1
|
Xu L, Cao Z, Liu Z, Zheng C, Peng S, Lu Y, Liu H, Chen B. Filming evolution dynamics of Hg nanodroplets mediated at solid-gas and solid-liquid interfaces by in-situ TEM. Nat Commun 2025; 16:3684. [PMID: 40246946 PMCID: PMC12006340 DOI: 10.1038/s41467-025-59063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
Nanodroplets at multiphase interfaces are ubiquitous in nature with implications ranging from fundamental interfacial science to industrial applications including catalytic, environmental, biological and medical processes. Direct observation of full dynamic evolutions of liquid metal nanodroplets at nanoscale multiphase interfaces offers indispensable insights, however, remains challenging and unclear. Here, we fabricate gas and liquid cells containing HgS nanocrystals through electrospinning and achieve the statistical investigations of full picture of Hg nanodroplets evolving at solid-gas and solid-liquid interfaces by in-situ transmission electron microscopy. In the gas cells, the voids nucleate, grow and coalesce into the crack-like feature along the <001> direction, while Hg nanodroplets form, move rapidly on the ratchet surface and are evolved into bigger ones through the nanobridges. Distinctly, mediated by the solid-liquid interface, the liquid Hg with the ink-like feature jets in the liquid cells. Such ink-jetting behavior occurs multiple times with the intervals from several to several tens of seconds, which is modulated through the competition between reductive electrons and oxidative species derived from the radiolysis of liquids. In-depth understanding of distinct nanodroplets dynamics at nanoscale solid-gas and solid-liquid interfaces offers a feasible approach for designing liquid metal-based nanocomplexes with regulatory interfacial, morphological and rheological functionalities.
Collapse
Affiliation(s)
- Linfeng Xu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zetan Cao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Liu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Zheng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Simin Peng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Lu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haoran Liu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415728. [PMID: 39981755 PMCID: PMC11962711 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| | - Serin Lee
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Körner
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergImmerwahrstraße 2a91054ErlangenGermany
| | | | - Frances M. Ross
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| |
Collapse
|
3
|
Kang S, Kim J, Kim S, Chun H, Heo J, Reboul CF, Meana-Pañeda R, Van CTS, Choi H, Lee Y, Rhee J, Lee M, Kang D, Kim BH, Hyeon T, Han B, Ercius P, Lee WC, Elmlund H, Park J. Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching. Nat Commun 2025; 16:1158. [PMID: 39880816 PMCID: PMC11779812 DOI: 10.1038/s41467-025-56476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution. In this study, we introduce the method of time-resolved Brownian tomography to investigate the temporal evolution of the 3D atomic structures of individual nanocrystals in solution. The methodology is applied to examine the atomic-level structural transformations of Pt nanocrystals during oxidative etching. The time-resolved 3D atomic maps reveal the structural evolution of dissolving Pt nanocrystals, transitioning from a crystalline to a disordered structure. Our study demonstrates the emergence of a phase at the nanometer length scale that has received less attention in bulk thermodynamics.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Junyoung Heo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Cyril F Reboul
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Rubén Meana-Pañeda
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Cong T S Van
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Hyesung Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yunseo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jinho Rhee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byung Hyo Kim
- Department of Material Science and Engineering, Soongsil University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Peter Ercius
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Won Chul Lee
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Republic of Korea.
| | - Hans Elmlund
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA.
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea.
- Hyundai Motor Group-Seoul National University (HMG-SNU) Joint Battery Research Center (JBRC), Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lee S, Watanabe T, Ross FM, Park JH. Temperature Dependent Growth Kinetics of Pd Nanocrystals: Insights from Liquid Cell Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403969. [PMID: 39109568 DOI: 10.1002/smll.202403969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Indexed: 12/20/2024]
Abstract
Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeung Hun Park
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA, 90292, USA
| |
Collapse
|
5
|
Dong M, Pan Y, Zhu J, Jia H, Dong H, Xu F. Real-time imaging reveal anisotropic dissolution behaviors of silver nanorods. NANOTECHNOLOGY 2024; 35:275703. [PMID: 38574465 DOI: 10.1088/1361-6528/ad3a6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The morphology and size control of anisotropic nanocrystals are critical for tuning shape-dependent physicochemical properties. Although the anisotropic dissolution process is considered to be an effective means to precisely control the size and morphology of nanocrystals, the anisotropic dissolution mechanism remains poorly understood. Here, usingin situliquid cell transmission electron microscopy, we investigate the anisotropic etching dissolution behaviors of polyvinylpyrrolidone (PVP)-stabilized Ag nanorods in NaCl solution. Results show that etching dissolution occurs only in the longitudinal direction of the nanorod at low chloride concentration (0.2 mM), whereas at high chloride concentration (1 M), the lateral and longitudinal directions of the nanorods are dissolved. First-principles calculations demonstrate that PVP is selectively adsorbed on the {100} crystal plane of silver nanorods, making the tips of nanorods the only reaction sites in the anisotropic etching process. When the chemical potential difference of the Cl-concentration is higher than the diffusion barrier (0.196 eV) of Cl-in the PVP molecule, Cl-penetrates the PVP molecular layer of {100} facets on the side of the Ag nanorods. These findings provide an in-depth insight into the anisotropic etching mechanisms and lay foundations for the controlled preparation and rational design of nanostructures.
Collapse
Affiliation(s)
- Meng Dong
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuchen Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Jingfang Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Haiyang Jia
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hui Dong
- School of Mechanical Engineering, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
6
|
Smith JW, Carnevale LN, Das A, Chen Q. Electron videography of a lipid-protein tango. SCIENCE ADVANCES 2024; 10:eadk0217. [PMID: 38630809 PMCID: PMC11023515 DOI: 10.1126/sciadv.adk0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Lauren N. Carnevale
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Liu C, Lin O, Pidaparthy S, Ni H, Lyu Z, Zuo JM, Chen Q. 4D-STEM Mapping of Nanocrystal Reaction Dynamics and Heterogeneity in a Graphene Liquid Cell. NANO LETTERS 2024; 24:3890-3897. [PMID: 38526426 DOI: 10.1021/acs.nanolett.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.
