performance of D. magna. When the ZnO NPs concentration was at 0.15 mg L-1, the gap of the reproductive performance among different proportions of toxic Microcystis also tended to be narrow. Similar phenomenon also occurred in mortality. Such results suggested that low concentration of ZnO NPs and toxic Microcystis can mutually attenuate their harmful effects on D. magna, which has significantly implications in appropriately assessing the ecotoxicological effects of emerging pollutants in a complex food conditions.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yurou Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Guangjin Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
34
|
Beauvais-Flück R, Slaveykova VI, Ulf S, Cosio C. Towards early-warning gene signature of Chlamydomonas reinhardtii exposed to Hg-containing complex media. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105259. [PMID: 31352075 DOI: 10.1016/j.aquatox.2019.105259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The potential of using gene expression signature as a biomarker of toxicants exposure was explored in the microalga Chlamydomonas reinhardtii exposed 2 h to mercury (Hg) as inorganic mercury (IHg) and methyl mercury (MeHg) in presence of copper (Cu) and Suwannee River Humic Acid (SRHA). Total cellular Hg (THg = IHg + MeHg) decreased in presence of SRHA for 0.7 nM IHg and 0.4 nM MeHg, but increased for 70 nM IHg exposure. In mixtures of IHg + MeHg and (IHg or MeHg) + Cu, SRHA decreased THg uptake, except for 0.7 nM IHg + 0.4 nM MeHg which was unchanged (p-value>0.05). In the absence of SRHA, 0.5 μM Cu strongly decreased intracellular THg concentration for 70 nM IHg, while it had no effect for 0.7 nM IHg and 0.4 nM MeHg. The expression of single transcripts was not correlated with measured THg uptake, but a subset of 60 transcripts showed signatures specific to the exposed metal(s) and was congruent with exposure concentration. Notably, the range of fold change values of this subset correlated with THg bioaccumulation with a two-slope pattern in line with [THg]intra/[THg]med ratios. Gene expression signature seems a promising approach to complement chemical analyses to assess bioavailability of toxicants in presence of other metals and organic matter.
Collapse
Affiliation(s)
- Rébecca Beauvais-Flück
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
| | - Skyllberg Ulf
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Claudia Cosio
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
35
|
Lin L, Xu M, Mu H, Wang W, Sun J, He J, Qiu JW, Luan T. Quantitative Proteomic Analysis to Understand the Mechanisms of Zinc Oxide Nanoparticle Toxicity to Daphnia pulex (Crustacea: Daphniidae): Comparing with Bulk Zinc Oxide and Zinc Salt. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5436-5444. [PMID: 30942576 DOI: 10.1021/acs.est.9b00251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO NPs) has resulted in their release to the environment. There has been concern about the ecotoxicity of ZnO NPs, but little is known about their toxic mechanisms. In the present study, we conducted acute toxicity tests to show that ZnO NPs are more toxic to the freshwater crustacean Daphnia pulex compared to bulk ZnO or ZnSO4·7H2O. To provide an integrated and quantitative insights into the toxicity of ZnO NPs, we conducted isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis, which detected 262, 331, and 360 differentially expressed proteins (DEPs) in D. pulex exposed to ZnO NPs, bulk ZnO, and ZnSO4·7H2O, respectively. Among the DEPs, 224 were shared among the three treatments. These proteins were related to energy metabolism, oxidative stress, and endoplasmic reticulum stress. The three forms of Zn all caused D. pulex to downregulate Chitinase expression, disrupt Ca2+ homeostasis, and reduce expression of digestive enzymes. Nevertheless, 29 proteins were expressed only in the ZnO NP treatment. In particular, histone (H3) and ribosomal proteins (L13) were obviously influenced under ZnO NP treatment. However, increased expression levels of h3 and l13 genes were not induced only in ZnO NP treatment, they were sensitive to Zn ions under the same exposure concentration. These results indicate that the three zinc substances have a similar mode of action and that released zinc ions are the main contributor to ZnO NP toxicity to D. pulex under a low concentration. Further investigation is needed to clarify whether a small proportion of DEPs or higher bioavailability cause ZnO NPs to be more toxic compared to bulk ZnO or ionic zinc.
