1
|
Yang Y, Wang K, Liu X, Xu C, You Q, Zhang Y, Zhu L. Environmental behavior of silver nanomaterials in aquatic environments: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167861. [PMID: 37852494 DOI: 10.1016/j.scitotenv.2023.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The increasing applications of silver nanomaterials (nano-Ag) and their inevitable release posed great potential risks to aquatic organisms and ecosystems. Considerable attention has been attracted on their behaviors and transformations, which were critically important for their subsequent biological toxicities and ecological effects. Therefore, the summary of the recent efforts on the environmental behavior of nano-Ag would be beneficial for understanding the environmental fate and accurate risk assessment. This review summarized the studies on various physical, chemical and biological transformations of nano-Ag, meanwhile, the influencing factors (including the intrinsic properties and environmental conditions) and related mechanisms were highlighted. Surface structure and facets of nano-Ag, abiotic conditions and natural freeze-thaw cycle processes could affect the transformations of nano-Ag under different environmental scenarios (including freshwater, seawater and wastewater). The interactions with co-present components, such as chemicals and other particles, impacted the multiple processes of nano-Ag. Besides, the contradictory effects and mechanisms by several environmental factors were summarized. Lastly, the key knowledge gaps and some aspects that deserve further investigation were also addressed. Therefore, the current review aimed to provide an overall analysis of transformation processes of nano-Ag, which will provide more available information and pave the way for the future research areas.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunyi Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi You
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Li Y, Wang WX. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. CHEMOSPHERE 2021; 281:130762. [PMID: 34020191 DOI: 10.1016/j.chemosphere.2021.130762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The uptake, intracellular dissolution, and cytotoxicity of silver nanowires (AgNWs) in two cell models (human keratinocytes - HaCaT cells and murine macrophages) were systemically investigated for the first time. Cellular uptake of AgNWs occurred mainly via pathways of clathrin-dependent endocytosis, caveolae-dependent endocytosis, and phagocytosis. AgNWs could be internalized by two types of cells with numerous lysosomal vesicles detected in close vicinity to AgNWs. Meanwhile, AgNWs exposure caused lysosomal permeabilization and release of cathepsisn B into cytoplasm. Furthermore, for the first time, this study found that AgNWs exposure inhibited the transmembrane ATP binding cassette (ABC) efflux transporter activity, which could make AgNWs as chemosensitizers to increase the toxicity of other xenobiotic pollutants. Toxicity assays evaluating reactive oxygen species production and mitochondrial activity indicated that cytotoxicity differed for different cell types and particles. The intracellular presence of AgNWs with different diameters induced similar toxic events but to different extents. AgNWs were absorbed by macrophages more efficiently than HaCaT cells, while AgNWs exhibited only marginal cytotoxicity towards macrophages compared to HaCaT cells. Using an Ag+ fluorescence probe, it was found that a fraction of AgNWs was dissolved inside the lysosomes. A higher amount of released Ag+ was detected in HaCaT cells than in macrophages, which might partially contribute to their higher cytotoxicity in HaCaT cells. The toxicity of AgNWs in HaCaT cells and macrophages is due to the high-aspect nature of the nanowires rather than the extracellular release of Ag+. This study may be useful for risk assessments of AgNWs in their practical applications in the biomedical field.
Collapse
Affiliation(s)
- Yiling Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Hoang D, Galbraith S, Kuang B, Johnson A, Yoon S. Characterization of Chinese hamster ovary cell culture feed media precipitate. Biotechnol Prog 2021; 37:e3188. [PMID: 34165891 DOI: 10.1002/btpr.3188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/06/2022]
Abstract
Process intensification of monoclonal antibody production is leading to more concentrated feed media causing issues with precipitation of solids from the media solution. This results in processing problems since components in the precipitate are no longer in solution, changing the media composition and leading to variability in cell culture performance. The goal of this work is to characterize the feed media precipitate, and in particular to identify the precipitated components so that mitigation strategies can be developed. From the conducted analysis, the precipitate was predominately found to be organic and was analyzed with liquid chromatography-mass spectrometry and inductively coupled plasma-optical emission spectroscopy (ICP-OES) to identify the constituent components. Up to ten amino acids were identified with tyrosine (approximately 77 wt.%) and phenylalanine (approximately 4 wt.%) being the most prevalent amino acids. Elemental analysis with ICP-OES revealed that inorganic components were accounted for less than one weight percentage of the solid precipitate with metal sulfates being the predominant inorganic components.