Collapse
Affiliation(s)
- Chang Liu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Oliver Lin
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhiheng Lyu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Peck K, Lien J, Su M, Stacy AD, Guo T. Bottom-Up Then Top-Down Synthesis of Gold Nanostructures Using Mesoporous Silica-Coated Gold Nanorods. ACS OMEGA 2023; 8:42667-42677. [PMID: 38024760 PMCID: PMC10652254 DOI: 10.1021/acsomega.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Gold nanostructures were synthesized by etching away gold from heat-treated mesoporous silica-coated gold nanorods (AuNR@mSiO2), providing an example of top-down modification of nanostructures made using bottom-up methodology. Twelve different types of nanostructures were made using this bottom-up-then-top-down synthesis (BUTTONS), of which the etching of the same starting nanomaterial of AuNR@mSiO2 was found to be controlled by how AuNR@mSiO2 were heat treated, the etchant concentration, and etching time. When the heat treatment occurred in smooth moving solutions in round-bottomed flasks, red-shifted longitudinal surface plasmon resonance (LSPR) was observed, on the order of 10-30 min, indicating increased aspect ratios of the gold nanostructures inside the mesoporous silica shells. When the heat treatment occurred in turbulent solutions in scintillation vials, a blue shift of the LSPR was obtained within a few minutes or less, resulting from reduced aspect ratios of the rods in the shells. The influence of the shape of the glassware, which may impact the flow patterns of the solution, on the heat treatment was investigated. One possible explanation is that the flow patterns affect the location of opened pores in the mesoporous shells, with the smooth flow of solution mainly removing CTAB surfactants from the pores along the cylindrical body of mSiO2, therefore increasing the aspect ratios after etching, and the turbulent solutions removing more surfactants from the pores of the two ends or tips of the silica shells, hence decreasing the aspect ratios after etching. These new stable gold nanostructures in silica shells, bare and without surfactant protection, may possess unique chemical properties and capabilities. Catalysis using heat-treated nanomaterials was studied as an example of potential applications of these nanostructures.
Collapse
Affiliation(s)
- Kristin
A. Peck
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Jennifer Lien
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Mengqi Su
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Aaron D. Stacy
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | | |
Collapse
|
9
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
10
|
Couasnon T, Fritsch B, Jank MPM, Blukis R, Hutzler A, Benning LG. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301904. [PMID: 37439408 PMCID: PMC10477898 DOI: 10.1002/advs.202301904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.
Collapse
Affiliation(s)
- Thaïs Couasnon
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
| | - Birk Fritsch
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Department of Materials Science and EngineeringInstitute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Michael P. M. Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystr. 1091058ErlangenGermany
| | - Roberts Blukis
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Leibniz‐Institut für KristallzüchtungMax‐Born Str. 212489BerlinGermany
| | - Andreas Hutzler
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Liane G. Benning
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Department of Earth SciencesFreie Universität Berlin12249BerlinGermany
| |
Collapse
|
11
|
Ye M, Xu T, Liu M, Zhu Y, Yuan D, Zhang H, Qin M, Sun L. Revealing Dominant Oxidative Species in Reactive Oxygen Species-Driven Rapid Chemical Etching. NANO LETTERS 2023; 23:7319-7326. [PMID: 37535017 DOI: 10.1021/acs.nanolett.3c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Reactive oxygen species (ROS) widely participate in a variety of chemical reactions in biological and chemical applications. However, due to the extremely short lifetime of most ROS, conventional ROS-detecting techniques cannot show real-time dynamic changes of ROS-driven chemical reactions and identify the actual role of individual reactive species in these reactions. Herein, using in situ liquid cell TEM complemented by ex situ experiments, we directly visualize ROS-driven rapid etching of Prussian bule (PB) in real time and identify the dominant reactive species in etching processes. The results reveal that highly oxidative •OH is the dominant reactive radical in ROS-driven rapid chemical etching and hollow mesoporous PB nanoparticles can be synthesized on a minute-level time scale via •OH-dominated rapid etching. This work provides insight into ROS-related oxidation, which can continuously improve our understanding of ROS chemistry and make ROS more widely applicable in advanced chemical etching.
Collapse
Affiliation(s)
- Mao Ye
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Min Liu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yatong Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Dundong Yuan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Ming Qin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Ma H, Kang S, Lee S, Park G, Bae Y, Park G, Kim J, Li S, Baek H, Kim H, Yu JS, Lee H, Park J, Yang J. Moisture-Induced Degradation of Quantum-Sized Semiconductor Nanocrystals through Amorphous Intermediates. ACS NANO 2023. [PMID: 37399231 DOI: 10.1021/acsnano.3c03103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.
Collapse
Affiliation(s)
- Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghan Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Gisang Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yuna Bae
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuri Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hayeon Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongseung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
13
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
14
|
Al-Zubeidi A, Wang Y, Lin J, Flatebo C, Landes CF, Ren H, Link S. d-Band Holes React at the Tips of Gold Nanorods. J Phys Chem Lett 2023:5297-5304. [PMID: 37267074 DOI: 10.1021/acs.jpclett.3c00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reactive hot spots on plasmonic nanoparticles have attracted attention for photocatalysis as they allow for efficient catalyst design. While sharp tips have been identified as optimal features for field enhancement and hot electron generation, the locations of catalytically promising d-band holes are less clear. Here we exploit d-band hole-enhanced dissolution of gold nanorods as a model reaction to locate reactive hot spots produced from direct interband transitions, while the role of the plasmon is to follow the reaction optically in real time. Using a combination of single-particle electrochemistry and single-particle spectroscopy, we determine that d-band holes increase the rate of gold nanorod electrodissolution at their tips. While nanorods dissolve isotropically in the dark, the same nanoparticles switch to tip-enhanced dissolution upon illimitation with 488 nm light. Electron microscopy confirms that dissolution enhancement is exclusively at the tips of the nanorods, consistent with previous theoretical work that predicts the location of d-band holes. We, therefore, conclude that d-band holes drive reactions selectively at the nanorod tips.
