1
|
Park SH, Yoon KN, Xu Y, Gye MC. Role of p57KIP2 in Stem and Progenitor Leydig Cells of Mouse Testes. World J Mens Health 2025; 43:174-187. [PMID: 38772531 PMCID: PMC11704159 DOI: 10.5534/wjmh.230299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE Precise control of proliferation and differentiation of Leydig cells is important for gonadal androgenesis and spermatogenesis. Though cyclin-dependent kinase inhibitors are crucial for cell proliferation and differentiation, their role in the development of early adult Leydig cells (ALCs) remained unanswered. To understand mechanism for ALC development, functional expression of p57KIP2 (cdkn1c) was investigated in the stem Leydig cells (SLCs) and progenitor Leydig cells (PLCs) in mice. MATERIALS AND METHODS The roles of p57KIP2 in the proliferation, differentiation, apoptosis, and steroidogenesis in SLCs and PLCs were investigated by antibodies and bromodeoxyuridine (BrdU) labeling in the early neonatal testes and p57kip2 siRNA in the isolated SLCs and PLCs. Steroidogenic differentiation of PLCs was examined by progesterone and testosterone production in cell culture. RESULTS From postnatal day (PND) 1 to 14, p57KIP2(+) spindle-shaped cells in the testis interstitium were α-smooth muscle actin (αSMA)(-), a peritubular myoid cells marker, suggesting that they are SLCs and PLCs. Besides, p57KIP2 was also expressed in HSD3β(+) fetal Leydig cells. From PND1 to 14, BrdU(+)/αSMA(-), Ki67(+)/p57KIP2(+), and BrdU(+)/p57KIP2(+) spindle-shaped cells were gradually decreased. From PND1 to 14, p57KIP in the αSMA(-)/p57KIP2(+) cells was peaked at PND7 and decreased thereafter. In THY1(+) isolated SLCs, p57kip2 siRNA significantly increased ki67 and pcna mRNA and pdgfrα mRNA, a differentiation marker and decreased nestin mRNA, a SLC marker. No significant difference in apoptosis related genes mRNA was found after p57kip2 siRNA treatment. In HSD3β(+) PLCs, p57kip2 siRNA increased proapoptotic genes mRNA, annexin V(+) early-apoptotic cells. Importantly, p57kip2 siRNA significantly decreased hsd3β6 and cyp17a1 mRNA and progesterone production. CONCLUSIONS p57KIP2 may suppress proliferation and support stemness of SLCs. In PLCs, p57KIP2 may suppress apoptosis and potentiate the steroidogenic differentiation.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kyung Noh Yoon
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, Korea.
| |
Collapse
|
2
|
Xiao Z, Chen J, Fan X, Zhao W, Chu C, Zhang JV. The Impact of Chemokine-Like Receptor 1 Gene Knockout on Lipopolysaccharide-Induced Epididymo-Orchitis in Mice. J Interferon Cytokine Res 2025; 45:1-11. [PMID: 39470435 DOI: 10.1089/jir.2024.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
This comprehensive study delved into the pivotal function of chemokine-like receptor 1 (CMKLR1) in lipopolysaccharide (LPS)-triggered epididymo-orchitis in mice. Upon LPS exposure, wild-type (WT) mice exhibited marked elevations in serum pro-inflammatory markers, including G-CSF, IL-6, and RANTES, along with heightened levels of TNF-α and IL-6 in testicular and epididymal tissues, which accompanied by pronounced structural damage within the testicular tissue and a concurrent decline in serum testosterone, estradiol (E2) levels, and testicular steroid synthetase expression. Remarkably, Cmklr1 gene ablation intensified the pro-inflammatory response in the serum (especially IFN-γ), testes, and epididymis of epididymo-orchitis models. Furthermore, Cmklr1 deficiency uniquely induced structural alterations within the epididymis, which is absent in the WT model. This genetic manipulation also exacerbated the decline in serum testosterone and E2 levels and testicular steroid synthase activity. While chemerin levels were significantly diminished in WT epididymo-orchitis models, Cmklr1 knockout had no discernible effect on chemerin expression in the model. In addition, a noteworthy observation was the elevation of the serum low density lipoprotein/high density lipoprotein (LDL/HDL) ratio in Cmklr1-deficient mice. Collectively, these findings underscore that the lack of chemerin/CMKLR1 signaling axis could potentially worsen the symptoms during LPS-induced epididymo-orchitis, highlighting its potential as a therapeutic target in related pathologies.
Collapse
Affiliation(s)
- Zhonglin Xiao
- Faculty of Data Science, City University of Macau, Macau, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiujun Fan
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chiawei Chu
- Faculty of Data Science, City University of Macau, Macau, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Sino-European Center of Biomedicine and Health, Shenzhen, China
| |
Collapse
|
3
|
Vlieghe H, Sousa MJ, Charif D, Amorim CA. Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells 2024; 13:1248. [PMID: 39120279 PMCID: PMC11311681 DOI: 10.3390/cells13151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
RESEARCH QUESTION Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
| | | | | | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, bte B1.55.03, 1200 Brussels, Belgium; (H.V.); (M.J.S.); (D.C.)
