1
|
Shin J, Oh S, Jang M, Lee S, Min C, Eu Y, Begum H, Kim J, Lee GR, Oh H, Paul MJ, Ma JK, Gwak H, Youn H, Kim S. Enhanced efficacy of glycoengineered rice cell-produced trastuzumab. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3068-3081. [PMID: 39016470 PMCID: PMC11500988 DOI: 10.1111/pbi.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.
Collapse
Affiliation(s)
- Jun‐Hye Shin
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| | - Sera Oh
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | | | - Seok‐Yong Lee
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Chanhong Min
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | | | - Hilal Begum
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Jong‐Chan Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Gap Ryol Lee
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Han‐Bin Oh
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Matthew J. Paul
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K.‐C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Ho‐Shin Gwak
- National Cancer Center KoreaGoyang‐si, Kyunggi‐doSouth Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Ryong Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| |
Collapse
|
2
|
Prudhomme N, Pastora R, Thomson S, Zheng E, Sproule A, Krieger JR, Murphy JP, Overy DP, Cossar D, McLean MD, Geddes‐McAlister J. Bacterial growth-mediated systems remodelling of Nicotiana benthamiana defines unique signatures of target protein production in molecular pharming. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2248-2266. [PMID: 38516995 PMCID: PMC11258984 DOI: 10.1111/pbi.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.
Collapse
Affiliation(s)
- Nicholas Prudhomme
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | | | - Sarah Thomson
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Edison Zheng
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Amanda Sproule
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | | | - J. Patrick Murphy
- Department of BiologyUniversity of Prince Edward IslandCharlottetownPECanada
| | - David P. Overy
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | | | | | | |
Collapse
|
3
|
Nguyen KD, Kajiura H, Kamiya R, Yoshida T, Misaki R, Fujiyama K. Production and N-glycan engineering of Varlilumab in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2023; 14:1215580. [PMID: 37615027 PMCID: PMC10442953 DOI: 10.3389/fpls.2023.1215580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
N-glycan engineering has dramatically evolved for the development and quality control of recombinant antibodies. Fc region of IgG contains two N-glycans whose galactose terminals on Fc-glycan have been shown to increase the stability of CH2 domain and improve effector functions. Nicotiana benthamiana has become one of the most attractive production systems for therapeutic antibodies. In this study, Varlilumab, a CD27-targeting monoclonal antibody, was transiently produced in fresh leaves of soil-grown and hydroponic-grown N. benthamiana, resulted in the yield of 174 and 618 µg/gram, respectively. However, the IgG produced in wild-type N. benthamiana lacked the terminal galactose residues in its N-glycan. Therefore, N-glycan engineering was applied to fine-tune recombinant antibodies produced in plant platforms. We further co-expressed IgG together with murine β1,4-galactosyltransferase (β1,4-GALT) to modify plant N-glycan with β1,4-linked Gal residue(s) and Arabidopsis thaliana β1,3-galactosylatransferase (β1,3-GALT) to improve galactosylation. The co-expression of IgG with each of GALTs successfully resulted in modification of N-glycan structures on the plant-produced IgG. Notably, IgG co-expressed with murine β1,4-GALT in soil-grown N. benthamiana had 42.5% of N-glycans variants having galactose (Gal) residues at the non-reducing terminus and 55.3% of that in hydroponic-grown N. benthamiana plants. Concomitantly, N-glycan profile analysis of IgG co-expressed with β1,3-GALT demonstrated that there was an increased efficiency of galactosylation and an enhancement in the formation of Lewis a structure in plant-derived antibodies. Taken together, our findings show that the first plant-derived Varlilumab was successfully produced with biantennary β1,4-galactosylated N-glycan structures.
