1
|
Dang T, Fan S, Yu F, Yu H, Ye C, Yang M, Shen C. Defect-regulated reduced graphene oxide anchored Prussian blue and platinum nanoparticles peroxidase for electrochemical detection of mesenchymal circulating tumor cells. J Colloid Interface Sci 2025; 694:137672. [PMID: 40306129 DOI: 10.1016/j.jcis.2025.137672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
The precise analysis of mesenchymal circulating tumor cells (mCTCs), known for their enhanced migratory behavior in peripheral blood, is essential for cancer diagnosis and predicting metastasis. Nevertheless, the rarity and heterogeneity of mCTCs present significant challenges in both their capture and subsequent enumeration. Therefore, designing and realizing a high-performance and adaptable cytosensor platform are crucial for the accurate analyzing various mCTCs. Defect engineering is used to enhance the synthesis of a peroxidase mimic enzyme, achieving significantly higher activity than natural enzymes. This was accomplished by anchoring Prussian blue (PB) and platinum (Pt) nanoparticles onto reduced graphene oxide (rGO), forming rGO@PB/Pt. An electrochemical cytosensor was subsequently constructed based on rGO@PB/Pt linked with aptamers to capture mCTCs and degrade the trace hydrogen peroxide (H2O2) secreted by mCTCs. Specifically, the presence of Fe2+ vacancies creates numerous active Fe3+ sites, resulting in an enlarged specific surface area and a microporous structure with pore diameters of approximately 0.8 nm and 1.3 nm. These structural features enable the effective encapsulation of H2O2, enhancing its rate of decomposition. The cytosensor demonstrated a linear response within the range of 1 to 104 cells/mL, with a detection limit (LOD) as low as 0.1 cells/mL (S/N = 3). Moreover, the cytosensor can quantify mCTCs solely based on cell membrane epitopes, making it applicable to almost all types of CTCs by altering the capture aptamer. In addition, the analysis of mCTCs in human blood additionally validates it as a promising candidate for the precise detection of mCTCs in clinical settings.
Collapse
Affiliation(s)
- Tan Dang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Simin Fan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fengyu Yu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Heng Yu
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Cunling Ye
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Congcong Shen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Qiu L, Tian W, Xu M, Xiao J, Liang J, Liu F, Zhao Y. Surface reinforcement of perovskite films with heteroatom-modulated carbon nanosheets for heat-resistant solar cells. Dalton Trans 2025; 54:8204-8213. [PMID: 40293319 DOI: 10.1039/d5dt00652j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The stability issue induced by surface defects in perovskite films remains one of the key constraints in facilitating the commercial adoption of perovskite solar cells (PSCs). Developing reliable passivation strategies based on inexpensive multifunctional passivation materials is expected to solve the above problems. Here, gelatin-derived carbon nanosheets (G-DC) prepared by a self-doping template method are developed to strengthen the surface of perovskite films, thus enhancing the heat resistance of PSCs. This two-dimensional passivation material has an ultra-thin layered structure and contains abundant heteroatoms such as N and O, which can effectively reduce surface defects and mitigate the impact of residual lead iodide in perovskite films. The excellent interfacial compatibility of G-DC promotes more efficient carrier extraction at the rear interface of PSCs, greatly reducing non-radiative recombination. Thanks to these, the optimal device with G-DC modification achieves a power conversion efficiency of up to 21.65%, which is higher than the 20.32% of the control device. Furthermore, thermally induced organic component loss and ion migration of the modified PSCs are significantly suppressed due to the interactions between G-DC and the perovskite. Finally, the G-DC-modified devices retain 87% of the initial efficiency after aging under an inert atmosphere at 85 °C for 720 h.
Collapse
Affiliation(s)
- Lele Qiu
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| | - Wanyu Tian
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Ming Xu
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Jian Xiao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| | - Jing Liang
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Fangjing Liu
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| | - Yunpeng Zhao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
3
|
Yang G, Yin Y, Dong K, Zhang B, Zhu L, Zheng L, Wang H, Wei M, Tian W, Jiang X, Pang S, Grätzel M, Guo X. Realizing Uniform Defect Passivation via Self-Polymerization of Benzenesulfonate Molecules in Perovskite Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503435. [PMID: 40331466 DOI: 10.1002/adma.202503435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Realizing high-quality perovskite films through uniform defect passivation and crystallization control is pivotal to unlocking the potential of scalable applications. However, prevalent small-molecule additives are inherently susceptible to the crystallization dynamics of perovskites, resulting in non-uniform distribution within the crystalline film and impeding consistent passivation and precise crystallization control. While polymers offer improved uniformity, their poor solubility restricts practical applications. To overcome this limitation, an in situ self-polymerization strategy is employed, enabling homogeneous coordination between sulfonate-containing additives and undercoordinated lead cations. This approach enhances perovskite film quality, promotes larger crystalline grain domains, and facilitates more efficient charge transport across grain domain boundaries. As a result, perovskite solar cells (PSCs) achieve a remarkable power conversion efficiency of 25.34% in small-area devices and 21.54% in 14.0 cm2 mini-modules, accompanied by exceptional operational stability. These findings highlight in situ polymerization as an effective strategy for leveraging sulfonate additives to overcome distribution challenges, advancing the scalable fabrication of efficient and stable PSCs.
Collapse
Affiliation(s)
- Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Electronic and Electrical Engineering, Bengbu University, Bengbu, 233030, China
| | - Kaiwen Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bingqian Zhang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao, Qingdao, 266042, China
| | - Lina Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Likai Zheng
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Haiyuan Wang
- Department of Energy Conversion and Storage, DTU ENERGY, Technical University of Denmark, Lyngby, 2800 Kgs, Denmark
| | - Mingyang Wei
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Shuping Pang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Xin Guo
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Guo H, Yuan L, Dong Y, Fan K, Lam M, Duan C, Zou S, Wong KS, Yan K. Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss. SMALL METHODS 2025:e2500141. [PMID: 40195896 DOI: 10.1002/smtd.202500141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Indexed: 04/09/2025]
Abstract
The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm2) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm2 mini-modules (12 cm2 active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.
Collapse
Affiliation(s)
- Huan Guo
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Ligang Yuan
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Key Laboratory of Nondestructive Testing Ministry of Education, School of the Testing and Photoelectric Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Yuyan Dong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Kezhou Fan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Manyu Lam
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chenghao Duan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Shibing Zou
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Kam Sing Wong
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| |
Collapse
|
5
|
Hu T, Wang Y, Liu K, Liu J, Zhang H, Khan QU, Dai S, Qian W, Liu R, Wang Y, Li C, Zhang Z, Luo M, Yue X, Cong C, Yongbo Y, Yu A, Zhang J, Zhan Y. Understanding the Decoupled Effects of Cations and Anions Doping for High-Performance Perovskite Solar Cells. NANO-MICRO LETTERS 2025; 17:145. [PMID: 39951197 PMCID: PMC11828769 DOI: 10.1007/s40820-025-01655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/01/2025] [Indexed: 02/17/2025]
Abstract
The past decade has witnessed the rapid increasement in power conversion efficiency of perovskite solar cells (PSCs). However, serious ion migration hampers their operational stability. Although dopants composed of varied cations and anions are introduced into perovskite to suppress ion migration, the impact of cations or anions is not individually explored, which hinders the evaluation of different cations and further application of doping strategy. Here we report that a special group of sulfonic anions (like CF3SO3-) successfully introduce alkaline earth ions (like Ca2+) into perovskite lattice compared to its halide counterparts. Furthermore, with effective crystallization regulation and defect passivation of sulfonic anions, perovskite with Ca(CF3SO3)2 shows reduced PbI2 residue and metallic Pb0 defects; thereby, corresponding PSCs show an enhanced PCE of 24.95%. Finally by comparing the properties of perovskite with Ca(CF3SO3)2 and FACF3SO3, we found that doped Ca2+ significantly suppressed halide migration with an activation energy of 1.246 eV which accounts for the improved operational stability of Ca(CF3SO3)2-doped PSCs, while no obvious impact of Ca2+on trap density is observed. Combining the benefits of cations and anions, this study presents an effective method to decouple the effects of cations and anions and fabricate efficient and stable PSCs.
Collapse
Affiliation(s)
- Tianxiang Hu
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yixi Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Kai Liu
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jia Liu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083, People's Republic of China
| | - Haoyang Zhang
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qudrat Ullah Khan
- Vanced Materials Technology (Zhongshan) Co., Ltd., Guangdong, 528437, People's Republic of China
| | - Shijie Dai
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Weifan Qian
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Ruochen Liu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yanyan Wang
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chongyuan Li
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhenru Zhang
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Mingxiang Luo
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiaofei Yue
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chunxiao Cong
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yuan Yongbo
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, 410083, People's Republic of China
| | - Anran Yu
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Jia Zhang
- The State Key Laboratory of Photovoltaic Science and Technology, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Yiqiang Zhan
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, 200438, People's Republic of China.