Collapse
Affiliation(s)
- Alexander Al-Zubeidi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States
| | - Jiamu Lin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Charlotte Flatebo
- Applied Physics Program, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| |
Collapse
|
15
|
Lee S, Schneider NM, Tan SF, Ross FM. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS NANO 2023; 17:5609-5619. [PMID: 36881385 DOI: 10.1021/acsnano.2c11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid cell transmission electron microscopy has become a powerful and increasingly accessible technique for in situ studies of nanoscale processes in liquid and solution phase. Exploring reaction mechanisms in electrochemical or crystal growth processes requires precise control over experimental conditions, with temperature being one of the most critical factors. Here we carry out a series of crystal growth experiments and simulations at different temperatures in the well-studied system of Ag nanocrystal growth driven by the changes in redox environment caused by the electron beam. Liquid cell experiments show strong changes in both morphology and growth rate with temperature. We develop a kinetic model to predict the temperature-dependent solution composition, and we discuss how the combined effect of temperature-dependent chemistry, diffusion, and the balance between nucleation and growth rates affect the morphology. We discuss how this work may provide guidance in interpreting liquid cell TEM and potentially larger-scale synthesis experiments for systems controlled by temperature.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Pei X, Wang T, Wan Y, Gu K, Lu Z, Wang J. Etching anisotropy in two-dimensional SnS layered crystals using a thiol-amine solvent mixture as an etchant. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Merkens S, De Salvo G, Kruse J, Modin E, Tollan C, Grzelczak M, Chuvilin A. Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM. Ultramicroscopy 2023; 245:113654. [PMID: 36470094 DOI: 10.1016/j.ultramic.2022.113654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Liquid-Phase Transmission Electron Microscopy (LP-TEM) offers the opportunity to study nanoscale dynamics of phenomena related to materials and life science in a native liquid environment and in real time. Until now, the opportunity to control/induce such dynamics by changing the chemical environment in the liquid flow cell (LFC) has rarely been exploited due to an incomplete understanding of hydrodynamic properties of LP-TEM flow systems. This manuscript introduces a method for hydrodynamic characterization of LP-TEM flow systems based on monitoring transmitted intensity while flowing a strongly electron scattering contrast agent solution. Key characteristic temporal indicators of solution replacement for various channel geometries were experimentally measured. A numerical physical model of solute transport based on realistic flow channel geometries was successfully implemented and validated against experiments. The model confirmed the impact of flow channel geometry on the importance of convective and diffusive solute transport, deduced by experiment, and could further extend understanding of hydrodynamics in LP-TEM flow systems. We emphasize that our approach can be applied to hydrodynamic characterization of any customized LP-TEM flow system. We foresee the implemented predictive model driving the future design of application-specific LP-TEM flow systems and, when combined with existing chemical reaction models, to a flourishing of the planning and interpretation of experimental observations.
Collapse
Affiliation(s)
- Stefan Merkens
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Department of Physics, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, San Sebastián 20018, Spain.
| | - Giuseppe De Salvo
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Department of Physics, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, San Sebastián 20018, Spain
| | - Joscha Kruse
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia, San Sebastián 20018, Spain
| | - Evgenii Modin
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain
| | - Christopher Tollan
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia, San Sebastián 20018, Spain; Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia, San Sebastián 20018, Spain
| | - Andrey Chuvilin
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
19
|
Choi BK, Kim J, Luo Z, Kim J, Kim JH, Hyeon T, Mehraeen S, Park S, Park J. Shape Transformation Mechanism of Gold Nanoplates. ACS NANO 2023; 17:2007-2018. [PMID: 36692347 DOI: 10.1021/acsnano.2c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape control is of key importance in utilizing the structure-property relationship of nanocrystals. The high surface-to-volume ratio of nanocrystals induces dynamic surface reactions on exposed facets of nanocrystals, such as adsorption, desorption, and diffusion of surface atoms, all of which are important in overall shape transformation. However, it is difficult to track shape transformation of nanocrystals and understand the underlying mechanism at the level of distinguishing events on individual facets. Herein, we investigate changes of individual surface-exposed facets during diverse shape transformations of Au nanocrystals using liquid phase TEM in various chemical potentials and kinetic Monte Carlo simulations. The results reveal that the diffusion of surface atoms on nanocrystals is the governing factor in determining the final structure in shape transformation, causing the fast transformation of unstable facets to truncated morphology with minimized surface energy. The role of surface diffusion introduced here can be further applied to understanding the formation mechanism of variously shaped nanocrystals.
Collapse
Affiliation(s)
- Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Zhen Luo
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Joodeok Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16229, Republic of Korea
| |
Collapse
|
20
|
Li M, Ling L. Visualizing Dynamic Environmental Processes in Liquid at Nanoscale via Liquid-Phase Electron Microscopy. ACS NANO 2022; 16:15503-15511. [PMID: 35969015 DOI: 10.1021/acsnano.2c04246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing the structure and processes in liquids at the nanoscale is essential for understanding the fundamental mechanisms and underlying processes of environmental research. Cutting-edge progress of in situ liquid-phase (scanning) transmission electron microscopy (LP-S/TEM) and inferred possible applications are highlighted as a more and more indispensable tool for visualization of dynamic environmental processes in this Perspective. Advancements in nanofabrication technology, high-speed imaging, comprehensive detectors, and spectroscopy analysis have made it increasingly convenient to use LP S/TEM, thus providing an approach for visualization of direct and insightful scientific information with the exciting possibility of solving an increasing number of tricky environmental problems. This includes evaluating the transformation fate and path of contamination, assessing toxicology of nanomaterials, simulating solid surface corrosion processes in the environment, and observing water pollution control processes. Distinct nanoscale or even atomic understanding of the reaction would provide dependable and precise identification and quantification of contaminants in dynamic processes, thus facilitating trouble-tracing of environmental problems with amplifying complexity.
Collapse
Affiliation(s)
- Meirong Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202803. [PMID: 35780494 PMCID: PMC9443456 DOI: 10.1002/advs.202202803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Indexed: 05/20/2023]
Abstract
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Tobias S. Zech
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Mark P. Bruns
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| | - Saba Khadivianazar
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Mingjian Wu
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Neda Zargar Talebi
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Sannakaisa Virtanen
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Michael P. M. Jank
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystraße 1091058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Andreas Hutzler
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| |
Collapse
|
22
|
Yan C, Byrne D, Ondry JC, Kahnt A, Moreno-Hernandez IA, Kamat GA, Liu ZJ, Laube C, Crook MF, Zhang Y, Ercius P, Alivisatos AP. Facet-selective etching trajectories of individual semiconductor nanocrystals. SCIENCE ADVANCES 2022; 8:eabq1700. [PMID: 35947667 PMCID: PMC11580828 DOI: 10.1126/sciadv.abq1700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The size and shape of semiconductor nanocrystals govern their optical and electronic properties. Liquid cell transmission electron microscopy (LCTEM) is an emerging tool that can directly visualize nanoscale chemical transformations and therefore inform the precise synthesis of nanostructures with desired functions. However, it remains difficult to controllably investigate the reactions of semiconductor nanocrystals with LCTEM, because of the highly reactive environment formed by radiolysis of liquid. Here, we harness the radiolysis processes and report the single-particle etching trajectories of prototypical semiconductor nanomaterials with well-defined crystalline facets. Lead selenide nanocubes represent an isotropic structure that retains the cubic shape during etching via a layer-by-layer mechanism. The anisotropic arrow-shaped cadmium selenide nanorods have polar facets terminated by either cadmium or selenium atoms, and the transformation trajectory is driven by etching the selenium-terminated facets. LCTEM trajectories reveal how nanoscale shape transformations of semiconductors are governed by the reactivity of specific facets in liquid environments.
