1
|
Song C, Ling H, Yang G, Ding J. Microenvironments‐Targeted Nanomaterials for Atherosclerosis Therapy. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202421512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 05/14/2025]
Abstract
AbstractAtherosclerosis significantly contributes to cardiovascular disease. Traditional treatments for atherosclerosis, such as pharmacological interventions and surgical procedures, have demonstrated limited efficacy and often yield unsatisfactory results. Consequently, safe and effective therapeutic strategies are urgently needed. The atherosclerotic microenvironments, characterized by inflammation driven by foam cells, damaged endothelial cells, recruited leukocytes, lipoproteins, and inflammatory mediators, play a key role in disease progression. By leveraging the biological components and physicochemical properties of these microenvironments, researchers have developed microenvironments‐targeted nanomaterials as a promising approach to treat atherosclerosis. These nanomaterials aim to address and eliminate inflammatory processes. Their functions include repairing endothelial damage, reducing lipoprotein accumulation, inhibiting leukocyte chemotaxis, suppressing foam cell formation, delaying plaque rupture, and preventing thrombosis within the plaque. This review highlights the therapeutic mechanisms and effects of nanomaterials targeting key processes in atherosclerotic microenvironments. Finally, the challenges and prospects of nanomaterial‐based therapies for atherosclerosis are discussed to inspire the development of nanomaterials that modulate atherosclerotic microenvironments, potentially leading to promising clinical applications.
Collapse
Affiliation(s)
- Chunli Song
- Department of General Practice The Second Hospital of Jilin University 4026 Yatai Street Changchun 130041 P. R. China
| | - Hao Ling
- Department of General Practice The Second Hospital of Jilin University 4026 Yatai Street Changchun 130041 P. R. China
| | - Guanqing Yang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
2
|
Zheng Y, Kou J, Gao X, Guo J, Liu Q, Ren H, Gao T, Wang Q, Zhao Y, Wang Y, Li H, Yang L. Berberine Inhibited SASP-Related Inflammation through RXRα/PPARγ/NEDD4 Pathway in Atherosclerosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:251-283. [PMID: 39829230 DOI: 10.1142/s0192415x25500107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The accumulation of aging cells significantly contributes to chronic inflammatory diseases such as atherosclerosis. Human carotid artery single-cell sequencing has shown that large numbers of aging foam cells are present in the plaques of human patients. Berberine (BBR) has been shown to inhibit cell senescence, however, the mechanisms involved in its treatment of atherosclerotic senescence have not yet been determined. Changes in plaque morphology and blood chemistry were observed in ApoE[Formula: see text] mice fed with a high-fat diet before and after BBR treatment. Inflammatory proteins linked to the senescence-associated secretory phenotypes (SASP) were detected in RAW264.7 and peritoneal macrophage-derived foam cells. Smart-seq analysis was used to explore the pathways associated with BBR therapy for atherosclerosis. Finally, the effect of lentivirus-mediated knockdown of RXRα in macrophages in plaques on atherosclerosis treatment with BBR was determined. We found that BBR reduced inflammation linked to SASP in atherosclerosis through the RXRα/PPARγ/NEDD4 signaling pathway. BBR increased GATA4 binding to p62, promoted ubiquitination, and inhibited SASP-associated protein production in RAW264.7 and peritoneal macrophage-derived foam cells. Mechanistically, according to the Smart-seq results, BBR activated RXRα and PPARγ, synergistically increased NEDD4 transcription levels, and promoted ubiquitination-mediated degradation of the GATA4/p62 complex. Additionally, the anti-aging impact of BBR on atherosclerosis was negated when macrophage-specific RXRα was knocked down using lentivirus (pLVCD68-shRNA RXRα) in ApoE[Formula: see text] mice. BBR activated PPARγ through RXRα-PPARγ immune complex in macrophage-derived foam cells, increased NEDD4 transcriptional activity, promoted ubiquitination of GATA4-p62 complex, and inhibited SASP-related inflammation. These findings suggest the potential of BBR as a novel approach to addressing SASP-associated inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Yinghong Zheng
- Department of Pharmacology, Tianjin Medical University 22 Qixiangtai Road, Heping District, Tianjin 300070, P. R. China
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Xi Gao
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Jinxiang Guo
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Qian Liu
- Department of Pharmacology, Tianjin Medical University 22 Qixiangtai Road, Heping District, Tianjin 300070, P. R. China
| | - Huiwen Ren
- Department of Pharmacology, Tianjin Medical University 22 Qixiangtai Road, Heping District, Tianjin 300070, P. R. China
| | - Tielei Gao
- Department of Forensic Medicine, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Qianbing Wang
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Yajie Zhao
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Yuqin Wang
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Hong Li
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
- Department of Cardiology The Second Affiliated Hospital of Harbin Medical University Harbin, P. R. China
| |
Collapse
|
3
|
Wang L, Zhang X, Zhang H, Wang X, Ren X, Bian W, Shi C, Wang J, Li L, Zhang R, Zhang H. Novel Metal-Free Nanozyme for Targeted Imaging and Inhibition of Atherosclerosis via Macrophage Autophagy Activation to Prevent Vulnerable Plaque Formation and Rupture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51944-51956. [PMID: 39287614 PMCID: PMC11450685 DOI: 10.1021/acsami.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Atherosclerosis is a primary cause of cardiovascular and cerebrovascular diseases, with the unpredictable rupture of vulnerable atherosclerotic plaques enriched with lipid-laden macrophages being able to lead to heart attacks and strokes. Activating macrophage autophagy presents itself as a promising strategy for preventing vulnerable plaque formation and reducing the risk of rupture. In this study, we have developed a novel metal-free nanozyme (HCN@DS) that integrates the functions of multimodal imaging-guided therapy for atherosclerosis. HCN@DS has demonstrated high macrophage-targeting abilities due to its affinity toward scavenger receptor A (SR-A), along with excellent photoacoustic and photothermal imaging capabilities for guiding the precise treatment. It combines mild photothermal effects with moderate reactive oxygen species (ROS) generation to treat atherosclerosis. This controlled approach activates autophagy in atherosclerotic macrophages, inhibiting foam cell formation by reducing the uptake of oxidized low-density lipoproteins (oxLDL) and promoting efferocytosis and cholesterol efflux in macrophages. Additionally, it prevents plaque rupture by inhibiting apoptosis and inflammation within the plaque. Therefore, this metal-free nanozyme holds great potential for reducing the risk of atherosclerosis due to its high biosafety, excellent targeting ability, dual-modality imaging capability, and appropriate modulation of autophagy.
Collapse
Affiliation(s)
- Lingjie Wang
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
| | - Xiaoqian Zhang
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
- Department
of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongrong Zhang
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
| | - Xiaozhe Wang
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
| | - Xiaofeng Ren
- Department
of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Bian
- Department
of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Caiyun Shi
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
| | - Jingying Wang
- Shanxi
Provincial Center for Disease Control and Prevention, Taiyuan 030001, China
| | - Liping Li
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
- Department
of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
- Department
of Medical Imaging, Shanxi Provincial Peoples
Hospital, Taiyuan 030001, China
| | - Hua Zhang
- Department
of Medical Imaging, First Hospital of Shanxi
Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
Chen X, Yong Z, Xiong Y, Yang H, Xu C, Wang X, Deng Q, Li J, Yang X, Li Z. Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems. Asian J Pharm Sci 2024; 19:100950. [PMID: 39497748 PMCID: PMC11532429 DOI: 10.1016/j.ajps.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 11/07/2024] Open
Abstract
Photodynamic therapy (PDT) can produce high levels of reactive oxygen species (ROS) to kill tumor cells and induce antitumor immunity. However, intracellular antioxidant systems, including glutathione (GSH) system and thioredoxin (Trx) system, limit the accumulation of ROS, resulting in compromised PDT and insufficient immune stimulation. Herein, we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a (PPa) and cisplatin prodrug Pt-COOH(IV) (Pt (IV)) based on hydroxyethyl starch (HES) to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses. Specifically, HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt (IV), and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt (IV). PtHPs improved PPa photostability while retaining PPa photodynamic properties. In vitro experiments showed that PtHPs reduced GSH, inhibited Trx system and had better cell-killing effect and ROS generation ability. Subcutaneous tumor models showed that PtHPs had good safety and tumor inhibition effect. Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells, induced T cell-mediated immune responses, and thus suppressed the growth of both primary and distal tumors. This study reports a novel platinum-based nanomedicine and provides a new strategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengtao Yong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zifu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Singh SK, Parihar S, Jain S, Ho JAA, Vankayala R. Light-responsive functional nanomaterials as pioneering therapeutics: a paradigm shift to combat age-related disorders. J Mater Chem B 2024; 12:8212-8234. [PMID: 39058026 DOI: 10.1039/d4tb00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies. They fail to address the issues compounded by altered pharmacokinetics in the elderly. Nanotechnology emerges as a transformative solution, offering tissue-specific targeted therapies through nanoparticles. Functional nanomaterials (FNMs) respond to internal or external stimuli, with light-responsive nanomaterials gaining prominence. Harnessing the benefits of deep tissue penetration and ease of manipulation particularly in the near-infrared spectrum, light-responsive FNMs present innovative strategies for age-related comorbidities. This review comprehensively summarizes the potential of light-responsive FNM-based approaches for targeting cellular environments in age-related disorders, and also emphasizes the advantages over traditional treatment modalities. Specifically, it focuses on the development of various classes of light-responsive functional nanomaterials including plasmonic nanomaterials, nanomaterials as carriers, upconversion nanomaterials, 2D nanomaterials, transition metal oxide and dichalcogenide nanomaterials and carbon-based nanomaterials against age related diseases. We foresee that such advanced developments in the field of nanotechnology could provide a new hope for clinical diagnosis and treatment of age-related disorders.