| |
Collapse
|
4
|
Deng Z, Zhao L, Li S, Chen X, Ling X, Zheng J, Yu K, Xu J, Yao C, Han S, Liang J, Feng H, Wu L, Li P, Tian R, Jing T, Tang Y, Dai Y, Yan M, Wang C, Li Z, Zhou Z. Targeting dysregulated phago-/auto-lysosomes in Sertoli cells to ameliorate late-onset hypogonadism. NATURE AGING 2024; 4:647-663. [PMID: 38649614 DOI: 10.1038/s43587-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Age-related changes in testicular function can impact health and well-being. The mechanisms underlying age-related testicular dysfunction, such as late-onset hypogonadism (LOH), remain incompletely understood. Using single-cell RNA sequencing on human testes with LOH, we delineated Sertoli cells (SCs) as pivotal metabolic coordinators within the testicular microenvironment. In particular, lysosomal acidity probing revealed compromised degradative capacity in aged SCs, hindering autophagy and phagocytic flux. Consequently, SCs accumulated metabolites, including cholesterol, and have increased inflammatory gene expression; thus, we termed these cells as phago-/auto-lysosomal deregulated SCs. Exposure to a high-fat diet-induced phago-/auto-lysosomal dysregulated-like SCs, recapitulating LOH features in mice. Notably, efferent ductular injection and systemic TRPML1 agonist administration restored lysosomal function, normalizing testosterone deficiency and associated abnormalities in high-fat diet-induced LOH mice. Our findings underscore the central role of SCs in testis aging, presenting a promising therapeutic avenue for LOH.
Collapse
Affiliation(s)
- Zhiwen Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Liangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sha Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Xiaoyang Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Xiaohan Ling
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Jiajun Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Kunkun Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Jing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha Han
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Liang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huimin Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lanlan Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhui Tian
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jing
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Andrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxin Tang
- Department of Urology, Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Chenchen Wang
- Shanghai Advanced Research Institute, Stem Cell and Reproductive Biology Laboratory, Chinese Academy of Sciences, Shanghai, China.
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
5
|
Chi A, Yang B, Dai H, Li X, Mo J, Gao Y, Chen Z, Feng X, Ma M, Li Y, Yang C, Liu J, Liu H, Wang Z, Gao F, Liao Y, Shi X, Deng C, Zhang M. Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice. Nat Commun 2024; 15:2120. [PMID: 38459012 PMCID: PMC10924100 DOI: 10.1038/s41467-024-46190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
As testicular mesenchymal stromal cells, stem Leydig cells (SLCs) show great promise in the treatment of male hypogonadism. The therapeutic functions of mesenchymal stromal cells are largely determined by their reciprocal regulation by immune responses. However, the immunoregulatory properties of SLCs remain unclear. Here, we observe that SLCs transplantation restore male fertility and testosterone production in an ischemia‒reperfusion injury mouse model. SLCs prevent inflammatory cascades through mitochondrial transfer to macrophages. Reactive oxygen species (ROS) released from activated macrophages inducing mitochondrial transfer from SLCs to macrophages in a transient receptor potential cation channel subfamily member 7 (TRPM7)-mediated manner. Notably, knockdown of TRPM7 in transplanted SLCs compromised therapeutic outcomes in both testicular ischemia‒reperfusion and testicular aging mouse models. These findings reveal a new mechanism of SLCs transplantation that may contribute to preserve testis function in male patients with hypogonadism related to immune disorders.
Collapse
Affiliation(s)
- Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Bicheng Yang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xinyu Li
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahui Mo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihong Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Menghui Ma
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanqing Li
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Chao Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jie Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hanchao Liu
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng Gao
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan Liao
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology, Guangzhou, 510640, China.
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518054, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
6
|
Liu W, Du L, Cui Y, He C, He Z. WNT5A regulates the proliferation, apoptosis and stemness of human stem Leydig cells via the β-catenin signaling pathway. Cell Mol Life Sci 2024; 81:93. [PMID: 38367191 DOI: 10.1007/s00018-023-05077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 02/19/2024]
Abstract
Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing resulted in the decreases in nuclear translocation of β-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the β-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Du
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinghong Cui
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caimei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Du X, Zhu J, Xu X, Lu Z, Li X, Li Y, Luo L, Zhang W, Liu J. Effects of cadmium exposure during pregnancy on genome-wide DNA methylation and the CREB/CREM pathway in the testes of male offspring rats. CHEMOSPHERE 2024; 349:140906. [PMID: 38092170 DOI: 10.1016/j.chemosphere.2023.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
This experimental study explored the multigenerational and transgenerational effects of cadmium (Cd) exposure during pregnancy on the testicular tissue and spermatogenesis of male offspring rats. CdCl2 at different doses (0, 0.5, 1, 2 mg/kg/day) were dispensed to pregnant SD rats, thus producing generation F1. Adult females in F1 (PND 56) were mated with untreated fertile males so as to produce generation F2. Likewise, adult females in F2 were mated to produce generation F3. Damages to testicular tissue were observed in all the three generations, with serum testosterone (T) increased in F2 and F3. Notably, the genome-wide DNA methylation level in the testicular tissue of F1 was altered, as was the expression of F1-F3 methyltransferases. In addition, the expression of Creb/Crem pathway, a pathway critical for the metamorphosis from postmeiotic round spermatocytes to spermatozoa, was also remarkably altered in the three generations. In concludion, prenatal Cd exposure might bring multigenerational and transgenerational toxic effects to testes via genome-wide DNA methylation and the regulation of CREB/CREM pathway.
