1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Arredouani A. GLP-1 receptor agonists, are we witnessing the emergence of a paradigm shift for neuro-cardio-metabolic disorders? Pharmacol Ther 2025; 269:108824. [PMID: 39983843 DOI: 10.1016/j.pharmthera.2025.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as groundbreaking therapeutic agents in managing a spectrum of metabolic disorders, demonstrating remarkable efficacy across multiple organ systems and disease states. These compounds are not only well-established in the treatment of type 2 diabetes (T2D) and obesity-conditions for which they have received widespread approval-but also exhibit promising potential in addressing cardiovascular disease (CVD) and Metabolic dysfunction-associated steatotic liver disease (MASLD). Recent investigations have begun to illuminate the utility of GLP-1RAs in the management of type 1 diabetes (T1D), as well as neurodegenerative disorders such as Alzheimer's and Parkinson's disease and various behavioral disorders. A plethora of clinical trials have consistently validated the capacity of GLP-1RAs to improve glycemic control, promote weight loss, and mitigate cardiovascular risk factors in individuals with T2D and obesity. While their application in T1D remains limited due to safety concerns-particularly regarding the risks of hypoglycemia and hyperglycemic ketoacidosis-emerging data suggest that GLP-1RAs may offer hepatoprotective benefits, potentially reducing liver fat content and decelerating the progression of MASLD. The neuroprotective attributes of GLP-1 RAs have garnered significant interest, with research indicating their potential to alleviate cognitive decline associated with neurodegenerative diseases. Furthermore, preliminary findings highlight the role of GLP-1 RAs in addressing behavioral disorders, emphasizing their extensive therapeutic promise. This comprehensive review synthesizes the current evidence supporting the diverse therapeutic applications of GLP-1RAs, positioning them as "magic drug" therapies for metabolic and neurological disorders. As ongoing research continues to explore innovative applications and combinations of GLP-1RAs, the landscape of disease management in metabolic and neurological contexts is poised for transformative advancements. This review will also critically assess safety considerations and underscore the need for personalized treatment strategies to optimize patient outcomes in these complex and often comorbid conditions.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Qatar.
| |
Collapse
|
3
|
Roberts TD, Hutchinson DS, Wootten D, De Blasio MJ, Ritchie RH. Advances in incretin therapies for targeting cardiovascular disease in diabetes. J Mol Cell Cardiol 2025; 202:102-115. [PMID: 40086589 DOI: 10.1016/j.yjmcc.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
The global prevalence of obesity is skyrocketing at an alarming rate, with recent data estimating that one-in-eight people are now living with the disease. Obesity is a chronic metabolic disorder that shares underlying pathophysiology with other metabolically-linked diseases such as type 2 diabetes mellitus, cardiovascular disease and diabetic cardiomyopathy. There is a distinct correlation between type 2 diabetes status and the likelihood of heart failure. Of note, there is an apparent sexual dimorphism, with women disproportionately affected with respect to the degree of severity of the cardiac phenotype of diabetic cardiomyopathy that results from diabetes. The current pharmacotherapies available for the attenuation of hyperglycaemia in type 2 diabetes are not always effective, and have varying degrees of efficacy in the setting of heart failure. Insulin can worsen heart failure prognosis whereas metformin, sodium-glucose cotransporter 2 inhibitors (SGLT2i) and more recently, glucagon-like peptide-1 receptor agonists (GLP-1RAs), have demonstrated cardioprotection with their administration. This review will highlight the advancement of incretin therapies for individuals with diabetes and heart failure and explore newly-reported evidence of the clinical usefulness of GLP-1R agonists in this distinct phenotype of heart failure.
Collapse
Affiliation(s)
- Timothy D Roberts
- Heart Failure Pharmacology Laboratory, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Dana S Hutchinson
- Metabolic G Protein-Coupled Receptor Laboratory, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Denise Wootten
- Metabolic G Protein-Coupled Receptor Laboratory, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology Laboratory, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
4
|
Ramsing ML, Warming C, Meldal M. Green Resins for All: Sustainable Preparation of PEGA Resin for Peptide and Protein Synthesis and Immobilization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25764-25773. [PMID: 40248980 DOI: 10.1021/acsami.5c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Polyethylene glycol-polyacrylamide (PEGA) resins, known for their superior performance in peptide assembly and for their properties in on-bead biochemical assays, are, despite their superior performance, currently not commercially available. This may be due to the reported polymerization medium, CCl4, being classified as a highly controlled substance. The present work describes the easy preparation of larger volumes of PEGA supports by either bulk inverse suspension polymerization or by size-controlled flow synthesis. The technology uses silicone oil as a suspension medium and the oil is readily recycled, leading to very little waste from the process. The suspension polymerization was performed on a 0.7 L scale of resin featuring a loading of 0.27 μmol/mL (0.39 mmol/g), providing beaded resin in the size range of 200-400 μm, sufficient for >500 peptide assemblies at 100 mg scale of medium-sized peptides. In the flow synthesis, droplets formed in a T-connector were polymerized in a heated coiled poly(tetrafluoroethylene) tubing and collected on a filter, significantly increasing the control of bead size and reducing the required amount of silicone oil employed. These beaded resins are spectroscopically transparent and act as stealth polymers that do not interact with peptides, biomolecules, or cells. Furthermore, flow synthesis provided evenly sized beads facilitating quantitative on-bead bioassays. The resin produced was used for peptide assembly and immobilization of green fluorescent protein, demonstrating uniform protein attachment throughout the beads.
Collapse
Affiliation(s)
- Mads Liep Ramsing
- Center of Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Christoffer Warming
- Center of Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Morten Meldal
- Center of Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| |
Collapse
|
5
|
Delgado JAC, Amaral J, Penteado PS, Ferreira AG, da Silva MFF, König B, Paixão MW. Selective Native N (in)-H Bond Activation in Peptides with Metallaphotocatalysis. JACS AU 2025; 5:2040-2046. [PMID: 40313804 PMCID: PMC12042047 DOI: 10.1021/jacsau.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 05/03/2025]
Abstract
The development of chemical methods enabling site-selective incorporation of noncanonical amino acids into peptide backbones with precise functional tailoring remains a critical challenge. Particularly compelling is the use of underexplored endogenous amino acid hotspots, such as the N (in) of tryptophan, as versatile anchors for diversification. Herein, we report a chemoselective N(sp2)-H bond activation strategy targeting native tryptophan residues within peptide frameworks, exemplified by GLP-1 (7-37), using nickel metallaphotocatalysis under postsynthetic solid-phase conditions. This selective N (in)-arylation reaction proceeds efficiently within 3 h of light irradiation in highly functionalized heterogeneous environments, employing minimal excesses of electrophile and base, alongside catalytic quantities of nickel, ligand, and photocatalyst. The method affords homogeneous peptide products with high chemoselectivity and operational simplicity. We envision that this strategy could contribute to advancing the design of the next-generation long-acting class II G protein-coupled receptor agonist therapeutics.
Collapse
Affiliation(s)
- José A. C. Delgado
- Laboratory
for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos − UFSCar, Rodovia Washington Luís,
km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Jéssica
C. Amaral
- Department
of Plant Pathology and Nematology, University
of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Paula S. Penteado
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Antonio G. Ferreira
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Maria Fátima
G. F. da Silva
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Burkhard König
- Institute
of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W. Paixão
- Laboratory
for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos − UFSCar, Rodovia Washington Luís,
km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
6
|
Kim SH, Kim SS, Kim HJ, Park EJ, Na DH. Peptide mapping analysis of synthetic semaglutide and liraglutide for generic development of drugs originating from recombinant DNA technology. J Pharm Biomed Anal 2025; 256:116682. [PMID: 39847923 DOI: 10.1016/j.jpba.2025.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Semaglutide and liraglutide are long-acting glucagon-like peptide-1 receptor agonists used to treat type-2 diabetes and obesity. Recent advances in peptide synthesis and analytical technologies have enabled the development of synthetic generic peptide for reference listed drugs (RLD) originating from recombinant DNA (rDNA) technology. Since the original semaglutide and liraglutide were produced through rDNA technology, there has been great interest in developing their synthetic peptides as generic versions of the original drugs. Therefore, this study aimed to develop a peptide mapping method to describe the primary structure of semaglutide and liraglutide using ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS), and to apply this method to demonstrate the sameness between synthetic peptides for generic drugs and rDNA peptides of the original drugs. Masses of the peptide fragments were identified using HRMS at an accurate level of mass error below 10 ppm, and their sequences were determined via MSE sequencing using in-source fragmentation, which was also useful for identifying the fatty acid chain modification site. Full sequence coverage of each semaglutide and liraglutide was accomplished by combining peptide maps generated using Glu-C and chymotrypsin. The proposed peptide mapping method using UPLC-HRMS was useful for determining active ingredient sameness between generic synthetic peptides and previously approved peptide drug products of rDNA origin.