Collapse
Affiliation(s)
- Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shivay Parihar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Sanskar Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
7
|
Kim JH, Song JW, Kim YH, Kim HJ, Kim RH, Park YH, Nam HS, Kang DO, Yoo H, Park K, Kim JW. Multimodal Imaging-Assisted Intravascular Theranostic Photoactivation on Atherosclerotic Plaque. Circ Res 2024; 135:e114-e132. [PMID: 38989585 DOI: 10.1161/circresaha.123.323970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease causing a fatal plaque rupture, and its key aspect is a failure to resolve inflammation. We hypothesize that macrophage-targeted near-infrared fluorescence emitting photoactivation could simultaneously assess macrophage/lipid-rich plaques in vivo and facilitate inflammation resolution. METHODS We fabricated a Dectin-1-targeted photoactivatable theranostic agent through the chemical conjugation of the near-infrared fluorescence-emitting photosensitizer chlorin e6 and the Dectin-1 ligand laminarin (laminarin-chlorin e6 [LAM-Ce6]). Intravascular photoactivation by a customized fiber-based diffuser after administration of LAM-Ce6 effectively reduced inflammation in the targeted plaques of atherosclerotic rabbits in vivo as serially assessed by dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular catheter imaging after 4 weeks. RESULTS The number of apoptotic macrophages peaked at 1 day after laser irradiation and then resolved until 4 weeks. Autophagy was strongly augmented 1 hour after the light therapy, with the formation of autophagolysosomes. LAM-Ce6 photoactivation increased the terminal deoxynucleotidyl transferase dUTP (deoxyuridine triphosphate) nick end labeling/RAM11 (rabbit monocyte/macrophage antibody)- and MerTK (c-Mer tyrosine kinase)-positive cells in the plaques, suggesting enhanced efferocytosis. In line with inflammation resolution, photoactivation reduced the plaque burden through fibrotic replacement via the TGF (transforming growth factor)-β/CTGF (connective tissue growth factor) pathway. CONCLUSIONS Optical coherence tomography-near-infrared fluorescence imaging-guided macrophage Dectin-1-targetable photoactivation could induce the transition of macrophage/lipid-rich plaques into collagen-rich lesions through autophagy-mediated inflammation resolution and TGF-β-dependent fibrotic replacement. This novel strategy offers a new opportunity for the catheter-based theranostic strategy.
Collapse
Affiliation(s)
- Jin Hyuk Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea (J.H.K., J.W.K.)
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Joon Woo Song
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Yeon Hoon Kim
- Department of Mechanical Engineering, KAIST, Daejeon, Korea (Y.H.K., H.S.N., H.Y.)
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Ye Hee Park
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Hyeong Soo Nam
- Department of Mechanical Engineering, KAIST, Daejeon, Korea (Y.H.K., H.S.N., H.Y.)
| | - Dong Oh Kang
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST, Daejeon, Korea (Y.H.K., H.S.N., H.Y.)
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Korea (K.P.)
| | - Jin Won Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea (J.H.K., J.W.K.)
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| |
Collapse
|
8
|
Zhou X, Medina-Ramirez IE, Su G, Liu Y, Yan B. All Roads Lead to Rome: Comparing Nanoparticle- and Small Molecule-Driven Cell Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310966. [PMID: 38616767 DOI: 10.1002/smll.202310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Autophagy, vital for removing cellular waste, is triggered differently by small molecules and nanoparticles. Small molecules, like rapamycin, non-selectively activate autophagy by inhibiting the mTOR pathway, which is essential for cell regulation. This can clear damaged components but may cause cytotoxicity with prolonged use. Nanoparticles, however, induce autophagy, often causing oxidative stress, through broader cellular interactions and can lead to a targeted form known as "xenophagy." Their impact varies with their properties but can be harnessed therapeutically. In this review, the autophagy induced by nanoparticles is explored and small molecules across four dimensions: the mechanisms behind autophagy induction, the outcomes of such induction, the toxicological effects on cellular autophagy, and the therapeutic potential of employing autophagy triggered by nanoparticles or small molecules. Although small molecules and nanoparticles each induce autophagy through different pathways and lead to diverse effects, both represent invaluable tools in cell biology, nanomedicine, and drug discovery, offering unique insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, 071100, China
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av Universidad 940, Aguascalientes, Aguascalientes, México
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 10024, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Lin Y, Xie R, Yu T. Photodynamic Therapy for Atherosclerosis: Past, Present, and Future. Pharmaceutics 2024; 16:729. [PMID: 38931851 PMCID: PMC11206729 DOI: 10.3390/pharmaceutics16060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This review paper examines the evolution of photodynamic therapy (PDT) as a novel, minimally invasive strategy for treating atherosclerosis, a leading global health concern. Atherosclerosis is characterized by the accumulation of lipids and inflammation within arterial walls, leading to significant morbidity and mortality through cardiovascular diseases such as myocardial infarction and stroke. Traditional therapeutic approaches have primarily focused on modulating risk factors such as hypertension and hyperlipidemia, with emerging evidence highlighting the pivotal role of inflammation. PDT, leveraging a photosensitizer, specific-wavelength light, and oxygen, offers targeted treatment by inducing cell death in diseased tissues while sparing healthy ones. This specificity, combined with advancements in nanoparticle technology for improved delivery, positions PDT as a promising alternative to traditional interventions. The review explores the mechanistic basis of PDT, its efficacy in preclinical studies, and the potential for enhancing plaque stability and reducing macrophage density within plaques. It also addresses the need for further research to optimize treatment parameters, mitigate adverse effects, and validate long-term outcomes. By detailing past developments, current progress, and future directions, this paper aims to highlight PDT's potential in revolutionizing atherosclerosis treatment, bridging the gap from experimental research to clinical application.
Collapse
Affiliation(s)
- Yanqing Lin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
10
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
11
|
Mytych W, Bartusik-Aebisher D, Łoś A, Dynarowicz K, Myśliwiec A, Aebisher D. Photodynamic Therapy for Atherosclerosis. Int J Mol Sci 2024; 25:1958. [PMID: 38396639 PMCID: PMC10888721 DOI: 10.3390/ijms25041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.