Collapse
Affiliation(s)
- Chang Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dana Byrne
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin C. Ondry
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | | | - Gaurav A. Kamat
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zi-Jie Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christian Laube
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Michelle F. Crook
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Wang W, Xu T, Chen J, Shangguan J, Dong H, Ma H, Zhang Q, Yang J, Bai T, Guo Z, Fang H, Zheng H, Sun L. Solid-liquid-gas reaction accelerated by gas molecule tunnelling-like effect. NATURE MATERIALS 2022; 21:859-863. [PMID: 35618827 DOI: 10.1038/s41563-022-01261-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-liquid-gas reactions are ubiquitous and are encountered in both nature and industrial processes1-4. A comprehensive description of gas transport in liquid and following reactions at the solid-liquid-gas interface, which is substantial in regard to achieving enhanced triple-phase reactions, remains unavailable. Here, we report a real-time observation of the accelerated etching of gold nanorods with oxygen nanobubbles in aqueous hydrobromic acid using liquid-cell transmission electron microscopy. Our observations reveal that when an oxygen nanobubble is close to a nanorod below the critical distance (~1 nm), the local etching rate is significantly enhanced by over one order of magnitude. Molecular dynamics simulation results show that the strong attractive van der Waals interaction between the gold nanorod and oxygen molecules facilitates the transport of oxygen through the thin liquid layer to the gold surface and thus plays a crucial role in increasing the etching rate. This result sheds light on the rational design of solid-liquid-gas reactions for enhanced activities.
Collapse
Affiliation(s)
- Wen Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Jige Chen
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Junyi Shangguan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Hui Dong
- Key Laboratory of Welding Robot and Application Technology of Hunan Province, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan, China
| | - Huishu Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Qiubo Zhang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junwei Yang
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, China
| | - Tingting Bai
- The Second Affiliated Hospital, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Zhirui Guo
- The Second Affiliated Hospital, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Haiping Fang
- School of Physics and National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China.
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Kang S, Kim JH, Lee M, Yu JW, Kim J, Kang D, Baek H, Bae Y, Kim BH, Kang S, Shim S, Park SJ, Lee WB, Hyeon T, Sung J, Park J. Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. SCIENCE ADVANCES 2021; 7:eabi5419. [PMID: 34860549 PMCID: PMC8641935 DOI: 10.1126/sciadv.abi5419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/14/2021] [Indexed: 05/21/2023]
Abstract
Thermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations. The nanoparticles in a GLC exhibit non-Gaussian, diffusive motion, signifying dynamic fluctuation of the diffusion coefficient due to the dynamically heterogeneous environment surrounding nanoparticles, including organic ligands on the nanoparticle surface. Our study shows that the dynamics of nanoparticle coalescence is controlled by two elementary processes: diffusion-limited encounter complex formation and the subsequent coalescence of the encounter complex through rotational motion, where surface-passivating ligands play a critical role.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ji-Hyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Woong Yu
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayeon Baek
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jaeyoung Sung
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| |
Collapse
|
26
|
Wang T, Li Z, Zong R, Li J. Studies on Thiol Etching of Gold by Using QCM-D Sensor as the Sacrificial Probe. Chemphyschem 2021; 23:e202100790. [PMID: 34850511 DOI: 10.1002/cphc.202100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Indexed: 11/08/2022]
Abstract
There is still a lack of deep understanding on the reaction kinetics and mechanism of thiol etching of gold. Herein, by using the sensor of quartz crystal microbalance (QCM) as the sacrificial probe, the etching reaction of gold has been studied by employing cysteamine (CS) as a typical thiol etchant. The etching reaction is verified as diffusion-controlled and shows a half-order reaction kinetics. It is demonstrated that intact thiol and amino on CS are both crucial for its etching ability to gold. Applied potentials can affect the electron transfer and hence can be used to regulate the gold etching. Our results also reveal that only two carbon atoms of the spacer between thiol and amino on CS are very critical to the excellent etching ability. This work exhibits a new route to explore the thiol etching reaction of gold and elucidates the reaction kinetics and mechanism.
Collapse
Affiliation(s)
- Tao Wang
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| | - Zheng Li
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| | - Runfa Zong
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| | - Jingzhe Li
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| |
Collapse
|
27
|
Dissanayake TU, Wang M, Woehl TJ. Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37553-37562. [PMID: 34338503 DOI: 10.1021/acsami.1c10957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) enables real-time imaging of nanoparticle self-assembly, formation, and etching with single nanometer resolution. Despite the importance of organic nanoparticle capping ligands in these processes, the effect of electron beam irradiation on surface-bound and soluble capping ligands during LP-TEM imaging has not been investigated. Here, we use correlative LP-TEM and fluorescence microscopy (FM) to demonstrate that polymeric nanoparticle ligands undergo competing crosslinking and chain scission reactions that nonmonotonically modify ligand coverage over time. Branched polyethylenimine (BPEI)-coated silver nanoparticles were imaged with dose-controlled LP-TEM followed by labeling their primary amine groups with fluorophores to visualize the local thickness of adsorbed capping ligands. FM images showed that free ligands crosslinked in the LP-TEM image area over imaging times of tens of seconds, enhancing local capping ligand coverage on nanoparticles and silicon nitride membranes. Nanoparticle surface ligands underwent chain scission over irradiation times of minutes to tens of minutes, which depleted surface ligands from the nanoparticle and silicon nitride surface. Conversely, solutions of only soluble capping ligand underwent successive crosslinking reactions with no chain scission, suggesting that nanoparticles enhanced the chain scission reactions by acting as radiolysis hotspots. The addition of a hydroxyl radical scavenger, tert-butanol, eliminated chain scission reactions and slowed the progression of crosslinking reactions. These experiments have important implications for performing controlled and reproducible LP-TEM nanoparticle imaging as they demonstrate that the electron beam can significantly alter ligand coverage on nanoparticles in a nonintuitive manner. They emphasize the need to understand and control the electron beam radiation chemistry of a given sample to avoid significant perturbations to the nanoparticle capping ligand chemistry, which are invisible in electron micrographs.