Collapse
Affiliation(s)
- Xiushuai Du
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhilan Lu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xiaoqin Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
8
|
Li X, Quan H, He J, Li H, Zhu Q, Wang Y, Zhu Y, Ge RS. The role of platelet-derived growth factor BB signaling pathway in the regulation of stem and progenitor Leydig cell proliferation and steroidogenesis in male rats. J Steroid Biochem Mol Biol 2023; 233:106344. [PMID: 37286111 DOI: 10.1016/j.jsbmb.2023.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Platelet-derived growth factor BB (BB) regulates cell proliferation and function. However, the roles of BB on proliferation and function of Leydig stem (LSCs) and progenitor cells (LPCs) and the underlying signaling pathways remain unclear. This study aimed to analyze the roles of PI3K and MAPK pathways in the regulation of proliferation-related and steroidogenesis-related gene expression in rat LSCs/LPCs. In this experiment, BB receptor antagonist, tyrosine kinase inhibitor IV (PKI), the PI3K inhibitor, LY294002, and the MEK inhibitor, U0126, were used to measure the effects of these pathways on the expression of cell cycle-related genes (Ccnd1 and Cdkn1b) and steroidogenesis-related genes (Star, Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a1), as well as Leydig cell maturation gene Pdgfra [1]. These results showed that BB (10 ng/mL)-stimulated EdU-incorporation into LSCs and BB-mediated inhibition on its differentiation was mediated through the activation of its receptor, PDGFRB, as well as MAPK and PI3K pathways. The results of LPC experiment also showed that LY294002 and U0126 decreased BB (10 ng/mL)-upregulated Ccnd1 expression while only U0126 reversed BB (10 ng/mL)-downregulated Cdkn1b expression. U0126 significantly reversed BB (10 ng/mL)-mediated downregulation of Cyp11a1, Hsd3b1, and Cyp17a1 expression. On the other hand, LY294002 reversed the expression of Cyp17a1 and Abca1. In conclusion, BB-mediated induction of proliferation and suppression of steroidogenesis of LSCs/LPCs are dependent on the activation of both MAPK and PI3K pathways, which show distinct regulation of gene expression.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province 325000, China
| | - Hehua Quan
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiayi He
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province 325000, China
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province 325000, China.
| |
Collapse
|
9
|
Vlieghe H, Leonel ECR, Asiabi P, Amorim CA. The characterization and therapeutic applications of ovarian theca cells: An update. Life Sci 2023; 317:121479. [PMID: 36758341 DOI: 10.1016/j.lfs.2023.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Theca cells perform a range of roles during folliculogenesis. So far, little is known about their recruitment process and function since early research has mainly focused on the interactions between granulosa cells and the oocyte, leaving theca cells unfairly forgotten in the understanding of ovarian physiology and pathogenesis. Given that research on theca cells has greatly emerged in recent years, this review of literature aims to discuss the established theoretical concepts with the most recent findings about theca cells' characterization and origins, in vitro culture applications as models for fertility preservation and pharmacological/toxicological studies, its importance in unraveling pathogenic pathways, and stem-cell-based bioengineering for hormonal replacement therapies. Isolation and in vitro culture techniques for theca cells have led to essential advancements in their characterization as a specific cell population. Unraveling the origins of theca cells during the in vivo differentiation process in the adult ovary will assist the development of hormonal replacement therapies, reestablishment of fertility, and treatments for diseases such as premature ovarian insufficiency and polycystic ovarian syndrome, which seem to be directly influenced by theca cells.
Collapse
Affiliation(s)
- Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Ellen C R Leonel
- Departament of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n Câmpus Samambaia, 74001-970 Goiânia, GO, Brazil
| | - Parinaz Asiabi
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
10
|
Shao J, Wang J, Wen X, Xie J, Huang F, Guan X, Hao X, Duan P, Chen C, Chen H. Effects of aging and macrophages on mice stem Leydig cell proliferation and differentiation in vitro. Front Endocrinol (Lausanne) 2023; 14:1139281. [PMID: 37051204 PMCID: PMC10083278 DOI: 10.3389/fendo.2023.1139281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Testosterone plays a critical role in maintaining reproductive functions and well-beings of the males. Adult testicular Leydig cells (LCs) produce testosterone and are generated from stem Leydig cells (SLCs) during puberty through adulthood. In addition, macrophages are critical in the SLC regulatory niche for normal testicular function. Age-related reduction in serum testosterone contributes to a number of metabolic and quality-of-life changes in males, as well as age-related changes in immunological functions. How aging and testicular macrophages may affect SLC function is still unclear. METHODS SLCs and macrophages were purified from adult and aged mice via FACS using CD51 as a marker protein. The sorted cells were first characterized and then co-cultured in vitro to examine how aging and macrophages may affect SLC proliferation and differentiation. To elucidate specific aging effects on both cell types, co-culture of sorted SLCs and macrophages were also carried out across two ages. RESULTS CD51+ (weakly positive) and CD51++ (strongly positive) cells expressed typical SLC and macrophage markers, respectively. However, with aging, both cell types increased expression of multiple cytokine genes, such as IL-1b, IL-6 and IL-8. Moreover, old CD51+ SLCs reduced their proliferation and differentiation, with a more significant reduction in differentiation (2X) than proliferation (30%). Age matched CD51++ macrophages inhibited CD51+ SLC development, with a more significant reduction in old cells (60%) than young (40%). Crossed-age co-culture experiments indicated that the age of CD51+ SLCs plays a more significant role in determining age-related inhibitory effects. In LC lineage formation, CD51+ SLC had both reduced LC lineage markers and increased myoid cell lineage markers, suggesting an age-related lineage shift for SLCs. CONCLUSION The results suggest that aging affected both SLC function and their regulatory niche cell, macrophages.