Collapse
Affiliation(s)
- Li Lin
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Mingzhi Xu
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Huawei Mu
- School of Life Sciences , University of Science and Technology of China , Hefei 230071 , P. R. China
| | - Wenwen Wang
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jin Sun
- Department of Ocean Science , Hong Kong University of Science and Technology , Hong Kong , P. R. China
| | - Jing He
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jian-Wen Qiu
- Department of Biology , Hong Kong Baptist University , Hong Kong , P. R. China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
36
|
Wan J, Wang R, Wang R, Ju Q, Wang Y, Xu J. Comparative Physiological and Transcriptomic Analyses Reveal the Toxic Effects of ZnO Nanoparticles on Plant Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4235-4244. [PMID: 30871319 DOI: 10.1021/acs.est.8b06641] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (nZnO) are among the most commonly used nanoparticles (NPs), and they have been shown to have harmful effects on plants. However, the molecular mechanisms underlying nZnO tolerance and root sensing of NP stresses have not been elucidated. Here, we compared the differential toxic effects of nZnO and Zn2+ toxicity on plants during exposure and recovery using a combination of transcriptomic and physiological analyses. Although both nZnO and Zn2+ inhibited primary root (PR) growth, nZnO had a stronger inhibitory effect on the growth of elongation zones, whereas Zn2+ toxicity had a stronger toxic effect on meristem cells. Timely recovery from stresses is critical for plant survival. Despite the stronger inhibitory effect of nZnO on PR growth, nZnO-exposed plants recovered from stress more rapidly than Zn2+-exposed plants upon transfer to normal conditions, and transcriptome data supported these results. In contrast to Zn2+ toxicity, nZnO induced endocytosis and caused microfilament rearrangement in the epidermal cells of elongation zones, thereby repressing PR growth. nZnO also repressed PR growth by disrupting cell wall organization and structure through both physical interactions and transcriptional regulation. The present study provides new insight into the comprehensive understanding and re-evaluation of NP toxicity in plants.
Collapse
Affiliation(s)
- Jinpeng Wan
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden , Chinese Academy of Sciences , Menglun , Mengla, Yunnan 666303 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ruting Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden , Chinese Academy of Sciences , Menglun , Mengla, Yunnan 666303 , People's Republic of China
- College of Agriculture and Forestry , Puer University , Puer , Yunnan 665000 , People's Republic of China
| | - Ruling Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden , Chinese Academy of Sciences , Menglun , Mengla, Yunnan 666303 , People's Republic of China
| | - Qiong Ju
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden , Chinese Academy of Sciences , Menglun , Mengla, Yunnan 666303 , People's Republic of China
| | - Yibo Wang
- Gansu Key Laboratory for Utilization of Agricultural Solid Waste Resources, College of Bioengineering and Biotechnology , Tianshui Normal University , Tianshui , Gansu 741000 , People's Republic of China
| | - Jin Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden , Chinese Academy of Sciences , Menglun , Mengla, Yunnan 666303 , People's Republic of China
- Gansu Key Laboratory for Utilization of Agricultural Solid Waste Resources, College of Bioengineering and Biotechnology , Tianshui Normal University , Tianshui , Gansu 741000 , People's Republic of China
| |
Collapse
|
37
|
Cui J, Zhang L, Wu W, Cheng Z, Sun Y, Jiang H, Li C. Zinc oxide with dominant (1 0 0) facets boosts vulcanization activity. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Retention mechanisms of 1.7 nm ZnS quantum dots and sub-20 nm Au nanoparticles in ultrafiltration membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review. Xenobiotica 2018; 49:863-876. [DOI: 10.1080/00498254.2018.1503360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Pan
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yuh Fen Pung
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Jin Yu Chieng
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
40
|
Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 2018; 102:6827-6839. [PMID: 29948111 DOI: 10.1007/s00253-018-9145-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a tropical plant cultivated all over the world due to its culinary and medicinal properties. It is one of the most important spices commonly used in food, which increases its commercial value. However, soft rot (rhizome rot) is a common disease of ginger caused by fungi such as Pythium and Fusarium spp. It is the most destructive disease of ginger, which can reduce the production by 50 to 90%. Application of chemical fungicides is considered as an effective method to control soft rot of ginger but extensive use of fungicides pose serious risk to environmental and human health. Therefore, the development of ecofriendly and economically viable alternative approaches for effective management of soft rot of ginger such diseases is essentially required. An acceptable approach that is being actively investigated involves nanotechnology, which can potentially be used to control Pythium and Fusarium. The present review is aimed to discuss worldwide status of soft rot associated with ginger, the traditional methods available for the management of Pythium and Fusarium spp. and most importantly, the role of various nanomaterials in the management of soft rot of ginger. Moreover, possible antifungal mechanisms for chemical fungicides, biological agents and nanoparticles have also been discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India.