- The State Key Laboratory of Photovoltaic Science and Technology, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
6
|
Ye Y, Wang J, Yang Z, Chen Y, Zhang H, Bai Y, Jiang X, Liu B, Hong J, Chen Y, Fang Z, Gao J, Zhou Z, Yu R, Song X, Yuan Z, Guo T, Li F, Chen Y, Weng Z. Uncovering the Performance Enhancing Mechanism of Methanesulfonate Ligands in Perovskite Quantum Dots for Light-Emitting Devices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6639-6647. [PMID: 39772409 DOI: 10.1021/acsami.4c16554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Perovskite quantum dots (PQDs) have attracted more and more attention in light-emitting diode (LED) devices due to their outstanding photoelectric properties. Surface ligands not only enable size control of quantum dots but also enhance their optoelectronic performance. However, the efficiency of exciton recombination in PQDs is often hindered by the desorption dynamics of surface ligands, leading to suboptimal electrical performance. In this study, sodium methanesulfonate (NaMeS) was successfully introduced during PQD synthesis and ligand exchange, where the S═O groups effectively interacted with the perovskite components. The NaMeS-modified PQD films exhibited significantly improved surface morphology, radiative recombination efficiency, and carrier mobility. Consequently, Pe-LEDs derived from NaMeS-capped PQDs achieved a remarkable enhancement in performance with a maximum external quantum efficiency of 9.41%. This work thus provides a novel and effective strategy for the development of high-performance PQDs and their applications in LEDs.
Collapse
Affiliation(s)
- Yuliang Ye
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jiaxiang Wang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zunxian Yang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Ye Chen
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hui Zhang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yuting Bai
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xudong Jiang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Benfang Liu
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jiajie Hong
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yue Chen
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhezhou Fang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jinzhu Gao
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zheyu Zhou
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Runsen Yu
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xuanyao Song
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhiyu Yuan
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
| | - Tailiang Guo
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Fushan Li
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Yongyi Chen
- Department of Physics, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhenzhen Weng
- Department of Physics, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
7
|
Chen Z, Jiang S, Du X, Li Y, Shi J, Tian F, Wu H, Luo Y, Li D, Meng Q. Three-Dimensional (3D) Fluoride Molecular Glue to Improve the SnO 2/Perovskite Interface for Efficient Perovskite Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202415669. [PMID: 39370405 DOI: 10.1002/anie.202415669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Aiming at numerous defects at SnO2/perovskite interface and lattice mismatch in perovskite solar cells (PSCs), we design a kind of three-dimensional (3D) molecular glue (KBF4-TFMSA), which is derived from strong intramolecular hydrogen bonding interaction between potassium tetrafluoroborate (KBF4) and trifluoromethane-sulfonamide (TFMSA). A remarkable efficiency of 25.8 % with negligible hysteresis and a stabilized power output of 25.0 % have been achieved, in addition, 24.57 % certified efficiency of 1 cm2 device is also obtained. Further investigation reveals that this KBF4-TFMSA can interact with oxygen vacancies and under-coordinated Sn(IV) from the SnO2, in the meantime, FA+ (NH2-C=NH2 +) and K+ cations can be well fixed by hydrogen bonding interaction between FA+ and BF4 -, and electrostatic attraction between sulfonyl oxygen and K+ ions, respectively. Thereby, FAPbI3 crystal grain sizes are increased, interfacial defects are significantly reduced while carrier extraction/ transportation is facilitated, leading to better cell performance and excellent stabilities. Non-encapsulated devices can maintain 91 % of their initial efficiency under maximum-power-point (MPP) tracking while continuous illumination (~100 mW cm-2) for 1000 h, and retain 91 % of the initial efficiency after 1000 h "double 60" damp-heat stability testing (60 °C and 60 %RH (RH, relatively humidity)).
Collapse
Affiliation(s)
- Zijing Chen
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiyu Jiang
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangjin Du
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiming Li
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Jiangjian Shi
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Huijue Wu
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yanhong Luo
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
| | - Dongmei Li
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
| | - Qingbo Meng
- Beijing National Laboratory for Condensed Matter Physics, Key laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Xiao GB, Mu X, Suo ZY, Zhang X, Yu Z, Cao J. Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202414249. [PMID: 39251392 DOI: 10.1002/anie.202414249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF. By analyzing the spatial swing of side chains using the Kolmogorov-Arnold representation and least squares algorithm, a comprehensive mathematical-physical model has been established. This model enables rapid evaluation of the IEF and maximum hole transport performance induced by spatial swings. The champion phthalocyanine as dopant-free hole transport material in perovskite solar cell realizes a record performance of 23.41 %. Greatly device stability is also exhibited. This work affords a new way to enhance hole transport capabilities of conjugated molecules by optimizing their IEF vector for photovoltaic devices.
Collapse
Affiliation(s)
- Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Zhen-Yang Suo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xukai Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Zefeng Yu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| |
Collapse
|
9
|
Zhang Z, Hu C, Li Y, Xiong Q, Li T, Wang C, Li C, Liang L, Zhang N, Li F, Liu C, Fan W, Lien SY, Gao P. F for Fantastic: Fostering Stability and Efficiency in Perovskite Solar Cells via Comb-Like Perfluoroalkyl-g-Polyethylenimine Additive. SMALL METHODS 2025; 9:e2400643. [PMID: 39161085 DOI: 10.1002/smtd.202400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Additive engineering has emerged as a promising strategy to address the inherent instability challenges of perovskite solar cells (PSCs) in the pursuit of commercial viability. However, achieving multifunctionality using a singular additive remains a considerable challenge. In this study, a novel comb-like multifunctional perfluoroalkyl-g-polyethylenimmonium iodide (FPEI·HI) as additives to the PbI2 precursor solution to facilitate the formation of high-quality and water-resistant perovskite films is presented. FPEI·HI establishes robust interactions with both formamidinium iodide (FAI) and PbI2, mediated by hydrogen bonding and Lewis acid-base interactions. These interactions play a pivotal role in simultaneously passivating negative and positive charged defects within the perovskite structure. Furthermore, the inclusion of perfluoroalkyl chains serves as resilience against moisture intrusion. As a consequence of these effects, a notably high device efficiency of 24.29% is achieved, demonstrating comprehensive improvement in various photovoltaic parameters compared to the control device (22.51%). Notably, unencapsulated devices exhibit remarkable stability in high-humidity environments, retaining 90% of their initial efficiency even after 2500 h of storage. This work underscores the efficacy of FPEI·HI as a critical enabler for enhancing the stability and efficiency of perovskite solar cells, marking a significant stride toward their commercialization.
Collapse
Affiliation(s)
- Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Chongzhu Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Yuheng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Qiu Xiong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Tinghao Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Can Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Chi Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Ni Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Feng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Chunming Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Weihang Fan
- Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Shui-Yang Lien
- Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| |
Collapse
|
10
|
Lu D, Fan J, Ma X, Geng M, Li J, Xu T. Dual-Functional Passivation Agent of Natural Dye Congo Red For Enhanced Carbon-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69439-69449. [PMID: 39648973 DOI: 10.1021/acsami.4c16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Carbon-based perovskite solar cells (C-PSCs) have acquired broad interest due to their superior stability and lower cost compared with metal-based perovskite solar cells (M-PSCs). However, the presence of perovskite defects greatly limits the power conversion efficiency (PCE) and long-term stability of C-PSCs. Herein, a natural dye Congo red molecule containing dual-functional groups of amino and sulfonic acids is first used as a surface passivation agent to treat the surface of perovskite films. High-quality perovskite films with reducing surface defect density and inhibiting nonradiative recombination are obtained. It is shown that the Congo red molecules not only effectively interact with the perovskite, enhancing the crystallization and enlarging the crystal size, but also demonstrate positive contribution for light harvesting in the visible range. The maximum PCE of 16.22% is achieved at the optimal concentration of 0.2 mg/mL Congo red, which is much higher than 13.57% for the control device. After 840 h of storage at 30-40% relative humidity at room temperature, the unencapsulated C-PSCs can still maintain a high initial performance of 87.21% compared with 43.26% for the control cells.