Collapse
Affiliation(s)
- Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Aleksandra Łoś
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
12
|
Xu M, Cui Y, Wei S, Cong X, Chen Y, Tian S, Yao A, Chen W, Weng L. Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). Int J Mol Med 2024; 53:13. [PMID: 38063240 PMCID: PMC10760796 DOI: 10.3892/ijmm.2023.5337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Macrophages, as highly heterogeneous and plastic immune cells, occupy a pivotal role in both pro‑inflammatory (M1) and anti‑inflammatory (M2) responses. While M1‑type macrophages secrete pro‑inflammatory factors to initiate and sustain inflammation, M2‑type macrophages promote inflammation regression and uphold tissue homeostasis. These distinct phenotypic transitions in macrophages are closely linked to significant alterations in cellular metabolism, encompassing key response pathways such as glycolysis, pentose phosphate pathway, oxidative phosphorylation, lipid metabolism, amino acid metabolism, the tricarboxylic acid cycle and iron metabolism. These metabolic adaptations enable macrophages to adapt their activities in response to varying disease microenvironments. Therefore, the present review focused primarily on elucidating the intricate metabolic pathways that underlie macrophage functionality. Subsequently, it offers a comprehensive overview of the current state‑of‑the‑art nanomaterials, highlighting their promising potential in modulating macrophage metabolism to effectively hinder disease progression in both cancer and atherosclerosis.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Siyuan Wei
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Xuelong Cong
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Yiying Chen
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Shujie Tian
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Anqi Yao
- RDFZ Chaoyang Branch School, Beijing 100028, P.R. China
| | - Weiwei Chen
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
13
|
Huang J, Xu S, Liu L, Zhang J, Xu J, Zhang L, Zhou X, Huang L, Peng J, Wang J, Gong Z, Chen Y. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target 2023; 31:1111-1127. [PMID: 37962293 DOI: 10.1080/1061186x.2023.2284093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Jiangsu, Nanjing, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Wang DP, Zheng J, Jiang FY, Wu LF, Wang MY, Wang YL, Qin CY, Ning JY, Cao JM, Zhou X. Facile and green fabrication of tumor- and mitochondria-targeted AIEgen-protein nanoparticles for imaging-guided photodynamic cancer therapy. Acta Biomater 2023; 168:551-564. [PMID: 37414113 DOI: 10.1016/j.actbio.2023.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In recent years, aggregation-induced emission (AIE)-active materials have been emerging as a promising means for bioimaging and phototherapy. However, the majority of AIE luminogens (AIEgens) need to be encapsulated into versatile nanocomposites to improve their biocompatibility and tumor targeting. Herein, we prepared a tumor- and mitochondria-targeted protein nanocage by the fusion of human H-chain ferritin (HFtn) with a tumor homing and penetrating peptide LinTT1 using genetic engineering technology. The LinTT1-HFtn could serve as a nanocarrier to encapsulate AIEgens via a simple pH-driven disassembly/reassembly process, thereby fabricating the dual-targeting AIEgen-protein nanoparticles (NPs). The as designed NPs exhibited an improved hepatoblastoma-homing property and tumor penetrating ability, which is favorable for tumor-targeted fluorescence imaging. The NPs also presented a mitochondria-targeting ability, and efficiently generated reactive oxygen species (ROS) upon visible light irradiation, making them valuable for inducing efficient mitochondrial dysfunction and intrinsic apoptosis in cancer cells. In vivo experiments demonstrated that the NPs could provide the accurate tumor imaging and dramatic tumor growth inhibition with minimal side effects. Taken together, this study presents a facile and green approach for fabrication of tumor- and mitochondria-targeted AIEgen-protein NPs, which can serve as a promising strategy for imaging-guided photodynamic cancer therapy. STATEMENT OF SIGNIFICANCE: AIE luminogens (AIEgens) show strong fluorescence and enhanced ROS generation in the aggregate state, which would facilitate the image-guided photodynamic therapy [12-14]. However, the major obstacles that hinder biological applications are their lack of hydrophilicity and selective targeting [15]. To address this issue, this study presents a facile and green approach for the fabrication of tumor‑ and mitochondria‑targeted AIEgen-protein nanoparticles via a simple disassembly/reassembly of the LinTT1 peptide-functionalized ferritin nanocage without any harmful chemicals or chemical modification. The targeting peptide-functionalized nanocage not only restricts the intramolecular motion of AIEgens leading to enhanced fluorescence and ROS production, but also confers good targeting to AIEgens.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jian Zheng
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan 030001, China
| | - Fang-Ying Jiang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Mei-Yue Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yu-Lan Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Chuan-Yue Qin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jun-Ya Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
15
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
16
|
Wu G, Yu G, Zheng M, Peng W, Li L. Recent Advances for Dynamic-Based Therapy of Atherosclerosis. Int J Nanomedicine 2023; 18:3851-3878. [PMID: 37469455 PMCID: PMC10352141 DOI: 10.2147/ijn.s402678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/06/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which may lead to high morbidity and mortality. Currently, the clinical treatment strategy for AS is administering drugs and performing surgery. However, advanced therapy strategies are urgently required because of the deficient therapeutic effects of current managements. Increased number of energy conversion-based organic or inorganic materials has been used in cancer and other major disease treatments, bringing hope to patients with the development of nanomedicine and materials. These treatment strategies employ specific nanomaterials with specific own physiochemical properties (external stimuli: light or ultrasound) to promote foam cell apoptosis and cholesterol efflux. Based on the pathological characteristics of vulnerable plaques, energy conversion-based nano-therapy has attracted increasing attention in the field of anti-atherosclerosis. Therefore, this review focuses on recent advances in energy conversion-based treatments. In addition to summarizing the therapeutic effects of various techniques, the regulated pathological processes are highlighted. Finally, the challenges and prospects for further development of dynamic treatment for AS are discussed.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Guanye Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Meiling Zheng
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 101121, People’s Republic of China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Lei Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
17
|
Zou L, Zhang Y, Cheraga N, Abodunrin OD, Qu KY, Qiao L, Ma YQ, Chen LJ, Huang NP. Chlorin e6 (Ce6)-loaded plaque-specific liposome with enhanced photodynamic therapy effect for atherosclerosis treatment. Talanta 2023; 265:124772. [PMID: 37327664 DOI: 10.1016/j.talanta.2023.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Recently, photodynamic therapy (PDT) has been considered as a new strategy for atherosclerosis treatment. Targeted delivery of photosensitizer could significantly reduce its toxicity and enhance its phototherapeutic efficiency. CD68 is an antibody that can be conjugated to nano-drug delivery systems to actively target plaque sites, owing to its specific binding to CD68 receptors that are highly expressed on the surfaces of macrophage-derived foam cells. Liposomes are very popular nanocarriers due to their ability to encapsulate a wide range of therapeutic compounds including drugs, microRNAs and photosensitizers, and their ability to be surface-modified with targeting moieties leading to the development of nanocarriers with an improved targeted ability. Hence, we designed a Ce6-loaded liposomes using the film dispersion method, followed by the conjugation of CD68 antibody on the liposomal surface through a covalent crosslinking reaction, forming CD68-modified Ce6-loaded liposomes (CD68-Ce6-mediated liposomes). Flow cytometry results indicated that Ce6-containing liposomes were more effective in promoting intracellular uptake after laser irradiation. Furthermore, CD68-modified liposomes significantly strengthened the cellular recognization and thus internalization. Different cell lines have been incubated with the liposomes, and the results showed that CD68-Ce6-mediated liposomes had no significant cytotoxicity to coronary artery endothelial cells (HCAEC) under selected conditions. Interestingly, they promoted autophagy in foam cells through the increase in LC3-Ⅰ, LC3-Ⅱ expression and the decrease in p62 expression, and restrained the migration of mouse aortic vascular smooth muscle cells (MOVAS) in vitro. Moreover, the enhancement of atherosclerotic plaque stability and the reduction in the cholesterol content by CD68-Ce6-mediated liposomes were dependent on transient reactive oxygen species (ROS) generated under laser irradiation. In summary, we demonstrated that CD68-Ce6-mediated liposomes, as a photosensitizer nano-drug delivery system, have an inhibitory effect on MOVAS migration and a promotion of cholesterol efflux in foam cells, and thereby, represent promising nanocarriers for atherosclerosis photodynamic therapy.
Collapse
Affiliation(s)
- Lin Zou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Nihad Cheraga
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Oluwatosin David Abodunrin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kai-Yun Qu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu-Qing Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing, 211200, China.
| | - Ning-Ping Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
18
|
Jeong SJ, Oh GT. Unbalanced Redox With Autophagy in Cardiovascular Disease. J Lipid Atheroscler 2023; 12:132-151. [PMID: 37265853 PMCID: PMC10232220 DOI: 10.12997/jla.2023.12.2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Precise redox balance is essential for the optimum health and physiological function of the human body. Furthermore, an unbalanced redox state is widely believed to be part of numerous diseases, ultimately resulting in death. In this review, we discuss the relationship between redox balance and cardiovascular disease (CVD). In various animal models, excessive oxidative stress has been associated with increased atherosclerotic plaque formation, which is linked to the inflammation status of several cell types. However, various antioxidants can defend against reactive oxidative stress, which is associated with an increased risk of CVD and mortality. The different cardiovascular effects of these antioxidants are presumably due to alterations in the multiple pathways that have been mechanistically linked to accelerated atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell survival mechanism that removes dysfunctional or damaged cellular organelles and recycles the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling between cells, autophagy protects against plaque formation. In this review, we characterize the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy in the content of redox balance-associated pathways in atherosclerosis, and discuss potential therapeutic approaches to target CVD by stimulating autophagy.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
19
|
Wang L, Karges J, Wei F, Xie L, Chen Z, Gasser G, Ji L, Chao H. A mitochondria-localized iridium(iii) photosensitizer for two-photon photodynamic immunotherapy against melanoma. Chem Sci 2023; 14:1461-1471. [PMID: 36794192 PMCID: PMC9906708 DOI: 10.1039/d2sc06675k] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/13/2023] Open
Abstract
Conventional photodynamic therapy mainly causes a therapeutic effect on the primary tumor through the localized generation of reactive oxygen species, while metastatic tumors remain poorly affected. Complementary immunotherapy is effective in eliminating small, non-localized tumors distributed across multiple organs. Here, we report the Ir(iii) complex Ir-pbt-Bpa as a highly potent immunogenic cell death inducing photosensitizer for two-photon photodynamic immunotherapy against melanoma. Ir-pbt-Bpa can produce singlet oxygen and superoxide anion radicals upon light irradiation, causing cell death by a combination of ferroptosis and immunogenic cell death. In a mouse model with two physically separated melanoma tumors, although only one of the primary tumors was irradiated, a strong tumor reduction of both tumors was observed. Upon irradiation, Ir-pbt-Bpa not only induced the immune response of CD8+ T cells and the depletion of regulatory T cells, but also caused an increase in the number of the effector memory T cells to achieve long-term anti-tumor immunity.