| | - Avinash P Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, Brazil
| | - Priti Paralikar
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| | - Netravati Anasane
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| | - Rajendra Gade
- Department of Plant Pathology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India
| | - Pramod Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| |
Collapse
|
41
|
Wang S, Li F, Hu X, Lv M, Fan C, Ling D. Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xi Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education; College of Biomedical Engineering and Instrument Science; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
42
|
Bhuvaneshwari M, Iswarya V, Vishnu S, Chandrasekaran N, Mukherjee A. Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia). ENVIRONMENTAL RESEARCH 2018; 164:395-404. [PMID: 29571129 DOI: 10.1016/j.envres.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The rapid increase in production and usage of ZnO particles in recent years has instigated the concerns regarding their plausible effects on the environment. Current study explores the trophic transfer potential of ZnO particles of different sizes (50, 100 nm and bulk particles) from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia) and the contribution of ZnO(ions) (effect of dissolved Zn ions that remain in test medium after separation NPs) to the overall toxicity of ZnO(total) (impact of both particle and dissolved Zn ions). Toxicity and uptake of ZnO(total) and ZnO(ions) in algae were found to be dependent on the concentration and particle size. Feeding of Zn accumulated algae (517 ± 28, 354.7 ± 61 and 291 ± 20 µg/g dry wt.) post-exposure to 61 µM of ZnO(total) of 50, 100 nm and bulk ZnO particles caused a significant decrease in the survival (15-20%) of daphnia. A significant amount of Zn accumulation was observed in daphnia even after the 48 h depuration period. Biomagnification factor was found to be nearly 1 for all the sizes of ZnO particles tested. For 50 nm ZnO, the BMF was higher when compared to other two sizes, reaching the mean value of 1.06 ± 0.01 at 61 µM. Further analysis revealed that the dietary uptake of different sizes of ZnO particles caused ultra-structural damages and degradation of internal organs in daphnia.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - V Iswarya
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - S Vishnu
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
43
|
de la Calle I, Menta M, Klein M, Séby F. Study of the presence of micro- and nanoparticles in drinks and foods by multiple analytical techniques. Food Chem 2018; 266:133-145. [PMID: 30381168 DOI: 10.1016/j.foodchem.2018.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/14/2018] [Accepted: 05/24/2018] [Indexed: 12/16/2022]
Abstract
A variety of food and drink samples (n = 21) were analyzed to evaluate the presence of (nano-) particles in their composition. After assessment of the sample pre-treatment step, a fast screening analysis was performed for drinks by Dynamic Light Scattering showing particles from 10 to 300 nm that could correspond to organic or metallic NPs. Metallic NPs were identified in foods by Single-Particle mode Inductively Coupled Plasma Mass Spectrometry and Asymmetrical Flow Field-Flow Fractionation coupled to Multiangle Laser Light Scattering and Inductively-Coupled Plasma Mass Spectrometry. The determination of Ti, Si and Ag concentration in the initial food suspensions, after filtration and centrifugal ultrafiltration enabled to estimate the ionic and nanoparticles content. Si-containing particles can be present in cappuccino powder as large aggregates and Si- and Al-containing particles in hot chocolate. Ti-containing NPs (80-200 nm) were found in chewing gum and Ag NPs in silver pearls (50-150 nm) used for decoration pastry.