Collapse
Affiliation(s)
- Soo Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Soo Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Jun Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eun Ji Park
- D&D Pharmatech, Seongnam, Gyeonggi-do 13486, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
7
|
Liu T, Shi F, Guo Z, Li H, Qin D. Therapeutic Potential of the Novel GLP-1 Receptor Agonist Semaglutide in Alcohol Use Disorder. PHARMACOPSYCHIATRY 2025. [PMID: 40228539 DOI: 10.1055/a-2550-6470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder with serious health and social consequences. However, few licensed and successful pharmacotherapies exist for heterogeneous and complex disorders such as AUD, and these are poorly utilized. Preclinical and clinical findings suggest that the glucagon-like peptide-1 (GLP-1) system, a gut-brain peptide, is involved in the neurobiology of addictive behaviors. Additionally, the GLP-1 receptor (GLP-1R) has become a promising target for the treatment of AUD. Semaglutide, a novel GLP-1R agonist, has received clinical approval to treat type 2 diabetes in both subcutaneous and oral dosage forms. Studies have shown that it significantly reduces alcohol consumption and relapse of alcohol addiction in rats, suggesting its potential effectiveness for treating alcohol abuse in humans, particularly in overweight patients with AUDs. However, the use of semaglutide is associated with potential risks, such as gallbladder disease and clinical complications associated with delayed gastric emptying. This review evaluates the safety of semaglutide to inform its wider clinical application. Further extensive and in-depth studies on semaglutide are needed to reveal additional valuable clinical benefits.
Collapse
Affiliation(s)
- Tingting Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Zhihua Guo
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Di Qin
- The Third Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Jing W, Peng L, Song S, Liu J, Tai W. A New Protractor Potentiates Glucagon-Like Peptide 1 with Slow-Release Depot and Long-Term Action. J Med Chem 2025; 68:7341-7352. [PMID: 40118774 DOI: 10.1021/acs.jmedchem.4c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Bioactive peptides display a number of favorable features as therapeutics, but their usage is challenging due to the low metabolic stability and rapid renal clearance. The small-molecule protractor, which functions by the noncovalent binding with serum albumin and protection against systemic clearance, is an attractive tool to elongate peptides' half-life. Herein, we investigated coomassie brilliant blue (CBB) as a new protractor for the half-life extension of clinically relevant glucagon-like peptide 1 (GLP-1). A series of GLP-1 analogues differentiating with CBB linkers and acylation positions are described. One particularly interesting analogue (coomatide 13) exhibits sub-picomolar potency in vitro and long-term control of glucose homeostasis in mice. A protraction mechanism study reveals that CBB has a high affinity to albumin and pan-interaction with other matrix proteins, enabling to protract peptides in both systemic circulation and the subcutaneous depot. Our study demonstrates that the specific affinity to albumin is not a prerequisite for peptide protraction, and pan-binders might be advantageous.
Collapse
Affiliation(s)
- Weina Jing
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Lei Peng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Shiwei Song
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Jiaqi Liu
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
9
|
Pawlas J, Lindgren A. Expanding the Reach of Sustainable Solid-Phase Peptide Synthesis: One-Pot, Metal-Free Alloc Removal-Peptide Coupling. Org Lett 2025; 27:2891-2896. [PMID: 40094332 DOI: 10.1021/acs.orglett.5c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
While the allyloxycarbonyl (Alloc) protecting group has played a key role in solid-phase peptide synthesis (SPPS), providing access to a wide range of peptides, its removal has suffered from relying on air-sensitive Pd(0) complexes in hazardous solvents. We report metal-free, on-resin Alloc removal using readily available iodine/water in environmentally sensible PolarClean (PC)/ethyl acetate (EtOAc) carried out in a one-pot manner with racemization-free peptide couplings employing both 9-fluorenylmethoxycarbonyl (Fmoc) and Alloc amino acids (AAs). Alloc SPPS has been demonstrated by performing consecutive one-pot Alloc removals-peptide couplings, whereas compatibility with long peptides has been proven by carrying out an Alloc removal-coupling on a 39 AA peptide resin. Upscaling to 10 g was combined with TFA-free peptide resin cleavage, opening up opportunities for employing Alloc-AAs as synthons for sustainable peptide manufacturing.
Collapse
Affiliation(s)
- Jan Pawlas
- PolyPeptide, Limhamnsvägen 108, P.O. Box 30089, 200 61 Limhamn, Sweden
| | - Andreas Lindgren
- PolyPeptide, Limhamnsvägen 108, P.O. Box 30089, 200 61 Limhamn, Sweden
| |
Collapse
|
10
|
Wong MT, Lin PH, Lin WC, Peng CJ, Wright JD, Lee HJ, Chu HM, Lim C, Chang TW. 2FA-Platform Generates Dual Fatty Acid-Conjugated GLP-1 Receptor Agonist TE-8105 with Enhanced Diabetes, Obesity, and NASH Efficacy Compared to Semaglutide. J Med Chem 2025; 68:6178-6192. [PMID: 40044142 PMCID: PMC11956005 DOI: 10.1021/acs.jmedchem.4c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Conjugating two fatty acids (2FAs) to peptide drugs can improve pharmacokinetics and therapeutic effects. However, optimizing FA spacing, chain combination, and attachment site to simultaneously enhance albumin binding and drug efficacy remains challenging. We introduce a multiarm linker technology enabling precise control of 2FA spacing, composition, and attachment. By applying this technology to a modified glucagon-like peptide-1 (GLP-1) and screening various 2FA-GLP-1 conjugates differing in linkage, linker, and FA properties for improved albumin affinity, pharmacokinetics, and pharmacodynamics, TE-8105 emerged as a promising candidate. TE-8105 outperformed semaglutide, showing improved long-term glycemic control, weight loss, and liver health in diabetic mice, and dose-dependent weight loss and favorable body composition changes in obese mice. A distinct advantage of TE-8105 over semaglutide is its low-dose reduction of liver steatosis and improvement of liver health in nonalcoholic steatohepatitis mice. The multiarm linker technology provides a versatile platform for developing improved 2FA-peptide therapeutics.
Collapse
Affiliation(s)
- Mun-Teng Wong
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Pei-Hsuan Lin
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Wei-Chen Lin
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Chi-Jiun Peng
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Jon D. Wright
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Hui-Ju Lee
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Hsing-Mao Chu
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Carmay Lim
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Tse Wen Chang
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| |
Collapse
|
11
|
Østergaard S, Jessen C, Paulsson JF, Kasimova MA, Conde-Frieboes KW, Straarup EM, Skyggebjerg RB, Ynddal L, Sanfridson A, Wulff BS, Chambers AP. Variant screening of PYY 3-36 leads to potent long-acting PYY analogs with superior Y 2 receptor selectivity. Sci Transl Med 2025; 17:eadq6392. [PMID: 40138456 DOI: 10.1126/scitranslmed.adq6392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Peptide YY (PYY3-36) has attracted attention in diabetes and obesity research because of its involvement in food intake regulation and glucose homeostasis. Native PYY3-36 maintains high potency on the Y2 receptor with a loss of potency on the Y1, Y4, and Y5 receptors. However, PYY3-36 has a relatively short half-life, and the selectivity displayed by the native peptide may not be optimal if a long-acting analog is to be developed. We performed variant screening of PYY3-36 to identify key canonical amino acids that are pivotal to Y2 receptor selectivity, potency, and peptide stability. In combination with fatty diacid derivatization, this afforded highly selective long-acting analogs against the Y2 receptor, which improved glucose metabolism in diabetic db/db mice. When combined with a long-acting glucagon-like peptide 1 (GLP-1) receptor agonist, these analogs showed superior blood glucose lowering in diabetic ZSF1 rats and greater body weight loss in a high-fat diet-induced mouse model of obesity compared with treatment with the GLP-1 analog alone. One of the tested analogs, PYY1875, has progressed into clinical trials for obesity. Together, our results demonstrate the power of variant screening combined with fatty diacid derivatization in the development of a long-acting, highly efficacious PYY clinical candidate.