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- Public Research Center, Hainan Medical University Haikou 571199 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150 44780 Bochum Germany
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology Paris 75005 France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
20
|
Chen D, Zhang Y, Long W, Chai L, Myint TP, Zhou W, Zhou L, Wang M, Guo L. Visible light-driven photodynamic therapy for hypertrophic scars with MOF armored microneedles patch. Front Chem 2023; 11:1128255. [PMID: 36874068 PMCID: PMC9978826 DOI: 10.3389/fchem.2023.1128255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Photodynamic therapy (PDT) is widely used for the treatment of hypertrophic scars in clinical practice. However, the low transdermal delivery of photosensitizers in scar tissue and protective autophagy induced by Photodynamic therapy greatly reduces the therapeutic efficiency. Therefore, it is necessary to deal with these difficulties for overcoming obstacles in Photodynamic therapy treatment. In this study, a photosensitizer with photocatalytic performance was designed and synthesized using innovative MOFs (metal-organic frameworks). Additionally, the MOFs, together with an autophagy inhibitor chloroquine (CQ), was loaded in a high mechanical strength microneedle patch (MNP) for transdermal delivery. With these functionalized MNP, photosensitizers and chloroquine were delivered deep inside hypertrophic scars. Inhibition of autophagy increases the levels of reactive oxygen species (ROS) under high-intensity visible-light irradiation. Multiprong approaches have been used to remove obstacles in Photodynamic therapy and successfully enhance its anti-scarring effect. In vitro experiments indicated that the combined treatment increased the toxicity of hypertrophic scar fibroblasts (HSFs), downregulated the level of collagen type I expression as well as transforming growth factor-β1 (TGF-β1)expression, decreased the autophagy marker protein LC3II/I ratio, increased the expression of P62. In vivo experiments showed that the MNP had good puncture performance, and significant therapeutic effects were observed in the rabbit ear scar model. These results indicate that functionalized MNP has high potential clinical value.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yixuan Zhang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Long
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Thazin Phoone Myint
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
22
|
Tao Y, Liu Y, Dong Z, Chen X, Wang Y, Li T, Li J, Zang S, He X, Chen D, Zhao Z, Li M. Cellular Hypoxia Mitigation by Dandelion-like Nanoparticles for Synergistic Photodynamic Therapy of Oral Squamous Cell Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44039-44053. [PMID: 36153957 DOI: 10.1021/acsami.2c10021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypoxia at the tumor site limits the therapeutic effects of photodynamic therapy (PDT) in oral squamous cell carcinoma (OSCC), which is an oxygen-consumption process. Inhibiting cellular oxygen consumption and reducing cellular ATP production are expected to enhance PDT. In this study, we designed and constructed dandelion-like size-shrinkable nanoparticles for tumor-targeted delivery of hypoxia regulator resveratrol (RES) and photodynamic agent chlorine e6 (CE6). Both drugs were co-encapsulated in small-sized micelles modified with EGFR targeting ligand GE11, which was further conjugated on hyaluronic nanogel (NG) to afford RC-GMN. After targeted accumulation in tumors mediated by GE11 and enhanced penetration and retention (EPR) effects, RC-GMN was degraded by hyaluronidase (HAase) and resulted in small-sized micelles, allowing for deep penetration and dual-receptor-mediated cellular internalization. Resveratrol inhibited cellular oxygen consumption and provided sufficient oxygen for PDT, which consequently activated PDT to produce reactive oxygen species (ROS). Notably, we found that autophagy was overactivated in PDT, which was further strengthened by the hypoxia regulator resveratrol, elevating autophagic cell death. The synergistic effects of resveratrol and CE6 promoted autophagic cell death and apoptosis in the enhanced PDT, resulting in stronger antitumor effects in the orthotopic OSCC model. Therefore, the facilitated delivery of hypoxia regulator enhanced PDT efficacy by elevating oxygen content in tumor cells and inducing autophagic cell death and apoptosis, which offers an alternative strategy for enhancing the PDT effects against OSCC.
Collapse
Affiliation(s)
- Yuan Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yingke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoxiao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ting Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
23
|
Tong L, Zhang S, Huang R, Yi H, Wang JW. Extracellular vesicles as a novel photosensitive drug delivery system for enhanced photodynamic therapy. Front Bioeng Biotechnol 2022; 10:1032318. [PMID: 36237218 PMCID: PMC9550933 DOI: 10.3389/fbioe.2022.1032318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive therapeutic approach that utilizes photosensitizers (PSs) to generate highly reactive oxygen species (ROS), including singlet oxygen, for removal of targeted cells. PDT has been proven efficacious for the treatment of several diseases, including cancer, cardiovascular disease, inflammatory bowel disease, and diabetic ocular disease. However, the therapeutic efficacy of PDT is limited and often accompanied by side effects, largely due to non-specific delivery of PSs beyond the desired lesion site. Over the past decade, despite various nanoparticular drug delivery systems developed have markedly improved the treatment efficacy while reducing the off-target effects of PSs, concerns over the safety and toxicity of synthetic nanomaterials following intravenous administration are raised. Extracellular vesicles (EVs), a type of nanoparticle released from cells, are emerging as a natural drug delivery system for PSs in light of EV's potentially low immunogenicity and biocompatibility compared with other nanoparticles. This review aims to provide an overview of the research progress in PS delivery systems and propose EVs as an alternative PS delivery system for PDT. Moreover, the challenges and future perspectives of EVs for PS delivery are discussed.