Collapse
Affiliation(s)
- Kim Dua Nguyen
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Ryo Kamiya
- GreenLand-Kidaya Group Co Ltd., Fukui, Japan
| | | | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Osaka University Cooperative Research Station in Southeast Asia (OU: CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Anand SP, Ding S, Tolbert WD, Prévost J, Richard J, Gil HM, Gendron-Lepage G, Cheung WF, Wang H, Pastora R, Saxena H, Wakarchuk W, Medjahed H, Wines BD, Hogarth M, Shaw GM, Martin MA, Burton DR, Hangartner L, Evans DT, Pazgier M, Cossar D, McLean MD, Finzi A. Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. J Virol 2021; 95:e0079621. [PMID: 34232070 PMCID: PMC8387047 DOI: 10.1128/jvi.00796-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Hirak Saxena
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malcom A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, Massachusetts, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Doug Cossar
- PlantForm Corporation, Toronto, Ontario, Canada
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Prudhomme N, Pastora R, Muselius B, McLean MD, Cossar D, Geddes-McAlister J. Exposure of Agrobacterium tumefaciens to agroinfiltration medium demonstrates cellular remodelling and may promote enhanced adaptability for molecular pharming. Can J Microbiol 2020; 67:85-97. [PMID: 32721220 DOI: 10.1139/cjm-2020-0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agroinfiltration is used to treat plants with modified strains of Agrobacterium tumefaciens for the purpose of transient in planta expression of genes transferred from the bacterium. These genes encode valuable recombinant proteins for therapeutic or industrial applications. Treatment of large quantities of plants for industrial-scale protein production exposes bacteria (harboring genes of interest) to agroinfiltration medium that is devoid of nutrients and carbon sources for prolonged periods of time (possibly upwards of 24 h). Such conditions may negatively influence bacterial viability, infectivity of plant cells, and target protein production. Here, we explored the role of timing in bacterial culture preparation for agroinfiltration using mass spectrometry-based proteomics to define changes in cellular processes. We observed distinct profiles associated with bacterial treatment conditions and exposure timing, including significant changes in proteins involved in pathogenesis, motility, and nutrient acquisition systems as the bacteria adapt to the new environment. These data suggest a progression towards increased cellular remodelling over time. In addition, we described changes in growth- and environment-specific processes over time, underscoring the interconnectivity of pathogenesis and chemotaxis-associated proteins with transport and metabolism. Overall, our results have important implications for the production of transiently expressed target protein products, as prolonged exposure to agroinfiltration medium suggests remodelling of the bacterial proteins towards enhanced infection of plant cells.
Collapse
Affiliation(s)
- N Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Pastora
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - B Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M D McLean
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - D Cossar
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Tsekoa TL, Singh AA, Buthelezi SG. Molecular farming for therapies and vaccines in Africa. Curr Opin Biotechnol 2019; 61:89-95. [PMID: 31786432 DOI: 10.1016/j.copbio.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Local manufacturing of protein-based vaccines and therapies in Africa is limited and contributes to a trade deficit, security of supply concerns and poor access to biopharmaceuticals by the poor. Plant molecular farming is a potential technology solution that has received growing adoption by African scientists attracted by the potential for the competitive cost of goods, safety and efficacy. Plant-made pharmaceutical technologies for veterinary and human vaccination and treatment of non-communicable and infectious diseases are available at different stages of development in Africa. There is also growth in the translation of these technologies to commercial operations. Africa is poised to benefit from the real-world impact of molecular farming in the next few years.
Collapse
Affiliation(s)
- Tsepo L Tsekoa
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Advaita Acarya Singh
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Sindisiwe G Buthelezi
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
7
|
Komarova TV, Sheshukova EV, Dorokhov YL. Plant-Made Antibodies: Properties and Therapeutic Applications. Curr Med Chem 2019; 26:381-395. [PMID: 29231134 DOI: 10.2174/0929867325666171212093257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A cost-effective plant platform for therapeutic monoclonal antibody production is both flexible and scalable. Plant cells have mechanisms for protein synthesis and posttranslational modification, including glycosylation, similar to those in animal cells. However, plants produce less complex and diverse Asn-attached glycans compared to animal cells and contain plant-specific residues. Nevertheless, plant-made antibodies (PMAbs) could be advantageous compared to those produced in animal cells due to the absence of a risk of contamination from nucleic acids or proteins of animal origin. OBJECTIVE In this review, the various platforms of PMAbs production are described, and the widely used transient expression system based on Agrobacterium-mediated delivery of genetic material into plant cells is discussed in detail. RESULTS We examined the features of and approaches to humanizing the Asn-linked glycan of PMAbs. The prospects for PMAbs in the prevention and treatment of human infectious diseases have been illustrated by promising results with PMAbs against human immunodeficiency virus, rotavirus infection, human respiratory syncytial virus, rabies, anthrax and Ebola virus. The pre-clinical and clinical trials of PMAbs against different types of cancer, including lymphoma and breast cancer, are addressed. CONCLUSION PMAb biosafety assessments in patients suggest that it has no side effects, although this does not completely remove concerns about the potential immunogenicity of some plant glycans in humans. Several PMAbs at various developmental stages have been proposed. Promise for the clinical use of PMAbs is aimed at the treatment of viral and bacterial infections as well as in anti-cancer treatment.