Collapse
Affiliation(s)
- Duc Hoang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Shaun Galbraith
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Bingyu Kuang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Amy Johnson
- Cell Culture and Media Development, Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
4
|
Kumar P, Kalaiarasan G, Porter AE, Pinna A, Kłosowski MM, Demokritou P, Chung KF, Pain C, Arvind DK, Arcucci R, Adcock IM, Dilliway C. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143553. [PMID: 33239200 DOI: 10.1016/j.scitotenv.2020.143553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) is a crucial health risk factor for respiratory and cardiovascular diseases. The smaller size fractions, ≤2.5 μm (PM2.5; fine particles) and ≤0.1 μm (PM0.1; ultrafine particles), show the highest bioactivity but acquiring sufficient mass for in vitro and in vivo toxicological studies is challenging. We review the suitability of available instrumentation to collect the PM mass required for these assessments. Five different microenvironments representing the diverse exposure conditions in urban environments are considered in order to establish the typical PM concentrations present. The highest concentrations of PM2.5 and PM0.1 were found near traffic (i.e. roadsides and traffic intersections), followed by indoor environments, parks and behind roadside vegetation. We identify key factors to consider when selecting sampling instrumentation. These include PM concentration on-site (low concentrations increase sampling time), nature of sampling sites (e.g. indoors; noise and space will be an issue), equipment handling and power supply. Physicochemical characterisation requires micro- to milli-gram quantities of PM and it may increase according to the processing methods (e.g. digestion or sonication). Toxicological assessments of PM involve numerous mechanisms (e.g. inflammatory processes and oxidative stress) requiring significant amounts of PM to obtain accurate results. Optimising air sampling techniques are therefore important for the appropriate collection medium/filter which have innate physical properties and the potential to interact with samples. An evaluation of methods and instrumentation used for airborne virus collection concludes that samplers operating cyclone sampling techniques (using centrifugal forces) are effective in collecting airborne viruses. We highlight that predictive modelling can help to identify pollution hotspots in an urban environment for the efficient collection of PM mass. This review provides guidance to prepare and plan efficient sampling campaigns to collect sufficient PM mass for various purposes in a reasonable timeframe.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Gopinath Kalaiarasan
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Alexandra E Porter
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Alessandra Pinna
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michał M Kłosowski
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, USA
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Christopher Pain
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - D K Arvind
- Centre for Speckled Computing, School of Informatics, University of Edinburgh, Edinburgh, Scotland EH8 9AB, United Kingdom
| | - Rossella Arcucci
- Data Science Institute, Department of Computing, Imperial College London, London SW7 2BU, United Kingdom
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Claire Dilliway
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Michaeloudes C, Seiffert J, Chen S, Ruenraroengsak P, Bey L, Theodorou IG, Ryan M, Cui X, Zhang J, Shaffer M, Tetley T, Porter AE, Chung KF. Effect of silver nanospheres and nanowires on human airway smooth muscle cells: role of sulfidation. NANOSCALE ADVANCES 2020; 2:5635-5647. [PMID: 34381958 PMCID: PMC8330518 DOI: 10.1039/d0na00745e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Background: The toxicity of inhaled silver nanoparticles on contractile and pro-inflammatory airway smooth muscle cells (ASMCs) that control airway calibre is unknown. We explored the oxidative activities and sulfidation processes of the toxic-inflammatory response. Method: Silver nanospheres (AgNSs) of 20 nm and 50 nm diameter and silver nanowires (AgNWs), short S-AgNWs, 1.5 μm and long L-AgNWs, 10 μm, both 72 nm in diameter were manufactured. We measured their effects on cell proliferation, mitochondrial reactive oxygen species (ROS) release and membrane potential, and also performed electron microscopic studies. Main results and findings: The greatest effects were observed for the smallest particles with the highest specific surface area and greatest solubility that were avidly internalised. ASMCs exposed to 20 nm AgNSs (25 μg mL-1) for 72 hours exhibited a significant decrease in DNA incorporation (-72.4%; p < 0.05), whereas neither the 50 nm AgNSs nor the s-AgNWs altered DNA synthesis or viability. There was a small reduction in ASMC proliferation for the smaller AgNS, although Ag+ at 25 μL mL-1 reduced DNA synthesis by 93.3% (p < 0.001). Mitochondrial potential was reduced by both Ag+ (25 μg mL-1) by 47.1% and 20 nm Ag NSs (25 μg mL-1) by 40.1% (*both at p < 0.05), but was not affected by 50 nm AgNSs and the AgNWs. None of the samples showed a change in ROS toxicity. However, malondialdehyde release, associated with greater total ROS, was observed for all AgNPs, to an extent following the geometric size (20 nm AgNS: 213%, p < 0.01; 50 nm AgNS: 179.5%, p < 0.01 and L-AgNWs by 156.2%, p < 0.05). The antioxidant, N-acetylcysteine, prevented the reduction in mitochondrial potential caused by 20 nm AgNSs. The smaller nanostructures were internalised and dissolved within the ASMCs with the formation of non-reactive silver sulphide (Ag2S) on their surface, but with very little uptake of L-AgNWs. When ASMCs were incubated with H2S-producing enzyme inhibitors, the spatial extent of Ag2S formation was much greater. Conclusion: The intracellular toxicity of AgNPs in ASMCs is determined by the solubility of Ag+ released and the sulfidation process, effects related to particle size and geometry. Passivation through sulfidation driven by biogenic H2S can outcompete dissolution, thus reducing the toxicity of the smaller intracellular Ag nanostructures.