Collapse
Affiliation(s)
- Søren Østergaard
- Global Research Technologies, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Carsten Jessen
- Global Research Technologies, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Johan F Paulsson
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Marina A Kasimova
- Digital Science and Innovation, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | | | - Ellen Marie Straarup
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | | | - Lars Ynddal
- Global Research Technologies, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Annika Sanfridson
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Birgitte S Wulff
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Adam P Chambers
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| |
Collapse
|
12
|
Kuo ST, Xi Z, Cong X, Yan X, Russell DH. Unveiling the Hidden: Dissecting Liraglutide Oligomerization Dual Pathways via Direct Mass Technology, Electron-Capture Dissociation, and Molecular Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640645. [PMID: 40093118 PMCID: PMC11908122 DOI: 10.1101/2025.02.27.640645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peptide therapeutics have revolutionized drug design strategies, yet the inherent structural flexibility and conjugated moieties of drug molecules present challenges in discovery, rational design, and manufacturing. Liraglutide, a GLP-1 receptor agonist conjugated with palmitic acid at its lysine residue, exemplifies these challenges by forming oligomers, which may compromise efficacy through progressive formation of aggregates. Here, we incorporate native mass spectrometry platforms including electron-capture dissociation (ECD), direct mass technology (DMT), and molecular dynamics (MD) to capture the early oligomerization process of liraglutide. Our findings reveal a restricted C-terminal region upon oligomer formation, as indicated by the reduced release of z-ions in ECD analysis. Additionally, we identified the formation of higher-order oligomers (n=25-62) by DMT, primarily stabilized by hydrophilic interactions involving preformed stable oligomers (n=14). Together, these integrative mass spectrometry results delineate a dual-pathway oligomerization process for liraglutide, demonstrating the power of mass spectrometry in uncovering hidden pathways of self-association. This approach underscores the potential of mass spectrometry as a key tool in the rational design and optimization of peptide-based therapeutics.
Collapse
Affiliation(s)
- Syuan-Ting Kuo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Zhenyu Xi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Xiao Cong
- Boehringer Ingelheim, Ridgefield, Connecticut, 06877, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
13
|
Friedman JM. On the causes of obesity and its treatment: The end of the beginning. Cell Metab 2025; 37:570-577. [PMID: 40043689 DOI: 10.1016/j.cmet.2025.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 05/13/2025]
Abstract
Over the last 30 years, our understanding of the causes of obesity has been transformed, and new, highly effective medicines for reducing weight have been developed. This remarkable progress marks an end and a beginning. By establishing that obesity is a biologic disorder amenable to scientific inquiry and rational drug development, simplistic notions about its causes and treatment should be laid to rest. The future holds the promise that additional therapeutic approaches for inducing or maintaining weight loss will be developed, and that these treatments will be tailored to different subgroups to potentially address the pathogenic mechanisms.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
14
|
Mallart S, Ingenito R, Magotti P, Bresciani A, Di Marco A, Esposito S, Monteagudo E, Caretti F, Orsatti L, Santoprete A, Roversi D, Tucci F, Veneziano M, Brasseur D, Chénedé X, Corbier A, Gauzy-Lazo L, Gervat V, Marguet F, Minoletti C, Pasquier O, Poirier B, Azam A, Maillère B, Bianchi E, Janiak P, Duclos O, Illiano S. Optimization of Single Relaxin B-Chain Peptide Leads to the Identification of R2R01, a Potent, Long-Acting RXFP1 Agonist for Cardiovascular and Renal Diseases. J Med Chem 2025; 68:3873-3885. [PMID: 39888342 DOI: 10.1021/acs.jmedchem.4c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Peptide 1, a C18 fatty acid-modified single-chain relaxin analogue, was recently identified as a potent, selective, and long-lasting relaxin family peptide receptor 1 (RXFP1) agonist. Further advanced pharmacokinetic profiling of this compound highlighted elevated levels of oxidative metabolism occurring in dogs and mini pigs but only marginally in rats. This study aimed to design long-lasting relaxin analogues with increased stability against metabolic oxidation while securing subnanomolar RXFP1 potency. Key structural elements, including fatty acid chain length, attachment position, and linker structure, were modified to reduce oxidative metabolism and improve pharmacokinetic parameters. Additionally, incorporating α-methyl lysine (Mly) at position 30, alongside other selective sequence mutations, resulted in several analogues with subnanomolar RXFP1 potency and improved duration of action compared to 1. Compound 21 (R2R01) was then selected as a candidate for an in-depth characterization. It is currently undergoing phase 2 clinical development for renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Sergio Mallart
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Raffaele Ingenito
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Paola Magotti
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Annalise Di Marco
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Simone Esposito
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Edith Monteagudo
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Fulvia Caretti
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Laura Orsatti
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Alessia Santoprete
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Daniela Roversi
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Federica Tucci
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Maria Veneziano
- Experimental Pharmacology, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Denis Brasseur
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Xavier Chénedé
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Alain Corbier
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Laurence Gauzy-Lazo
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Vincent Gervat
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Frank Marguet
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Claire Minoletti
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Olivier Pasquier
- DMPK France, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Bruno Poirier
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Aurélien Azam
- CEA, INRAE, Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, SIMoS, Gif-sur-Yvette 91190, France
| | - Bernard Maillère
- CEA, INRAE, Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, SIMoS, Gif-sur-Yvette 91190, France
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM, Spa, Via Pontina Km 30 600, Pomezia 00071, Italy
| | - Philip Janiak
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Olivier Duclos
- Integrated Drug Discovery, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| | - Stephane Illiano
- Cardio-Vascular and Metabolism, Sanofi R&D, 13 quai Jules Guesde, Vitry sur Seine 94400, France
| |
Collapse
|
15
|
Douros JD, Flak JN, Knerr PJ. The agony and the efficacy: central mechanisms of GLP-1 induced adverse events and their mitigation by GIP. Front Endocrinol (Lausanne) 2025; 16:1530985. [PMID: 39963285 PMCID: PMC11830610 DOI: 10.3389/fendo.2025.1530985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
| | - Jonathan N. Flak
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick J. Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
| |
Collapse
|
16
|
Psaltis JP, Marathe JA, Nguyen MT, Le R, Bursill CA, Marathe CS, Nelson AJ, Psaltis PJ. Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future. Med Res Rev 2025; 45:29-65. [PMID: 39139038 PMCID: PMC11638809 DOI: 10.1002/med.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
Collapse
Affiliation(s)
- James P. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Jessica A. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Mau T. Nguyen
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Richard Le
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Christina A. Bursill
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chinmay S. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Department of EndocrinologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Adam J. Nelson
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Peter J. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
17
|
Polex-Wolf J, Deibler K, Hogendorf WFJ, Bau S, Glendorf T, Stidsen CE, Tornøe CW, Tiantang D, Lundh S, Pyke C, Tomlinson AJ, Kernodle S, Magrisso IJ, Conde-Frieboes KW, Myers MG, Knudsen LB, Seeley RJ. Glp1r-Lepr coexpressing neurons modulate the suppression of food intake and body weight by a GLP-1/leptin dual agonist. Sci Transl Med 2024; 16:eadk4908. [PMID: 39630884 DOI: 10.1126/scitranslmed.adk4908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/20/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) and leptin signal recent feeding and long-term energy stores, respectively, and play complementary roles in the modulation of energy balance. Previous work using single-cell techniques in mice revealed the existence of a population of leptin receptor (Lepr)-containing dorsomedial hypothalamus (DMH) neurons marked by the expression of GLP-1 receptor (Glp1r; LepRGlp1r neurons) that play important roles in the control of feeding and body weight by leptin. Here, we demonstrate the existence of a population of LepRGlp1r neurons in the DMHs of nonhuman primates (NHPs), suggesting the potential translational relevance of these neurons. Consequently, we developed a GLP-1R/LepR dual agonist and demonstrated the physiological activity of both components in vivo using leptin-deficient and Lepr-deficient murine models. We further found roles for LepRGlp1r neurons in mediating the dual agonist's efficacy on food intake and body weight loss. Ablating Lepr in Glp1r-expressing neurons (LeprGlp1rKO mice) abrogated the suppression of food intake by the dual agonist. Furthermore, reactivation of Glp1r expression in Lepr neurons on an otherwise Glp1r-null background (Glp1rLeprRe mice) was sufficient to permit the suppression of food intake and body weight by the dual agonist. Hence, LepRGlp1r neurons represent targets for a GLP-1R/LepR dual agonist that potently reduces food intake and body weight.