Collapse
Affiliation(s)
- Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
25
|
Mu D, Wang X, Wang H, Sun X, Dai Q, Lv P, Liu R, Qi Y, Xie J, Xu B, Zhang B. Chemiexcited Photodynamic Therapy Integrated in Polymeric Nanoparticles Capable of MRI Against Atherosclerosis. Int J Nanomedicine 2022; 17:2353-2366. [PMID: 35645560 PMCID: PMC9130048 DOI: 10.2147/ijn.s355790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Xin Wang
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Huiting Wang
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Xuan Sun
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Qing Dai
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Pin Lv
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Renyuan Liu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Yu Qi
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Jun Xie
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
| | - Biao Xu
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, People’s Republic of China
- Correspondence: Biao Xu; Bing Zhang, Email ;
| | - Bing Zhang
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People’s Republic of China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| |
Collapse
|
26
|
Song Y, Jing H, Vong LB, Wang J, Li N. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Bing-Shuai ZHOU, Shi-Han XU, Song-Tao HU, Li-Heng SUN, Jie-Kai LYU, Rui SUN, Wei LIU, Xue BAI, Lin XU, Lin WANG, Bing HAN, Biao DONG. Recent progress of upconversion nanoparticles in the treatment and detection of various diseases. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 2022; 78:557-572. [DOI: 10.1007/s13105-021-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
|
30
|
Pallavi P, Girigoswami A, Girigoswami K, Hansda S, Ghosh R. Photodynamic Therapy in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1285-1308. [DOI: 10.1007/978-981-16-5422-0_232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
31
|
Liang X, Chen M, Bhattarai P, Hameed S, Tang Y, Dai Z. Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles. ACS NANO 2021; 15:20164-20180. [PMID: 34898184 DOI: 10.1021/acsnano.1c08108] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials that combine multimodality imaging and therapeutic functions within a single nanoplatform have drawn extensive attention for molecular medicines and biological applications. Herein, we report a theranostic nanoplatform based on a relatively smaller (<20 nm) iron oxide loaded porphyrin-grafted lipid nanoparticles (Fe3O4@PGL NPs). The amphiphilic PGL easily self-assembled on the hydrophobic exterior surface of ultrasmall Fe3O4 NPs, resulting in a final ultrasmall Fe3O4@PGL NPs with diameter of ∼10 nm. The excellent self-assembling nature of the as-synthesized PGL NPs facilitated a higher loading of porphyrins, showed a negligible dark toxicity, and demonstrated an excellent photodynamic effect against HT-29 cancer cells in vitro. The in vivo experimental results further confirmed that Fe3O4@PGL NPs were ideally qualified for both the fluorescence and magnetic resonance (MR) imaging guided nanoplatforms to track the biodistribution and therapeutic responses of NPs as well as to simultaneously trigger the generation of highly cytotoxic reactive oxygen species (ROS) necessary for excellent photodynamic therapy (PDT). After recording convincing therapeutic responses, we further evaluated the ability of Fe3O4@PGL NPs/Fe3O4@Lipid NPs for ferroptosis therapy (FT) via tumor microenvironment (TME) modulation for improved anticancer activity. We hypothesized that tumor-associated macrophages (TAMs) could significantly improve the efficacy of FT by accelerating the Fenton reaction in vitro. In our results, the Fe ions released in vitro directly contributed to the Fenton reaction, whereas the presence of RAW 264.7 macrophages further accelerated the ROS generation as observed by the fluorescence imaging. The significant increase in the ROS during the coincubation of NPs, endocytosed by HT-29 cells and RAW264.7 cells, further induced increased cellular toxicity of cancer cells.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Min Chen
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Department of Biophotonics, Phutung Research Institute, Kathmandu 12335, Nepal
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Yida Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Zhu W, Wei Z, Han C, Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3346. [PMID: 34947695 PMCID: PMC8707825 DOI: 10.3390/nano11123346] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
In recent decades, with the rapid development of nanotechnology, nanomaterials have been widely used in the medical field, showing great potential due to their unique physical and chemical properties including minimal size and functionalized surface characteristics. Nanomaterials such as metal nanoparticles and polymeric nanoparticles have been extensively studied in the diagnosis and treatment of diseases that seriously threaten human life and health, and are regarded to significantly improve the disadvantages of traditional diagnosis and treatment platforms, such as poor effectiveness, low sensitivity, weak security and low economy. In this review, we report and discuss the development and application of nanomaterials in the diagnosis and treatment of diseases based mainly on published research in the last five years. We first briefly introduce the improvement of several nanomaterials in imaging diagnosis and genomic sequencing. We then focus on the application of nanomaterials in the treatment of diseases, and select three diseases that people are most concerned about and that do the most harm: tumor, COVID-19 and cardiovascular diseases. First, we introduce the characteristics of nanoparticles according to the excellent effect of nanoparticles as delivery carriers of anti-tumor drugs. We then review the application of various nanoparticles in tumor therapy according to the classification of nanoparticles, and emphasize the importance of functionalization of nanomaterials. Second, COVID-19 has been the hottest issue in the health field in the past two years, and nanomaterials have also appeared in the relevant treatment. We enumerate the application of nanomaterials in various stages of viral pathogenesis according to the molecular mechanism of the complete pathway of viral infection, pathogenesis and transmission, and predict the application prospect of nanomaterials in the treatment of COVID-19. Third, aiming at the most important causes of human death, we focus on atherosclerosis, aneurysms and myocardial infarction, three of the most common and most harmful cardiovascular diseases, and prove that nanomaterials could be involved in a variety of therapeutic approaches and significantly improve the therapeutic effect in cardiovascular diseases. Therefore, we believe nanotechnology will become more widely involved in the diagnosis and treatment of diseases in the future, potentially helping to overcome bottlenecks under existing medical methods.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
| | - Zhanqi Wei
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chang Han
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
33
|
Targeted theranostic photoactivation on atherosclerosis. J Nanobiotechnology 2021; 19:338. [PMID: 34689768 PMCID: PMC8543964 DOI: 10.1186/s12951-021-01084-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Photoactivation targeting macrophages has emerged as a therapeutic strategy for atherosclerosis, but limited targetable ability of photosensitizers to the lesions hinders its applications. Moreover, the molecular mechanistic insight to its phototherapeutic effects on atheroma is still lacking. Herein, we developed a macrophage targetable near-infrared fluorescence (NIRF) emitting phototheranostic agent by conjugating dextran sulfate (DS) to chlorin e6 (Ce6) and estimated its phototherapeutic feasibility in murine atheroma. Also, the phototherapeutic mechanisms of DS-Ce6 on atherosclerosis were investigated. Results The phototheranostic agent DS-Ce6 efficiently internalized into the activated macrophages and foam cells via scavenger receptor-A (SR-A) mediated endocytosis. Customized serial optical imaging-guided photoactivation of DS-Ce6 by light illumination reduced both atheroma burden and inflammation in murine models. Immuno-fluorescence and -histochemical analyses revealed that the photoactivation of DS-Ce6 produced a prominent increase in macrophage-associated apoptotic bodies 1 week after laser irradiation and induced autophagy with Mer tyrosine-protein kinase expression as early as day 1, indicative of an enhanced efferocytosis in atheroma. Conclusion Imaging-guided DS-Ce6 photoactivation was able to in vivo detect inflammatory activity in atheroma as well as to simultaneously reduce both plaque burden and inflammation by harmonic contribution of apoptosis, autophagy, and lesional efferocytosis. These results suggest that macrophage targetable phototheranostic nanoagents will be a promising theranostic strategy for high-risk atheroma. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01084-z.
Collapse
|
34
|
Yu TT, Sang XY, Han N, Peng XC, Li QR, Xu X, Xiao RC, Xu HZ, Chen X, Wang MF, Li TF. Macrophages mediated delivery of chlorin e6 and treatment of lung cancer by photodynamic reprogramming. Int Immunopharmacol 2021; 100:108164. [PMID: 34562845 DOI: 10.1016/j.intimp.2021.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is an emerging anti-tumor strategy.Photosensitizer chlorin e6 (Ce6) can induce photodynamic effect to selectively damage lung cancer cells.In order to further improve its tumor targeting ability, macrophages can be applied as carrier to deliver Ce6 to lung cancer.Tumor associated macrophages (TAM) are important immunocytes in lung cancer immune microenvironment. TAM play crucial role in tumor promotion due to the Immunosuppressive property, reprogramming phenotype of TAM therefore has become a promising strategy.Based on this, in the present study, we suppose that TAM can be used as carrier to deliver Ce6 to lung cancer and be reprogrammed to M1 phenotype by photodynamic action to mediate anti-lung cancer efficacy.The results showed TAM could load with Ce6 and keep viability in the absence of near infrared irradiation (NIR).Moreover, Its viability decreased little within 10 h after NIR.Ce6-loaded TAM could deliver Ce6 to lung cancer cells and retain some drugs in TAM per se.After NIR, phagocytosis of macrophages was enhanced. The expressions of GBP5, iNOS and MHC-II was up-regulated, which indicated TAM were polarized to M1 phenotype.Finally, the study also found the reprogrammed macrophages could inhibit the proliferation and promote the apoptosis of lung cancer cells.These results suggested that macrophages could deliver Ce6 to lung cancer and exhibit anti-lung cancer effect through photodynamic reprogramming.This study provides a novel approach for combining photodynamic action with anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Ting-Ting Yu
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xue-Yu Sang
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Ning Han
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xing-Chun Peng
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Qi-Rui Li
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Rong-Cheng Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| | - Tong-Fei Li
- Department of respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| |
Collapse
|
35
|
Xie Q, Peng J, Guo Y, Li F. MicroRNA-33-5p inhibits cholesterol efflux in vascular endothelial cells by regulating citrate synthase and ATP-binding cassette transporter A1. BMC Cardiovasc Disord 2021; 21:433. [PMID: 34517822 PMCID: PMC8438969 DOI: 10.1186/s12872-021-02228-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background A high level of total cholesterol is associated with several lipid metabolism disorders, including atherosclerosis and cardiovascular diseases. ATP-binding cassette (ABC) transporter A1 (ABCA1) and miR-33-5p play crucial roles in atherosclerosis by controlling cholesterol efflux. While citrate is a precursor metabolite for lipid and cholesterol synthesis, little is known about the association between citrate synthase (CS) and cholesterol efflux. This study investigated the role of the miR-33-5p/ABCA1/CS axis in regulating cholesterol efflux in vascular endothelial cells (VECs). Materials and methods VECs were treated with oxidized low-density lipoprotein cholesterol (ox-LDL), or pretreated with plasmids overexpressing CS, ABCA1, siRNAs against CS and ABCA1, and an miR-33-5p inhibitor. Cell apoptosis, cellular senescence-associated β-galactosidase activity, inflammation, and cholesterol efflux were detected. Results Treatment with ox-LDL decreased ABCA1 and CS levels and increased miR-33-5p expression and apoptosis in dose-dependent manners. In contrast, treatment with the miR-33-5p inhibitor and ABCA1 and CS overexpression plasmids inhibited the above-mentioned ox-LDL-induced changes. In addition, treatment with ox-LDL decreased cholesterol efflux, induced aging, and promoted the production of inflammatory cytokines (i.e., IL-6 and tumor necrosis factor TNF-α), as well as the expression of Bax and Caspase 3 proteins in VECs. All these changes were rescued by miR-33-5p inhibition and ABCA1 and CS overexpression. The inhibition of ABCA1 and CS by siRNAs eliminated the effects mediated by the miR-33-5p inhibitor, and knockdown of CS eliminated the effects of ABCA1 on VECs. Conclusions This study demonstrated the crucial roles played by the miR-33-5p/ABCA1/CS axis in regulating cholesterol efflux, inflammation, apoptosis, and aging in VECs, and also suggested the axis as a target for managing lipid metabolism disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02228-7.