Collapse
Affiliation(s)
| | - Joanna Seiffert
- National Heart & Lung Institute, Imperial College London Dovehouse St London SW3 6LY UK
| | - Shu Chen
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Pakatip Ruenraroengsak
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
- Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
| | - Leo Bey
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
- Faculty of Medicine, University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ioannis G Theodorou
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Mary Ryan
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Xiaoxing Cui
- Nicholas School of Environment, Duke Global Health Institute, Duke University Durham USA
| | - Jim Zhang
- Nicholas School of Environment, Duke Global Health Institute, Duke University Durham USA
| | - Milo Shaffer
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Terry Tetley
- National Heart & Lung Institute, Imperial College London Dovehouse St London SW3 6LY UK
| | - Alexandra E Porter
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London Dovehouse St London SW3 6LY UK
| |
Collapse
|
6
|
Zhang Y, Xu J, Yang Y, Sun B, Wang K, Zhu L. Impacts of Proteins on Dissolution and Sulfidation of Silver Nanowires in an Aquatic Environment: Importance of Surface Charges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5560-5568. [PMID: 32259435 DOI: 10.1021/acs.est.0c00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With increasing utilization of silver nanomaterials, growing concerns are raised on their deleterious effects to the environment. Once discharged in an aquatic environment, the interactions between silver nanowires (AgNWs) and proteins may significantly affect the environmental behaviors, fate, and toxicities of AgNWs. In the present study, three representative model proteins, including ovalbumin (OVA), bovine serum albumin (BSA), and lysozyme (LYZ), were applied to investigate the impacts of the interactions between proteins and AgNWs on the transformations (oxidative dissolution and sulfidation) of AgNWs in an aquatic environment. Fluorescence spectroscopy and isothermal titration calorimetry analyses indicated that there was very weak interaction between OVA or BSA and AgNWs, but there was a strong interaction between the positively charged LYZ and the negatively charged AgNWs. The presence of LYZ not only reversed the surface charge of AgNWs but also resulted in the breakup of the nanowire structure and increased the reactive surface area. The positively charged surface of AgNWs in the presence of LYZ favored the access of sulfide ions. As a consequence, the kinetics of oxidative dissolution and sulfidation of AgNWs were not affected by OVA and BSA but were significantly facilitated by LYZ. The results shed light on the important roles of electrostatic interactions between AgNWs and proteins, which may have important implications for evaluating the fate and effects of silver nanomaterials in complicated environments.
Collapse
Affiliation(s)
- Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jinliang Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Zhang W, Ning B, Sun C, Song K, Xu X, Fang T, Yao L. Dynamic nano-Ag colloids cytotoxicity to and accumulation by Escherichia coli: Effects of Fe 3+, ionic strength and humic acid. J Environ Sci (China) 2020; 89:180-193. [PMID: 31892390 DOI: 10.1016/j.jes.2019.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.
Collapse
Affiliation(s)
- Weicheng Zhang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, China
| | - Bingyu Ning
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Caiyun Sun
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Ke Song
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
8
|
Silver Nanowires: Synthesis, Antibacterial Activity and Biomedical Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050673] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Lasat MM, Chung KF, Lead J, McGrath S, Owen RJ, Rocks S, Unrine J, Zhang J. Advancing the Understanding of Environmental Transformations, Bioavailability and Effects of Nanomaterials, an International US Environmental Protection Agency-UK Environmental Nanoscience Initiative Joint Program. ACTA ACUST UNITED AC 2018; 9:385-404. [PMID: 29910967 PMCID: PMC5998674 DOI: 10.4236/jep.2018.94025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United Kingdom (UK) Environmental Nanoscience Initiative and the United States (US) Environmental Protection Agency have developed an international research program to enhance the knowledgebase and develop risk-predicting models for manufactured nanoparticles. Here we report selected highlights of the program as it sought to maximize the complementary strengths of the transatlantic scientific communities by funding three integrated US-UK consortia to investigate the transformation of these nanoparticles in terrestrial, aquatic, and atmospheric environment. Research results demonstrate there is a functional relationship between the physicochemical properties of environmentally transformed nanomaterials and their effects and that this relationship is amenable to modeling. In addition, the joint transatlantic program has allowed the leveraging of additional funding, promoting transboundary scientific collaboration.