Collapse
Affiliation(s)
- Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Mei Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Moreno-Hernandez IA, Crook MF, Ondry JC, Alivisatos AP. Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. J Am Chem Soc 2021; 143:12082-12089. [PMID: 34319106 DOI: 10.1021/jacs.1c03906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liquid cell electron microscopy enables the study of nanoscale transformations in solvents with high spatial and temporal resolution, but for the technique to achieve its potential requires a new level of control over the reactivity caused by radical generation under electron beam irradiation. An understanding of how to control electron-solvent interactions is needed to further advance the study of structural dynamics for complex materials at the nanoscale. We developed an approach that scavenges radicals with redox species that form well-defined redox couples and control the electrochemical potential in situ. This approach enables the observation of electrochemical structural dynamics at near-atomic resolution with precise control of the liquid environment. Analysis of nanocrystal etching trajectories indicates that this approach can be generalized to several chemical systems. The ability to simultaneously observe heterogeneous reactions at near-atomic resolution and precisely control the electrochemical potential enables the fundamental study of complex nanoscale dynamics with unprecedented detail.
Collapse
Affiliation(s)
- Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Crook MF, Laube C, Moreno-Hernandez IA, Kahnt A, Zahn S, Ondry JC, Liu A, Alivisatos AP. Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. J Am Chem Soc 2021; 143:11703-11713. [PMID: 34292703 DOI: 10.1021/jacs.1c05099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Graphene liquid cell transmission electron microscopy (TEM) has enabled the observation of a variety of nanoscale transformations. Yet understanding the chemistry of the liquid cell solution and its impact on the observed transformations remains an important step toward translating insights from liquid cell TEM to benchtop chemistry. Gold nanocrystal etching can be used as a model system to probe the reactivity of the solution. FeCl3 has been widely used to promote gold oxidation in bulk and liquid cell TEM studies, but the roles of the halide and iron species have not been fully elucidated. In this work, we observed the etching trajectories of gold nanocrystals in different iron halide solutions. We observed an increase in gold nanocrystal etch rate going from Cl-- to Br-- to I--containing solutions. This is consistent with a mechanism in which the dominant role of halides is as complexation agents for oxidized gold species. Additionally, the mechanism through which FeCl3 induces etching in liquid cell TEM remains unclear. Ground-state bleaching of the Fe(III) absorption band observed through pulse radiolysis indicates that iron may react with Cl2·- radicals to form an oxidized transient species under irradiation. Complete active space self-consistent field (CASSCF) calculations indicate that the FeCl3 complex is oxidized to an Fe species with an OH radical ligand. Together our data indicate that an oxidized Fe species may be the active oxidant, while halides modulate the etch rate by tuning the reduction potential of gold nanocrystals.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Christian Laube
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Justin C Ondry
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, University of California-Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aijia Liu
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, University of California-Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Verification of water presence in graphene liquid cells. Micron 2021; 149:103109. [PMID: 34332298 DOI: 10.1016/j.micron.2021.103109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Graphene liquid cells (GLCs) present the thinnest possible sample enclosures for liquid phase electron microscopy. However, the actual presence of liquid within a GLC is not always guaranteed. Of key importance is to reliably test the presence of the liquid, which is most frequently water or saline. Here, the commonly used methods for verifying the presence of water were evaluated. It is shown that depending on the type of sample, applying a single criterion does not always conclusively verify the presence of water. Testing liquid filling for a specific GLC sample preparation protocol should thus be considered critically. The most reliable method is direct observation of the water exciton peak using electron energy loss spectroscopy (EELS). But if this method cannot be carried out, water filling of the GLC can be verified from a combination of higher contrast in the image, the presence of bubbles, and an oxygen signal in the EEL spectrum, which can be accomplished at a high electron dose in spot mode. Nanoparticle movement does not always occur in a GLC.
Collapse
|
31
|
Sun M, Tian J, Chen Q. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 2021; 231:113271. [PMID: 33879369 DOI: 10.1016/j.ultramic.2021.113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Grau-Carbonell A, Sadighikia S, Welling TAJ, van Dijk-Moes RJA, Kotni R, Bransen M, van Blaaderen A, van Huis MA. In Situ Study of the Wet Chemical Etching of SiO 2 and Nanoparticle@SiO 2 Core-Shell Nanospheres. ACS APPLIED NANO MATERIALS 2021; 4:1136-1148. [PMID: 33763630 PMCID: PMC7976607 DOI: 10.1021/acsanm.0c02771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 05/24/2023]
Abstract
The recent development of liquid cell (scanning) transmission electron microscopy (LC-(S)TEM) has opened the unique possibility of studying the chemical behavior of nanomaterials down to the nanoscale in a liquid environment. Here, we show that the chemically induced etching of three different types of silica-based silica nanoparticles can be reliably studied at the single particle level using LC-(S)TEM with a negligible effect of the electron beam, and we demonstrate this method by successfully monitoring the formation of silica-based heterogeneous yolk-shell nanostructures. By scrutinizing the influence of electron beam irradiation, we show that the cumulative electron dose on the imaging area plays a crucial role in the observed damage and needs to be considered during experimental design. Monte-Carlo simulations of the electron trajectories during LC-(S)TEM experiments allowed us to relate the cumulative electron dose to the deposited energy on the particles, which was found to significantly alter the silica network under imaging conditions of nanoparticles. We used these optimized LC-(S)TEM imaging conditions to systematically characterize the wet etching of silica and metal(oxide)-silica core-shell nanoparticles with cores of gold and iron oxide, which are representative of many other core-silica-shell systems. The LC-(S)TEM method reliably reproduced the etching patterns of Stöber, water-in-oil reverse microemulsion (WORM), and amino acid-catalyzed silica particles that were reported before in the literature. Furthermore, we directly visualized the formation of yolk-shell structures from the wet etching of Au@Stöber silica and Fe3O4@WORM silica core-shell nanospheres.
Collapse
Affiliation(s)
- Albert Grau-Carbonell
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Sina Sadighikia
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Tom A. J. Welling
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Relinde J. A. van Dijk-Moes
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Ramakrishna Kotni
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Maarten Bransen
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Marijn A. van Huis
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| |
Collapse
|
33
|
Azim S, Bultema LA, de Kock MB, Osorio-Blanco ER, Calderón M, Gonschior J, Leimkohl JP, Tellkamp F, Bücker R, Schulz EC, Keskin S, de Jonge N, Kassier GH, Miller RJD. Environmental Liquid Cell Technique for Improved Electron Microscopic Imaging of Soft Matter in Solution. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:44-53. [PMID: 33280632 DOI: 10.1017/s1431927620024654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 μm. We describe a variation of the conventional approach, wherein the Si3N4 windows are separated by a 10-μm-thick spacer, thus providing room for gas flow inside the liquid specimen enclosure. Adjusting the pressure and flow speed of humid air inside this environmental liquid cell (ELC) creates a stable liquid layer of controllable thickness on the bottom window, thus facilitating high-resolution observations of low mass-thickness contrast objects at low electron doses. We demonstrate controllable liquid thicknesses in the range 160 ± 34 to 340 ± 71 nm resulting in corresponding edge resolutions of 0.8 ± 0.06 to 1.7 ± 0.8 nm as measured for immersed gold nanoparticles. Liquid layer thickness 40 ± 8 nm allowed imaging of low-contrast polystyrene particles. Hydration effects in the ELC have been studied using poly-N-isopropylacrylamide nanogels with a silica core. Therefore, ELC can be a suitable tool for in situ investigations of liquid specimens.