Collapse
Affiliation(s)
- Dan Lu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Jingquan Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xinrui Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Mengqi Geng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Jialiang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Tingting Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
11
|
Zheng W, Xia T, Zhang X, Han J, Li Y, Tian N, Zheng G, Wang J, Peng Y, Yao D, Long F. Tailoring Multifunctional Amine Salts Based on Anisole Liquid Soaking for Fabricating Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39562997 DOI: 10.1021/acsami.4c12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The post-treatment based on spin-coating (SC) organic amine salts is commonly used for surface modification of perovskite films to eliminate defects. However, there is still a lack of systematic study and a unified understanding of the functions and mechanisms of different organic amine salts. The SC method is also not conducive to the industrialization of solar cells. In this work, we study three different organic amine salts, and a passivation strategy for perovskite films based on green anisole liquid soaking (ALS) has been developed. Phenylethylammonium iodide (PEAI), diethylamine hydroiodide (DEAI), and guanidine hydroiodide (GAI) organic amine salt passivators are selected to modify perovskite films, and their effect and working mechanism are also systematically estimated. It is found that PEAI passivates shallow-level defects on the surface of perovskite films, while DEAI incorporates into the perovskite lattice to suppress point defects, and GAI eliminates excess PbI2 residuals in perovskite films. These three organic-amine-salt-modified devices achieve enhanced power conversion efficiencies (PCE) of 21.82% (PEAI-ALS), 21.74% (DEAI-ALS), and 22.21% (GAI-ALS), which is much higher than that of the pristine device without treatment (19.95%). The PCE of the PEAI-ALS device retains nearly 94% of the initial efficiency after 1200 h in unpackaged conditions and about 40% ambient humidity, achieving the best stability performance. Particularly, the PEAI-ALS device has the best comprehensive performance in efficiency and stability. And PEAI is estimated by the SC method and ALS method, and it is found that the PEAI-ALS device achieves a higher PCE compared to the PEAI-SC device (21.51%). We believe that the post-treatment based on a combination of appropriate amine salts and ALS enables a universal approach for fabrication of perovskite solar cells with enhanced photovoltaic performance.
Collapse
Affiliation(s)
- Wenwen Zheng
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Tian Xia
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Xueqi Zhang
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Junzhe Han
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Yingying Li
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Nan Tian
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- School of Materials Science and Engineering, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China
| | - Guoyuan Zheng
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- School of Materials Science and Engineering, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China
| | - Jilin Wang
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- School of Materials Science and Engineering, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China
| | - Yong Peng
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Disheng Yao
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- School of Materials Science and Engineering, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China
| | - Fei Long
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- School of Materials Science and Engineering, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
12
|
Chang Q, Yun Y, Cao K, Yao W, Huang X, He P, Shen Y, Zhao Z, Chen M, Li C, Wu B, Yin J, Zhao Z, Li J, Zheng N. Highly Efficient and Stable Perovskite Solar Modules Based on FcPF 6 Engineered Spiro-OMeTAD Hole Transporting Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406296. [PMID: 39233551 DOI: 10.1002/adma.202406296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Li-TFSI doped spiro-OMeTAD is widely recognized as a beneficial hole transport layer (HTL) in perovskite solar cells (PSCs), contributing to high device efficiencies. However, the uncontrolled migration of lithium ions (Li+) during device operation has impeded its broad adoption in scalable and stable photovoltaic modules. Herein, an additive strategy is proposed by employing ferrocenium hexafluorophosphate (FcPF6) as a relay medium to enhance the hole extraction capability of the spiro-OMeTAD via the instant oxidation function. Besides, the novel Fc-Li interaction effectively restricts the movement of Li+. Simultaneously, the dissociative hexafluorophosphate group is cleverly exploited to regulate the unstable iodide species on the perovskite surface, further inhibiting the formation of migration channels and stabilizing the interfaces. This modification leads to power conversion efficiencies (PCEs) reaching 22.13% and 20.27% in 36 cm2 (active area of 18 cm2) and 100 cm2 (active area of 56 cm2) perovskite solar modules (PSMs), respectively, with exceptional operational stability obtained for over 1000 h under the ISOS-L-1 procedure. The novel FcPF6-based engineering approach is pivotal for advancing the industrialization of PSCs, particularly those relying on high-performance spiro-OMeTAD- based HTLs.
Collapse
Affiliation(s)
- Qing Chang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Yikai Yun
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
| | - Kexin Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenlong Yao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng He
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Shen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhengjing Zhao
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
- Future Display Institute of Xiamen, Xiamen, 361102, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
- Future Display Institute of Xiamen, Xiamen, 361102, P. R. China
| | - Binghui Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Jun Yin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Zhiguo Zhao
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Jing Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Nanfeng Zheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Yang Y, Chen R, Wu J, Dai Z, Luo C, Fang Z, Wan S, Chao L, Liu Z, Wang H. Bilateral Chemical Linking at NiO x Buried Interface Enables Efficient and Stable Inverted Perovskite Solar Cells and Modules. Angew Chem Int Ed Engl 2024; 63:e202409689. [PMID: 38872358 DOI: 10.1002/anie.202409689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Inverted NiOx-based perovskite solar cells (PSCs) exhibit considerable potential because of their low-temperature processing and outstanding excellent stability, while is challenged by the carriers transfer at buried interface owing to the inherent low carrier mobility and abundant surface defects that directly deteriorates the overall device fill factor. Present work demonstrates a chemical linker with the capability of simultaneously grasping NiOx and perovskite crystals by forming a Ni-S-Pb bridge at buried interface to significantly boost the carriers transfer, based on a rationally selected molecule of 1,3-dimethyl-benzoimidazol-2-thione (NCS). The constructed buried interface not only reduces the pinholes and needle-like residual PbI2 at the buried interface, but also deepens the work function and valence band maximum positions of NiOx, resulting in a smaller VBM offset between NiOx and perovskite film. Consequently, the modulated PSCs achieved a high fill factor up to 86.24 %, which is as far as we know the highest value in records of NiOx-based inverted PSCs. The NCS custom-tailored PSCs and minimodules (active area of 18 cm2) exhibited a champion efficiency of 25.05 % and 21.16 %, respectively. The unencapsulated devices remains over 90 % of their initial efficiency at maximum power point under continuous illumination for 1700 hours.
Collapse
Affiliation(s)
- Yang Yang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Ruihao Chen
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Jiandong Wu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Zhiyuan Dai
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Chuanyao Luo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhiyu Fang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Shuyuan Wan
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Lingfeng Chao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Zhe Liu
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| | - Hongqiang Wang
- Department State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710071, China
| |
Collapse
|
14
|
Geng Q, Zhang S, Sui H, Liu X, Li Y, Zhong H, Yao C, Zhang Q, Chu X. Natural Chelating Agent-Treated Electron Transfer Layer for Friendly Environmental and Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38124-38133. [PMID: 38988006 DOI: 10.1021/acsami.4c07574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In perovskite solar cells (PSCs), the electron transfer layer (ETL) characteristics have significant effects on the photoelectric conversion efficiency (PCE) of the devices. Herein, a natural chelating agent polymer polyaspartic acid (PASP) is doped into the SnO2 precursor solution attributed to a strong interaction between PASP molecules and SnO2, which strengthens the interface contact and passivates the vacancy oxygen trap of the obtained SnO2 ETL, thus promoting the transfer of electrons. In addition, PASP can also regulate the growth of perovskite crystals, leading to an improved crystal quality of the perovskite films. Meanwhile, there is an excellent chelate anchoring of PASP to uncoordinated Pb2+, facilitating the reduction of trap defects at the interface, improving the stability of device, and suppressing the leakage of toxic Pb. Finally, the photovoltaic performance of the optimized device was greatly improved, and the PCE was increased from 21.22 to 23.49%, with outstanding environmental stability. This work provides an inexpensive and efficient treatment strategy that improves the performance and stability of friendly environmental PSCs.
Collapse
Affiliation(s)
- Quanming Geng
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Shufang Zhang
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Haojie Sui
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Xiangheng Liu
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Yongjia Li
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Hai Zhong
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Changlin Yao
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Qi Zhang
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Xinbo Chu
- School of Physics and Photoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
15
|
Que M, Wu Q, Li Y, Yuan H, Zhong P, He S, Xu Y, Li B, Ma X, Que W. Construction Au/FAPbI 3 Schottky Heterojunction towards a High-Speed Electron Transfer Channel for High-Performance Perovskite Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34962-34972. [PMID: 38934361 DOI: 10.1021/acsami.4c04856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Formamidinium lead triiodide quantum dot (FAPbI3 QD) exhibits substantial potential in solar cells due to its suitable band gap, extended carrier lifetime, and superior phase stability. However, despite great attempts toward reconfiguring the surface chemical environment of FAPbI3 QDs, achieving the optimal efficiency of charge carrier extraction and transfer in cells remains a challenge. To circumvent this problem, we selectively introduced Au/FAPbI3 Schottky heterojunctions by reducing Au+ to Au0 and subsequently anchoring them on the surface of FAPbI3 QDs, which acts as a light-harvesting layer and establishes high-speed electron transfer channels (Au dot ↔ Au dot). As a result, the champion photoelectric conversion efficiency of solar cells reached 13.68%, a significant improvement over 11.19% of that of FAPbI3-based solar cells. The enhancement is attributed to efficient and directed electron transfer as well as a more aligned energy level arrangement. This work constructed Au/FAPbI3 QD Schottky heterojunctions, providing a viable strategy to enhance QD electron coupling for high-performance optoelectronic applications.