Collapse
Affiliation(s)
- Mitch M Lasat
- Office of Research and Development, United States Environmental Protection Agency, Washington DC, USA
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jamie Lead
- Centre for Environmental Nanoscience and Risk, University of South Carolina, Columbia, USA.,University of Birmingham, Edgbaston, UK
| | | | | | - Sophie Rocks
- Institute for Resilient Futures, Cranfield University, Cranfield, UK
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, USA
| | - Junfeng Zhang
- Nicholas School of the Environment, Duke University, Durham, USA
| |
Collapse
|
10
|
Theodorou IG, Müller KH, Chen S, Goode AE, Yufit V, Ryan MP, Porter AE. Silver Nanowire Particle Reactivity with Human Monocyte-Derived Macrophage Cells: Intracellular Availability of Silver Governs Their Cytotoxicity. ACS Biomater Sci Eng 2017; 3:2336-2347. [PMID: 33445292 DOI: 10.1021/acsbiomaterials.7b00479] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silver nanowires (AgNWs) are increasingly being used in the production of optoelectronic devices, with manufacturing processes posing a risk for occupational exposures via inhalation. Although some studies have explored the environmental effects of AgNWs, few data exist on human health effects. Alveolar macrophages are central in the clearance of inhaled fibers from the lungs, with frustrated phagocytosis often stated as a key determinant for the onset of inflammatory reactions. However, the mechanisms through which fully ingested AgNWs interact with, degrade, and transform within primary macrophages over time, and whether the reactivity of the AgNWs arises due to ionic or particulate effects, or both, are poorly understood. Here, a combination of elemental quantification, 3D tomography, analytical transmission electron microscopy (TEM), and confocal microscopy were employed to monitor the uptake, intracellular Ag+ availability, and processing of AgNWs of two different lengths (1 and 10 μm) inside human monocyte-derived macrophages (HMMs). Using AgNO3 and spherical silver nanoparticles (AgNPs) as a comparison, the amount of total bioavailable/intracellular Ag highly correlated to the cytotoxicity of AgNWs. The 10 μm AgNWs were completely internalized in HMMs, with numerous lysosomal vesicles observed in close vicinity to the AgNWs. Following cellular uptake, AgNWs dissolved and transformed intracellularly, with precipitation of AgCl as well as Ag2S. These transformation processes were likely due to AgNW degradation in the acidic environment of lysosomes, leading to the release of Ag+ ions that rapidly react with Cl- and SH- species of the cell microenvironment. Our data suggest that, in HMMs, not only frustrated phagocytosis but also the extent of intracellular uptake and dissolution of AgNWs dictates their cytotoxicity.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Shu Chen
- Department of Biological Sciences and Institute of Structural and Molecular Biology (ISMB), Birkbeck College, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Angela E Goode
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Vladimir Yufit
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Chung KF, Seiffert J, Chen S, Theodorou IG, Goode AE, Leo BF, McGilvery CM, Hussain F, Wiegman C, Rossios C, Zhu J, Gong J, Tariq F, Yufit V, Monteith AJ, Hashimoto T, Skepper JN, Ryan MP, Zhang J, Tetley T, Porter AE. Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats. ACS NANO 2017; 11:2652-2664. [PMID: 28221763 PMCID: PMC5371928 DOI: 10.1021/acsnano.6b07313] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/21/2017] [Indexed: 05/25/2023]
Abstract
There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague-Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health.
Collapse
Affiliation(s)
- Kian Fan Chung
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Joanna Seiffert
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Shu Chen
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Ioannis G. Theodorou
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Angela Erin Goode
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Bey Fen Leo
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
- Nanotechnology
and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Catriona M. McGilvery
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Farhana Hussain
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Coen Wiegman
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Christos Rossios
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Jie Zhu
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Jicheng Gong
- Nicholas
School of Environment and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Farid Tariq
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Vladimir Yufit
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Alexander J. Monteith
- Department
of Biological Sciences, Oxford Brookes University, Oxford OX3 OBP, United Kingdom
| | - Teruo Hashimoto
- The
School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Jeremy N. Skepper
- Cambridge
Advanced Imaging Centre, Department of Anatomy, University of Cambridge, Tennis Court Road, Cambridge CB2 3DY United Kingdom
| | - Mary P. Ryan
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Junfeng Zhang
- Nicholas
School of Environment and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Teresa
D. Tetley
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Alexandra E. Porter
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, Chung KF, Carzaniga R, Shaffer MSP, Dexter DT, Ryan MP, Porter AE. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H 2S-synthesizing enzymes. Sci Rep 2017; 7:42871. [PMID: 28251989 PMCID: PMC5333087 DOI: 10.1038/srep42871] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson's disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.
Collapse
Affiliation(s)
- Daniel A. Gonzalez-Carter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Parkinson’s Disease Research Unit, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Bey Fen Leo
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Central Unit for Advanced Research Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pakatip Ruenraroengsak
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Angela E. Goode
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ioannis G. Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Raffaella Carzaniga
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Milo S. P. Shaffer
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - David T. Dexter
- Parkinson’s Disease Research Unit, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Mary P. Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
13
|
Zhang Y, Xia J, Liu Y, Qiang L, Zhu L. Impacts of Morphology, Natural Organic Matter, Cations, and Ionic Strength on Sulfidation of Silver Nanowires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13283-13290. [PMID: 27993058 DOI: 10.1021/acs.est.6b03034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Silver nanowires (AgNWs) are being widely utilized in an increasing number of consumer products, which could release silver to aquatic environments during the use or washing process, and have received growing concerns on their potential risks to bio-organisms and humans. The present study demonstrated that AgNWs mainly experienced direct oxysulfidation by reacting with dissolved sulfide species (initial S2- concentration at 1.6 mg/L) to produce silver sulfide nanostructures under environmentally relevant conditions. Granular Ag2S nanoparticles were formed on the surface of the nanowires. The sulfidation rate constant (kAg) of AgNWs was compared with those of silver nanoparticles (AgNPs) at different particle sizes. It was found that the kAg positively correlated with the specific surface areas of the silver nanomaterials. Natural organic matter (NOM) suppressed the sulfidation of AgNWs to different extents depending on its concentration. Divalent cations (Mg2+ and Ca2+ ions) substantially accelerated the sulfidation rates of AgNWs compared to monovalent cations (Na+ and K+ ions). At the same ionic strengths, Ca2+ ions displayed the highest promoting effect among the four metallic ions.