Collapse
Affiliation(s)
- Tatiana V Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Ekaterina V Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation
| | - Yuri L Dorokhov
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
8
|
Abstract
Plants and their rich variety of natural compounds are used to maintain and to improve health since the earliest stages of civilization. Despite great advances in synthetic organic chemistry, one fourth of present-day drugs have still a botanical origin, and we are currently living a revival of interest in new pharmaceuticals from plant sources. Modern biotechnology has defined the potential of plants to be systems able to manufacture not only molecules naturally occurring in plants but also newly engineered compounds, from small to complex protein molecules, which may originate even from non-plant sources. Among these compounds, pharmaceuticals such as vaccines, antibodies and other therapeutic or prophylactic entities can be listed. For this technology, the term plant molecular farming has been coined with reference to agricultural applications due to the use of crops as biofactories for the production of high-added value molecules. In this perspective, edible plants have also been thought as a tool to deliver by the oral route recombinant compounds of medical significance for new therapeutic strategies. Despite many hurdles in establishing regulatory paths for this “novel” biotechnology, plants as bioreactors deserve more attention when considering their intrinsic advantages, such as the quality and safety of the recombinant molecules that can be produced and their potential for large-scale and low-cost production, despite worrying issues (e.g. amplification and diffusion of transgenes) that are mainly addressed by regulations, if not already tackled by the plant-made products already commercialized. The huge benefits generated by these valuable products, synthesized through one of the safest, cheapest and most efficient method, speak for themselves. Milestone for plant-based recombinant protein production for human health use was the approval in 2012 by the US Food and Drug Administration of plant-made taliglucerase alfa, a therapeutic enzyme for the treatment of Gaucher’s disease, synthesized in carrot suspension cultures by Protalix BioTherapeutics. In this review, we will go through the various approaches and results for plant-based production of proteins and recent progress in the development of plant-made pharmaceuticals (PMPs) for the prevention and treatment of human diseases. An analysis on acceptance of these products by public opinion is also tempted.
Collapse
|
9
|
Abstract
Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.
Collapse
Affiliation(s)
- Tzvi Zvirin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lena Magrisso
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amit Yaari
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Shoseyov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
10
|
Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc Natl Acad Sci U S A 2018; 115:720-725. [PMID: 29311294 DOI: 10.1073/pnas.1718172115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated tri- and tetraantennary glycans as substrates.
Collapse
|
11
|
Abstract
The methylotrophic yeast Pichia pastoris has become an increasingly popular host for recombinant protein expression in recent times. MRL pioneered a glycoengineered humanized P. pastoris expression system that could produce glycoproteins with glycosylation profiles similar to mammalian systems. Therapeutic glycoproteins produced by the humanized P. pastoris platform have shown comparable folding, stability, and in vitro and in vivo efficacies in preclinical models to their counterparts produced from the CHO cells. P. pastoris offers a cost and time efficient alternative platform for therapeutic protein production. This chapter describes a protocol for using P. pastoris to produce full-length monoclonal antibodies. It covers a broad spectrum of antibody expression technologies in P. pastoris, including expression vector construction, yeast transformation, high-throughput strain selection, fermentation, and antibody purification.
Collapse
Affiliation(s)
- Adam Nylen
- Biologics Discovery, MRL, 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Ming-Tang Chen
- Biologics Discovery, MRL, 33 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19. [PMID: 27916504 DOI: 10.1016/j.addr.2016.11.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field.