Collapse
Affiliation(s)
- Qiong Xie
- Department of Cardiology, Hunan Provincial People's Hospital, The First Hospital Affiliated With Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Jianqiang Peng
- Department of Cardiology, Hunan Provincial People's Hospital, The First Hospital Affiliated With Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Ying Guo
- Department of Cardiology, Hunan Provincial People's Hospital, The First Hospital Affiliated With Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Feng Li
- Departments of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, middle Ren-Min Road No. 139, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Curcumin-mediated photodynamic therapy inhibits the phenotypic transformation, migration, and foaming of oxidized low-density lipoprotein-treated vascular smooth muscle cells by promoting autophagy. J Cardiovasc Pharmacol 2021; 78:308-318. [PMID: 34091481 PMCID: PMC8340951 DOI: 10.1097/fjc.0000000000001069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/02/2021] [Indexed: 02/05/2023]
Abstract
Supplemental Digital Content is Available in the Text. Vascular smooth muscle cells (VSMCs) are becoming a hot spot and target of atherosclerosis research. This study aimed to observe the specific effects of curcumin (CUR)-mediated photodynamic therapy (CUR-PDT) on oxidized low-density lipoprotein (ox-LDL)-treated VSMCs and confirm whether these effects are mediated by autophagy. In this study, the mouse aortic smooth muscle cell line and A7r5 cell lines were used for parallel experiments. VSMC viability was evaluated by Cell Counting Kit-8 assay. VSMCs were treated with ox-LDL to establish a model of atherosclerosis in vitro. The autophagy level and the expression of proteins related to phenotypic transformation were detected by western blotting. The migration ability of the cells was detected by using transwell assay. The presence of intracellular lipid droplets was detected by Oil Red O staining. The results showed that VSMCs transformed from the contraction phenotype to the synthetic phenotype when stimulated by ox-LDL, during which autophagy was inhibited. However, CUR-PDT treatment significantly promoted the level of autophagy and inhibited the process of phenotypic transformation induced by ox-LDL. In addition, ox-LDL significantly promoted VSMC migration and increased the number of lipid droplets, whereas CUR-PDT treatment significantly reduced the ox-LDL-induced increase in the migration ability of, and lipid droplet numbers in, VSMCs. When the VSMCs were pretreated with the autophagy inhibitor 3-methyladenine for 24 hours, the effects of CUR-PDT were reversed. Therefore, our study indicated that CUR-PDT can inhibit the phenotypic transformation, migration, and foaming of ox-LDL–treated VSMCs by inducing autophagy.
Collapse
|
37
|
Zhao Y, Qian Y, Sun Z, Shen X, Cai Y, Li L, Wang Z. Role of PI3K in the Progression and Regression of Atherosclerosis. Front Pharmacol 2021; 12:632378. [PMID: 33767629 PMCID: PMC7985550 DOI: 10.3389/fphar.2021.632378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol 3 kinase (PI3K) is a key molecule in the initiation of signal transduction pathways after the binding of extracellular signals to cell surface receptors. An intracellular kinase, PI3K activates multiple intracellular signaling pathways that affect cell growth, proliferation, migration, secretion, differentiation, transcription and translation. Dysregulation of PI3K activity, and as aberrant PI3K signaling, lead to a broad range of human diseases, such as cancer, immune disorders, diabetes, and cardiovascular diseases. A growing number of studies have shown that PI3K and its signaling pathways play key roles in the pathophysiological process of atherosclerosis. Furthermore, drugs targeting PI3K and its related signaling pathways are promising treatments for atherosclerosis. Therefore, we have reviewed how PI3K, an important regulatory factor, mediates the development of atherosclerosis and how targeting PI3K can be used to prevent and treat atherosclerosis.
Collapse
Affiliation(s)
- Yunyun Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yaoyao Cai
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Pala R, Pattnaik S, Busi S, Nauli SM. Nanomaterials as Novel Cardiovascular Theranostics. Pharmaceutics 2021; 13:pharmaceutics13030348. [PMID: 33799932 PMCID: PMC7998597 DOI: 10.3390/pharmaceutics13030348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of conditions associated with heart and blood vessels and are considered the leading cause of death globally. Coronary heart disease, atherosclerosis, myocardial infarction represents the CVDs. Since CVDs are associated with a series of pathophysiological conditions with an alarming mortality and morbidity rate, early diagnosis and appropriate therapeutic approaches are critical for saving patients’ lives. Conventionally, diagnostic tools are employed to detect disease conditions, whereas therapeutic drug candidates are administered to mitigate diseases. However, the advent of nanotechnological platforms has revolutionized the current understanding of pathophysiology and therapeutic measures. The concept of combinatorial therapy using both diagnosis and therapeutics through a single platform is known as theranostics. Nano-based theranostics are widely used in cancer detection and treatment, as evident from pre-clinical and clinical studies. Nanotheranostics have gained considerable attention for the efficient management of CVDs. The differential physicochemical properties of engineered nanoparticles have been exploited for early diagnosis and therapy of atherosclerosis, myocardial infarction and aneurysms. Herein, we provided the information on the evolution of nano-based theranostics to detect and treat CVDs such as atherosclerosis, myocardial infarction, and angiogenesis. The review also aims to provide novel avenues on how nanotherapeutics’ trending concept could transform our conventional diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA 92868, USA
- Correspondence: (R.P.); (S.M.N.); Tel.: +1-714-516-5462 (R.P.); +1-714-516-5480 (S.M.N.); Fax: +1-714-516-5481 (R.P. & S.M.N.)
| | - Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (S.P.); (S.B.)
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (S.P.); (S.B.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA 92868, USA
- Correspondence: (R.P.); (S.M.N.); Tel.: +1-714-516-5462 (R.P.); +1-714-516-5480 (S.M.N.); Fax: +1-714-516-5481 (R.P. & S.M.N.)
| |
Collapse
|
39
|
Fang S, Wan X, Zou X, Sun S, Hao X, Liang C, Zhang Z, Zhang F, Sun B, Li H, Yu B. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 2021; 12:88. [PMID: 33462182 PMCID: PMC7814005 DOI: 10.1038/s41419-020-03357-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Inducing autophagy and inhibiting apoptosis may provide a therapeutic treatment for atherosclerosis (AS). For the treatment of progressive AS, arsenic trioxide (ATO) has been used to coat vascular stents. However, the effect of ATO on autophagy of macrophages is still unknown. Therefore, the aims of this study were to characterize the effects and the mechanism of actions of ATO on autophagy in macrophages. Our results showed that ATO-induced activation of autophagy was an earlier event than ATO-induced inhibition of the expression of apoptosis markers in macrophages and foam cells. Nuclear transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy and promoting lysosomal biogenesis. Here, we report that ATO triggered the nuclear translocation of TFEB, which in turn promoted autophagy and autophagosome-lysosome fusion. Both the latter events were prevented by TFEB knockdown. Moreover, ATO decreased the p-AKT and p-mTOR in the PI3K/AKT/mTOR signaling pathway, thus inducing autophagy. Correspondingly, treatment with the autophagy inhibitor 3-methyladenine (3-MA) abolished the autophagy-inducing effects of ATO. Meanwhile, PI3K inhibitor (LY294002) and mTOR inhibitor (rapamycin) cooperated with ATO to induce autophagy. Furthermore, reactive oxygen species (ROS) were generated in macrophages after treatment with ATO. The ROS scavenger N-acetyl-1-cysteine (NAC) abolished ATO-induced nuclear translocation of TFEB, as well as changes in key molecules of the AKT/mTOR signaling pathway and downstream autophagy. More importantly, ATO promoted autophagy in the aorta of ApoE-/- mice and reduced atherosclerotic lesions in early AS, which were reversed by 3-MA treatment. In summary, our data indicated that ATO promoted ROS induction, which resulted in nuclear translocation of TFEB and inhibition of the PI3K/AKT/mTOR pathway. These actions ultimately promoted macrophage autophagy and reduced atherosclerotic lesions at early stages. These findings may provide a new perspective for the clinical treatment of early-stage atherosclerosis and should be further studied.