Collapse
Affiliation(s)
- Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300350, P. R. China
| | - Junchao Xia
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300350, P. R. China
| | - Yongliang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300350, P. R. China
| | - Liwen Qiang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300350, P. R. China
| |
Collapse
|
14
|
van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, Palmai-Pallag M, Marbaix E, Lison D. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol 2016; 13:38. [PMID: 27393559 PMCID: PMC4939013 DOI: 10.1186/s12989-016-0149-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023] Open
Abstract
Background Humans are increasingly exposed via the diet to Ag nanoparticles (NP) used in the food industry. Because of their anti-bacterial activity, ingested Ag NP might disturb the gut microbiota that is essential for local and systemic homeostasis. We explored here the possible impact of dietary Ag NP on the gut microbiota in mice at doses relevant for currently estimated human intake. Methods Mice were orally exposed to food (pellets) supplemented with increasing doses of Ag NP (0, 46, 460 or 4600 ppb) during 28 d. Body weight, systemic inflammation and gut integrity were investigated to determine overall toxicity, and feces DNA collected from the gut were analyzed by Next Generation Sequencing (NGS) to assess the effect of Ag NP on the bacterial population. Ag NP were characterized alone and in the supplemented pellets by scanning transmission electron microscopy (STEM) and energy dispersive X-ray analysis (EDX). Results No overall toxicity was recorded in mice exposed to Ag NP. Ag NP disturbed bacterial evenness (α-diversity) and populations (β-diversity) in a dose-dependent manner. Ag NP increased the ratio between Firmicutes (F) and Bacteroidetes (B) phyla. At the family level, Lachnospiraceae and the S24-7 family mainly accounted for the increase in Firmicutes and decrease in Bacteroidetes, respectively. Similar effects were not observed in mice identically exposed to the same batch of Ag NP-supplemented pellets aged during 4 or 8 months and the F/B ratio was less or not modified. Analysis of Ag NP-supplemented pellets showed that freshly prepared pellets released Ag ions faster than aged pellets. STEM-EDX analysis also showed that Ag sulfidation occurred in aged Ag NP-supplemented pellets. Conclusions Our data indicate that oral exposure to human relevant doses of Ag NP can induce microbial alterations in the gut. The bacterial disturbances recorded after Ag NP are similar to those reported in metabolic and inflammatory diseases, such as obesity. It also highlights that Ag NP aging in food, and more specifically sulfidation, can reduce the effects of Ag NP on the microbiota by limiting the release of toxic Ag ions. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0149-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Clos Chapelle-aux-champs 30 bte B1.30.24, 1200, Brussels, Belgium
| | - Hélène Lecloux
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium
| | - Clément Levard
- CEREGE, Aix Marseille Université, CNRS, IRD, UM34, UMR 7330, Europole de l'arbois - BP 80, 13545, Aix en Provence, France
| | - Romain Soulas
- CEA LITEN Grenoble, 17 Rue des Martyrs, 38054, GRENOBLE - CEDEX 9, France
| | - Pieter-Jan De Temmerman
- Electron Microscopy Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg 99, 1180, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium
| | - Etienne Marbaix
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 - bte B1.75.02, 1200, Brussels, Belgium
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium
| |
Collapse
|
15
|
Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun 2016; 7:11770. [PMID: 27278102 PMCID: PMC4906166 DOI: 10.1038/ncomms11770] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023] Open
Abstract
Proteins adsorbing at nanoparticles have been proposed as critical toxicity mediators and are included in ongoing efforts to develop predictive tools for safety assessment. Strongly attached proteins can be isolated, identified and correlated to changes in nanoparticle state, cellular association or toxicity. Weakly attached, rapidly exchanging proteins are also present at nanoparticles, but are difficult to isolate and have hardly been examined. Here we study rapidly exchanging proteins and show for the first time that they have a strong modulatory effect on the biotransformation of silver nanoparticles. Released silver ions, known for their role in particle toxicity, are found to be trapped as silver sulphide nanocrystals within the protein corona at silver nanoparticles in serum-containing cell culture media. The strongly attached corona acts as a site for sulphidation, while the weakly attached proteins reduce nanocrystal formation in a serum-concentration-dependent manner. Sulphidation results in decreased toxicity of Ag NPs. The biomolecule layer adsorbed at the nanoparticle surface and defined as protein corona affects the nanoparticle biophysical properties and functions. Here, the authors suggest that rapidly-exchanging proteins on the outermost layer of the corona modulate sulphidation of silver nanoparticles in vitro.