Collapse
Affiliation(s)
- Joseph Polex-Wolf
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kristine Deibler
- Novo Nordisk Research Center Seattle, Novo Nordisk A/S, 530 Fairview Ave N #5000, Seattle, WA 98109, USA
| | | | - Sarah Bau
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Tine Glendorf
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | | | | | - Dong Tiantang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Shengmingyuan West Ring Rd, Changping District, Beijing, 102206 China
| | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Charles Pyke
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Abigail J Tomlinson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lotte Bjerre Knudsen
- Chief Scientific Advisor Office, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Sangwung P, Ho JD, Siddall T, Lin J, Tomas A, Jones B, Sloop KW. Class B1 GPCRs: insights into multireceptor pharmacology for the treatment of metabolic disease. Am J Physiol Endocrinol Metab 2024; 327:E600-E615. [PMID: 38984948 PMCID: PMC11559640 DOI: 10.1152/ajpendo.00371.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The secretin-like, class B1 subfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and use a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via an N-terminal extracellular domain that forms a hydrophobic ligand-binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogs of several class B1 ligands for therapeutic use. Among the most accepted of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multifunctional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of polypharmacologic ligands. Furthermore, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complexes with either native ligands or multifunctional agonists are provided, supporting the pharmacological basis of such therapeutic agents.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Joseph D Ho
- Department of Structural Biology, Lilly Biotechnology Center, San Diego, California, United States
| | - Tessa Siddall
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jerry Lin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| |
Collapse
|
19
|
Li X, Zhou S, Tae HS, Wang S, Li T, Cai W, Jiang T, Adams DJ, Yu R. N-Terminal Capping of the αO-Conotoxin Analogue GeX-2 Improves the Serum Stability and Selectivity toward the Human α9α10 Nicotinic Acetylcholine Receptor. J Med Chem 2024; 67:18400-18411. [PMID: 39361522 DOI: 10.1021/acs.jmedchem.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
α9α10 nicotinic acetylcholine receptors (nAChRs) are a promising nonopioid analgesic target, with α9α10 nAChR antagonists showing efficacy against chemotherapy-induced hyperalgesia and allodynia. GeX-2, a potent analgesic conotoxin antagonist of α9α10 nAChRs, has limited serum stability. This study improved GeX-2 stability by capping its N-terminal with fatty acids or polyethylene glycol chains, which enhanced its serum stability but eliminated activity at G protein-coupled γ-aminobutyric acid type B (GABAB) receptor-coupled CaV2.2 channels while preserving activity at α9α10 nAChRs. In vivo, α9α10 nAChRs antagonism alone did not alleviate neuropathic pain, highlighting the importance of GABAB receptor-coupled CaV2.2 channels in GeX-2's antinociceptive effects in the chronic constriction injury rat model. The GeX-2 analogue, with an N-terminal methyl group, showed improved activity and selectivity for α9α10 nAChRs, increased serum half-life, and strong analgesic effects in oxaliplatin-induced cold allodynia models. AlphaFold3 and molecular dynamics simulations provided insights into the binding modes and the effects of N-terminal capping, which informed future peptide therapeutic developments.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shenglu Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shoushi Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China
| | - Tianmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenqing Cai
- Shandong Academy of Pharmaceutical Sciences 989 Xinluo Street, Jinan 250101, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
20
|
Nair P. QnAs with Svetlana Mojsov, Joel Habener, and Lotte Bjerre Knudsen: Winners of the 2024 Lasker~DeBakey Clinical Medical Research Award. Proc Natl Acad Sci U S A 2024; 121:e2416868121. [PMID: 39297682 PMCID: PMC11441505 DOI: 10.1073/pnas.2416868121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
|
21
|
Friedman JM. The discovery and development of GLP-1 based drugs that have revolutionized the treatment of obesity. Proc Natl Acad Sci U S A 2024; 121:e2415550121. [PMID: 39297680 PMCID: PMC11441540 DOI: 10.1073/pnas.2415550121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
The 2024 Lasker~DeBakey Clinical Medical Research Award has been given to Joel Habener and Svetlana Mojsov for their discovery of a new hormone GLP-1(7-37) and to Lotte Knudsen for her role in developing sustained acting versions of this hormone as a treatment for obesity. Each of the three had a distinct set of skills that made this advance possible; Habener is an endocrinologist and molecular biologist, Mojsov is a peptide chemist, and Knudsen is a pharmaceutical scientist. Their collective efforts have done what few thought possible-the development of highly effective medicines for reducing weight. Their research has also solved a mystery that began more than a century ago.
Collapse
|
22
|
Wunderlich M, Miller M, Ritter B, Le Gleut R, Marchi H, Majzoub-Altweck M, Knerr PJ, Douros JD, Müller TD, Brielmeier M. Experimental colonization with H. hepaticus, S. aureus and R. pneumotropicus does not influence the metabolic response to high-fat diet or incretin-analogues in wildtype SOPF mice. Mol Metab 2024; 87:101992. [PMID: 39019114 PMCID: PMC11338133 DOI: 10.1016/j.molmet.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVES We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes. METHODS Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709. RESULTS Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709. CONCLUSIONS We conclude that the occurrence of H. hepaticus, R. pneumotropicus and S. aureus does neither affect the development of diet-induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.
Collapse
Affiliation(s)
| | - Manuel Miller
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany.
| | - Bärbel Ritter
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Munich, Germany
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Munich, Germany; Faculty of Business Administration and Economics, Bielefeld University, Germany
| | - Monir Majzoub-Altweck
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Patrick J Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany, and German Center for Diabetes Research, DZD, and Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | |
Collapse
|
23
|
Tsuji T, Inazuki H, Kobayashi D, Hayashi J, Denda M, Otaka A. Cysteinylprolyl ester-mediated drug release from a lipid-drug conjugate. Bioorg Med Chem Lett 2024; 109:129850. [PMID: 38879090 DOI: 10.1016/j.bmcl.2024.129850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
For small-molecule drugs, lipidation via a cleavable linkage can extend half-life in circulation through interaction with albumin. Here we modified the cysteinylprolyl ester (CPE) system used in peptide thioester synthesis, which normally requires basic conditions, for use as an self-immolative linker and release device for a lipid-gemcitabine conjugate. To improve release under physiological conditions for medical application, a methyl group at the α-position of cysteine on the CPE unit was incorporated in anticipation of the Thorpe-Ingold effect. As a result, Ac-Gly-(α-Me)Cys(SH)-Pro-gemcitabine 11 drastically promoted the release of gemcitabine in comparison with Ac-Gly-Cys(SH)-Pro-gemcitabine 10. Furthermore, in the presence of bovine serum albumin and/or 2-mercaptoethanesulfonic acid, the gentle and continuous release of gemcitabine from the lipid-gemcitabine conjugate 16 was achieved. In addition to gemcitabine, this method could allow high clearance drugs, including nucleic acid and prostacyclin derivatives, to maintain their biological activity long enough to become effective.
Collapse
Affiliation(s)
- Takashi Tsuji
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hayato Inazuki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Daishiro Kobayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Junya Hayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
24
|
Hamed K, Alosaimi MN, Ali BA, Alghamdi A, Alkhashi T, Alkhaldi SS, Altowarqi NA, Alzahrani H, Alshehri AM, Alkhaldi RK, Alqahtani KW, Alharbi NH, Alhulayfi HF, Sharifi SY, Dighriri IM. Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists: Exploring Their Impact on Diabetes, Obesity, and Cardiovascular Health Through a Comprehensive Literature Review. Cureus 2024; 16:e68390. [PMID: 39355484 PMCID: PMC11444311 DOI: 10.7759/cureus.68390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1-RAs) are a novel class of medications promising for treating type 2 diabetes mellitus (T2DM) and obesity-related conditions such as cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). This comprehensive literature review examines available research on these medications, focusing on their mechanisms of action, clinical effectiveness, safety profiles, and socioeconomic implications. A comprehensive search was performed using the PubMed, EMBASE, and Cochrane Library databases. Although initially developed for glucose management, these drugs have also demonstrated efficacy in promoting weight loss and reducing the risk of CVD. GLP-1-RAs function similarly to naturally occurring incretins. They stimulate insulin secretion in response to glucose levels, inhibit glucagon release, delay stomach emptying, and generate a sense of fullness via brain pathways. Head-to-head clinical studies have indicated that GLP-1-RAs outperform conventional antidiabetic medicines in terms of glycemic management and weight reduction. According to cardiovascular outcome studies, various drugs in this category have been found to reduce the frequency of severe adverse cardiovascular events. A common side effect is gastrointestinal toxicity, which can be mitigated by gradually increasing the dose. Personalized treatment is likely because the effectiveness, safety, and dose regimens of currently available GLP-1-RAs differ. GLP-1-RAs are a superior choice for patients with T2DM, especially those who already have CVD or require weight-control support. The high cost of these drugs creates hurdles to access and fair healthcare. Current research mainly focuses on increasing therapeutic uses and producing orally delivered medicines with greater potency and bioavailability. Integrating GLP-1-RAs into clinical practice can enhance patient outcomes and reduce the community burden of cardiometabolic disease.