Collapse
Affiliation(s)
- Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fu Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinrui Hao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| | - Congde Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| |
Collapse
|
11
|
Abe SI. Behavior and Functional Roles of CD34 + Mesenchymal Cells in Mammalian Testes. Int J Mol Sci 2022; 23:9585. [PMID: 36076981 PMCID: PMC9455925 DOI: 10.3390/ijms23179585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
Mammalian testes consist of seminiferous tubules within which Sertoli cells line up at the periphery and nurse germ cells, and of interstitia that harbor various cells such as peritubular myoid cells (PMCs), Leydig cells (LCs), vascular endothelial cells, immune cells such as macrophages, and mesenchymal (stromal) cells. Morphological studies have recently reported the presence of telocytes with telopodes in the interstitium of adult mouse, rat, and human testes. CD34+PDGFRα+ telocytes with long and moniliform telopodes form reticular networks with various cell types such as LCs, PMCs, and vessels, indicating their potential functions in cell-cell communications and tissue homeostasis. Functional studies have recently been performed on testicular interstitial cells and CD34+ cells, using 3D re-aggregate cultures of dissociated testicular cells, and cell cultures. Direct observation of CD34+ cells and adult LCs (ALCs) revealed that CD34+ cells extend thin cytoplasmic processes (telopodes), move toward the LC-CD34+ cell-re-aggregates, and finally enter into the re-aggregates, indicating the chemotactic behavior of CD34+ telocytes toward ALCs. In mammalian testes, important roles of mesenchymal interstitial cells as stem/progenitors in the differentiation and regeneration of LCs have been reported. Here, reports on testicular telocytes so far obtained are reviewed, and future perspectives on the studies of testicular telocytes are noted.
Collapse
Affiliation(s)
- Shin-Ichi Abe
- Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| |
Collapse
|
12
|
Li ZH, Lu JD, Li SJ, Chen HL, Su ZJ. Generation of Leydig-like cells: approaches, characterization, and challenges. Asian J Androl 2022; 24:335-344. [PMID: 35017389 PMCID: PMC9295467 DOI: 10.4103/aja202193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Testosterone production by Leydig cells (LCs) plays a crucial role in male reproduction. The functional degeneration of LCs can cause testosterone deficiency, ultimately resulting in primary male hypogonadism. Transplantation of exogenous LCs with the ability to produce testosterone in response to the regulation of the hypothalamus-pituitary-gonad axis could be a promising alternative option to treat male primary hypogonadism. Recent studies have shown that it is possible to generate Leydig-like cells from stem cells by various approaches. In addition, somatic cells, such as embryonic or adult fibroblasts, have also been successfully reprogrammed into Leydig-like cells. In this review, we summarized the recent advances in the generation of Leydig-like cells, with an emphasis on comparing the effectiveness and safety of different protocols used and the cells generated. By further analyzing the characteristics of Leydig-like cells generated from fibroblasts based on small signaling molecules and regulatory factors, we found that although the cells may produce testosterone, they are significantly different from real LCs. For future in vivo applications, it is important that the steroidogenic cells generated be evaluated not only for their steroidogenic functions but also for their overall cell metabolic state by proteomics or transcriptomic tools.
Collapse
Affiliation(s)
- Zhao-Hui Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jun-Dong Lu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Shi-Jun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hao-Lin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Jian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Guan X, Chen P, Ji M, Wen X, Chen D, Zhao X, Huang F, Wang J, Shao J, Xie J, Zhao X, Chen F, Tian J, Lin H, Zirkin BR, Duan P, Su Z, Chen H. Identification of Rat Testicular Leydig Precursor Cells by Single-Cell-RNA-Sequence Analysis. Front Cell Dev Biol 2022; 10:805249. [PMID: 35242757 PMCID: PMC8887666 DOI: 10.3389/fcell.2022.805249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Stem Leydig cells (SLCs) play a critical role in the development and maintenance of the adult Leydig cell (ALC) population. SLCs also are present in the adult testis. Their identification, characteristics, and regulation in the adult testis remain uncertain. Using single-cell RNA-seq, we found that the mesenchymal stromal population may be involved in ALC regeneration. Upon ALC elimination, a fraction of stromal cells begins to proliferate while a different fraction begins to differentiate to ALCs. Transcriptomic analysis identified five stromal clusters that can be classified into two major groups representing proliferation and differentiation populations. The proliferating group represents stem cells expressing high levels of CD90, Nes, Lum, Fn and Gap43. The differentiating group represents a progenitor stage that is ready to form ALCs, and specifically expresses Vtn, Rasl11a, Id1 and Egr2. The observation that the actively dividing cells after ALC loss were not those that formed ALCs suggests that stem cell proliferation and differentiation are regulated separately, and that the maintenance of the stromal stem cell pool occurs at the population level. The study also identified specific markers for the major interstitial cell groups and potential paracrine factors involved in the regulation of SLCs. Our data suggest a new theory about SLC identity, proliferation, differentiation, and regulation.
Collapse
Affiliation(s)
- Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingyi Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Huang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiexia Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Shao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingxing Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fenfen Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Chi A, Yang B, Cao X, Wang Z, Liu H, Dai H, Deng C, Zhang M. ICA II Alleviates Testicular Torsion Injury by Dampening the Oxidative and Inflammatory Stress. Front Endocrinol (Lausanne) 2022; 13:871548. [PMID: 35634492 PMCID: PMC9135456 DOI: 10.3389/fendo.2022.871548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Testicular torsion-detorsion is an ischaemia-reperfusion-induced male gonad injury that may lead to male infertility. Oxidative stress plays an important role in the ischaemia-reperfusion injury. Icariside II (ICA II) prevents oxidative stress and has obvious protective effects on spermatogenic function. The present study was aimed to investigate therapeutic potentials of ICA II on testicular torsion. 72 mice were randomly divided into three groups: sham-operated control group (n = 24), testicular ischemia-reperfusion + saline group (n = 24) and testicular ischemia-reperfusion + icariside II treated group (n = 24). Testicular ischemia-reperfusion was induced by the left testis rotated 360 degrees in a clockwise direction for 30 minutes followed by detorsion, the contralateral testis was removed. ICA II in saline (5 mg/kg/day) was administrated by gavage immediately after detorsion. The results demonstrated that ICA II alleviated testicular damage by mitigating spermatogenic cell injury and improving testosterone production in mouse models of testicular torsion. We revealed that ICA II alleviated oxidative stress and apoptosis in the testes, reduced inflammatory infiltration and accelerated angiogenesis. Briefly, ICA II administration ameliorated testicular damage by improving spermatogenic function and testosterone production, which supports its use as a pharmacological treatment of testicular torsion.