Collapse
|
16
|
Wang S, Lv J, Ma J, Zhang S. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology 2016; 10:1129-35. [DOI: 10.1080/17435390.2016.1179809] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Songshan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China and
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China and
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China and
| |
Collapse
|
17
|
Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, Schwander S, Zhang JJ, Shaffer MSP, Chung KF, Ryan MP, Porter AE, Tetley TD. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids Surf B Biointerfaces 2016; 145:167-175. [PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/04/2016] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
Collapse
Affiliation(s)
- Sinbad Sweeney
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Bey Fen Leo
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK; Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Shu Chen
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Nisha Abraham-Thomas
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew J Thorley
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew Gow
- Department of Toxicology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Stephan Schwander
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Junfeng Jim Zhang
- Division of Environmental Sciences & Policy, Nicholas School of the Environment and Duke Global Health Institute,, Duke University, Durham, USA
| | - Milo S P Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Kian Fan Chung
- Respiratory Medicine and Experimental Studies Unit, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Teresa D Tetley
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
18
|
Chen S, Goode AE, Skepper JN, Thorley AJ, Seiffert JM, Chung KF, Tetley TD, Shaffer MSP, Ryan MP, Porter AE. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J Microsc 2016; 261:157-66. [PMID: 25606708 PMCID: PMC4510036 DOI: 10.1111/jmi.12215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinized. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data.
Collapse
Affiliation(s)
- S Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, U.K
| | - A E Goode
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, U.K
| | - J N Skepper
- Multi-Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, U.K
| | - A J Thorley
- National Heart and Lung Institute, Imperial College London, SW3 6LY, U.K
| | - J M Seiffert
- National Heart and Lung Institute, Imperial College London, SW3 6LY, U.K
| | - K F Chung
- National Heart and Lung Institute, Imperial College London, SW3 6LY, U.K
| | - T D Tetley
- National Heart and Lung Institute, Imperial College London, SW3 6LY, U.K
| | - M S P Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, U.K
| | - M P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, U.K
| | - A E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, SW7 2AZ, U.K
| |
Collapse
|
19
|
Munusamy P, Wang C, Engelhard MH, Baer DR, Smith JN, Liu C, Kodali V, Thrall BD, Chen S, Porter AE, Ryan MP. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages. Biointerphases 2015; 10:031003. [PMID: 26178265 PMCID: PMC4506304 DOI: 10.1116/1.4926547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Jordan N Smith
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Chongxuan Liu
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Vamsi Kodali
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Brian D Thrall
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Shu Chen
- Department of Materials and London Center for Nanotechnology, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Center for Nanotechnology, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Mary P Ryan
- Department of Materials and London Center for Nanotechnology, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| |
Collapse
|
20
|
Zhang L, Li X, He R, Wu L, Zhang L, Zeng J. Chloride-induced shape transformation of silver nanoparticles in a water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 204:145-151. [PMID: 25965964 DOI: 10.1016/j.envpol.2015.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The effects of chloride on dissolution and toxicity of silver nanoparticles (AgNPs) have been well studied. However, their intermediate shapes during the transition have not been illustrated to-date. Herein, the chloride-induced shape transformation process of AgNPs under long-term, low-concentration conditions is explored. A unique triangular Ag-AgCl heterostructure is observed. The structure then evolves into a symmetric hexapod and finally into a smaller AgNP. This transformation process could be affected by other environmental conditions, such as 0.4 mg/mL humic acid, 5% surfactants and 1 mg/mL bovine serum albumin protein. Our results offer new knowledge regarding the shape transformation process of AgNPs in the presence of chloride, which can be valuable in relevant studies concerning the effect of water chemistry on the behavior of AgNPs.