Collapse
Affiliation(s)
- Khalid Hamed
- Department of Clinical Toxicology, Umm Al-Qura University, Mecca, SAU
| | | | - Bashaer A Ali
- Department of Pharmacy, Nahdi Medical Company, Jeddah, SAU
| | | | | | | | | | | | | | | | - Khalid W Alqahtani
- Department of Pharmacy, Dr. Sulaiman Al Habib Medical Group, Riyadh, SAU
| | | | | | | | | |
Collapse
|
25
|
Thomas N, Sanyal T, Greisen P, Deibler K. Structure-Based Computational Scanning of Chemical Modification Sites in Biologics. ACS OMEGA 2024; 9:36787-36794. [PMID: 39220547 PMCID: PMC11360052 DOI: 10.1021/acsomega.4c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
To address the challenges of short half-life, immunogenicity, and nonspecific distribution, chemical modifications of peptide and protein-based drugs have emerged as a versatile strategy for improving their therapeutic efficacy. One such modification involves the derivatization of peptides and proteins with fatty acids, which can protract their half-life, modify their biodistribution, and potentially enable targeted delivery to specific tissues or disease sites of interest. However, the present strategies for the synthesis of such synthetically modified biologics require numerous rounds of experimental testing and often yield unstable, inactive, or heterogeneous products. To address the inefficiencies in designing modified biologics, we developed a hybrid computational workflow that integrates RosettaMatch from the Rosetta suite of protein modeling tools with molecular dynamics (MD) simulations. This approach not only reduces the number of amino acid positions that need to be experimentally tested by targeting only the most promising candidates for modification but also expedites the design of chemically modified biologics with the desired properties, ensuring a rapid and cost-effective development cycle. Although we demonstrate the utility of our method on a peptide therapeutic, GLP-1, with different fatty acid derivatizations, this straightforward approach has the potential to streamline the design process of a diverse range of chemically modified therapeutics, enabling tailored enhancements to their pharmacokinetic properties.
Collapse
Affiliation(s)
| | | | | | - Kristine Deibler
- Digital Science and Innovation, Novo Nordisk Research Center Seattle Inc., Seattle, Washington 98101, United States
| |
Collapse
|
26
|
Palacios S, Chedraui P, Sanchez-Borrego R, Coronado P, Simoncini T, Schauding K, Hillard T, Nappi RE. Management of obesity in menopause. Climacteric 2024; 27:357-363. [PMID: 39016333 DOI: 10.1080/13697137.2024.2374760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
The increasing prevalence of obesity imposes significant health challenges, particularly in women undergoing menopause. Effective obesity management is essential to mitigate associated comorbidities and improve quality of life. The pillars of obesity treatment encompass lifestyle modifications, pharmacotherapy and surgical interventions. Pharmacotherapy may be considered for women who do not achieve adequate weight loss through lifestyle changes alone and have obesity or overweight with risk factors. Bariatric surgery is reserved for individuals with severe obesity or those with obesity-related complications. During menopause, hormonal changes contribute to weight gain and fat redistribution, complicating obesity management. Tailored treatment strategies are necessary to address the unique challenges faced by this population. The role of physicians and gynecologists is pivotal in the multidisciplinary approach to obesity management during menopause. Gynecologists are often the primary health-care providers for menopausal women and are in a unique position to offer guidance on weight management. They can provide personalized counseling, coordinate with nutritionists, endocrinologists and bariatric specialists, and monitor the effects of obesity and its treatment on reproductive health. By integrating obesity management into routine gynecological care, gynecologists can significantly impact the overall health and well-being of menopausal women.
Collapse
Affiliation(s)
| | - Peter Chedraui
- Escuela de Postgrado en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Pluvio Coronado
- Women's Health Institute, Hospital Clínico San Carlos, IdISSC, School of Medicine, Complutense University, Madrid, Spain
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Experimental and Clinical Medicine, University of Pisa, Pisa, Italy
| | - Katrin Schauding
- Hormone Hamburg, Practice for Gynecological Endocrinology, Hamburg, Germany
| | - Tim Hillard
- Poole Menopause Centre, University Hospitals Dorset, Poole, UK
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
27
|
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1431292. [PMID: 39114288 PMCID: PMC11304055 DOI: 10.3389/fendo.2024.1431292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are two incretins that bind to their respective receptors and activate the downstream signaling in various tissues and organs. Both GIP and GLP-1 play roles in regulating food intake by stimulating neurons in the brain's satiety center. They also stimulate insulin secretion in pancreatic β-cells, but their effects on glucagon production in pancreatic α-cells differ, with GIP having a glucagonotropic effect during hypoglycemia and GLP-1 exhibiting glucagonostatic effect during hyperglycemia. Additionally, GIP directly stimulates lipogenesis, while GLP-1 indirectly promotes lipolysis, collectively maintaining healthy adipocytes, reducing ectopic fat distribution, and increasing the production and secretion of adiponectin from adipocytes. Together, these two incretins contribute to metabolic homeostasis, preventing both hyperglycemia and hypoglycemia, mitigating dyslipidemia, and reducing the risk of cardiovascular diseases in individuals with type 2 diabetes and obesity. Several GLP-1 and dual GIP/GLP-1 receptor agonists have been developed to harness these pharmacological effects in the treatment of type 2 diabetes, with some demonstrating robust effectiveness in weight management and prevention of cardiovascular diseases. Elucidating the underlying cellular and molecular mechanisms could potentially usher in the development of new generations of incretin mimetics with enhanced efficacy and fewer adverse effects. The treatment guidelines are evolving based on clinical trial outcomes, shaping the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Qiyuan Keith Liu
- MedStar Medical Group, MedStar Montgomery Medical Center, Olney, MD, United States
| |
Collapse
|
28
|
Ünsal Ö, Bacaksiz ZS, Khamraev V, Montanari V, Beinborn M, Kumar K. Prolonged Activation of the GLP-1 Receptor via Covalent Capture. ACS Chem Biol 2024; 19:1453-1465. [PMID: 38935975 DOI: 10.1021/acschembio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The incretin gut hormone glucagon-like peptide-1 (GLP-1) has become a household name because of its ability to induce glucose-dependent insulin release with accompanying weight loss in patients. Indeed, derivatives of the peptide exert numerous pleiotropic actions that favorably affect other metabolic functions, and consequently, such compounds are being considered as treatments for a variety of ailments. The ability of native GLP-1 to function as a clinical drug is severely limited because of its short half-life in vivo. All of the beneficial effects of GLP-1 come from its agonism at the cognate receptor, GLP-1R. In our quest for long-lived activation of the receptor, we hypothesized that an agonist that had the ability to covalently cross-link with GLP-1R would prove useful. We here report the structure-guided design of peptide analogues containing an electrophilic warhead that could be covalently captured by a resident native nucleophile on the receptor. The compounds were evaluated using washout experiments, and resistance to such washing serves as an index of prolonged activation and covalent capture, which we use to tabulate longevity and robust long-lived GLP-1R agonism. The addition of SulF (cross-linkable warhead), an N-terminal trifluoroethyl group (for protease protection), and a C18 diacid lipid (protractor) all contributed to the increased wash resistance of GLP-1. The most effective compound based on the wash resistance metric, C2K26DAC18_K34SulF, has all three elements outlined and may serve as a blueprint and a proof-of-concept scaffold for the design of clinically useful molecules.