Collapse
Affiliation(s)
- Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Lindsey A Bultema
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Michiel B de Kock
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
- Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607Hamburg, Germany
| | | | - Marcelo Calderón
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Josef Gonschior
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Jan-Philipp Leimkohl
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Eike C Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Sercan Keskin
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department of Physics, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
| | - Günther H Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. Georg Street, Toronto, ONM5S 3H6, Canada
| |
Collapse
|
34
|
Park J, Koo K, Noh N, Chang JH, Cheong JY, Dae KS, Park JS, Ji S, Kim ID, Yuk JM. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS NANO 2021; 15:288-308. [PMID: 33395264 DOI: 10.1021/acsnano.0c10229] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joon Ha Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Wang W, Yan H, Anand U, Mirsaidov U. Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages. J Am Chem Soc 2021; 143:1854-1862. [DOI: 10.1021/jacs.0c10285] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhui Wang
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Utkarsh Anand
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
36
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
37
|
Khelfa A, Meng J, Byun C, Wang G, Nelayah J, Ricolleau C, Amara H, Guesmi H, Alloyeau D. Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructures. NANOSCALE 2020; 12:22658-22667. [PMID: 33155612 DOI: 10.1039/d0nr06326f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The selective shortening of gold nanorods (NRs) is a directional etching process that has been intensively studied by UV-Vis spectroscopy because of its direct impact on the optical response of these plasmonic nanostructures. Here, liquid-cell transmission electron microscopy is exploited to visualize this peculiar corrosion process at the nanoscale and study the impacts of reaction kinetics on the etching mechanisms. In situ imaging reveals that anisotropic etching requires a chemical environment with a low etching power to make the tips of NRs the only reaction site for the oxidation process. Then, aberration-corrected TEM and atomistic simulations were combined to demonstrate that the disparity between the reactivity of the body and the ends of NRs does not derive from their crystal structure but results from an inhomogeneous surface functionalization. In a general manner, this work highlights the necessity to consider the organic/inorganic natures of nanostructures to understand their chemical reactivity.
Collapse
Affiliation(s)
- Abdelali Khelfa
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Alam SB, Yang J, Bustillo KC, Ophus C, Ercius P, Zheng H, Chan EM. Hybrid nanocapsules for in situ TEM imaging of gas evolution reactions in confined liquids. NANOSCALE 2020; 12:18606-18615. [PMID: 32970077 DOI: 10.1039/d0nr05281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid cell transmission electron microscopy (TEM) enables the direct observation of dynamic physical and chemical processes in liquids at the nanoscale. Quantitative investigations into reactions with fast kinetics and/or multiple reagents will benefit from further advances in liquid cell design that facilitate rapid in situ mixing and precise control over reagent volumes and concentrations. This work reports the development of inorganic-organic nanocapsules for high-resolution TEM imaging of nanoscale reactions in liquids with well-defined zeptoliter volumes. These hybrid nanocapsules, with 48 nm average diameter, consist of a thin layer of gold coating a lipid vesicle. As a model reaction, the nucleation, growth, and diffusion of nanobubbles generated by the radiolysis of water is investigated inside the nanocapsules. When the nanobubbles are sufficiently small (10-25 nm diameter), they are mobile in the nanocapsules, but their movement deviates from Brownian motion, which may result from geometric confinement by the nanocapsules. Gases and fluids can be transported between two nanocapsules when they fuse, demonstrating in situ mixing without using complex microfluidic schemes. The ability to synthesize nanocapsules with controlled sizes and to monitor dynamics simultaneously inside multiple nanocapsules provides opportunities to investigate nanoscale processes such as single nanoparticle synthesis in confined volumes and biological processes such as biomineralization and membrane dynamics.
Collapse
Affiliation(s)
- Sardar B Alam
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yao L, Ou Z, Luo B, Xu C, Chen Q. Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. ACS CENTRAL SCIENCE 2020; 6:1421-1430. [PMID: 32875083 PMCID: PMC7453571 DOI: 10.1021/acscentsci.0c00430] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 05/08/2023]
Abstract
Liquid-phase transmission electron microscopy (TEM) has been recently applied to materials chemistry to gain fundamental understanding of various reaction and phase transition dynamics at nanometer resolution. However, quantitative extraction of physical and chemical parameters from the liquid-phase TEM videos remains bottlenecked by the lack of automated analysis methods compatible with the videos' high noisiness and spatial heterogeneity. Here, we integrate, for the first time, liquid-phase TEM imaging with our customized analysis framework based on a machine learning model called U-Net neural network. This combination is made possible by our workflow to generate simulated TEM images as the training data with well-defined ground truth. We apply this framework to three typical systems of colloidal nanoparticles, concerning their diffusion and interaction, reaction kinetics, and assembly dynamics, all resolved in real-time and real-space by liquid-phase TEM. A diversity of properties for differently shaped anisotropic nanoparticles are mapped, including the anisotropic interaction landscape of nanoprisms, curvature-dependent and staged etching profiles of nanorods, and an unexpected kinetic law of first-order chaining assembly of concave nanocubes. These systems representing properties at the nanoscale are otherwise experimentally inaccessible. Compared to the prevalent image segmentation methods, U-Net shows a superior capability to predict the position and shape boundary of nanoparticles from highly noisy and fluctuating background-a challenge common and sometimes inevitable in liquid-phase TEM videos. We expect our framework to push the potency of liquid-phase TEM to its full quantitative level and to shed insights, in high-throughput and statistically significant fashion, on the nanoscale dynamics of synthetic and biological nanomaterials.