Collapse
Affiliation(s)
- Lan Zhang
- Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Hefei National Laboratory for Physical Sciences at the Microscale & Collaborative Innovation Center of Suzhou Nano Science and Technology, Center of Advanced Nanocatalysis (CAN-USTC) & Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xin Li
- Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Rong He
- Hefei National Laboratory for Physical Sciences at the Microscale & Collaborative Innovation Center of Suzhou Nano Science and Technology, Center of Advanced Nanocatalysis (CAN-USTC) & Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Lijun Wu
- Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Liyun Zhang
- Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale & Collaborative Innovation Center of Suzhou Nano Science and Technology, Center of Advanced Nanocatalysis (CAN-USTC) & Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
21
|
Theodorou IG, Botelho D, Schwander S, Zhang J(J, Chung KF, Tetley TD, Shaffer MSP, Gow A, Ryan MP, Porter AE. Static and Dynamic Microscopy of the Chemical Stability and Aggregation State of Silver Nanowires in Components of Murine Pulmonary Surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8048-56. [PMID: 26061974 PMCID: PMC4780758 DOI: 10.1021/acs.est.5b01214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The increase of production volumes of silver nanowires (AgNWs) and of consumer products incorporating them may lead to increased health risks from occupational and public exposures. There is currently limited information about the putative toxicity of AgNWs upon inhalation and incomplete understanding of the properties that control their bioreactivity. The lung lining fluid (LLF), which contains phospholipids and surfactant proteins, represents a first contact site with the respiratory system. In this work, the impact of dipalmitoylphosphatidylcholine (DPPC), Curosurf, and murine LLF on the stability of AgNWs was examined. Both the phospholipid and protein components of the LLF modified the dissolution kinetics of AgNWs, due to the formation of a lipid corona or aggregation of the AgNWs. Moreover, the hydrophilic proteins, but neither the hydrophobic surfactant proteins nor the phospholipids, induced agglomeration of the AgNWs. Finally, the generation of a secondary population of nanosilver was observed and attributed to the reduction of Ag(+) ions by the surface capping of the AgNWs. Our findings highlight that combinations of spatially resolved dynamic and static techniques are required to develop a holistic understanding of which parameters govern AgNW behavior at the point of exposure and to accurately predict their risks on human health and the environment.
Collapse
Affiliation(s)
- Ioannis G. Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Danielle Botelho
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Stephan Schwander
- Rutgers School of Public Health, Department of Environmental and Occupational Health, Piscataway, New Jersey 08854, United States
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC 27708, United States
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Teresa D. Tetley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Milo S. P. Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Andrew Gow
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Mary P. Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Wang L, Zhang T, Li P, Huang W, Tang J, Wang P, Liu J, Yuan Q, Bai R, Li B, Zhang K, Zhao Y, Chen C. Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS NANO 2015; 9:6532-47. [PMID: 25994391 DOI: 10.1021/acsnano.5b02483] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single cell and the chemical information on intracellular NPs. Here, by integrating synchrotron radiation-beam transmission X-ray microscopy (SR-TXM) and SR-X-ray absorption near edge structure (SR-XANES) spectroscopy, we successfully capture the 3D distribution of silver NPs (AgNPs) inside a single human monocyte (THP-1), associated with the chemical transformation of silver. The results reveal that the cytotoxicity of AgNPs is largely due to the chemical transformation of particulate silver from elemental silver (Ag(0))n, to Ag(+) ions and Ag-O-, then Ag-S- species. These results provide direct evidence in the long-lasting debate on whether the nanoscale or the ionic form dominates the cytotoxicity of silver nanoparticles. Further, the present approach provides an integrated strategy capable of exploring the chemical origins of cytotoxicity in metallic nanoparticles.
Collapse
Affiliation(s)
- Liming Wang
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Tianlu Zhang
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Panyun Li
- ‡Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Wanxia Huang
- ‡Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jinglong Tang
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Pengyang Wang
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Qingxi Yuan
- ‡Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ru Bai
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Bai Li
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- ‡Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunying Chen
- †CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Sweeney S, Theodorou IG, Zambianchi M, Chen S, Gow A, Schwander S, Zhang JJ, Chung KF, Shaffer MSP, Ryan MP, Porter AE, Tetley TD. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. NANOSCALE 2015; 7:10398-409. [PMID: 25996248 PMCID: PMC4765325 DOI: 10.1039/c5nr01496d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.
Collapse
Affiliation(s)
- Sinbad Sweeney
- Lung Cell Biology, Section of Pharmacology and Toxicology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Theodorou IG, Ryan MP, Tetley TD, Porter AE. Inhalation of silver nanomaterials--seeing the risks. Int J Mol Sci 2014; 15:23936-74. [PMID: 25535082 PMCID: PMC4284799 DOI: 10.3390/ijms151223936] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Demand for silver engineered nanomaterials (ENMs) is increasing rapidly in optoelectronic and in health and medical applications due to their antibacterial, thermal, electrical conductive, and other properties. The continued commercial up-scaling of ENM production and application needs to be accompanied by an understanding of the occupational health, public safety and environmental implications of these materials. There have been numerous in vitro studies and some in vivo studies of ENM toxicity but their results are frequently inconclusive. Some of the variability between studies has arisen due to a lack of consistency between experimental models, since small differences between test materials can markedly alter their behaviour. In addition, the propensity for the physicochemistry of silver ENMs to alter, sometimes quite radically, depending on the environment they encounter, can profoundly alter their bioreactivity. Consequently, it is important to accurately characterise the materials before use, at the point of exposure and at the nanomaterial-tissue, or "nanobio", interface, to be able to appreciate their environmental impact. This paper reviews current literature on the pulmonary effects of silver nanomaterials. We focus our review on describing whether, and by which mechanisms, the chemistry and structure of these materials can be linked to their bioreactivity in the respiratory system. In particular, the mechanisms by which the physicochemical properties (e.g., aggregation state, morphology and chemistry) of silver nanomaterials change in various biological milieu (i.e., relevant proteins, lipids and other molecules, and biofluids, such as lung surfactant) and affect subsequent interactions with and within cells will be discussed, in the context not only of what is measured but also of what can be visualized.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, Cale Street, London SW3 6LY, UK.