Collapse
Affiliation(s)
- Özge Ünsal
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Z Selin Bacaksiz
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vladislav Khamraev
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular Pharmacology Research Center, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
29
|
Cheng Y, Liang S, Zhang S, Hui X. Thermogenic Fat as a New Obesity Management Tool: From Pharmaceutical Reagents to Cell Therapies. Biomedicines 2024; 12:1474. [PMID: 39062047 PMCID: PMC11275133 DOI: 10.3390/biomedicines12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a complex medical condition caused by a positive imbalance between calorie intake and calorie consumption. Brown adipose tissue (BAT), along with the newly discovered "brown-like" adipocytes (called beige cells), functions as a promising therapeutic tool to ameliorate obesity and metabolic disorders by burning out extra nutrients in the form of heat. Many studies in animal models and humans have proved the feasibility of this concept. In this review, we aim to summarize the endeavors over the last decade to achieve a higher number/activity of these heat-generating adipocytes. In particular, pharmacological compounds, especially agonists to the β3 adrenergic receptor (β3-AR), are reviewed in terms of their feasibility and efficacy in elevating BAT function and improving metabolic parameters in human subjects. Alternatively, allograft transplantation of BAT and the transplantation of functional brown or beige adipocytes from mesenchymal stromal cells or human induced pluripotent stem cells (hiPSCs) make it possible to increase the number of these beneficial adipocytes in patients. However, practical and ethical issues still need to be considered before the therapy can eventually be applied in the clinical setting. This review provides insights and guidance on brown- and beige-cell-based strategies for the management of obesity and its associated metabolic comorbidities.
Collapse
Affiliation(s)
- Ying Cheng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shiqing Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shuhan Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| |
Collapse
|
30
|
Dombernowsky SL, Damholt BB, Højby Rasmussen M, Sværke C, Kildemoes RJ. Investigating the Bioavailability and Insulin-like Growth Factor-I Release of Two Different Strengths of Somapacitan: A Randomised, Double-Blind Crossover Trial. Clin Pharmacokinet 2024; 63:1015-1024. [PMID: 38969919 PMCID: PMC11271340 DOI: 10.1007/s40262-024-01395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
STUDY DESIGN AND OBJECTIVE Randomised, double-blind, crossover trial to confirm bioequivalence of somapacitan, a long-acting growth hormone (GH), in 5 mg/1.5 mL and 10 mg/1.5 mL strengths in equimolar doses. METHODS Healthy participants were randomised (1:1:1) to subcutaneous somapacitan treatment in one dosing period with 5 mg/1.5 mL and two periods with 10 mg/1.5 mL. Eligibility criteria included age 18-45 years and body mass index 18.5-24.9 kg/m2. Exclusion criteria included history of GH deficiency, previous GH treatment, weight > 100.0 kg and participation in any clinical trial of an investigational medicinal product within 45 days or five times the half-life of the previous investigational product before screening. Area under the curve from time 0 until last quantifiable observation (AUC0-t), maximum serum concentration (Cmax), time to Cmax and terminal half-life of somapacitan and safety were assessed. RESULTS In total, 33 participants were randomised. For AUC0-t, estimated treatment ratio (ETR) (5 mg/1.5 mL versus 10 mg/1.5 mL) was 0.95 (90% confidence interval [CI] 0.89-1.01). Point estimate and 90% CIs were within the acceptance range (0.80-1.25). For Cmax, ETR was 0.77 (90% CI 0.68-0.89). Point estimate and 90% CIs were outside the acceptance range (0.80-1.25). Mean insulin-like growth factor-I (IGF-I) and IGF-I standard deviation score concentration-time curves for each strength were almost identical. No new safety issues were identified. CONCLUSIONS Bioequivalence criterion for somapacitan 5 mg/1.5 mL and 10 mg/1.5 mL was met for AUC0-t but not for Cmax. The two strengths had equivalent IGF-I responses. TRIAL REGISTRATION ClinicalTrials.gov, NCT03905850 (3 April 2019).
Collapse
Affiliation(s)
| | | | | | - Claus Sværke
- Novo Nordisk A/S, Vandtårnsvej 108, 2860, Søborg, Denmark
| | | |
Collapse
|
31
|
Reddiar SB, Abdallah M, Styles IK, Müllertz OO, Trevaskis NL. Lymphatic uptake of the lipidated and non-lipidated GLP-1 agonists liraglutide and exenatide is similar in rats. Eur J Pharm Biopharm 2024; 200:114339. [PMID: 38789061 DOI: 10.1016/j.ejpb.2024.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Peptides, despite their therapeutic potential, face challenges with undesirable pharmacokinetic (PK) properties and biodistribution, including poor oral absorption and cellular uptake, and short plasma elimination half-lives. Lipidation of peptides is a common strategy to improve their physicochemical and PK properties, making them viable drug candidates. For example, the plasma half-life of peptides has been extended via conjugation to lipids that are proposed to promote binding to serum albumin and thus protect against rapid clearance. Recent work has shown that lipid conjugation to oligodeoxynucleotides, polymers and small molecule drugs results in association not only with albumin, but also with lipoproteins, resulting in half-life prolongation and transport from administration sites via the lymphatics. Enhancing delivery into the lymph increases the efficacy of vaccines and therapeutics with lymphatic targets such as immunotherapies. In this study, the plasma PK, lymphatic uptake, and bioavailability of the glucagon-like peptide-1 (GLP-1) receptor agonist peptides, liraglutide (lipidated) and exenatide (non-lipidated), were investigated following subcutaneous (SC) administration to rats. As expected, liraglutide displayed an apparent prolonged plasma half-life (9.1 versus 1 h), delayed peak plasma concentrations and lower bioavailability (∼10 % versus ∼100 %) compared to exenatide after SC administration. The lymphatic uptake of both peptides was relatively low (<0.5 % of the dose) although lymph to plasma concentration ratios were greater than one for several early timepoints suggesting some direct uptake into lymph. The low lymphatic uptake may be due to the nature of the conjugated lipid (a single-chain C16 palmitic acid in liraglutide) but suggests that other peptides with similar lipid conjugations may also have relatively modest lymphatic uptake. If delivery to the lymph is desired, conjugation to more lipophilic moieties with higher albumin and/or lipoprotein binding efficiencies, such as diacylglycerols, may be appropriate.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Olivia O Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
32
|
Wang C, Zhang W, Xu L, Tu J, Su S, Li Q, Zhang T, Zheng L, Wang H, Zhuang X, Tang X, Yuan Y, Meng G, Lu L, Xiao J, Wang Q, Jiang S. Discovery of a Double-Stapled Short Peptide as a Long-Acting HIV-1 Inactivator with Potential for Oral Bioavailability. J Med Chem 2024; 67:9991-10004. [PMID: 38888038 DOI: 10.1021/acs.jmedchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Different from most antiretroviral drugs that act as passive defenders to inhibit HIV-1 replication inside the host cell, virus inactivators can attack and inactivate HIV-1 virions without relying on their replication cycle. Herein, we describe the discovery of a hydrocarbon double-stapled helix peptide, termed D26. D26 is based on the HIV-1 gp41 protein lentiviral lytic peptide-3 motif (LLP3) sequence, which can efficiently inhibit HIV-1 infection and inactivate cell-free HIV-1 virions. It was noted that D26 was highly resistant to proteolytic degradation and exhibited a remarkably extended in vivo elimination half-life. Additionally, relative to its linear, nonstapled version, D26 exhibited much higher exposure in sanctuary sites for HIV-1. Amazingly, this lead compound also demonstrated detectable oral absorption. Thus, it can be concluded that D26 is a promising candidate for further development as a long-acting, orally applicable HIV-1 inactivator for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jiahuang Tu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Longbo Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
- Key Laboratory of Structure-based Drug Design & Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xuan Tang
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Yu Yuan
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Guangpeng Meng
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610000, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Junhai Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
33
|
Mirloup A, Berthomé Y, Riché S, Wagner P, Hanser F, Laurent A, Iturrioz X, Llorens-Cortes C, Karpenko J, Bonnet D. Alared: Solvatochromic and Fluorogenic Red Amino Acid for Ratiometric Live-Cell Imaging of Bioactive Peptides. Chemistry 2024; 30:e202401296. [PMID: 38641990 DOI: 10.1002/chem.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
To fill the need for environmentally sensitive fluorescent unnatural amino acids able to operate in the red region of the spectrum, we have designed and synthesized Alared, a red solvatochromic and fluorogenic amino acid derived from the Nile Red chromophore. The new unnatural amino acid can be easily integrated into bioactive peptides using classical solid-phase peptide synthesis. The fluorescence quantum yield and the emission maximum of Alared-labeled peptides vary in a broad range depending on the peptide's environment, making Alared a powerful reporter of biomolecular interactions. Due to its red-shifted absorption and emission spectra, Alared-labeled peptides could be followed in living cells with minimal interference from cellular autofluorescence. Using ratiometric fluorescence microscopy, we were able to track the fate of the Alared-labeled peptide agonists of the apelin G protein-coupled receptor upon receptor activation and internalization. Due to its color-shifting environmentally sensitive emission, Alared allowed for distinguishing the fractions of peptides that are specifically bound to the receptor or unspecifically bound to different cellular membranes.