Collapse
Affiliation(s)
- Meidan Que
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Qizhao Wu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yutian Li
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Hao Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Peng Zhong
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Shenghui He
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuan Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Bo Li
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Xinyu Ma
- Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, China
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| |
Collapse
|
16
|
Gao Y, Deng J, Che Y, Li X, Li Y, Wang X, Liao Z, Yang L, Zhang J. Ion-Exchange Polymer Network Enhanced Interfacial Compatibility for Stable and Efficient Inverted Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30097-30106. [PMID: 38831429 DOI: 10.1021/acsami.4c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a low-cost and water-processable hole transport material has been widely used in various optoelectronic devices. Although the incorporation of anionic polyelectrolyte PSS in PEDOT contributes to superior water solubility, the trade-off between efficiency and stability remains a challenging issue, limiting its reliable application in perovskite solar cells (PSCs). Herein, we proposed an ion-exchange (IE) strategy to effectively control the doping degree, interfacial charge dynamics, and reliability of PEDOT:PSS in PSCs. This IE approach based on hard cation-soft anion rules enabled effective anion exchange between PEDOT:PSS and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), which favored enhancing the film conductivity, regulating the perovskite crystallization, and reducing the carrier losses at the interfaces. Consequently, a notable increase of the open-circuit voltage from 0.88 to 1.02 V was realized, resulting in a champion efficiency of 18.7% compared to the control (15.4%) in inverted PSCs. More encouragingly, this IE strategy significantly promoted the thermal and environmental stability of unsealed devices by maintaining over 80% of initial efficiencies after 2000 h. This work provides an effective way to regulate the doping state of the PEDOT-based hole transport material and guides the development of robust polymeric conducting materials for efficient perovskite photovoltaics.
Collapse
Affiliation(s)
- Yinhu Gao
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Jidong Deng
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Yuliang Che
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Li
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Yuanyuan Li
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Xiao Wang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Zhihan Liao
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Li Yang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinbao Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
17
|
Zhu B, Li B, Ding G, Jin Z, Xu Y, Yang J, Wang Y, Zhang Q, Rui Y. Eliminating Voids and Residual PbI 2 beneath a Perovskite Film via Buried Interface Modification for Efficient Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28560-28569. [PMID: 38768309 DOI: 10.1021/acsami.4c03969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The commercialization process of perovskite solar cells (PSCs) is markedly restricted by the power conversion efficiency (PCE) and long-term stability. During fabrication and operation, the bottom interface of the organic-inorganic hybrid perovskite layer frequently exhibits voids and residual PbI2, while these defects inevitably act as recombination centers and degradation sites, affecting the efficiency and stability of the devices. Therefore, the degradation and nonradiative recombination originating from the buried interface should be thoroughly resolved. Here, we report a multifunctional passivator by introducing malonic dihydrazide as an interfacial chemical bridge between the electron transport layer and the perovskite (PVK) layer. MADH with hydrazine groups improves the surface affinity of SnO2 and provides nucleation sites for the growth of PVK, leading to the reduced residual PbI2 and the voids resulting from the inhomogeneous solvent volatilization at the bottom interface. Meanwhile, the hydrazine group and carbonyl group synergistically coordinate with Pb2+ to improve the crystal growth environment, reducing the number of Pb-related defects. Eventually, the PCE of the PSCs is significantly enhanced benefiting from the reduced interfacial defects and the increased carrier transport. Moreover, the reductive nature of hydrazide further inhibits I2 generation during long-term operation, and the device retains 90% of the initial PCE under a 1 sun continuous illumination exposure of 700 h.
Collapse
Affiliation(s)
- Boya Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Bin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Gaiqin Ding
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Zuoming Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yutian Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yuanqiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| |
Collapse
|
18
|
Luo F, Lim D, Seok HJ, Kim HK. Solvent-free preparation and thermocompression self-assembly: an exploration of performance improvement strategies for perovskite solar cells. RSC Adv 2024; 14:17261-17294. [PMID: 38808244 PMCID: PMC11132079 DOI: 10.1039/d4ra02191f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Perovskite solar cells (PSCs) exhibit sufficient technological efficiency and economic competitiveness. However, their poor stability and scalability are crucial factors limiting their rapid development. Therefore, achieving both high efficiency and good stability is an urgent challenge. In addition, the preparation methods for PSCs are currently limited to laboratory-scale methods, so their commercialization requires further research. Effective packaging technology is essential to protect the PSCs from degradation by external environmental factors and ensure their long-term stability. The industrialization of PSCs is also inseparable from the preparation technology of perovskite thin films. This review discusses the solvent-free preparation of PSCs, shedding light on the factors that affect PSC performance and strategies for performance enhancement. Furthermore, this review analyzes the existing simulation techniques that have contributed to a better understanding of the interfacial evolution of PSCs during the packaging process. Finally, the current challenges and possible solutions are highlighted, providing insights to facilitate the development of highly efficient and stable PSC modules to promote their widespread application.
Collapse
Affiliation(s)
- Fang Luo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Doha Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Hae-Jun Seok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| |
Collapse
|
19
|
Huang Q, Zhao Q, Zhang B, Du X, Liu D, Ji H, Gao C, Sun X, Wei Y, Shao Z, Ding J, Wang X, Cui G, Pang S. Anion Binding Interaction Enhances the Robustness of Iodide for High-Performance Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26460-26467. [PMID: 38713066 DOI: 10.1021/acsami.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Owing to the ionic bond nature of the Pb-I bond, the iodide at the interface of perovskite polycrystalline films was easily lost during the preparation process, resulting in the formation of a large number of iodine vacancy defects. The presence of iodine vacancy defects can cause nonradiative recombination, provide a pathway for iodide migration, and be harmful to the power conversion efficiency (PCE) and stability of organic-inorganic hybrid perovskite solar cells (HPSCs). Here, in order to increase the robustness of iodides at the interface, a strategy to introduce anion binding effects was developed to stabilize the perovskite films. It was demonstrated that the N,N'-diphenylurea (DPU), characterized by high anionic binding constants and a Y-shaped structure, provides a relatively strong hydrogen bond donor site to effectively reduce the iodine loss during film preparation and inhibits iodide migration in the device working condition. As expected, the reduced iodine loss considerably improves the quality of the perovskite films and suppresses nonradiative recombination. The performance of the device after DPU modification was significantly increased, with the PCE rising from 23.65 to 25.01% with huge stability enhancement as well.
Collapse
Affiliation(s)
- Qi Huang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Qiangqiang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Bingqian Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Xiaofan Du
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Dachang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Hongpei Ji
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Caiyun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Xiuhong Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Yijin Wei
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Xiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| |
Collapse
|
20
|
Cao F, Zhan S, Dai X, Cheng F, Li W, Feng Q, Huang X, Yin J, Li J, Zheng N, Wu B. Redox-Sensitive NiO x Stabilizing Perovskite Films for High-Performance Photovoltaics. J Am Chem Soc 2024; 146:11782-11791. [PMID: 38639158 DOI: 10.1021/jacs.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.
Collapse
Affiliation(s)
- Fang Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Shaoqi Zhan
- Department of Chemistry - Ångström, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Xinfeng Dai
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Fangwen Cheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Weixin Li
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qifan Feng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jun Yin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Binghui Wu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Wang Y, Cheng Y, Yin C, Zhang J, You J, Wang J, Wang J, Zhang J. Manipulating Crystal Growth and Secondary Phase PbI 2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives. NANO-MICRO LETTERS 2024; 16:183. [PMID: 38683261 PMCID: PMC11058175 DOI: 10.1007/s40820-024-01400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
In perovskite solar cells (PSCs), the inherent defects of perovskite film and the random distribution of excess lead iodide (PbI2) prevent the improvement of efficiency and stability. Herein, natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering. The cationic cellulose derivative C-Im-CN with cyano-imidazolium (Im-CN) cation and chloride anion prominently promotes the crystallization process, grain growth, and directional orientation of perovskite. Meanwhile, excess PbI2 is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains. These effects result in suppressing defect formation, decreasing grain boundaries, enhancing carrier extraction, inhibiting non-radiative recombination, and dramatically prolonging carrier lifetimes. Thus, the PSCs exhibit a high power conversion efficiency of 24.71%. Moreover, C-Im-CN has multiple interaction sites and polymer skeleton, so the unencapsulated PSCs maintain above 91.3% of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions. The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs.