Collapse
Affiliation(s)
- Lehan Yao
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihao Ou
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Binbin Luo
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Cong Xu
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department
of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute
for Advanced Science and Technology, and Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- E-mail:
| |
Collapse
|
40
|
Hauwiller MR, Ye X, Jones MR, Chan CM, Calvin JJ, Crook MF, Zheng H, Alivisatos AP. Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS NANO 2020; 14:10239-10250. [PMID: 32806045 DOI: 10.1021/acsnano.0c03601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface ligands impact the properties and chemistry of nanocrystals, but observing ligand binding locations and their effect on nanocrystal shape transformations is challenging. Using graphene liquid cell electron microscopy and the controllable, oxidative etching of gold nanocrystals, the effect of different ligands on nanocrystal etching can be tracked with nanometer spatial resolution. The chemical environment of liquids irradiated with high-energy electrons is complex and potentially harsh, yet it is possible to observe clear evidence for differential binding properties of specific ligands to the nanorods' surface. Exchanging CTAB ligands for PEG-alkanethiol ligands causes the nanorods to etch at a different, constant rate while still maintaining their aspect ratio. Adding cysteine ligands that bind preferentially to nanorod tips induces etching predominantly on the sides of the rods. This etching at the sides leads to Rayleigh instabilities and eventually breaks apart the nanorod into two separate nanoparticles. The shape transformation is controlled by the interplay between atom removal and diffusion of surface atoms and ligands. These in situ observations are confirmed with ex situ colloidal etching reactions of gold nanorods in solution. The ability to monitor the effect of ligands on nanocrystal shape transformations will enable future in situ studies of nanocrystals surfaces and ligand binding positions.
Collapse
Affiliation(s)
- Matthew R Hauwiller
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Xingchen Ye
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Matthew R Jones
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Cindy M Chan
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Jason J Calvin
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Michelle F Crook
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Haimei Zheng
- Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, University of California-Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Noh N, Park J, Park JS, Koo K, Park JY, Yuk JM. Lithographically patterned well-type graphene liquid cells with rational designs. LAB ON A CHIP 2020; 20:2796-2803. [PMID: 32633750 DOI: 10.1039/d0lc00440e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene liquid cell transmission electron microscopy allows in situ observation of nanomaterial dynamics in a liquid environment. However, this method suffers from both random formation and small size of liquid pockets. Here, we introduce facile and mass-producible graphene-sealed well-type liquid cells with rational designs. The developed liquid cell structure and its formation mechanism depending on hole diameter (d)/spacer thickness (h) ratio are systematically analyzed. Finally, we show its high-resolution imaging and chemical analysis capability for nanoparticles and biomaterial applications. This work will provide an enhanced liquid cell platform for diverse liquid environmental studies.
Collapse
Affiliation(s)
- Namgyu Noh
- Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
42
|
Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells. Nat Commun 2020; 11:3041. [PMID: 32546723 PMCID: PMC7297726 DOI: 10.1038/s41467-020-16645-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Chemical design of multicomponent nanocrystals requires atomic-level understanding of reaction kinetics. Here, we apply single-particle imaging coupled with atomistic simulation to study reaction pathways and rates of Pd@Au and Cu@Au core-shell nanocubes undergoing oxidative dissolution. Quantitative analysis of etching kinetics using in situ transmission electron microscopy (TEM) imaging reveals that the dissolution mechanism changes from predominantly edge-selective to layer-by-layer removal of Au atoms as the reaction progresses. Dissolution of the Au shell slows down when both metals are exposed, which we attribute to galvanic corrosion protection. Morphological transformations are determined by intrinsic anisotropy due to coordination-number-dependent atom removal rates and extrinsic anisotropy induced by the graphene window. Our work demonstrates that bimetallic core-shell nanocrystals are excellent probes for the local physicochemical conditions inside TEM liquid cells. Furthermore, single-particle TEM imaging and atomistic simulation of reaction trajectories can inform future design strategies for compositionally and architecturally sophisticated nanocrystals. Rational design of multicomponent nanocrystals requires atomic-level understanding of reaction kinetics. Here, the authors apply single-particle liquid-cell electron microscopy imaging coupled with atomistic simulations to understand pathways and rates of bimetallic core-shell nanocubes undergoing oxidative dissolution.
Collapse
|
43
|
Cui X, Wei T, Hao M, Qi Q, Wang H, Dai Z. Highly sensitive and selective colorimetric sensor for thiocyanate based on electrochemical oxidation-assisted complexation reaction with Gold nanostars etching. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122217. [PMID: 32062538 DOI: 10.1016/j.jhazmat.2020.122217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/18/2023]
Abstract
In this work, we developed an electrochemical oxidation-assisted complexation strategy for highly sensitive and selective detection of thiocyanate (SCN-). Gold nanostars (AuNSs) with uniform and sharp tips were first prepared, and we found they can be quickly etched to gold nanoparticles (AuNPs) under electrochemical oxidation with the existence of halide and halogen-like ions. Through introducing SCN--selective molecule: zinc phthalocyanine (ZnPc), the fabricated ZnPc-AuNSs/ITO electrode can rapidly and selectively response to SCN- under electrochemical oxidation, manifesting as a noticeable change in color from navy blue to red. Thus SCN- concentration can be easily reflected. The wide wavelength tuning range of AuNSs to AuNPs make the ZnPc-AuNSs/ITO sensor obtain a much wider detection range for SCN- (10 nM to 80 mM) than most other reported studies. In addition, the detection limit is as low as 3 nM. It renders the sensor to be easily used in much diluted matrixes, which can further lower the interference. We further applied the colorimetric sensor to SCN- detection in wastewater and milk, excellent performance was obtained. The proposed electrochemical oxidation-assisted complexation strategy will have good promise in developing colorimetric sensors with high selectivity and wide detection range, and will display more useful application in environmental monitoring.