Collapse
Affiliation(s)
- Antoine Mirloup
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Yann Berthomé
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Stéphanie Riché
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Patrick Wagner
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Fabien Hanser
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Arthur Laurent
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Xavier Iturrioz
- Université Paris Saclay, CEA, INRAE, Medicines and Technologies for Health Department, SIMoS, F-91190, Gif-sur-Yvette, France
| | - Catherine Llorens-Cortes
- Université Paris Saclay, CEA, INRAE, Medicines and Technologies for Health Department, SIMoS, F-91190, Gif-sur-Yvette, France
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, College de France, INSERM U1050/CNRS UMR7241, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Julie Karpenko
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| |
Collapse
|
34
|
Shangguan W, Li X, Wang Y, Huang Z, Dong Y, Feng M, Feng J. Design and Biological Evaluation of the Long-Acting C5-Inhibited Ornithodoros moubata Complement Inhibitor (OmCI) Modified with Fatty Acid. Bioconjug Chem 2024; 35:653-664. [PMID: 38593046 DOI: 10.1021/acs.bioconjchem.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Disorder of complement response is a significant pathogenic factor causing some autoimmune and inflammation diseases. The Ornithodoros moubata Complement Inhibitor (OmCI), a small 17 kDa natural protein, was initially extracted from soft tick salivary glands. The protein was found binding to complement C5 specifically, inhibiting the activation of the complement pathway, which is a successful therapeutic basis of complement-mediated diseases. However, a short half-life due to rapid renal clearance is a common limitation of small proteins for clinical application. In this study, we extended the half-life of OmCI by modifying it with fatty acid, which was a method used to improve the pharmacokinetics of native peptides and proteins. Five OmCI mutants were initially designed, and single-site cysteine mutation was introduced to each of them. After purification, four OmCI mutants were obtained that showed similar in vitro biological activities. Three mutants of them were subsequently coupled with different fatty acids by nucleophilic substitution. In total, 15 modified derivatives were screened and tested for anticomplement activity in vitro. The results showed that coupling with fatty acid would not significantly affect their complement-inhibitory activity (CH50 and AH50). OmCIT90C-CM02 and OmCIT90C-CM05 were validated as the applicable OmCI bioconjugates for further pharmacokinetic assessments, and both showed improved plasma half-life in mice compared with unmodified OmCI (15.86, 17.96 vs 2.57 h). In summary, our data demonstrated that OmCI conjugated with fatty acid could be developed as the potential long-acting C5 complement inhibitor in the clinic.
Collapse
Affiliation(s)
- Wenwen Shangguan
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Xiaowan Li
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Yandan Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zongqing Huang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Yuanzhen Dong
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Jun Feng
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| |
Collapse
|
35
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
36
|
Sicinski KM, Sürmeli D, Du J, Raman VS, Montanari V, Lee M, Harwood BN, Kopin AS, Beinborn M, Kumar K. A Robust Platform for the Molecular Design of Potent, Protease-Stable, Long-Acting GIP Analogues. J Med Chem 2024; 67:4998-5010. [PMID: 38458970 DOI: 10.1021/acs.jmedchem.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, β-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.
Collapse
Affiliation(s)
- Kathleen M Sicinski
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Damla Sürmeli
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jasper Du
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkata S Raman
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Minhee Lee
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular Pharmacology Research Center, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Prajapati A, Rana D, Rangra S, Jindal AB, Benival D. Current Status of Therapeutic Peptides for the Management of Diabetes Mellitus. Int J Pept Res Ther 2024; 30:13. [DOI: 10.1007/s10989-024-10590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/04/2025]
|
38
|
Kruse T, Østergaard S. Redefining peptide therapeutics with semaglutide. Nat Chem 2024; 16:296. [PMID: 38321235 DOI: 10.1038/s41557-023-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Thomas Kruse
- Research Chemistry, Novo Nordisk Park, Maaloev, Denmark.
| | | |
Collapse
|
39
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
40
|
Ding W, Liu C, Chen Y, Gu J, Fang C, Hu L, Zhang L, Yuan Y, Feng XH, Lin S. Computational design and genetic incorporation of lipidation mimics in living cells. Nat Chem Biol 2024; 20:42-51. [PMID: 37563455 DOI: 10.1038/s41589-023-01400-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Protein lipidation, which regulates numerous biological pathways and plays crucial roles in the pharmaceutical industry, is not encoded by the genetic code but synthesized post-translationally. In the present study, we report a computational approach for designing lipidation mimics that fully recapitulate the biochemical properties of natural lipidation in membrane association and albumin binding. Furthermore, we establish an engineered system for co-translational incorporation of these lipidation mimics into virtually any desired position of proteins in Escherichia coli and mammalian cells. We demonstrate the utility of these length-tunable lipidation mimics in diverse applications, including improving the half-life and activity of therapeutic proteins in living mice, anchoring functional proteins to membrane by substituting natural lipidation, functionally characterizing proteins carrying different lengths of lipidation and determining the plasma membrane-binding capacity of a given compound. Our strategy enables gain-of-function studies of lipidation in hundreds of proteins and facilitates the creation of superior therapeutic candidates.
Collapse
Affiliation(s)
- Wenlong Ding
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Chao Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Yulin Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Jiayu Gu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengzhu Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Linzhen Hu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Hua Feng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Shaoxing Institute, Zhejiang University, Shaoxing, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Shaoxing Institute, Zhejiang University, Shaoxing, China.
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Wilbon SS, Kolonin MG. GLP1 Receptor Agonists-Effects beyond Obesity and Diabetes. Cells 2023; 13:65. [PMID: 38201269 PMCID: PMC10778154 DOI: 10.3390/cells13010065] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) have been transformative for patients and clinicians in treating type-2 diabetes and obesity. Drugs of this class, the bioavailability of which is continuously improving, enable weight loss and control blood glucose with minimal unwanted side effects. Since adopting GLP1RA for treating metabolic diseases, animal and clinical studies have revealed their beneficial effects on several other pathologies, including cardiovascular diseases, neurodegeneration, kidney disease, and cancer. A notable commonality between these diseases is their association with older age. Clinical trials and preclinical data suggest that GLP1RA may improve outcomes in these aging-related diseases. Some of the benefits of GLP1RA may be indirect due to their effects on obesity and glucose metabolism. However, there is building evidence that GLP1RA may also act directly on multiple organs implicated in aging-related pathology. This review aims to compile the studies reporting the effects of GLP1RA on aging-related diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| |
Collapse
|
42
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
43
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
44
|
Giannetti M, Palleschi A, Ricciardi B, Venanzi M. A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2. Molecules 2023; 28:7536. [PMID: 38005270 PMCID: PMC10674484 DOI: 10.3390/molecules28227536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The pharmacokinetics of peptide drugs are strongly affected by their aggregation properties and the morphology of the nanostructures they form in their native state as well as in their therapeutic formulation. In this contribution, we analyze the aggregation properties of a Liraglutide analogue (LG18), a leading drug against diabetes type 2. LG18 is a lipopeptide characterized by the functionalization of a lysine residue (K26) with an 18C lipid chain. To this end, spectroscopic experiments, dynamic light scattering measurements, and molecular dynamics simulations were carried out, following the evolution of the aggregation process from the small LG18 clusters formed at sub-micromolar concentrations to the mesoscopic aggregates formed by aged micromolar solutions. The critical aggregation concentration of LG18 in water (pH = 8) was found to amount to 4.3 μM, as assessed by the pyrene fluorescence assay. MD simulations showed that the LG18 nanostructures are formed by tetramer building blocks that, at longer times, self-assemble to form micrometric supramolecular architectures.