Collapse
Affiliation(s)
- Yirong Wang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yaohui Cheng
- Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chunchun Yin
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China
| | - Jinming Zhang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China.
| | - Jingxuan You
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jinfeng Wang
- Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Jun Zhang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
22
|
Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q, Bati ASR, Wan H, Wang Z, Zeng L, Wang J, Serles P, Liu Y, Teale S, Liu Y, Saidaminov MI, Li M, Rolston N, Hoogland S, Filleter T, Kanatzidis MG, Chen B, Ning Z, Sargent EH. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 2024; 384:189-193. [PMID: 38603485 DOI: 10.1126/science.adm9474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Inverted (pin) perovskite solar cells (PSCs) afford improved operating stability in comparison to their nip counterparts but have lagged in power conversion efficiency (PCE). The energetic losses responsible for this PCE deficit in pin PSCs occur primarily at the interfaces between the perovskite and the charge-transport layers. Additive and surface treatments that use passivating ligands usually bind to a single active binding site: This dense packing of electrically resistive passivants perpendicular to the surface may limit the fill factor in pin PSCs. We identified ligands that bind two neighboring lead(II) ion (Pb2+) defect sites in a planar ligand orientation on the perovskite. We fabricated pin PSCs and report a certified quasi-steady state PCE of 26.15 and 24.74% for 0.05- and 1.04-square centimeter illuminated areas, respectively. The devices retain 95% of their initial PCE after 1200 hours of continuous 1 sun maximum power point operation at 65°C.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Cheng Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jian Xu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Aidan Maxwell
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Qilin Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Abdulaziz S R Bati
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Haoyue Wan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Zaiwei Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Lewei Zeng
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Junke Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Peter Serles
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Yuan Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Yanjiang Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Makhsud I Saidaminov
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Muzhi Li
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Nicholas Rolston
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | | | - Bin Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
23
|
Li M, Zhu Z, Wang Z, Pan W, Cao X, Wu G, Chen R. High-Quality Hybrid Perovskite Thin Films by Post-Treatment Technologies in Photovoltaic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309428. [PMID: 37983565 DOI: 10.1002/adma.202309428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Incredible progress in photovoltaic devices based on hybrid perovskite materials has been made in the past few decades, and a record-certified power conversion efficiency (PCE) of over 26% has been achieved in single-junction perovskite solar cells (PSCs). In the fabrication of high-efficiency PSCs, the postprocessing procedures toward perovskites are essential for designing high-quality perovskite thin films; developing efficient and reliable post-treatment techniques is very important to promote the progress of PSCs. Here, recent post-treatment technological reforms toward perovskite thin films are summarized, and the principal functions of the post-treatment strategies on the design of high-quality perovskite films have been thoroughly analyzed by dividing into two categories in this review: thermal annealing (TA)-related technique and TA-free technique. The latest research progress of the above two types of post-treatment techniques is summarized and discussed, focusing on the optimization of postprocessing conditions, the regulation of perovskite qualities, and the enhancement of device performance. Finally, an outlook of the prospect trends and future challenges for the fabrication of the perovskite layer and the production of highly efficient PSCs is given.
Collapse
Affiliation(s)
- Mingguang Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zheng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenjing Pan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Guangbao Wu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
24
|
Liu Z, Liu T, Li M, He T, Guo G, Liu P, Chen T, Yang J, Qin C, Dai X, Yuan M. Eliminating Halogen Vacancies Enables Efficient MACL-Assisted Formamidine Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306280. [PMID: 38063777 PMCID: PMC10870047 DOI: 10.1002/advs.202306280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Indexed: 02/17/2024]
Abstract
Methylammonium chloride (MACl) additive is almost irreplaceable in high-performance formamidine perovskite photovoltaics. Nevertheless, Some of the problems that can arise from adding MACl are rarely mentioned. Herein, it is proposed for the first time that the addition of MACl would cause the non-stoichiometric ratio in the perovskite film, resulting in the halogen vacancy. It is demonstrated that the non-synchronous volatilization of methylamine cations and chloride ions leads to the formation of halogen vacancy defects. To solve this problem, the NH4 HCOO is introduced into the perovskite precursor solution to passivate the halogen vacancy. The HCOO- ions have a strong force with lead ions and can fill the halogen vacancy defects. Consequently, the champion devices' power conversion efficiency (PCE) can be improved from 21.23% to 23.72% with negligible hysteresis. And the unencapsulated device can still retain >90% of the initial PCE even operating in N2 atmosphere for over 1200 h. This work illustrates another halogen defect source in the MACl-assisted formamidine perovskite photovoltaics and provides a new route to obtain high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Zhiyong Liu
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Tianxiao Liu
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Meng Li
- Key Lab for Special Functional Materials of Ministry of EducationNational & Local Joint Engineering Research Center for High‐efficiency Display and Lighting TechnologySchool of Materials Science and Engineeringand Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng475004China
| | - Tingwei He
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
- College of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Gaofu Guo
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Pengfei Liu
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Ting Chen
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Jien Yang
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Chaochao Qin
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Xianqi Dai
- School of PhysicHenan Key Laboratory of Photovoltaic MaterialsHenan Normal UniversityXinxiang453007China
| | - Mingjian Yuan
- Department of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
25
|
Chen Q, Zhou L, Zhang J, Chen D, Zhu W, Xi H, Zhang J, Zhang C, Hao Y. Recent Progress of Wide Bandgap Perovskites towards Two-Terminal Perovskite/Silicon Tandem Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:202. [PMID: 38251165 PMCID: PMC10820607 DOI: 10.3390/nano14020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Perovskite/silicon tandem solar cells have garnered considerable interest due to their potential to surpass the Shockley-Queisser limit of single-junction Si solar cells. The rapidly advanced efficiencies of perovskite/silicon tandem solar cells benefit from the significant improvements in perovskite technology. Beginning with the evolution of wide bandgap perovskite cells towards two-terminal (2T) perovskite/silicon tandem solar cells, this work concentrates on component engineering, additives, and interface modification of wide bandgap perovskite cells. Furthermore, the advancements in 2T perovskite/silicon tandem solar cells are presented, and the influence of the central interconnect layer and the Si cell on the progression of the tandem solar cells is emphasized. Finally, we discuss the challenges and obstacles associated with 2T perovskite/silicon tandem solar cells, conducting a thorough analysis and providing a prospect for their future.
Collapse
Affiliation(s)
- Qianyu Chen
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Long Zhou
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Jiaojiao Zhang
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Dazheng Chen
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Weidong Zhu
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - He Xi
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Jincheng Zhang
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Chunfu Zhang
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Yue Hao
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| |
Collapse
|
26
|
Wang GE, Xiao GB, Li CP, Fu ZH, Cao J, Xu G. Directional Defect Management in Perovskites by In Situ Decom-position of Organic Metal Chalcogenides for Efficient Solar Cells. Angew Chem Int Ed Engl 2023:e202313833. [PMID: 37942505 DOI: 10.1002/anie.202313833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to "find" and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2 S and PbS. The resultant Cu2 S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs.
Collapse
Affiliation(s)
- Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
| | - Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Cong-Ping Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
27
|
Xu J, Chen H, Grater L, Liu C, Yang Y, Teale S, Maxwell A, Mahesh S, Wan H, Chang Y, Chen B, Rehl B, Park SM, Kanatzidis MG, Sargent EH. Anion optimization for bifunctional surface passivation in perovskite solar cells. NATURE MATERIALS 2023:10.1038/s41563-023-01705-y. [PMID: 37903926 DOI: 10.1038/s41563-023-01705-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Pseudo-halide (PH) anion engineering has emerged as a surface passivation strategy of interest for perovskite-based optoelectronics; but until now, PH anions have led to insufficient defect passivation and thus to undesired deep impurity states. The size of the chemical space of PH anions (>106 molecules) has so far limited attempts to explore the full family of candidate molecules. We created a machine learning workflow to speed up the discovery process using full-density functional theory calculations for training the model. The physics-informed machine learning model allowed us to pinpoint promising molecules with a head group that prevents lattice distortion and anti-site defect formation, and a tail group optimized for strong attachment to the surface. We identified 15 potential bifunctional PH anions with the ability to passivate both donors and acceptors, and through experimentation, discovered that sodium thioglycolate was the most effective passivant. This strategy resulted in a power-conversion efficiency of 24.56% with a high open-circuit voltage of 1.19 volts (24.04% National Renewable Energy Lab-certified quasi-steady-state) in inverted perovskite solar cells. Encapsulated devices maintained 96% of their initial power-conversion energy during 900 hours of one-sun operation at the maximum power point.