Collapse
Affiliation(s)
- Shaohong Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xin Wan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyi Zou
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Song Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinran Hao
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenchen Liang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhenming Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Fangni Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hulun Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
40
|
Prilepskii AY, Serov NS, Kladko DV, Vinogradov VV. Nanoparticle-Based Approaches towards the Treatment of Atherosclerosis. Pharmaceutics 2020; 12:E1056. [PMID: 33167402 PMCID: PMC7694323 DOI: 10.3390/pharmaceutics12111056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis, being an inflammation-associated disease, represents a considerable healthcare problem. Its origin remains poorly understood, and at the same time, it is associated with extensive morbidity and mortality worldwide due to myocardial infarctions and strokes. Unfortunately, drugs are unable to effectively prevent plaque formation. Systemic administration of pharmaceuticals for the inhibition of plaque destabilization bears the risk of adverse effects. At present, nanoscience and, in particular, nanomedicine has made significant progress in both imaging and treatment of atherosclerosis. In this review, we focus on recent advances in this area, discussing subjects such as nanocarriers-based drug targeting principles, approaches towards the treatment of atherosclerosis, utilization of theranostic agents, and future prospects of nanoformulated therapeutics against atherosclerosis and inflammatory diseases. The focus is placed on articles published since 2015 with additional attention to research completed in 2019-2020.
Collapse
Affiliation(s)
| | | | | | - Vladimir V. Vinogradov
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (A.Y.P.); (N.S.S.); (D.V.K.)
| |
Collapse
|
41
|
Song C, Xu W, Wu H, Wang X, Gong Q, Liu C, Liu J, Zhou L. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway. Cell Death Dis 2020; 11:938. [PMID: 33130826 PMCID: PMC7603522 DOI: 10.1038/s41419-020-03136-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Evidence has shown that m-THPC and verteporfin (VP) are promising sensitizers in photodynamic therapy (PDT). In addition, autophagy can act as a tumor suppressor or a tumor promoter depending on the photosensitizer (PS) and the cancer cell type. However, the role of autophagy in m-THPC- and VP-mediated PDT in in vitro and in vivo models of human colorectal cancer (CRC) has not been reported. In this study, m-THPC-PDT or VP-PDT exhibited significant phototoxicity, inhibited proliferation, and induced the generation of large amounts of reactive oxygen species (ROS) in CRC cells. From immunoblotting, fluorescence image analysis, and transmission electron microscopy, we found extensive autophagic activation induced by ROS in cells. In addition, m-THPC-PDT or VP-PDT treatment significantly induced apoptosis in CRC cells. Interestingly, the inhibition of m-THPC-PDT-induced autophagy by knockdown of ATG5 or ATG7 substantially inhibited the apoptosis of CRC cells. Moreover, m-THPC-PDT treatment inhibited tumorigenesis of subcutaneous HCT116 xenografts. Meanwhile, antioxidant treatment markedly inhibited autophagy and apoptosis induced by PDT in CRC cells by inactivating JNK signaling. In conclusion, inhibition of autophagy can remarkably alleviate PDT-mediated anticancer efficiency in CRC cells via inactivation of the ROS/JNK signaling pathway. Our study provides evidence for the therapeutic application of m-THPC and VP in CRC.
Collapse
Affiliation(s)
- Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Hongkun Wu
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chang Liu
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China.
| |
Collapse
|
42
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
43
|
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, Hu C, Shao L. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol 2020; 17:53. [PMID: 33066795 PMCID: PMC7565835 DOI: 10.1186/s12989-020-00372-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Widespread biomedical applications of nanomaterials (NMs) bring about increased human exposure risk due to their unique physicochemical properties. Autophagy, which is of great importance for regulating the physiological or pathological activities of the body, has been reported to play a key role in NM-driven biological effects both in vivo and in vitro. The coexisting hazard and health benefits of NM-mediated autophagy in biomedicine are nonnegligible and require our particular concerns. MAIN BODY We collected research on the toxic effects related to NM-mediated autophagy both in vivo and in vitro. Generally, NMs can be delivered into animal models through different administration routes, or internalized by cells through different uptake pathways, exerting varying degrees of damage in tissues, organs, cells, and organelles, eventually being deposited in or excreted from the body. In addition, other biological effects of NMs, such as oxidative stress, inflammation, necroptosis, pyroptosis, and ferroptosis, have been associated with autophagy and cooperate to regulate body activities. We therefore highlight that NM-mediated autophagy serves as a double-edged sword, which could be utilized in the treatment of certain diseases related to autophagy dysfunction, such as cancer, neurodegenerative disease, and cardiovascular disease. Challenges and suggestions for further investigations of NM-mediated autophagy are proposed with the purpose to improve their biosafety evaluation and facilitate their wide application. Databases such as PubMed and Web of Science were utilized to search for relevant literature, which included all published, Epub ahead of print, in-process, and non-indexed citations. CONCLUSION In this review, we focus on the dual effect of NM-mediated autophagy in the biomedical field. It has become a trend to use the benefits of NM-mediated autophagy to treat clinical diseases such as cancer and neurodegenerative diseases. Understanding the regulatory mechanism of NM-mediated autophagy in biomedicine is also helpful for reducing the toxic effects of NMs as much as possible.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Yaqing Zhang
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China.
| |
Collapse
|
44
|
An YW, Liu HQ, Zhou ZQ, Wang JC, Jiang GY, Li ZW, Wang F, Jin HT. Sinoporphyrin sodium is a promising sensitizer for photodynamic and sonodynamic therapy in glioma. Oncol Rep 2020; 44:1596-1604. [PMID: 32945475 PMCID: PMC7448408 DOI: 10.3892/or.2020.7695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to explore the antitumor effects of sinoporphyrin sodium (DVDMS)‑mediated photodynamic therapy (PDT) and sonodynamic therapy (SDT) in glioma, and to reveal the underlying mechanisms. The uptake of DVDMS by U‑118 MG cells was detected by flow cytometry (FCM). A 630‑nm semiconductor laser and 1‑MHz ultrasound were used to perform PDT and SDT, respectively. Cell proliferation and apoptosis were evaluated using the Cell Counting Kit‑8 assay, FCM and Hoechst 33258 staining, respectively. Western blot analysis was used to detect protein expression and phosphorylation levels. BALB/c nude mice were used to establish a xenograft model of U‑118 MG cells. DVDMS was injected intravenously and PDT and SDT were performed 24 h later. An in vivo imaging system was used to evaluate the fluorescence of DVDMS, to measure tumor sizes, and to evaluate the therapeutic effects. The uptake of DVDMS by U‑118 MG cells was optimal after 4 h. PDT and SDT following DVDMS injection significantly inhibited the proliferation and increased apoptosis of glioma cells in vitro (P<0.05, P<0.01) respectively. In vivo, the fluorescence intensity of DVDMS was lower in the PDT and SDT groups compared with the DVDMS group, while tumor cell proliferation and weight were lower in the PDT and SDT groups than in the control group (P<0.05, P<0.01). However, there was no significant difference when laser, ultrasound or DVDMS were applied individually, compared with the control group. Hematoxylin and eosin staining suggested that both PDT and SDT induced significant apoptosis and vascular obstruction in cancer tissues. DVDMS‑mediated PDT and SDT inhibited the expression levels of proliferating cell nuclear antigen (PCNA) and Bcl‑xL, increased cleaved ‑caspase 3 levels, and decreased the protein phosphorylation of the PI3K/AKT/mTOR signaling pathway. Changes in the expression of PCNA, and Bcl‑xL and in the levels of cleaved‑caspase 3 were partly reversed by N‑acetyl‑L‑cysteine, a reactive oxygen species (ROS) scavenger. Similar results were obtained with FCM. DVDMS‑mediated PDT and SDT inhibited glioma cell proliferation and induced cell apoptosis in vitro and in vivo, potentially by increasing the generation of ROS and affecting protein expression and phosphorylation levels.