Collapse
Affiliation(s)
| | | | | | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.G.); (A.P.); (B.R.)
| |
Collapse
|
45
|
Coelho C, Dobbie LJ, Crane J, Douiri A, Learoyd AE, Okolo O, Panagiotopoulos S, Pournaras DJ, Ramar S, Rubino F, Singhal R, le Roux CW, Taheri S, McGowan B. Laparoscopic adjustable gastric banding with liraglutide in adults with obesity and type 2 diabetes (GLIDE): a pilot randomised placebo controlled trial. Int J Obes (Lond) 2023; 47:1132-1142. [PMID: 37696925 PMCID: PMC10599987 DOI: 10.1038/s41366-023-01368-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Obesity drives type 2 diabetes (T2DM) development. Laparoscopic adjustable gastric banding (LAGB) has lower weight reduction than other bariatric procedures. Liraglutide, a GLP-1 receptor agonist, improves weight and glycaemic control in patients with T2DM. This study aimed to determine the efficacy and safety of liraglutide 1.8 mg in participants undergoing LAGB. METHODS GLIDE, a pilot randomised, double-blind, placebo-controlled trial, evaluated LAGB with either liraglutide 1.8 mg or placebo in participants with T2DM and obesity. Participants were randomised (1:1) to 6-months therapy post-LAGB, with further 6 months off-treatment follow-up. The primary outcome was change in HbA1c from randomisation to the end of treatment, secondary outcomes included body weight change. A sample size of 58 (29 per group) had 80% power to detect a 0.6% difference in HbA1c between groups. RESULTS Twenty-seven participants were randomised to liraglutide (n = 13) or placebo (n = 14). Multivariate analysis showed no difference between placebo and liraglutide arms in HbA1c at 6 months (HbA1c:0.2 mmol/mol, -11.3, 11.6, p = 0.98) however, at 12 months HbA1c was significantly higher in the liraglutide arm (HbA1c:10.9 mmol/mol, 1.1, 20.6, p = 0.032). There was no difference between arms in weight at 6 months (BW:2.0 kg, -4.2, 8.1, p = 0.50), however, at 12 months weight was significantly higher in the liraglutide arm (BW:8.2 kg, 1.6, 14.9, p = 0.02). There were no significant differences in adverse events between groups. CONCLUSIONS Our pilot data suggest no additional improvement in glycaemic control or BW with LAGB and liraglutide therapy. However, this trial was significantly underpowered to detect a significant change in the primary or secondary outcomes. Further trials are needed to investigate whether GLP-1 agonists, and particularly with more effective weekly agents (i.e. semaglutide or tirzepatide), are of benefit following metabolic surgery. CLINICAL TRIAL REGISTRATION EudraCT number 2015-005402-11.
Collapse
Affiliation(s)
- Claudia Coelho
- Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Laurence J Dobbie
- Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - James Crane
- Department of Endocrinology, King's College Hospital NHS Foundation Trust, London, UK
| | - Abdel Douiri
- School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King College London, London, UK
| | - Annastazia E Learoyd
- School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King College London, London, UK
| | - Olanike Okolo
- Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Spyros Panagiotopoulos
- Department of Minimal Access Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Dimitri J Pournaras
- Department of Upper GI and Bariatric/Metabolic Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Sasindran Ramar
- Department of Minimal Access Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Francesco Rubino
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - Rishi Singhal
- Upper GI Unit at Heart of England, NHS Foundation Trust, Birmingham, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland, UK
| | - Shahrad Taheri
- Department of Medicine, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Barbara McGowan
- Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
46
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
47
|
Kim HK, Jun J, Kim TW, Youn DH. Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:481-491. [PMID: 37641810 PMCID: PMC10466068 DOI: 10.4196/kjpp.2023.27.5.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023]
Abstract
The β subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the β subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the β1 [cacb1(344-359)], β2 [cacb2(392-407)], β3 [cacb3(292-307)], and β4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca2+ current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)K357R-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)K357R (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)K357R peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.
Collapse
Affiliation(s)
- Hyung Kyu Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jiyeon Jun
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Tae Wan Kim
- Department of Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
48
|
Patoulias D, Popovic DS, Stoian AP, Janez A, Sahebkar A, Rizzo M. Effect of semaglutide versus other glucagon-like peptide-1 receptor agonists on cardio-metabolic risk factors in patients with type 2 diabetes: A systematic review and meta-analysis of head-to-head, phase 3, randomized controlled trials. J Diabetes Complications 2023; 37:108529. [PMID: 37301063 DOI: 10.1016/j.jdiacomp.2023.108529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a cornerstone treatment for type 2 diabetes mellitus (T2DM). The aim of the present meta-analysis was to assess whether semaglutide exerts greater effects on glycemia and other cardio-metabolic risk factors compared to other GLP-1RAs. METHODS PubMed and Cochrane Library databases, along with grey literature sources, were searched form inception to 8th February 2023, in order to retrieve head-to-head, phase 3 randomized controlled trials (RCTs) assessing the effect of semaglutide versus other GLP-1RAs on glycemia and other cardio-metabolic risk factors in T2DM. RESULTS We finally pooled data from 5 RCTs in a total of 3760 randomized participants. Semaglutide compared to other GLP-1RAs provided a significantly greater reduction in HbA1c levels by 0.44 %, in fasting plasma glucose by 0.48 mmol/L, in body weight by 2.53 kg and in body mass index by 0.91 kg/m2. Subjects receiving semaglutide experienced significantly greater odds for achieving target and optimal HbA1c, along with significantly greater odds for weight loss >5 % and 10 %. However, subjects randomized to semaglutide also experienced significantly greater odds for gastrointestinal adverse events and treatment discontinuation. CONCLUSION Semaglutide is more effective than rest GLP-1RAs, in terms of improvement in glycemia and other cardio-metabolic risk factors, among individuals with T2DM.
Collapse
Affiliation(s)
- Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece.
| | - Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, Medical Center, University of Ljubljana Medical Faculty, Ljubljana, Slovenia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| |
Collapse
|
49
|
Amatya R, Lee D, Min KA, Shin MC. Pharmaceutical Strategies to Improve Druggability of Potential Drug Candidates in Nonalcoholic Fatty Liver Disease Therapy. Pharmaceutics 2023; 15:1963. [PMID: 37514148 PMCID: PMC10386216 DOI: 10.3390/pharmaceutics15071963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become globally prevalent and is the leading cause of chronic liver disease. Although NAFLD is reversible without medical intervention in the early stage, the condition could be sequentially worsened to nonalcoholic steatohepatitis (NASH) and, eventually, cirrhosis and hepatic cancer. The progression of NAFLD is related to various factors such as genetics, pre-disposed metabolic disorders, and immunologic factors. Thankfully, to date, there have been accumulating research efforts and, as a result, different classes of potent drug candidates have been discovered. In addition, there have also been various attempts to explore pharmaceutical strategies to improve the druggability of drug candidates. In this review, we provided a brief overview of the drug candidates that have undergone clinical trials. In the latter part, strategies for developing better drugs are discussed.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Donghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| |
Collapse
|
50
|
Chaudhuri D, Lu T, Jacob B, Abraham S, Shankar P, Poss MA, Neamati N, Camarero JA. Lipidation of a bioactive cyclotide-based CXCR4 antagonist greatly improves its pharmacokinetic profile in vivo. J Control Release 2023; 359:26-32. [PMID: 37236320 PMCID: PMC10527528 DOI: 10.1016/j.jconrel.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The CXCR4 chemokine is a key molecular regulator of many biological functions controlling leukocyte functions during inflammation and immunity, and during embryonic development. Overexpression of CXCR4 is also associated with many types of cancer where its activation promotes angiogenesis, tumor growth/survival, and metastasis. In addition, CXCR4 is involved in HIV replication, working as a co-receptor for viral entry, making CXCR4 a very attractive target for developing novel therapeutic agents. Here we report the pharmacokinetic profile in rats of a potent CXCR4 antagonist cyclotide, MCo-CVX-5c, previously developed in our group that displayed a remarkable in vivo resistance to biological degradation in serum. This bioactive cyclotide, however, was rapidly eliminated through renal clearance. Several lipidated versions of cyclotide MCo-CVX-5c showed a significant increase in the half-life when compared to the unlipidated form. The palmitoylated version of cyclotide MCo-CVX-5c displayed similar CXCR4 antagonistic activity as the unlipidated cyclotide, while the cyclotide modified with octadecanedioic (18-oxo-octadecanoic) acid exhibited a remarkable decrease in its ability to antagonize CXCR4. Similar results were also obtained when tested for its ability to inhibit growth in two cancer cell lines and HIV infection in cells. These results show that the half-life of cyclotides can be improved by lipidation although it can also affect their biological activity depending on the lipid employed.
Collapse
Affiliation(s)
- Dipankar Chaudhuri
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tiangong Lu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79430, USA
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79430, USA
| | - Michael A Poss
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ 08543, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033, USA.
| |
Collapse
|