Collapse
Affiliation(s)
- Jian Xu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Hao Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Luke Grater
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Cheng Liu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aidan Maxwell
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Suhas Mahesh
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Haoyue Wan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yuxin Chang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Benjamin Rehl
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - So Min Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
28
|
Li Y, Song X, Deng F, Wang Y, Yu Y, Han X, Tao X. Synergistic Defect Passivation and Crystallization Modulation in Efficient Perovskite Solar Cells: The Case of Multifunctional 2-Anisidine-4-Sulfonic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48207-48215. [PMID: 37787659 DOI: 10.1021/acsami.3c10423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
With the continuous development of the performance of perovskite solar cells, the high-density defects on the perovskite film surface and grain boundaries as well as undesired perovskite crystallization are increasingly emerging as challenges to their commercial application. Herein, a dye intermediate 2-anisidine-4-sulfonic acid (2A4SA), containing sulfonic acid group (SO3-), amino group (-NH2), methoxy group (CH3O-), and benzene ring, which exhibit a synergistic effect in comprehensive defect passivation and crystallization modulation, is incorporated. Detailed investigations show that the SO3- of 2A4SA with high electronegativity firmly chelates with uncoordinated lead ions through the coordination interaction, while the -NH2 and the CH3O- of 2A4SA separately immobilize iodide ions and organic cations in the perovskite lattice through hydrogen bonds, enabling substantially decreased nonradiative recombination and trap state density. Meanwhile, 2A4SA molecules attached to the surface of perovskite nuclei can delay crystallization kinetics and promote preferred vertical growth orientation, thereby attaining the high-crystallinity and large-size-grain perovskite films. Consequently, the 2A4SA-doped device with the structure ITO/SnO2/Cs0.15FA0.75MA0.10PbI3 (2A4SA)/Spiro-OMeTAD/Ag presents a splendid power conversion efficiency (PCE) of 23.06% accompanied by increased open-circuit voltage (1.15 V) and fill factor (82.17%). Furthermore, the optimized film and device demonstrate enhanced long-term stability. The unencapsulated optimized device retains ≈80% of the original PCE after 1000 h upon exposure to ambient atmosphere (20-50% RH), whereas the control group is only 56.8%.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangfei Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei Deng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingchun Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xue Han
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xia Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
29
|
Xie M, Liu J, Dai L, Peng H, Xie Y. Advances and prospects of porphyrin derivatives in the energy field. RSC Adv 2023; 13:24699-24730. [PMID: 37601600 PMCID: PMC10436694 DOI: 10.1039/d3ra04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
At present, porphyrin is developing rapidly in the fields of medicine, energy, catalysts, etc. More and more reports on its application are being published. This paper mainly takes the ingenious utilization of porphyrin derivatives in perovskite solar cells, dye-sensitized solar cells, and lithium batteries as the background to review the design idea of functional materials based on the porphyrin structural unit in the energy sector. In addition, the modification and improvement strategies of porphyrin are presented by visually showing the molecular structures or the design synthesis routes of its functional materials. Finally, we provide some insights into the development of novel energy storage materials based on porphyrin frameworks.
Collapse
Affiliation(s)
- Mingfa Xie
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jinyuan Liu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Lianghong Dai
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Hongjian Peng
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Youqing Xie
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
30
|
Liu X, Jiang X, Zhang J, Li C, Guo X. Multiple-ion Management of Perovskites by Regulating Spatial Distribution of Hydroxyls in Oligosaccharides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301437. [PMID: 37086137 DOI: 10.1002/smll.202301437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Suppressing migrations of intrinsic and extrinsic ions (e.g., Pb2+ , I- , FA+ /MA+ , and Li+ ) in organic-inorganic hybrid perovskites is critical for alleviating the hysteresis and degradation of perovskite solar cells (PSCs). However, various additives reported for that purpose usually interact with one or two types of those ions, not inhibiting multiple-ion migrations simultaneously. Two oligosaccharides (β-cyclodextrin (β-CD) and maltotetraose (G4)), containing 14 hydroxyls (-OH) with different spatial distributions, for the suppression of multiple-ion migrations in PSCs is herein employed. Compared to linear arrangement of -OH in G4, annular distribution of -OH around wide and narrow rims of β-CD can form supramolecular multi-site interactions in a focal manner with various ions, more effectively capturing and immobilizing these migrated ions. With this multiple-ion management strategy, β-CD-based PSCs exhibit an impressive efficiency of 24.22% with negligible hysteresis and excellent device stability. This work highlights the significances of multi-site interactions and molecular configuration of the additive for inhibiting multi-ion migrations in PSCs.
Collapse
Affiliation(s)
- Xiaotao Liu
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xiaoqing Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Jiafeng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
31
|
Liu X, Luo D, Lu ZH, Yun JS, Saliba M, Seok SI, Zhang W. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem 2023; 7:462-479. [PMID: 37414982 DOI: 10.1038/s41570-023-00492-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 07/08/2023]
Abstract
Interest in photovoltaics (PVs) based on Earth-abundant halide perovskites has increased markedly in recent years owing to the remarkable properties of these materials and their suitability for energy-efficient and scalable solution processing. Formamidinium lead triiodide (FAPbI3)-rich perovskite absorbers have emerged as the frontrunners for commercialization, but commercial success is reliant on the stability meeting the highest industrial standards and the photoactive FAPbI3 phase suffers from instabilities that lead to degradation - an effect that is accelerated under working conditions. Here, we critically assess the current understanding of these phase instabilities and summarize the approaches for stabilizing the desired phases, covering aspects from fundamental research to device engineering. We subsequently analyse the remaining challenges for state-of-the-art perovskite PVs and demonstrate the opportunities to enhance phase stability with ongoing materials discovery and in operando analysis. Finally, we propose future directions towards upscaling perovskite modules, multijunction PVs and other potential applications.
Collapse
Affiliation(s)
- Xueping Liu
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Deying Luo
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jae Sung Yun
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Michael Saliba
- Institute for Photovoltaics (IPV), University of Stuttgart, Stuttgart, Germany.
- Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, Jülich, Germany.
| | - Sang Il Seok
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Wei Zhang
- Advanced Technology Institute, University of Surrey, Guildford, UK.
| |
Collapse
|
32
|
Zhang K, Wang Y, Tao M, Guo L, Yang Y, Shao J, Zhang Y, Wang F, Song Y. Efficient Inorganic Vapor-Assisted Defects Passivation for Perovskite Solar Module. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211593. [PMID: 36863313 DOI: 10.1002/adma.202211593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/06/2023] [Indexed: 06/02/2023]
Abstract
Surface trap as intrinsic defects-mediated non-radiative charge recombination is a major obstacle to achieving the reliable fabrication of high-efficiency and large-area perovskite photovoltaics. Here a CS2 vapor-assisted passivation strategy is proposed for perovskite solar module, aiming to passivate the iodine vacancy and uncoordinated Pb2+ caused by ion migration. Significantly, this method can avoid the disadvantages of inhomogeneity film caused by spin-coating-assisted passivation and reconstruction of perovskite surface from solvent. The CS2 vapor passivated perovskite device presents a higher defect formation energy (0.54 eV) of iodine vacancy than the pristine (0.37 eV), while uncoordinated Pb2+ is bonded with CS2 . The shallow level defect passivation of iodine vacancy and uncoordinated Pb2+ has obviously enhanced the device efficiencies (25.20% for 0.08 cm2 and 20.66% for 40.6 cm2 ) and the stability, exhibiting an average T80 -lifetime of 1040 h working at the maximum power point, and maintaining over 90% of initial efficiency after 2000 h at RH = 30% and 30 °C.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingquan Tao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lutong Guo
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrui Yang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangyang Shao
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanyan Zhang
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuyi Wang
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Ye L, Guo P, Su J, Zhang K, Liu C, Yang P, Zhao W, Zhao P, Liu Z, Chang J, Ye Q, Wang H. Managing Secondary Phase Lead Iodide in Hybrid Perovskites via Surface Reconstruction for High-Performance Perovskite Solar Cells with Robust Environmental Stability. Angew Chem Int Ed Engl 2023; 62:e202300678. [PMID: 36748289 DOI: 10.1002/anie.202300678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Rationally managing the secondary-phase excess lead iodide (PbI2 ) in hybrid perovskite is of significance for pursuing high performance perovskite solar cells (PSCs), while the challenge remains on its conversion to a homogeneous layer that is robust stable against environmental stimuli. We herein demonstrate an effective strategy of surface reconstruction that converts the excess PbI2 into a gradient lead sulfate-silica bi-layer, which substantially stabilizes the perovskite film and reduces interfacial charge transfer barrier in the PSCs device. The perovskite films with such bi-layer could bear harsh conditions such as soaking in water, light illumination at 70 % relative humidity, and the damp-thermal (85 °C and 30 % humidity) environment. The resulted PSCs deliver a champion efficiency up to 24.09 %, as well as remarkable environmental stability, e.g., retaining 78 % of their initial efficiency after 5500 h of shelf storage, and 82 % after 1000 h of operational stability testing.