Collapse
|
13
|
Leth IK, McDonald KA. Growth kinetics and scale-up of Agrobacterium tumefaciens. Appl Microbiol Biotechnol 2017; 101:4895-4903. [PMID: 28357545 DOI: 10.1007/s00253-017-8241-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
Production of recombinant proteins in plants through Agrobacterium-mediated transient expression is a promising method of producing human therapeutic proteins, vaccines, and commercial enzymes. This process has been shown to be viable at a large scale and involves growing large quantities of wild-type plants and infiltrating the leaf tissue with a suspension of Agrobacterium tumefaciens bearing the genes of interest. This study examined one of the steps in this process that had not yet been optimized: the scale-up of Agrobacterium production to sufficient volumes for large-scale plant infiltration. Production of Agrobacterium strain C58C1 pTFS40 was scaled up from shake flasks (50-100 mL) to benchtop (5 L) scale with three types of media: Lysogeny broth (LB), yeast extract peptone (YEP) media, and a sucrose-based defined media. The maximum specific growth rate (μ max) of the strain in the three types of media was 0.46 ± 0.04 h-1 in LB media, 0.43 ± 0.03 h-1 in YEP media, and 0.27 ± 0.01 h-1 in defined media. The maximum biomass concentration reached at this scale was 2.0 ± 0.1, 2.8 ± 0.1, and 2.6 ± 0.1 g dry cell weight (DCW)/L for the three media types. Production was successfully scaled up to a 100-L working volume reactor with YEP media, using k L a as the scale-up parameter.
Collapse
Affiliation(s)
- Ingrid K Leth
- Department of Chemical Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Komarova TV, Sheshukova EV, Kosobokova EN, Serebryakova MV, Kosorukov VS, Tashlitsky VN, Dorokhov YL. Trastuzumab and Pertuzumab Plant Biosimilars: Modification of Asn297-linked Glycan of the mAbs Produced in a Plant with Fucosyltransferase and Xylosyltransferase Gene Knockouts. BIOCHEMISTRY. BIOKHIMIIA 2017; 82:510-520. [PMID: 28371609 DOI: 10.1134/s0006297917040137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant biosimilars of anticancer therapeutic antibodies are of interest not only because of the prospects of their practical use, but also as an instrument and object for study of plant protein glycosylation. In this work, we first designed a pertuzumab plant biosimilar (PPB) and investigated the composition of its Asn297-linked glycan in comparison with trastuzumab plant biosimilar (TPB). Both biosimilars were produced in wild-type (WT) Nicotiana benthamiana plant (PPB-WT and TPB-WT) and transgenic ΔXTFT N. benthamiana plant with XT and FT genes knockout (PPB-ΔXTFT and TPB-ΔXTFT). Western blot analysis with anti-α1,3-fucose and anti-xylose antibodies, as well as a test with peptide-N-glycosidase F, confirmed the absence of α1,3-fucose and xylose in the Asn297-linked glycan of PPB-ΔXTFT and TPB-ΔXTFT. Peptide analysis followed by the identification of glycomodified peptides using MALDI-TOF/TOF showed that PPB-WT and TPB-WT Asn297-linked glycans are mainly of complex type GnGnXF. The core of PPB-WT and TPB-WT Asn297-linked GnGn-type glycan contains α1,3-fucose and β1,2-xylose, which, along with the absence of terminal galactose and sialic acid, distinguishes these plant biosimilars from human IgG. Analysis of TPB-ΔXTFT total carbohydrate content indicates the possibility of changing the composition of the carbohydrate profile not only of the Fc, but also of the Fab portion of an antibody produced in transgenic ΔXTFT N. benthamiana plants. Nevertheless, study of the antigen-binding capacity of the biosimilars showed that absence of xylose and fucose residues in the Asn297-linked glycans does not affect the ability of the glycomodified antibodies to interact with HER2/neu positive cancer cells.
Collapse
Affiliation(s)
- T V Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sheshukova EV, Komarova TV, Dorokhov YL. Plant factories for the production of monoclonal antibodies. BIOCHEMISTRY (MOSCOW) 2016; 81:1118-1135. [DOI: 10.1134/s0006297916100102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Sci Rep 2016; 6:25462. [PMID: 27145869 PMCID: PMC4857115 DOI: 10.1038/srep25462] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/05/2022] Open
Abstract
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.