Collapse
Affiliation(s)
- Xinwen Cui
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Mengyuan Hao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Qi Qi
- School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Huafeng Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China; Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
44
|
Sun M, Yu B, Hong M, Li Z, Lyu F, Li X, Li Z, Wei X, Zhang Z, Zhang Y, Chen Q. Controlling the Facet of ZnO during Wet Chemical Etching Its (000 1 ¯ ) O-Terminated Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906435. [PMID: 32108429 DOI: 10.1002/smll.201906435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Special surface plays a crucial role in nature as well as in industry. Here, the surface morphology evolution of ZnO during wet etching is studied by in situ liquid cell transmission electron microscopy and ex situ wet chemical etching. Many hillocks are observed on the (000 1 ¯ ) O-terminated surface of ZnO nano/micro belts during in situ etching. Nanoparticles on the apex of the hillocks are observed to be essential for the formation of the hillocks, providing direct experimental evidence of the micromasking mechanism. The surfaces of the hillocks are identified to be {01 1 ¯ 3 ¯ } crystal facets, which is different from the known fact that {01 1 ¯ 1 ¯ } crystal facets appear on the (000 1 ¯ ) O-terminated surface of ZnO after wet chemical etching. O2 plasma treatment is found to be the key factor for the appearance of {01 1 ¯ 3 ¯ } instead of {01 1 ¯ 1 ¯ } crystal facets after etching for both ZnO nano/micro belts and bulk materials. The synergistic effect of acidic etching and O-rich surface caused by O2 plasma treatment is proposed to be the cause of the appearance of {01 1 ¯ 3 ¯ } crystal facets. This method can be extended to control the surface morphology of other materials during wet chemical etching.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Bocheng Yu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Mengyu Hong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhiwei Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Fengjiao Lyu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Xing Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Xianlong Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Zheng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| |
Collapse
|
45
|
Smith JW, Chen Q. Liquid-phase electron microscopy imaging of cellular and biomolecular systems. J Mater Chem B 2020; 8:8490-8506. [DOI: 10.1039/d0tb01300e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-phase electron microscopy, a new method for real-time nanoscopic imaging in liquid, makes it possible to study cells or biomolecules with a singular combination of spatial and temporal resolution. We review the state of the art in biological research in this growing and promising field.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
- Department of Chemistry
- University of Illinois at Urbana–Champaign
| |
Collapse
|
46
|
Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191204. [PMID: 32218950 PMCID: PMC7029903 DOI: 10.1098/rsos.191204] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Transmission electron microscopy (TEM) has long been an essential tool for understanding the structure of materials. Over the past couple of decades, this venerable technique has undergone a number of revolutions, such as the development of aberration correction for atomic level imaging, the realization of cryogenic TEM for imaging biological specimens, and new instrumentation permitting the observation of dynamic systems in situ. Research in the latter has rapidly accelerated in recent years, based on a silicon-chip architecture that permits a versatile array of experiments to be performed under the high vacuum of the TEM. Of particular interest is using these silicon chips to enclose fluids safely inside the TEM, allowing us to observe liquid dynamics at the nanoscale. In situ imaging of liquid phase reactions under TEM can greatly enhance our understanding of fundamental processes in fields from electrochemistry to cell biology. Here, we review how in situ TEM experiments of liquids can be performed, with a particular focus on microchip-encapsulated liquid cell TEM. We will cover the basics of the technique, and its strengths and weaknesses with respect to related in situ TEM methods for characterizing liquid systems. We will show how this technique has provided unique insights into nanomaterial synthesis and manipulation, battery science and biological cells. A discussion on the main challenges of the technique, and potential means to mitigate and overcome them, will also be presented.
Collapse
|
47
|
Sung J, Choi BK, Kim B, Kim BH, Kim J, Lee D, Kim S, Kang K, Hyeon T, Park J. Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM. J Am Chem Soc 2019; 141:18395-18399. [PMID: 31644272 DOI: 10.1021/jacs.9b09508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Defining the redox activity of different surface facets of ceria nanocrystals is important for designing an efficient catalyst. Especially in liquid-phase reactions, where surface interactions are complicated, direct investigation in a native environment is required to understand the facet-dependent redox properties. Using liquid cell TEM, we herein observed the etching of ceria-based nanocrystals under the control of redox-governing factors. Direct nanoscale observation reveals facet-dependent etching kinetics, thus identifying the specific facet ({100} for reduction and {111} for oxidation) that governs the overall etching under different chemical conditions. Under each redox condition, the contribution of the predominant facet increases as the etching reactivity increases.
Collapse
Affiliation(s)
- Jongbaek Sung
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byunghoon Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,Department of Materials Science and Engineering, and Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Joodeok Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Donghoon Lee
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sungin Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kisuk Kang
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,Department of Materials Science and Engineering, and Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea.,Institute of Engineering Research, College of Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
48
|
Wang M, Dissanayake TU, Park C, Gaskell K, Woehl TJ. Nanoscale Mapping of Nonuniform Heterogeneous Nucleation Kinetics Mediated by Surface Chemistry. J Am Chem Soc 2019; 141:13516-13524. [DOI: 10.1021/jacs.9b05225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mei Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Thilini U. Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Chiwoo Park
- Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, Florida 32306, United States
| | - Karen Gaskell
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Taylor J. Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
49
|
Lami SK, Smith G, Cao E, Hastings JT. The radiation chemistry of focused electron-beam induced etching of copper in liquids. NANOSCALE 2019; 11:11550-11561. [PMID: 31168552 DOI: 10.1039/c9nr01857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Well-controlled, focused electron-beam induced etching of copper thin films has been successfully conducted on bulk substrates in an environmental scanning electron microscope by controlling liquid-film thickness with an in situ correlative interferometry system. Knowledge of the liquid-film thickness enables a hybrid Monte Carlo/continuum model of the radiation chemistry to accurately predict the copper etch rate using only electron scattering cross-sections, radical yields, and reaction rates from previous studies. Etch rates depended strongly on the thickness of the liquid film and simulations confirmed that this was a result of increased oxidizing radical generation. Etch rates also depended strongly, but non-linearly, on electron beam current, and simulations showed that this effect arises through the dose-rate dependence of reactions of radical species.
Collapse
Affiliation(s)
- Sarah K Lami
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | | | |
Collapse
|
50
|
Miao P, Liu Z, Guo J, Yuan M, Zhong R, Wang L, Zhang F. A novel ultrasensitive surface plasmon resonance-based nanosensor for nitrite detection. RSC Adv 2019; 9:17698-17705. [PMID: 35520579 PMCID: PMC9064595 DOI: 10.1039/c9ra02460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 02/03/2023] Open
Abstract
Nitrite is a common food additive, however, its reduction product, nitrosamine, is a strong carcinogen, and hence the ultra-sensitive detection of nitrite is an effective means to prevent related cancers. In this study, different sized gold nanoparticles (AuNPs) were modified with P-aminothiophenol (ATP) and naphthylethylenediamine (NED). In the presence of nitrite, satellite-like AuNPs aggregates formed via the diazotization coupling reaction and the color of the system was changed by the functionalized AuNPs aggregates. The carcinogenic nitrite content could be detected by colorimetry according to the change in the system color. The linear concentration range of sodium nitrite was 0-1.0 μg mL-1 and the detection limit was determined to be 3.0 ng mL-1. Compared with the traditional method, this method has the advantages of high sensitivity, low detection limit, good selectivity and can significantly lower the naked-eye detection limit to 3.0 ng mL-1. In addition, this method is suitable for the determination of nitrite in various foods. We think this novel designed highly sensitive nitrate nanosensor holds great market potential.
Collapse
Affiliation(s)
- Pandeng Miao
- Grain College, Henan University of Technology Zhengzhou 450001 P. R. China
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Zhongdong Liu
- Grain College, Henan University of Technology Zhengzhou 450001 P. R. China
| | - Jun Guo
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ming Yuan
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ruibo Zhong
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200241 P. R. China
| | - Feng Zhang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200241 P. R. China
| |
Collapse
|