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
25
|
Silva RM, Xu J, Saiki C, Anderson DS, Franzi LM, Vulpe CD, Gilbert B, Van Winkle LS, Pinkerton KE. Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation. Part Fibre Toxicol 2014; 11:52. [PMID: 25292367 PMCID: PMC4198797 DOI: 10.1186/s12989-014-0052-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background Silver nanowires (Ag NWs) are increasingly being used to produce touchscreens for smart phones and computers. When applied in a thin film over a plastic substrate, Ag NWs create a transparent, highly-conductive network of fibers enabling the touch interface between consumers and their electronics. Large-scale application methods utilize techniques whereby Ag NW suspensions are deposited onto substrates via droplets. Aerosolized droplets increase risk of occupational Ag NW exposure. Currently, there are few published studies on Ag NW exposure-related health effects. Concerns have risen about the potential for greater toxicity from exposure to high-aspect ratio nanomaterials compared to their non-fibrous counterparts. This study examines whether Ag NWs of varying lengths affect biological responses and silver distribution within the lungs at different time-points. Methods Two different sizes of Ag NWs (2 μm [S-Ag NWs] and 20 μm [L-Ag NWs]) were tested. Male, Sprague-Dawley rats were intratracheally instilled with Ag NWs (0, 0.1, 0.5, or 1.0 mg/kg). Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post exposure for analysis of BAL total cells, cell differentials, and total protein as well as tissue pathology and silver distribution. Results and conclusions The two highest doses produced significant increases in BAL endpoints. At Day 1, Ag NWs increased total cells, inflammatory polymorphonuclear cells (PMNs), and total protein. PMNs persisted for both Ag NW types at Day 7, though not significantly so, and by Day 21, PMNs appeared in line with sham control values. Striking histopathological features associated with Ag NWs included 1) a strong influx of eosinophils at Days 1 and 7; and 2) formation of Langhans and foreign body giant cells at Days 7 and 21. Epithelial sloughing in the terminal bronchioles (TB) and cellular exudate in alveolar regions were also common. By Day 21, Ag NWs were primarily enclosed in granulomas or surrounded by numerous macrophages in the TB-alveolar duct junction. These findings suggest short and long Ag NWs produce pulmonary toxicity; thus, further research into exposure-related health effects and possible exposure scenarios are necessary to ensure human safety as Ag NW demand increases. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0052-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kent E Pinkerton
- Center for Health and the Environment, University of California, One Shields Avenue, Davis 95616, CA, USA.
| |
Collapse
|
26
|
Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling T, Dobrovolskaia MA, Hackley V, Xing B, White JC. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4226-46. [PMID: 24617739 PMCID: PMC3993845 DOI: 10.1021/es4052999] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 05/05/2023]
Abstract
Novel physicochemistries of engineered nanomaterials (ENMs) offer considerable commercial potential for new products and processes, but also the possibility of unforeseen and negative consequences upon ENM release into the environment. Investigations of ENM ecotoxicity have revealed that the unique properties of ENMs and a lack of appropriate test methods can lead to results that are inaccurate or not reproducible. The occurrence of spurious results or misinterpretations of results from ENM toxicity tests that are unique to investigations of ENMs (as opposed to traditional toxicants) have been reported, but have not yet been systemically reviewed. Our objective in this manuscript is to highlight artifacts and misinterpretations that can occur at each step of ecotoxicity testing: procurement or synthesis of the ENMs and assessment of potential toxic impurities such as metals or endotoxins, ENM storage, dispersion of the ENMs in the test medium, direct interference with assay reagents and unacknowledged indirect effects such as nutrient depletion during the assay, and assessment of the ENM biodistribution in organisms. We recommend thorough characterization of initial ENMs including measurement of impurities, implementation of steps to minimize changes to the ENMs during storage, inclusion of a set of experimental controls (e.g., to assess impacts of nutrient depletion, ENM specific effects, impurities in ENM formulation, desorbed surface coatings, the dispersion process, and direct interference of ENM with toxicity assays), and use of orthogonal measurement methods when available to assess ENMs fate and distribution in organisms.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Biosystems
and Biomaterials Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Theodore B. Henry
- School
of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee, United States
- Department
of Forestry, Wildlife and Fisheries, University
of Tennessee, Knoxville, Tennessee, United States
| | - Jian Zhao
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massacusetts 01003, United States
| | - Robert I. MacCuspie
- Materials
Measurement Science Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Nanotechnology
Program, Florida Polytechnic University, Lakeland, Florida 33801, United States
| | - Teresa
L. Kirschling
- Applied
Chemicals and Materials Division, NIST, Boulder, Colorado 80305, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Leidos
Biomedical Research Inc., Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Vincent Hackley
- Materials
Measurement Science Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massacusetts 01003, United States
| | - Jason C. White
- Department
of Analytical Chemistry, The Connecticut
Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| |
Collapse
|