Collapse
Affiliation(s)
- Inmaculada de la Calle
- Ultra Trace Analyses Aquitaine UT2A/ADERA, Hélioparc Pau-Pyrénées, 2 avenue du Président Angot, 64053 PAU cedex 9, Pau, France; Departamento de Química Analítica y Alimentaria, Área de Química Analítica, Facultad de Química, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain.
| | - Mathieu Menta
- Ultra Trace Analyses Aquitaine UT2A/ADERA, Hélioparc Pau-Pyrénées, 2 avenue du Président Angot, 64053 PAU cedex 9, Pau, France
| | - Marlène Klein
- Ultra Trace Analyses Aquitaine UT2A/ADERA, Hélioparc Pau-Pyrénées, 2 avenue du Président Angot, 64053 PAU cedex 9, Pau, France
| | - Fabienne Séby
- Ultra Trace Analyses Aquitaine UT2A/ADERA, Hélioparc Pau-Pyrénées, 2 avenue du Président Angot, 64053 PAU cedex 9, Pau, France
| |
Collapse
|
44
|
Zheng M, Lu J, Zhao D. Toxicity and Transcriptome Sequencing (RNA-seq) Analyses of Adult Zebrafish in Response to Exposure Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. Sci Rep 2018; 8:8083. [PMID: 29795396 PMCID: PMC5967324 DOI: 10.1038/s41598-018-26499-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/14/2018] [Indexed: 01/20/2023] Open
Abstract
Increasing utilization of stabilized iron sulfides (FeS) nanoparticles implies an elevated release of the materials into the environment. To understand potential impacts and underlying mechanisms of nanoparticle-induced stress, we used the transcriptome sequencing (RNA-seq) technique to characterize the transcriptomes from adult zebrafish exposed to 10 mg/L carboxymethyl cellulose (CMC) stabilized FeS nanoparticles for 96 h, demonstrating striking differences in the gene expression profiles in liver. The exposure caused significant expression alterations in genes related to immune and inflammatory responses, detoxification, oxidative stress and DNA damage/repair. The complement and coagulation cascades Kyoto encyclopedia of genes and genomes (KEGG) pathway was found significantly up-regulated under nanoparticle exposure. The quantitative real-time polymerase chain reaction using twelve genes confirmed the RNA-seq results. We identified several candidate genes commonly regulated in liver, which may serve as gene indicators when exposed to the nanoparticles. Hepatic inflammation was further confirmed by histological observation of pyknotic nuclei, and vacuole formation upon exposure. Tissue accumulation tests showed a 2.2 times higher iron concentration in the fish tissue upon exposure. This study provides preliminary mechanistic insights into potential toxic effects of organic matter stabilized FeS nanoparticles, which will improve our understanding of the genotoxicity caused by stabilized nanoparticles.
Collapse
Affiliation(s)
- Min Zheng
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA.,School of Marine Sciences, Sun Yat-sen University, Guangdong, 510275, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangdong, 510275, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA. .,Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| |
Collapse
|
45
|
Gonçalves RA, de Oliveira Franco Rossetto AL, Nogueira DJ, Vicentini DS, Matias WG. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:32-40. [PMID: 29428564 DOI: 10.1016/j.aquatox.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50(48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR.