Collapse
|
17
|
Prokhnevsky A, Mamedov T, Leffet B, Rahimova R, Ghosh A, Mett V, Yusibov V. Development of a single-replicon miniBYV vector for co-expression of heterologous proteins. Mol Biotechnol 2015; 57:101-10. [PMID: 25280556 DOI: 10.1007/s12033-014-9806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In planta production of recombinant proteins, including vaccine antigens and monoclonal antibodies, continues gaining acceptance. With the broadening range of target proteins, the need for vectors with higher performance is increasing. Here, we have developed a single-replicon vector based on beet yellows virus (BYV) that enables co-delivery of two target genes into the same host cell, resulting in transient expression of each target. This BYV vector maintained genetic stability during systemic spread throughout the host plant, Nicotiana benthamiana. Furthermore, we have engineered a miniBYV vector carrying the sequences encoding heavy and light chains of a monoclonal antibody (mAb) against protective antigen (PA) of Bacillius anthracis, and achieved the expression of the full-length functional anti-PA mAb at ~300 mg/kg of fresh leaf tissue. To demonstrate co-expression and functionality of two independent proteins, we cloned the sequences of the Pfs48/45 protein of Plasmodium falciparum and endoglycosidase F (PNGase F) from Flavobacterium meningosepticum into the miniBYV vector under the control of two subgenomic RNA promoters. Agroinfiltration of N. benthamiana with this miniBYV vector resulted in accumulation of biologically active Pfs48/45 that was devoid of N-linked glycosylation and had correct conformation and epitope display. Overall, our findings demonstrate that the new BYV-based vector is capable of co-expressing two functionally active recombinant proteins within the same host cell.
Collapse
Affiliation(s)
- Alex Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE, 19711, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kolotilin I, Topp E, Cox E, Devriendt B, Conrad U, Joensuu J, Stöger E, Warzecha H, McAllister T, Potter A, McLean MD, Hall JC, Menassa R. Plant-based solutions for veterinary immunotherapeutics and prophylactics. Vet Res 2014; 45:117. [PMID: 25559098 PMCID: PMC4280687 DOI: 10.1186/s13567-014-0117-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022] Open
Abstract
An alarming increase in emergence of antibiotic resistance among pathogens worldwide has become a serious threat to our ability to treat infectious diseases according to the World Health Organization. Extensive use of antibiotics by livestock producers promotes the spread of new resistant strains, some of zoonotic concern, which increases food-borne illness in humans and causes significant economic burden on healthcare systems. Furthermore, consumer preferences for meat/poultry/fish produced without the use of antibiotics shape today's market demand. So, it is viewed as inevitable by the One Health Initiative that humans need to reduce the use of antibiotics and turn to alternative, improved means to control disease: vaccination and prophylactics. Besides the intense research focused on novel therapeutic molecules, both these strategies rely heavily on the availability of cost-effective, efficient and scalable production platforms which will allow large-volume manufacturing for vaccines, antibodies and other biopharmaceuticals. Within this context, plant-based platforms for production of recombinant therapeutic proteins offer significant advantages over conventional expression systems, including lack of animal pathogens, low production costs, fast turnaround and response times and rapid, nearly-unlimited scalability. Also, because dried leaves and seeds can be stored at room temperature for lengthy periods without loss of recombinant proteins, plant expression systems have the potential to offer lucrative benefits from the development of edible vaccines and prophylactics, as these would not require "cold chain" storage and transportation, and could be administered in mass volumes with minimal processing. Several biotechnology companies currently have developed and adopted plant-based platforms for commercial production of recombinant protein therapeutics. In this manuscript, we outline the challenges in the process of livestock immunization as well as the current plant biotechnology developments aimed to address these challenges.