Collapse
Affiliation(s)
- Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bicheng Yang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Cao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, School of Medicine, Huangshi, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanchao Liu
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunhua Deng, ; Min Zhang,
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chunhua Deng, ; Min Zhang,
| |
Collapse
|
15
|
Gu X, DeFalco T. In Vitro Differentiation of Leydig Cells From hiPSCs: A First Step Towards a Cellular Therapy for Hypogonadism? Endocrinology 2022; 163:bqab221. [PMID: 34698341 PMCID: PMC8599747 DOI: 10.1210/endocr/bqab221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
16
|
Ishida T, Koyanagi-Aoi M, Yamamiya D, Onishi A, Sato K, Uehara K, Fujisawa M, Aoi T. Differentiation of Human Induced Pluripotent Stem Cells Into Testosterone-Producing Leydig-like Cells. Endocrinology 2021; 162:6373541. [PMID: 34549267 DOI: 10.1210/endocr/bqab202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Indexed: 12/26/2022]
Abstract
Late-onset hypogonadism (LOH) syndrome, due to a partial lack of testosterone, decreases the quality of life of older men. Testosterone is mainly secreted by Leydig cells in the testes. Leydig cell transplantation is expected to be a promising alternative to conventional testosterone replacement therapy for LOH syndrome. We herein report a simple and robust protocol for directed differentiation of human induced pluripotent stem cells (hiPSCs) into Leydig-like cells by doxycycline-inducible overexpression of NR5A1 and treatment with a combination of 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) and forskolin. The differentiated cells expressed the steroidogenic enzyme genes STAR, CYP11A1, CYP17A1, and HSD3B2 and the specific markers of adult Leydig cells HSD17B3, INSL3, and LHCGR. Furthermore, we confirmed the secretion of functional testosterone from the cells into the culture supernatant by a testosterone-sensitive cell proliferation assay. These findings showed that the hiPSCs were able to be differentiated into Leydig-like cells, supporting the expectation that hiPSC-derived Leydig-like cells can be novel tools for treating LOH syndrome.
Collapse
Affiliation(s)
- Takaki Ishida
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| | - Daisuke Yamamiya
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan
| | - Atsushi Onishi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Katsuya Sato
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Keiichiro Uehara
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0017, Japan
- Department of iPS cell applications, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| |
Collapse
|
17
|
Liu ZJ, Liu YH, Huang SY, Zang ZJ. Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells. Stem Cell Rev Rep 2021; 17:1521-1533. [PMID: 33598893 DOI: 10.1007/s12015-021-10133-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Male hypogonadism is a clinical syndrome caused by testosterone deficiency. Hypogonadism can be caused by testicular disease (primary hypogonadism) or hypothalamic-pituitary dysfunction (secondary hypogonadism). The present strategy for treating hypogonadism is the administration of exogenous testosterone. But exogenous testosterone is reported to have negative side effects including adverse cardiovascular events and disruption of physiological spermatogenesis probably due to its inability to mimic the physiological circadian rhythm of testosterone secretion in vivo. In recent years, a growing number of articles demonstrated that stem Leydig cells (SLCs) can not only differentiate into functional Leydig cells (LCs) in vivo to replace chemically disrupted LCs, but also secrete testosterone in a physiological pattern. The proliferation and differentiation of SLCs are regulated by various factors. However, the mechanisms involved in regulating the development of SLCs remain to be summarized. Factors involved in the regulation of SLCs can be divided into environmental pollutants, growth factors, cytokine and hormones. Environmental pollutants such as Perfluorooctanoic acid (PFOA) and Triphenyltin (TPT) could suppress SLCs proliferation or differentiation. Growth factors including FGF1, FGF16, NGF and activin A are essential for the maintenance of SLCs self-renewal and differentiation. Interleukin 6 family could inhibit differentiation of SLCs. Among hormones, dexamethasone suppresses SLCs differentiation, while aldosterone suppresses their proliferation. The present review focuses on new progress about factors regulating SLC's proliferation and differentiation which will undoubtedly deepen our insights into SLCs and help make better clinical use of them. Different factors affect on the proliferation and differentiation of stem Leydig cells. Firstly, each rat was intraperitoneally injected EDS so as to deplete Leydig cells from the adult testis. Secondly, the CD51+ or CD90+ cells from the testis of rats are SLCs, and the p75+ cells from human adult testes are human SLCs. These SLCs in the testis start to proliferate and some of them differentiate into LCs. Thirdly, during the SLCs regeneration period, researchers could explore different function of those factors (pollutants, growth factors, cytokines and hormones) towards SLCs.
Collapse
Affiliation(s)
- Zhuo-Jie Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Yong-Hui Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Sheng-Yu Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China.
| |
Collapse
|
18
|
Chen H, Xia K, Huang W, Li H, Wang C, Ma Y, Chen J, Luo P, Zheng S, Wang J, Wang Y, Dong L, Tan Z, Lai X, Mao FF, Li W, Liang X, Wang T, Xiang AP, Ke Q. Autologous transplantation of thecal stem cells restores ovarian function in nonhuman primates. Cell Discov 2021; 7:75. [PMID: 34462432 PMCID: PMC8405815 DOI: 10.1038/s41421-021-00291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity under the age of 40. Theca cells (TCs) play a vital role during folliculogenesis and TCs dysfunction participate in the pathogenesis of POI. Therefore, transplantation of thecal stem cells (TSCs), which are capable of self-renewal and differentiation into mature TCs, may provide a new strategy for treating POI. To investigate the feasibility, safety, and efficacy of TSCs transplantation in clinically relevant non-human primate (NHP) models, we isolate TSCs from cynomolgus monkeys, and these cells are confirmed to expand continuously and show potential to differentiate into mature TCs. In addition, engraftment of autologous TSCs into POI monkeys significantly improves hormone levels, rescues the follicle development, promotes the quality of oocytes and boosts oocyte maturation/fertilization rate. Taken together, these results for the first time suggest that autologous TSCs can ameliorate POI symptoms in primate models and shed new light on developing stem cell therapy for POI.