Collapse
Affiliation(s)
- Linfeng Ye
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Pengfei Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China.,Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| | - Jie Su
- School of Microelectronics, State Key Discipline Lab of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Lab of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, China
| | - Kaiyuan Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Chen Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Penghui Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Wenhao Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Pengzhen Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Zhe Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China.,Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| | - Jingjing Chang
- School of Microelectronics, State Key Discipline Lab of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Lab of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an, 710071, China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710071, China.,Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| |
Collapse
|
34
|
Sun Z, Gu N, Feng Y, Song L, Du P, Jiang H, Xiong J. Hydrazone dye passivator for high-performance and stable perovskite solar cells. Dalton Trans 2023; 52:1702-1710. [PMID: 36651567 DOI: 10.1039/d2dt03957e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There has been rapid development of organic-inorganic perovskite solar cells (PSCs) in recent years, but efficiency and stability challenges remain due to the massive defects in perovskite films. Here, the organic dye Th-azi-Pyr (ethyl 2-(2-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene) hydrazineyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate) with carbonyl, pyrazolone structure, and benzene ring was synthesized and used to prepare high-quality perovskite film as an additive. Th-azi-Pyr formed relatively stable intermediate ligands with uncoordinated Pb and I, slowing the crystal growth and reducing the grain boundary defects of perovskite. In addition, the benzene ring in the dye protected against moisture and increased the stability of the perovskite film. Therefore, the Th-azi-Pyr-modified PSC assembled in an air environment exhibited a promising power conversion efficiency (PCE) of 19.27%, which is superior to the 15.33% of the control PSC. Additionally, 88% of the original performance was maintained after 300 h at 25 ± 5 °C and 50 ± 10% relative humidity, implying that the modified PSCs exhibited greater stability than the untreated PSCs. This work indicates that simple and low-cost organic dyes are excellent defect passivators for high-performance PSCs.
Collapse
Affiliation(s)
- Zeyuan Sun
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ningxia Gu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ye Feng
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Lixin Song
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Pingfan Du
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Hua Jiang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jie Xiong
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
35
|
Zhang B, Chen C, Wang X, Du X, Liu D, Sun X, Li Z, Hao L, Gao C, Li Y, Shao Z, Wang X, Cui G, Pang S. A Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202213478. [PMID: 36372778 DOI: 10.1002/anie.202213478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Metal-cation defects and halogen-anion defects in perovskite films are critical to the efficiency and stability of perovskite solar cells (PSCs). In this work, a random polymer, poly(methyl methacrylate-co-acrylamide) (PMMA-AM), was synthesized to serve as an interfacial passivation layer for synergistically passivating the under-coordinated Pb2+ and anchor the I- of the [PbI6 ]4- octahedron. Additionally, the interfacial PMMA-AM passivation layer cannot be destroyed during the hole transport layer deposition because of its low solubility in chlorobenzene. This passivation leads to an enhancement in the open-circuit voltage from 1.12 to 1.22 V and improved stability in solar cell devices, with the device maintaining 95 % of the initial power conversion efficiency (PCE) over 1000 h of maximum power point tracking. Additionally, a large-area solar cell module was fabricated using this approach, achieving a PCE of 20.64 %.
Collapse
Affiliation(s)
- Bingqian Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Chen Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xianzhao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiaofan Du
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Dachang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiuhong Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zhipeng Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Lianzheng Hao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Caiyun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yimeng Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
36
|
Chen R, Shen H, Chang Q, Tang Z, Nie S, Chen B, Ping T, Wu B, Yin J, Li J, Zheng N. Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204017. [PMID: 36372521 PMCID: PMC9798973 DOI: 10.1002/advs.202204017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Although the perovskite solar cells have been developed rapidly, the industrialization of perovskite photovoltaics is still facing challenges, especially considering their stability issues. Here, the new type of benzimidazolium salt, N,N'-dialkylbenzimidazolium iodide, is proposed and functionalized to convert the three-dimensional (3D) FACs-perovskite films into one-dimensional (1D) capping layer topped 1D/3D structure either in individual device or module levels. This conformal interface modulation demonstrates that not only can effectively stabilize FACs-based perovskite films by inhibiting the lateral and vertical iodide diffusions in devices or modules, ensuring an excellent operation and environmental stability, but also provides an excellent charge transporting channel through the well-designed 1D crystal structure. Consequently, efficient device performance with power conversion efficiency up to 24.3% is readily achieved. And the large-area perovskite solar modules with high efficiency (19.6% for the active areas of 18 cm2 ) and long-term stability (about 500 h in AM 1.5G illumination or about 1000 h under double-85 conditions) are also successfully verified.
Collapse
Affiliation(s)
- Ruihao Chen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of GrapheneXi'an710072China
| | - Hui Shen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qing Chang
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ziheng Tang
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Siqing Nie
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Bili Chen
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Tan Ping
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Binghui Wu
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jun Yin
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jing Li
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Nanfeng Zheng
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyJiujiang Research InstituteNational & Local Joint Engineering Research Center of Preparation Technology of NanomaterialsInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
37
|
Self-assembly of porphyrins on perovskite film for blade-coating stable large-area methylammonium-free solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Fan W, Deng K, Shen Y, Bai Y, Li L. Moisture‐Accelerated Precursor Crystallisation in Ambient Air for High‐Performance Perovskite Solar Cells toward Mass Production. Angew Chem Int Ed Engl 2022; 61:e202211259. [DOI: 10.1002/anie.202211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Fan
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology University of Science and Technology Beijing 100083 P. R. China
| | - Kaimo Deng
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| | - Ying Shen
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology University of Science and Technology Beijing 100083 P. R. China
| | - Liang Li
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| |
Collapse
|
39
|
Fan W, Deng K, Shen Y, Bai Y, Li L. Moisture Accelerated Precursor Crystallization in Ambient Air for High‐performance Perovskite Solar Cells toward Mass Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weili Fan
- University of Science and Technology Beijing Institute for Advanced Materials and Technology CHINA
| | - Kaimo Deng
- Soochow University School of Physical Science and Technology CHINA
| | - Ying Shen
- Soochow University School of Physical Science and Technology CHINA
| | - Yang Bai
- University of Science and Technology Beijing Institute for Advanced Materials and Technology CHINA
| | - Liang Li
- Soochow University No 1, Shizi street 215006 Suzhou CHINA
| |
Collapse
|
40
|
Yang L, Feng J, Liu Z, Duan Y, Zhan S, Yang S, He K, Li Y, Zhou Y, Yuan N, Ding J, Liu SF. Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201681. [PMID: 35435279 DOI: 10.1002/adma.202201681] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Flexible perovskite solar cells (f-PSCs) have attracted great attention because of their unique advantages in lightweight and portable electronics applications. However, their efficiencies are far inferior to those of their rigid counterparts. Herein, a novel histamine diiodate (HADI) is designed based on theoretical study to modify the SnO2 /perovskite interface. Systematic experimental results reveal that the HADI serves effectively as a multifunctional agent mainly in three aspects: 1) surface modification to realign the SnO2 conduction band upward to improve interfacial charge extraction; 2) passivating the buried perovskite surface, and 3) bridging between the SnO2 and perovskite layers for effective charge transfer. Consequently, the rigid MA-free PSCs based on the HADI-SnO2 electron transport layer (ETL) display not only a high champion power conversion efficiency (PCE) of 24.79% and open-circuit voltage (VOC ) of 1.20 V but also outstanding stability as demonstrated by the PSCs preserving 91% of their initial efficiencies after being exposed to ambient atmosphere for 1200 h without any encapsulation. Furthermore, the solution-processed HADI-SnO2 ETL formed at low temperature (100 °C) is utilized in f-PSCs that achieve a PCE as high as 22.44%, the highest reported PCE for f-PSCs to date.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Sheng Zhan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shaomin Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kun He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yawei Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jianning Ding
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy iChEM, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
41
|
Wu J, Li Y, Zhang Y, Li Y, Huang Y, Jiang Z, Ai Q, Liu Y, Zhang L, Peng Y, Wang X, Xu B, Cheng C. Highly Orientational Order Perovskite Induced by In situ-generated 1D Perovskitoid for Efficient and Stable Printable Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200130. [PMID: 35403377 DOI: 10.1002/smll.202200130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Employing low-dimensional perovskite has been proven to be a promising approach to enhance the efficiency and stability of perovskite solar cells. Here, thiopheniformamidine hydrochloride is introduced into CH3 NH3 PbI3 -based printable mesoscopic perovskite solar cells, to form 1D iodide lead thiophenamidine (TFPbI3 ) in situ. This judiciously designed low-dimensional perovskite can effectively passivate the defect of perovskite and induce the perovskite crystals to grow in a direction perpendicular to the substrate. Thus, the obtained 1D@3D perovskite could suppress the charge recombination and promote the charge transfer significantly. Benefiting from its dual effect and robustness, a significantly improved power conversion efficiency of 17.42% is yielded. The authors also develop high-performance printable mesoscopic perovskite solar cells with a champion efficiency approaching 13% for aperture area about 11.8 cm2 , as well as outstanding operational stability, retaining 90% of the original power conversion efficiency after 1000 hours of continuous illumination at the maximum power point in air.