Collapse
Affiliation(s)
- Igor Kolotilin
- />Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON Canada
| | - Ed Topp
- />AAFC, Southern Crop Protection and Food Research Centre, 1391 Sandford St, London, ON Canada
| | - Eric Cox
- />Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bert Devriendt
- />Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Udo Conrad
- />Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jussi Joensuu
- />VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eva Stöger
- />Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heribert Warzecha
- />Technische Universität Darmstadt, FB Biologie, Schnittspahnstr. 5, D-64287 Darmstadt, Germany
| | - Tim McAllister
- />AAFC, Lethbridge Research Centre, 5403, 1 Avenue South, Lethbridge, Alberta Canada
| | - Andrew Potter
- />Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan Canada
- />Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan Canada
| | - Michael D McLean
- />PlantForm Corp., c/o Room 2218, E.C. Bovey Bldg, University of Guelph, Guelph, Ontario N1G 2 W1 Canada
| | - J Christopher Hall
- />School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2 W1 Canada
| | - Rima Menassa
- />Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON Canada
- />AAFC, Southern Crop Protection and Food Research Centre, 1391 Sandford St, London, ON Canada
| |
Collapse
|
19
|
Niemer M, Mehofer U, Torres Acosta JA, Verdianz M, Henkel T, Loos A, Strasser R, Maresch D, Rademacher T, Steinkellner H, Mach L. The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnol J 2014; 9:493-500. [PMID: 24478053 PMCID: PMC4162989 DOI: 10.1002/biot.201300207] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 12/20/2022]
Abstract
The tobacco-related species Nicotiana benthamiana has recently emerged as a promising host for the manufacturing of protein therapeutics. However, the production of recombinant proteins in N. benthamiana is frequently hampered by undesired proteolysis. Here, we show that the expression of the human anti-HIV antibodies 2F5, 2G12, and PG9 in N. benthamiana leaves leads to the accumulation of discrete heavy chain-derived degradation products of 30-40 kDa. Incubation of purified 2F5 with N. benthamiana intercellular fluid resulted in rapid conversion into the 40-kDa fragment, whereas 2G12 proved largely resistant to degradation. Such a differential susceptibility to proteolytic attack was also observed when these two antibodies were exposed to various types of proteinases in vitro. While serine and cysteine proteinases are both capable of generating the 40-kDa 2F5 fragment, the 30-kDa polypeptide is most readily obtained by treatment with the latter class of enzymes. The principal cleavage sites reside within the antigen-binding domain, the VH -CH 1 linker segment and the hinge region of the antibodies. Collectively, these results indicate that down-regulation of endogenous serine and cysteine proteinase activities could be used to improve the performance of plant-based expression platforms destined for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Ulrich Mehofer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Juan Antonio Torres Acosta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Maria Verdianz
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Theresa Henkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life SciencesVienna, Austria
| | - Thomas Rademacher
- Institute of Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
20
|
In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 2013; 8:e69495. [PMID: 23894495 PMCID: PMC3718736 DOI: 10.1371/journal.pone.0069495] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022] Open
Abstract
Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab')2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α-Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α-Cbtx. Mouse α-Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α-Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy.
Collapse
|
21
|
Abstract
Currently, mammalian cells are the most commonly used hosts for the production of therapeutic monoclonal antibodies (mAbs). These hosts not only secrete mAbs with properly assembled two heavy and two light chains but also deliver mAbs with a glycosylation profile that is compatible with administration into humans. GlycoFi, a wholly owned subsidiary of Merck & Co., Inc., humanized the Pichia glycosylation pathway which allows it to express glycoproteins with a human-like glycan profile. This offers an alternative mAb production platform similar to mammalian hosts and in some cases it even provides more homogenous product and better efficacy, such as enhanced effector function. This chapter describes a protocol for using glycoengineered Pichia to produce full-length mAbs. It covers a broad spectrum of mAb expression technologies in yeast including expression vector construction, yeast transformation, high-throughput strain selection to fermentation, and antibody purification.