Collapse
Affiliation(s)
- Ya-Wen An
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
- Science and Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Han-Qing Liu
- Science and Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Zi-Qian Zhou
- Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jian-Chun Wang
- Science and Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Guang-Yu Jiang
- Science and Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Zhi-Wen Li
- Science and Education Department, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Hong-Tao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
45
|
He C, Xia J, Gao Y, Chen Z, Wan X. Chlorin A-mediated photodynamic therapy induced apoptosis in human cholangiocarcinoma cells via impaired autophagy flux. Am J Transl Res 2020; 12:5080-5094. [PMID: 33042407 PMCID: PMC7540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a promising strategy for multiple cancers. Chlorin e6 and its derivative 131-[2'-(2-pyridyl)ethylamine] Chlorin e6 (Chlorin A) are effective photosensitizers, although their cytotoxic mechanisms have not yet been fully characterized. METHODS Cell viability and apoptosis were evaluated by CCK8 assay, TUNEL assay, and Annexin V/PI staining. The expression levels of different proteins were analyzed by Western blot analysis and immunofluorescence. The crosstalk between autophagy, endoplasmic reticulum stress (ERS), and mitochondrial dysfunction was investigated using reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), PERK inhibitor GSK2606414, autophagy inhibitor 3-MA, and mitochondrial stabilizer elamipretide. Furthermore, the extent of ROS production, lysosomal damage, autophagy flux, and mitochondrial membrane potential (MMP) were tracked using established probes. An in vivo xenograft model of cholangiocarcinoma (CCA) was established in BALB/c-nude mice by inoculation with EGI-1 cells, and Chlorin A was administered topically or intravenously, followed by light irradiation. RESULTS Chlorin A-PDT decreased the viability of CCA cells and induced apoptosis. Intriguingly, Chlorin A-PDT promoted autophagy via activation of ROS-induced ERS-related PERK/p-eif2α/CHOP axis, and blocked the ensuing autophagy flux by lysosomal damage. The PERK inhibitor GSK2606414 and NAC alleviated apoptosis and autophagy induced by Chlorin A-PDT. Furthermore, mitochondrial dysfunction aggravated ERS, and stabilizing the mitochondria reduced both apoptosis and autophagy. Finally, Chlorin A-PDT significantly reduced tumor growth in vivo. CONCLUSIONS Chlorin A-PDT induced apoptosis in CCA cells by initiating autophagy and impaired the autophagy flux via ROS-mediated ERS and lysosomal damage.
Collapse
Affiliation(s)
- Chongxin He
- Shanghai Key Laboratory of Pancreatic Diseases and Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jie Xia
- Department of Gastroenterology, The Second Hospital of Changzhou Affiliated to Nanjing Medical UniversityChangzhou, China
| | - Yinghua Gao
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua UniversityShanghai, China
| | - Zhilong Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua UniversityShanghai, China
| | - Xinjian Wan
- Shanghai Key Laboratory of Pancreatic Diseases and Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
46
|
Yun TH, Ahn G, Choi I, Bae Y, Hwang K, Kang S, Choi S. Fabrication of nanodiamonds modified with hyaluronic acid and chlorin e6 for selective photothermal and photodynamic tumor therapy. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tae Hoon Yun
- Biomedical and Chemical Engineering The Catholic University of Korea Bucheon‐si Gyeonggi‐do Republic of Korea
| | - Guk‐Young Ahn
- Biomedical and Chemical Engineering The Catholic University of Korea Bucheon‐si Gyeonggi‐do Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering The Catholic University of Korea Bucheon‐si Gyeonggi‐do Republic of Korea
| | - Yeon‐Ju Bae
- Nano Oil‐chemical Division DAT Advanced Material Co. Ltd. Dangjin‐si Chungcheongnam‐do Republic of Korea
| | - Keum‐Cheol Hwang
- Nano Oil‐chemical Division DAT Advanced Material Co. Ltd. Dangjin‐si Chungcheongnam‐do Republic of Korea
| | - Suk‐Hoon Kang
- Nuclear Materials Division Korea Atomic Energy Research Institute Daejeon Republic of Korea
| | - Sung‐Wook Choi
- Biomedical and Chemical Engineering The Catholic University of Korea Bucheon‐si Gyeonggi‐do Republic of Korea
| |
Collapse
|
47
|
Raj EN, Lin Y, Chen C, Liu K, Chao J. Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Naveen Raj
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Yu‐Wei Lin
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Chien‐Hung Chen
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Kuang‐Kai Liu
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Jui‐I Chao
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
- Center For Intelligent Drug Systems and Smart Bio‐devices National Chiao Tung University Hsinchu 30068 Taiwan
| |
Collapse
|
48
|
Jia L, Hao SL, Yang WX. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine (Lond) 2020; 15:1419-1435. [PMID: 32529946 DOI: 10.2217/nnm-2019-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Due to their unique physicochemical properties, nanoparticles (NPs) have been increasingly developed for use in various fields. However, there has been both growing negative concerns with toxicity and positive realization of opportunities in nanomedicine, coming from the growing understanding of the associations between NPs and the human body, particularly relating to their cellular autophagic effects. This review summarizes NP-induced autophagy via the modulation of the mTOR signaling pathway and other associated signals including AMPK and ERK and also demonstrates how reactive oxygen species generation greatly underlies the regulation processes. The perspectives in this review aim to contribute to NP design, particularly in consideration of nanotoxicity and the potential for the precise application of NPs in nanomedicine.
Collapse
Affiliation(s)
- Lu Jia
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
49
|
Dai T, He W, Yao C, Ma X, Ren W, Mai Y, Wu A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater Sci 2020; 8:3784-3799. [PMID: 32469010 DOI: 10.1039/d0bm00196a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic progressive disease, which may result in serious clinical outcomes, such as acute heart events or stroke with high mortality. At present, the clinical problems of atherosclerosis mainly consist of the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase and the shortage of valid treatments. Fortunately, with the development of nanotechnology, various inorganic nanoparticles with imaging enhancement and noninvasive therapy functions have been studied in the imaging and treatment of atherosclerosis, which has brought new hope to patients. This review focuses on the recent progress in the use of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis, including the key processes in the development of atherosclerosis and the mainly involved cells, inorganic nanoparticle-based dual-mode imaging methods classified by the types of targeting cells, and inorganic nanoparticle-based therapeutic approaches, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), drug delivery, gene therapy and imaging-guided therapy for atherosclerosis. Finally, this review discusses the challenges and directions of inorganic nanoparticles in potential clinical translation of anti-atherosclerosis in future. We believe this review will enable readers to systematically understand the progress of the inorganic nanoparticle-based imaging and therapy of atherosclerosis and therefore promote the further development of anti-atherosclerosis.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical school of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Pourhajibagher M, Hosseini N, Boluki E, Chiniforush N, Bahador A. Photoelimination Potential of Chitosan Nanoparticles-Indocyanine Green Complex Against the Biological Activities of Acinetobacter baumannii Strains: A Preliminary In Vitro Study in Burn Wound Infections. J Lasers Med Sci 2020; 11:187-192. [PMID: 32273961 DOI: 10.34172/jlms.2020.31] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Acinetobacter baumannii strains are important agents causing serious nosocomial infections including soft-tissue and skin infections in patients with burn wounds which have become resistant to several classes of antibiotics. Antimicrobial photodynamic therapy (aPDT) as an alternative antimicrobial procedure is suggested for the treatment of these kinds of infections. The aim of the current study is to evaluate the antibacterial and anti-biofilm efficiency of aPDT by the utilization of an improved form of indocyanine green (ICG) which is encapsulated in chitosan nanoparticles (NCs@ICG). Methods: NCs@ICG were synthesized and confirmed by the scanning electron microscope (SEM). aPDT was performed using NCs@ICG with an 810 nm wavelength of the diode laser at the fluency of 31.2 J/cm2 on 50 A. baumannii strains isolated from burn wounds. The antibacterial and antibiofilm potential of NCs@ICG-aPDT was determined via the colony forming unit (CFU)/mL and crystal violet assays, respectively. In addition, microbial biofilm degradation was evaluated by the SEM. Results: According to the results, NCs@ICG-aPDT showed a significant reduction of 93.2% on the CFU/ mL of planktonic A. baumannii strains compared to the control group (untreated group; P < 0.05). In addition, the biofilm formation of A. baumannii strains was significantly reduced by 55.3% when the bacteria were exposed to NCs@ICG-aPDT (P < 0.05). In contrast, NCs@ICG, ICG, and the diode laser alone were not able to inhibit the CFU/mL and biofilm of A. baumannii strains (P > 0.05). Based on the results of SEM images, NCs@ICG-aPDT disrupted the biofilm structure of A. baumannii strains more than other groups. Conclusion: NCs@ICG-aPDT demonstrates a promising treatment candidate for exploitation in wound infections against both planktonic and biofilm forms of A. baumannii strains.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ebrahim Boluki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|