Collapse
Affiliation(s)
- Jiawen Wu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yaru Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yong Zhang
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yan Li
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yulan Huang
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhengyan Jiang
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qian Ai
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yanliang Liu
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Luozheng Zhang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanjun Peng
- Shenzhen Putai Technology Co., Ltd, Shenzhen, 518110, P. R. China
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Putai Technology Co., Ltd, Shenzhen, 518110, P. R. China
| | - Baomin Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Chun Cheng
- Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
42
|
Jayanthi K, Spanopoulos I, Zibouche N, Voskanyan AA, Vasileiadou ES, Islam MS, Navrotsky A, Kanatzidis MG. Entropy Stabilization Effects and Ion Migration in 3D "Hollow" Halide Perovskites. J Am Chem Soc 2022; 144:8223-8230. [PMID: 35482958 DOI: 10.1021/jacs.2c01383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.
Collapse
Affiliation(s)
- K Jayanthi
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Albert A Voskanyan
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K..,Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Alexandra Navrotsky
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Zhao J, Mu X, Wang L, Fang Z, Zou X, Cao J. Homogeneously Large Polarons in Aromatic Passivators Improves Charge Transport between Perovskite Grains for >24 % Efficiency in Photovoltaics. Angew Chem Int Ed Engl 2022; 61:e202116308. [DOI: 10.1002/anie.202116308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Jia‐Hui Zhao
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| | - Luyao Wang
- State School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Zihan Fang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| |
Collapse
|
44
|
Sun L, Zhang C, Yan L, Gao L, Ma T. Praseodymium-doped triple-cation perovskite layer for enhanced photovoltaic performance. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Zheng H, Dong X, Wu W, Liu G, Pan X. Multifunctional Heterocyclic-Based Spacer Cation for Efficient and Stable 2D/3D Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9183-9191. [PMID: 35147021 DOI: 10.1021/acsami.1c23991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional/three-dimensional (2D/3D) Ruddlesden-Popper perovskite materials have shown the enormous potential to achieve both efficient and stable photovoltaic devices for commercial applications. Unfortunately, the single function of spacer cations limits their further improvements in efficiency to reach values as high as those of 3D perovskites. Herein, we developed a new-type multifunctional heterocyclic-based spacer cation of 2-(methylthio)-4,5-dihydro-1H-imidazole (MTIm+) to achieve a synchronous improvement of efficiency and stability for 2D/3D perovskite solar cells (PSCs). Owing to the presence of special chemical groups (imidazole and methylthio), strong interactions have been found between MTIm+ and the 3D perovskite component, leading to an excellent passivation effect. More important, at the initial stage of crystallization, uniform nucleation distribution would be generated around the spacer cation, which is helpful for improved crystallinity and reduced growth defects. The smaller layer space compared to that of cations based on aromatic hydrocarbons caused effective carrier transfer between inorganic layers in 2D/3D perovskites. As a result, the 2D/3D (n = 30) PSCs based on MTIm exhibit a champion PCE up to 21.25% with a high Voc of 1.14 V. Besides, the 2D/3D perovskite devices have realized dramatically enhanced humidity and thermal stability, maintaining 94% of the starting PCE enduring aging at about 50% RH for 2880 h and at 85 °C for 360 h, respectively. We believe that it would provide a significant strategy to further promote the photovoltaic performances and the long-term stability of 2D/3D perovskite devices toward future practical applications.
Collapse
Affiliation(s)
- Haiying Zheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xinhe Dong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Weiwei Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Guozhen Liu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xu Pan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
46
|
Zhao JH, Mu X, Wang L, Fang Z, Zou X, Cao J. Homogeneously Large Polarons in Aromatic Passivators Improves Charge Transport Between Perovskite Grains for >24% Efficiency in Photovoltaics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia-Hui Zhao
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Xijiao Mu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Luyao Wang
- Shanghai Jiaotong University: Shanghai Jiao Tong University School of Materials Science and Engineering CHINA
| | - Zihan Fang
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | | | - Jing Cao
- Lanzhou University College of chemistry and chemical engineering Lanzhou CHINA
| |
Collapse
|
47
|
Geng Q, Xu Z, Song W, Hu Y, Sun G, Wang J, Wang M, Sun T, Tang Y, zhang S. Multifunctional Chemical Linker in Buried Interface for Stable and Efficient Planar Perovskite Solar Cells. Phys Chem Chem Phys 2022; 24:21697-21704. [DOI: 10.1039/d2cp03193k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The buried interface between perovskite light absorbing layer (PVK) and electron transport layer (ETL) plays an utmost important role for further improving the efficiency and stability of planar perovskite solar...
Collapse
|
48
|
Chen C, Wang X, Li Z, Du X, Shao Z, Sun X, Liu D, Gao C, Hao L, Zhao Q, Zhang B, Cui G, Pang S. Polyacrylonitrile‐Coordinated Perovskite Solar Cell with Open‐Circuit Voltage Exceeding 1.23 V. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chen Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Xiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Zhipeng Li
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Xiaofan Du
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Xiuhong Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Dachang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Caiyun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Lianzheng Hao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiangqiang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Bingqian Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- China School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
49
|
Chen C, Wang X, Li Z, Du X, Shao Z, Sun X, Liu D, Gao C, Hao L, Zhao Q, Zhang B, Cui G, Pang S. Polyacrylonitrile-Coordinated Perovskite Solar Cell with Open-Circuit Voltage Exceeding 1.23 V. Angew Chem Int Ed Engl 2021; 61:e202113932. [PMID: 34882937 DOI: 10.1002/anie.202113932] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/08/2022]
Abstract
In solution-processed organic-inorganic halide perovskite films, halide-anion related defects including halide vacancies and interstitial defects can easily form at the surfaces and grain boundaries. The uncoordinated lead cations produce defect levels within the band gap, and the excess iodides disturb the interfacial carrier transport. Thus these defects lead to severe nonradiative recombination, hysteresis, and large energy loss in the device. Herein, polyacrylonitrile (PAN) was introduced to passivate the uncoordinated lead cations in the perovskite films. The coordinating ability of cyano group was found to be stronger than that of the normally used carbonyl groups, and the strong coordination could reduce the I/Pb ratio at the film surface. With the PAN perovskite film, the device efficiency improved from 21.58 % to 23.71 % and the open-circuit voltage from 1.12 V to 1.23 V, the ion migration activation energy increased, and operational stability improved.
Collapse
Affiliation(s)
- Chen Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zhipeng Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiaofan Du
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiuhong Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Dachang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caiyun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Lianzheng Hao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiangqiang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Bingqian Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,China School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Fang Z, Wang L, Mu X, Chen B, Xiong Q, Wang WD, Ding J, Gao P, Wu Y, Cao J. Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. J Am Chem Soc 2021; 143:18989-18996. [PMID: 34665964 DOI: 10.1021/jacs.1c07518] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Grain boundary management is critical to the performance and stability of polycrystalline perovskite solar cells (PSCs), especially large-area devices. However, typical passivators are insulating in nature and limit carrier transport. Here, we design a supramolecular binder for grain boundaries to simultaneously passivate defects and promote hole transport across perovskite grain boundaries. By doping the monoamine porphyrins (MPs, M = Co, Ni, Cu, Zn, or H) into perovskite films, MPs self-assemble into supramolecules at grain boundaries. Organic cations in perovskites protonate MPs in supramolecules to form ammonium porphyrins bound on the perovskite grain surface, to passivate defects and extract holes from the perovskite lattice. Periodic polarons in supramolecules (especially NiP-supramolecule) promote the transport of extracted holes across boundaries, reducing nonradiative carrier recombination. The NiP-doped PSCs reveal a certified efficiency of 22.1% for an active area of 1.0 cm2 with the remarkably improved open-circuit voltage and fill factor. The unencapsulated device retained over 80% initial performance under AM 1.5G solar light continuous illumination or heating at 85 °C over 3000 h.
Collapse
Affiliation(s)
- Zihan Fang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Luyao Wang
- State School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Qiu Xiong
- State Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jiaxin Ding
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Peng Gao
- State Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|