Collapse
|
22
|
Rodríguez M, Pérez L, Gavilondo JV, Garrido G, Bequet-Romero M, Hernández I, Huerta V, Cabrera G, Pérez M, Ramos O, Leyva R, León M, Ramos PL, Triguero A, Hernández A, Sánchez B, Ayala M, Soto J, González E, Mendoza O, Tiel K, Pujol M. Comparative in vitro and experimental in vivo studies of the anti-epidermal growth factor receptor antibody nimotuzumab and its aglycosylated form produced in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:53-65. [PMID: 23046448 DOI: 10.1111/pbi.12006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/28/2012] [Accepted: 09/07/2012] [Indexed: 06/01/2023]
Abstract
A broad variety of foreign genes can be expressed in transgenic plants, which offer the opportunity for large-scale production of pharmaceutical proteins, such as therapeutic antibodies. Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) recombinant IgG1 antibody approved in different countries for the treatment of head and neck squamous cell carcinoma, paediatric and adult glioma, and nasopharyngeal and oesophageal cancers. Because the antitumour mechanism of nimotuzumab is mainly attributed to its ability to interrupt the signal transduction cascade triggered by EGF/EGFR interaction, we have hypothesized that an aglycosylated form of this antibody, produced by mutating the N(297) position in the IgG(1) Fc region gene, would have similar biochemical and biological properties as the mammalian-cell-produced glycosylated counterpart. In this paper, we report the production and characterization of an aglycosylated form of nimotuzumab in transgenic tobacco plants. The comparison of the plantibody and nimotuzumab in terms of recognition of human EGFR, effect on tyrosine phosphorylation and proliferation in cells in response to EGF, competition with radiolabelled EGF for EGFR, affinity measurements of Fab fragments, pharmacokinetic and biodistribution behaviours in rats and antitumour effects in nude mice bearing human A431 tumours showed that both antibody forms have very similar in vitro and in vivo properties. Our results support the idea that the production of aglycosylated forms of some therapeutic antibodies in transgenic plants is a feasible approach when facing scaling strategies for anticancer immunoglobulins.
Collapse
Affiliation(s)
- Meilyn Rodríguez
- Center for Genetic Engineering and Biotechnology (CIGB), Playa, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC. Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1118-28. [PMID: 22984968 DOI: 10.1111/j.1467-7652.2012.00742.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 05/18/2023]
Abstract
To study how the P19 suppressor of gene-silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co-expressed with P19 in an RNAi-based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102-106) containing different 5' and 3' UTRs, designated as vector sets 102-106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5'UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15-fold (to about 2.3% of TSP) when co-expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co-expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I-64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19-induced responses.
Collapse
Affiliation(s)
- Freydoun Garabagi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
24
|
McLean MD, Chen R, Yu D, Mah KZ, Teat J, Wang H, Zaplachinski S, Boothe J, Hall JC. Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower Protein A-oleosin oilbody technology. Transgenic Res 2012; 21:1291-301. [PMID: 22382463 DOI: 10.1007/s11248-012-9603-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 02/15/2012] [Indexed: 12/31/2022]
Abstract
Production of therapeutic monoclonal antibodies using genetically modified plants may provide low cost, high scalability and product safety; however, antibody purification from plants presents a challenge due to the large quantities of biomass that need to be processed. Protein A column chromatography is widely used in the pharmaceutical industry for antibody purification, but its application is limited by cost, scalability and column fouling problems when purifying plant-derived antibodies. Protein A-oleosin oilbodies (Protein A-OB), expressed in transgenic safflower seeds, are relatively inexpensive to produce and provide a new approach for the capture of monoclonal antibodies from plants. When Protein A-OB is mixed with crude extracts from plants engineered to express therapeutic antibodies, the Protein A-OB captures the antibody in the oilbody phase while impurities remain in the aqueous phase. This is followed by repeated partitioning of oilbody phase against an aqueous phase via centrifugation to remove impurities before purified antibody is eluted from the oilbodies. We have developed this purification process to recover trastuzumab, an anti-HER2 monoclonal antibody used for therapy against specific breast-cancers that over express HER2 (human epidermal growth factor receptor 2), from transiently infected Nicotiana benthamiana. Protein A-OB overcomes the fouling problem associated with traditional Protein A chromatography, allowing for the development of an inexpensive, scalable and novel high-resolution method for the capture of antibodies based on simple mixing and phase separation.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/isolation & purification
- Antibodies, Monoclonal, Humanized/metabolism
- Arabidopsis Proteins/immunology
- Carthamus tinctorius/chemistry
- Chromatography, Affinity
- Humans
- Molecular Sequence Data
- Organelles/metabolism
- Plantibodies/genetics
- Plantibodies/isolation & purification
- Plantibodies/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Staphylococcal Protein A/immunology
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/metabolism
- Trastuzumab
Collapse
Affiliation(s)
- Michael D McLean
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Garabagi F, McLean MD, Hall JC. Transient and stable expression of antibodies in Nicotiana species. Methods Mol Biol 2012; 907:389-408. [PMID: 22907365 DOI: 10.1007/978-1-61779-974-7_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression and purification of recombinant proteins produced in plants is emerging as an affordable alternative to using more costly mammalian bioreactors since plants are capable of producing mammalian proteins at high concentrations. There are two general methods of expressing foreign proteins in plants, namely, transient expression and stable transgenic expression. Both methods have advantages which serve different purposes. Nicotiana benthamiana is primarily used as plant host for transient expression of foreign proteins. This system is capable of producing high yields of antibody in a relatively short period of time (days); however, intensive upstream processing is required as each plant must be infected with Agrobacterium tumefaciens cells by vacuum infiltration. N. tabacum is often used for production of stable transgenic plants through a procedure that requires longer development time (months). Although antibody yields are smaller compared with the transient method, the advantage of using stable transgenic expression is that very little upstream process management is required once homozygous seed lines are developed. In this chapter, we describe the basic methodologies for expressing antibodies in plants using the transient and transgenic systems.