Collapse
Affiliation(s)
- Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijian Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhui Chen
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuwei Zheng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Liang
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|
20
|
Rapid Differentiation of Human Embryonic Stem Cells into Testosterone-Producing Leydig Cell-Like Cells In vitro. Tissue Eng Regen Med 2021; 18:651-662. [PMID: 34165777 PMCID: PMC8325741 DOI: 10.1007/s13770-021-00359-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. Methods: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. Results: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. Conclusion: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.
Collapse
|
21
|
Li X, Tian E, Wang Y, Wen Z, Lei Z, Zhong Y, Ge RS. Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol 2021; 121:63-70. [PMID: 34001436 DOI: 10.1016/j.semcdb.2021.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Zhen Lei
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Ying Zhong
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Xia K, Ma Y, Feng X, Deng R, Ke Q, Xiang AP, Deng C. Endosialin defines human stem Leydig cells with regenerative potential. Hum Reprod 2021; 35:2197-2212. [PMID: 32951040 PMCID: PMC7518712 DOI: 10.1093/humrep/deaa174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is endosialin a specific marker of human stem Leydig cells (SLCs) with the ability to differentiate into testosterone-producing Leydig cells (LCs) in vitro and in vivo? SUMMARY ANSWER Endosialin is a specific marker of human SLCs which differentiate into testosterone-producing LCs in vitro and in vivo. WHAT IS KNOWN ALREADY Human SLCs have been identified and isolated using the marker platelet-derived growth factor receptor α (PDGFRα) or nerve growth factor receptor (NGFR). However, the specificity was not high; thus, LCs and germ cells could be mistakenly sorted as SLCs if PDGFRα or NGFR was used as a marker for human SLCs isolation. STUDY DESIGN, SIZE, DURATION Firstly, we re-evaluated the specificity of PDGFRα and NGFR for SLCs in adult human testes. Then we analysed the previously published single-cell sequencing data and found that endosialin may identify human SLCs. Subsequently, we sorted endosialin+ cells from four human donors and characterized their self-renewal and multipotent properties. To assess whether endosialin+ cells have the potential to differentiate into functional LCs in vitro, these cells were stimulated by differentiation-inducing medium. We next assessed the in vivo regenerative potential of human endosialin+ cells after xenotransplantation into the testes of immunodeficient mice. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell sequencing analysis, immunofluorescence and flow cytometry were used to characterize human testis tissues. In vitro colony formation, multipotent differentiation (adipogenic, osteogenic and chondrogenic) and Leydig cell-lineage induction were used to assess stem cell activity. Xenotransplantation into 3-week-old immunodeficient mice was used to determine in vivo regenerative potential. Endpoint measures included testosterone measurements, cell proliferation, immunofluorescence, flow cytometry and quantitative RT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE The results indicate that endosialin is a specific marker of SLCs compared with PDGFRα and NGFR. Additionally, endosialin+ cells isolated from human testes show extensive proliferation and differentiation potential in vitro: their self-renewal ability was inferred by the formation of spherical clones derived from a single cell. Moreover, these cells could differentiate into functional LCs that secreted testosterone in response to LH in a concentration-dependent manner in vitro. These self-renewal and differentiation properties reinforce the proposal that human testicular endosialin+ cells are SLCs. Furthermore, transplanted human endosialin+ cells appear to colonize the murine host testes, localize to peritubular and perivascular regions, proliferate measurably and differentiate partially into testosterone-producing LCs in vivo. LARGE SCALE DATA NA. LIMITATIONS, REASONS FOR CAUTION Owing to the difficulty in collecting human testis tissue, the sample size was limited. The functions of endosialin on SLCs need to be elucidated in future studies. WIDER IMPLICATIONS OF THE FINDINGS A discriminatory marker, endosialin, for human SLCs purification is a prerequisite to advance research in SLCs and logically promote further clinical translation of SLCs-based therapies for male hypogonadism. STUDY FUNDING/COMPETING INTEREST(S) A.P.X. was supported by the National Key Research and Development Program of China (2017YFA0103802 and 2018YFA0107200). C.D. was supported by the National Natural Science Foundation of China (81971314) and the Natural Science Foundation of Guangdong Province, China (2018B030311039). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
23
|
Zhao X, Wen X, Ji M, Guan X, Chen P, Hao X, Chen F, Hu Y, Duan P, Ge RS, Chen H. Differentiation of seminiferous tubule-associated stem cells into leydig cell and myoid cell lineages. Mol Cell Endocrinol 2021; 525:111179. [PMID: 33515640 DOI: 10.1016/j.mce.2021.111179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Peritubular stem Leydig cells (SLCs) have been identified from rat testicular seminiferous tubules. However, no stem cells for peritubular myoid cells have been reported in the adult testis so far. In the present study, we tested the hypothesis that the peritubular SLCs are multipotent and able to form either Leydig or myoid cells. Using cultured tubules, we show that in the presence of PDGFAA and luteinizing hormone, SLCs became testosterone-producing Leydig cells, while in the presence of PDGFBB and TGFB, the cells formed α-smooth muscle actin-expressing myoid cells. This multipotency was also confirmed by culture of isolated CD90+ SLCs. These results suggest that these stem cells outside the myoid layer are multipotent and give rise to either Leydig or myoid cells, depending on the inducing factors. These cells may serve as a common precursor population for maintaining homeostasis of both Leydig and myoid cell populations in the adult testis.