Collapse
Affiliation(s)
- Renata Amanda Gonçalves
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Ana Letícia de Oliveira Franco Rossetto
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Diego José Nogueira
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Denice Schulz Vicentini
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - William Gerson Matias
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
46
|
Xiao Y, Peijnenburg WJGM, Chen G, Vijver MG. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1329-1335. [PMID: 28851153 DOI: 10.1016/j.scitotenv.2017.08.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Toxicity of metallic nanoparticle suspensions (NP(total)) is generally assumed to result from the combined effect of the particles present in suspensions (NP(particle)) and their released ions (NP(ion)). Evaluation and consideration of how water chemistry affects the particle-specific toxicity of NP(total) are critical for environmental risk assessment of nanoparticles. In this study, it was found that the toxicity of Cu NP(particle) to Daphnia magna, in line with the trends in toxicity for Cu NP(ion), decreased with increasing pH and with increasing concentrations of divalent cations and dissolved organic carbon (DOC). Without the addition of DOC, the toxicity of Cu NP(total) to D. magna at the LC50 was driven mainly by Cu NP(ion) (accounting for ≥53% of the observed toxicity). However, toxicity of Cu NP(total) in the presence of DOC at a concentration ranging from 5 to 50mg C/L largely resulted from the NP(particle) (57%-85%), which could be attributable to the large reduction of the concentration of Cu NP(ion) and the enhancement of the stability of Cu NP(particle) when DOC was added. Our results indicate that water chemistry needs to be explicitly taken into consideration when evaluating the role of NP(particle) and NP(ion) in the observed toxicity of NP(total).
Collapse
Affiliation(s)
- Yinlong Xiao
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands; College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Guangchao Chen
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| |
Collapse
|
47
|
Sarkheil M, Johari SA, An HJ, Asghari S, Park HS, Sohn EK, Yu IJ. Acute toxicity, uptake, and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:181-188. [PMID: 29278808 DOI: 10.1016/j.etap.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
This study aims to evaluate the potential toxic effects of ZnO nanoparticles on Artemia franciscana nauplii. The ZnO NPs suspension was characterized by TEM, EDS and DLS techniques. Acute toxicity was investigated by exposure of nauplii to concentrations of 1, 5, 7.5, 10, 15, 20, 25 and 30 mg/L of ZnO NPs for 48 h and 96 h. The 96-h EC10 and EC50 values of ZnO NPs were found to be 1.39 mg/L and 4.86 mg/L respectively. The ZnO NPs suspensions did not cause any significant acute toxicity after 48 h of exposure, but the immobilization rate increase significantly compare to control group after 96 h (P < 0.05). The results showed that the uptake, accumulation, and elimination of NPs in nauplii depends on the concentration of NPs and time. The elimination rates of 46.66% and 83.85% were recorded at 1 and 10 mg/L of NPs after 24 h of depuration period, respectively.
Collapse
Affiliation(s)
- Mehrdad Sarkheil
- Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Seyed Ali Johari
- Fisheries Department, Faculty of Natural Resources, University of Kurdistan, ZIP Code: 66177-15175, P.O. Box 416, Sanandaj, Iran.
| | - Hyo Jin An
- Department of Nano Bio Technology, Hoseo University, Asan, Republic of Korea
| | - Saba Asghari
- Fisheries Department, Faculty of Natural Resources, University of Kurdistan, ZIP Code: 66177-15175, P.O. Box 416, Sanandaj, Iran
| | - Hye Seon Park
- Department of Nano Bio Technology, Hoseo University, Asan, Republic of Korea
| | - Eun Kyung Sohn
- Department of Nanofusion Technology, Hoseo University, Asan, Republic of Korea
| | - Il Je Yu
- HCTm CO., LTD., Icheon, Republic of Korea
| |
Collapse
|
48
|
Noventa S, Hacker C, Rowe D, Elgy C, Galloway T. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos. Nanotoxicology 2017; 12:63-78. [DOI: 10.1080/17435390.2017.1418920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seta Noventa
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Bioimaging Centre, University of Exeter, Exeter, UK
| | - Darren Rowe
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Christine Elgy
- Department of Geography, Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterization, University of Birmingham, Birmingham, UK
| | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
49
|
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:250-267. [PMID: 28662490 DOI: 10.1016/j.envpol.2017.06.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Arndt DA, Oostveen EK, Triplett J, Butterfield DA, Tsyusko OV, Collin B, Starnes DL, Cai J, Klein JB, Nass R, Unrine JM. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:1-10. [PMID: 28888877 DOI: 10.1016/j.cbpc.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.
Collapse
Affiliation(s)
- Devrah A Arndt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Judy Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Blanche Collin
- CNRS, IRD, Coll. France, CEREGE, Aix Marseille Université, Aix-en-Provence, France
| | - Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jian Cai
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Jon B Klein
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|