Collapse
Affiliation(s)
- Freydoun Garabagi
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
26
|
Zhang N, Liu L, Dumitru CD, Cummings NRH, Cukan M, Jiang Y, Li Y, Li F, Mitchell T, Mallem MR, Ou Y, Patel RN, Vo K, Wang H, Burnina I, Choi BK, Huber H, Stadheim TA, Zha D. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs 2011; 3:289-98. [PMID: 21487242 PMCID: PMC3149709 DOI: 10.4161/mabs.3.3.15532] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/19/2011] [Indexed: 01/12/2023] Open
Abstract
Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in a glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia-produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependant cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/immunology
- Antibody Affinity/immunology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Area Under Curve
- Binding, Competitive/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Evaluation, Preclinical
- Fucose/metabolism
- Genetic Engineering
- Humans
- Macaca fascicularis
- Mice
- Mice, Inbred C57BL
- Pichia/genetics
- Pichia/metabolism
- Polysaccharides/metabolism
- Protein Binding/immunology
- Receptor, ErbB-2/immunology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Recombinant Proteins/pharmacology
- Trastuzumab
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ningyan Zhang
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | - Liming Liu
- Drug Metabolism; Merck Research Laboratories; West Point, PA USA
| | - Calin Dan Dumitru
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | | | | | - Yuan Li
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | - Fang Li
- GlycoFi Inc.; Lebanon, NH USA
| | | | | | - Yangsi Ou
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | - Kim Vo
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | - Hui Wang
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | | | - Hans Huber
- Department of Biologics Research; Merck Research Laboratories; West Point, PA USA
| | | | - Dongxing Zha
- Drug Metabolism; Merck Research Laboratories; West Point, PA USA
| |
Collapse
|
27
|
Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 2011; 6:e17541. [PMID: 21390232 PMCID: PMC3048398 DOI: 10.1371/journal.pone.0017541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 02/07/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb), trastuzumab (Herceptin). A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i) binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii) testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT) bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE We conclude that PMT is active in suppression of cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Tatiana V. Komarova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Olga Y. Frolova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Igor V. Petrunia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ksenia A. Skrypnik
- N.N. Blokhin National Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Yuri Y. Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Halle (Saale), Germany
| | - Yuri L. Dorokhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
28
|
Whaley KJ, Hiatt A, Zeitlin L. Emerging antibody products and Nicotiana manufacturing. HUMAN VACCINES 2011; 7:349-56. [PMID: 21358287 PMCID: PMC3166493 DOI: 10.4161/hv.7.3.14266] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/21/2010] [Indexed: 12/19/2022]
Abstract
Antibody based products are not widely available to address multiple global health challenges due to high costs, limited manufacturing capacity, and long manufacturing lead times. Nicotiana-based manufacturing of antibody products may now begin to address these challenges as a result of revolutionary advances in transient expression and altered glycosylation pathways. This review provides examples of emerging antibody-based products (mucosal and systemic) that could be competitive and commercially viable when the attributes of Nicotiana-based manufacturing (large scale, versatile, rapid, low cost) are utilized.
Collapse
|