Collapse
Affiliation(s)
- Xingxing Zhao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Minpeng Ji
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoju Guan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinrui Hao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fenfen Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yue Hu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Haolin Chen
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
24
|
Khodamoradi K, Khosravizadeh Z, Parmar M, Kuchakulla M, Ramasamy R, Arora H. Exogenous testosterone replacement therapy versus raising endogenous testosterone levels: current and future prospects. ACTA ACUST UNITED AC 2021; 2:32-42. [PMID: 33615283 DOI: 10.1016/j.xfnr.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Testosterone replacement therapy is an important treatment option for men with low testosterone and symptomatic hypogonadism. Various formulations of exogenous testosterone replacement therapy exist, including oral, buccal, intramuscular, transdermal, subdermal, and nasal preparations. However, exogenous testosterone replacement therapy is a double-edged sword, posing risks to fertility due to negative feedback mechanisms on the hypothalamic-pituitary-gonadal (HPG) axis, which is the main regulator of testosterone production and spermatogenesis in males. Alternative pharmacologic therapies are being used to increase endogenous testosterone levels while attempting to preserve fertility and function of the HPG axis. These include selective estrogen receptor modulators, gonadotropins, and aromatase inhibitors. This review focuses on overviewing and comparing the currently available methods of exogenous testosterone replacement therapy, alternative treatments to increasing endogenous testosterone, and novel treatments that are currently under investigation to normalize testosterone levels while preserving the function of the HPG axis. In conclusion, reports suggest that, though Testosterone replacement therapy is an important way to restore testosterone levels and reduce symptoms associated with low testosterone, it is often difficult to decide which treatment to select for patients with testosterone deficiency. Several factors need to be considered to decide on optimal therapy option for the patient which include but are not limited to safety, efficacy, cost-effectiveness, dosing flexibility, and side effects. Alternative approaches which aim to improve endogenous testosterone production and preserve fertility are promising but still are at their initial stages of development. Ultimately, patient-centered decision making is paramount to appropriate treatment selection.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Zahra Khosravizadeh
- Department of Urology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Madhu Parmar
- Department of Urology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Himanshu Arora
- Department of Urology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA.,The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, 1501 NW 10th Avenue, Suite 909, Miami, FL 33136, USA
| |
Collapse
|
25
|
Zhao X, Ji M, Wen X, Chen D, Huang F, Guan X, Tian J, Xie J, Shao J, Wang J, Huang L, Lin H, Ye L, Chen H. Effects of Midazolam on the Development of Adult Leydig Cells From Stem Cells In Vitro. Front Endocrinol (Lausanne) 2021; 12:765251. [PMID: 34867807 PMCID: PMC8632869 DOI: 10.3389/fendo.2021.765251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Midazolam is a neurological drug with diverse functions, including sedation, hypnosis, decreased anxiety, anterograde amnesia, brain-mediated muscle relaxation, and anticonvulsant activity. Since it is frequently used in children and adolescents for extended periods of time, there is a risk that it may affect their pubertal development. Here, we report a potential effect of the drug on the development of Leydig cells (LCs), the testosterone (T)-producing cells in the testis. METHODS Stem LCs (SLCs), isolated from adult rat testes by a magnetic-activated cell sorting technique, were induced to differentiate into LCs in vitro for 3 weeks. Midazolam (0.1-30 μM) was added to the culture medium, and the effects on LC development were assayed. RESULTS Midazolam has dose-dependent effects on SLC differentiation. At low concentrations (0.1-5 μM), the drug can mildly increase SLC differentiation (increased T production), while at higher concentrations (15-30 μM), it inhibits LC development (decreased T production). T increases at lower levels may be due to upregulations of scavenger receptor class b Member 1 (SCARB1) and cytochrome P450 17A1 (CYP17A1), while T reductions at higher levels of midazolam could be due to changes in multiple steroidogenic proteins. The uneven changes in steroidogenic pathway proteins, especially reductions in CYP17A1 at high midazolam levels, also result in an accumulation of progesterone. In addition to changes in T, increases in progesterone could have additional impacts on male reproduction. The loss in steroidogenic proteins at high midazolam levels may be mediated in part by the inactivation of protein kinase B/cAMP response element-binding protein (AKT/CREB) signaling pathway. CONCLUSION Midazolam has the potential to affect adult Leydig cell (ALC) development at concentrations comparable with the blood serum levels in human patients. Further studies are needed to test the effects on human cells.
Collapse
Affiliation(s)
- Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Huang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoqi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| |
Collapse
|
26
|
Feng X, Xia K, Ke Q, Deng R, Zhuang J, Wan Z, Luo P, Wang F, Zang Z, Sun X, Xiang AP, Tu X, Gao Y, Deng C. Transplantation of encapsulated human Leydig-like cells: A novel option for the treatment of testosterone deficiency. Mol Cell Endocrinol 2021; 519:111039. [PMID: 32980418 DOI: 10.1016/j.mce.2020.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that the transplantation of alginate-poly-ʟ-lysine-alginate (APA)-encapsulated rat Leydig cells (LCs) provides a promising approach for treating testosterone deficiency (TD). Nevertheless, LCs have a limited capacity to proliferate, limiting the efficacy of LC transplantation therapy. Here, we established an efficient differentiation system to obtain functional Leydig-like cells (LLCs) from human stem Leydig cells (hSLCs). Then we injected APA-encapsulated LLCs into the abdominal cavities of castrated mice without an immunosuppressor. The APA-encapsulated cells survived and partially restored testosterone production for 90 days in vivo. More importantly, the transplantation of encapsulated LLCs ameliorated the symptoms of TD, such as fat accumulation, muscle atrophy and adipocyte accumulation in bone marrow. Overall, these results suggest that the transplantation of encapsulated LLCs is a promising new method for testosterone supplementation with potential clinical applications in TD.
Collapse
Affiliation(s)
- Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; KingMed Center for Clinical Laboratory CO., LTD, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Wan
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fulin Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Eliveld J, van den Berg EA, Chikhovskaya JV, van Daalen SKM, de Winter-Korver CM, van der Veen F, Repping S, Teerds K, van Pelt AMM. Primary human testicular PDGFRα+ cells are multipotent and can be differentiated into cells with Leydig cell characteristics in vitro. Hum Reprod 2020; 34:1621-1631. [PMID: 31398257 PMCID: PMC6735802 DOI: 10.1093/humrep/dez131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.
Collapse
Affiliation(s)
- J Eliveld
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E A van den Berg
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - J V Chikhovskaya
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S K M van Daalen
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C M de Winter-Korver
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - F van der Veen
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S Repping
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - K Teerds
- Department of Animal Sciences, Human and Animal Physiology, Wageningen University, WD Wageningen, the Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Zhu Q, Li H, Wen Z, Wang Y, Li X, Huang T, Mo J, Wu Y, Zhong Y, Ge RS. Perfluoroalkyl substances cause Leydig cell dysfunction as endocrine disruptors. CHEMOSPHERE 2020; 253:126764. [PMID: 32464778 DOI: 10.1016/j.chemosphere.2020.126764] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a group of man-made organic substances. Some of PFASs have been classified as persistent organic pollutants and endocrine disruptors. They might interfere with the male sex endocrine system, causing the abnormal development of the male reproductive tract and failure of pubertal onset and infertility. The present review discusses the development and function of two generations of Leydig cells in rodents and the effects of PFASs on Leydig cell development after their exposure in gestational and postnatal periods. We also discuss human epidemiological data for the effects of PFASs on male sex hormone levels. The structure-activity relationship of PFASs on Leydig cell steroidogenesis and enzyme activities are also discussed.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zina Wen
- Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Xia K, Chen H, Wang J, Feng X, Gao Y, Wang Y, Deng R, Wu C, Luo P, Zhang M, Wang C, Zhang Y, Zhang Y, Liu G, Tu X, Sun X, Li W, Ke Q, Deng C, Xiang AP. Restorative functions of Autologous Stem Leydig Cell transplantation in a Testosterone-deficient non-human primate model. Theranostics 2020; 10:8705-8720. [PMID: 32754273 PMCID: PMC7392013 DOI: 10.7150/thno.46854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Stem Leydig cells (SLCs) transplantation can restore testosterone production in rodent models and is thus a potential solution for treating testosterone deficiency (TD). However, it remains unknown whether these favorable effects will be reproduced in more clinically relevant large-animal models. Therefore, we assessed the feasibility, safety and efficacy of autologous SLCs transplantation in a testosterone-deficient non-human primate (NHP) model. Methods: Cynomolgus monkey SLCs (CM-SLCs) were isolated from testis biopsies of elderly (> 19 years) cynomolgus monkeys by flow cytometry. Autologous CM-SLCs were injected into the testicular interstitium of 7 monkeys. Another 4 monkeys were injected the same way with cynomolgus monkey dermal fibroblasts (CM-DFs) as controls. The animals were then examined for sex hormones, semen, body composition, grip strength, and exercise activity. Results: We first isolated CD271+ CM-SLCs which were confirmed to expand continuously and show potential to differentiate into testosterone-producing Leydig cells (LCs) in vitro. Compared with CM-DFs transplantation, engraftment of autologous CM-SLCs into elderly monkeys could significantly increase the serum testosterone level in a physiological pattern for 8 weeks, without any need for immunosuppression. Importantly, CM-SLCs transplantation recovered spermatogenesis and ameliorated TD-related symptoms, such as those related to body fat mass, lean mass, bone mineral density, strength and exercise capacity. Conclusion: For the first time, our short-term observations demonstrated that autologous SLCs can increase testosterone levels and ameliorate relevant TD symptoms in primate models. A larger cohort with long-term follow-up will be required to assess the translational potential of autologous SLCs for TD therapy.
Collapse
|
30
|
Cui Y, Chen R, Ma L, Yang W, Chen M, Zhang Y, Yu S, Dong W, Zeng W, Lan X, Pan C. miR-205 Expression Elevated With EDS Treatment and Induced Leydig Cell Apoptosis by Targeting RAP2B via the PI3K/AKT Signaling Pathway. Front Cell Dev Biol 2020; 8:448. [PMID: 32596241 PMCID: PMC7300349 DOI: 10.3389/fcell.2020.00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
The adult Leydig cells (ALCs), originated from stem Leydig cells (SLCs), can secrete testosterone which is essential for germ cell development and sexual behavior maintenance. As a synthetic compound, ethane dimethane sulfonate (EDS), a well-known alkylating agent, has been reported to specifically ablate ALCs. In this study, EDS was verified to ablate differentiated pig LCs by experiments. Subsequently, the primary isolated pig LCs (containing SLCs and differentiated LCs) and EDS-treated LCs (almost exclusively SLCs) were collected for RNA-seq 4,904 genes and 15 miRNAs were differently expressed between the two groups. Down-regulated genes in the EDS-treated group were mainly related to steroid hormone biosynthesis. The highest up-regulation miRNAs was miR-205 after EDS treatment. Additionally, miR-205 was expressed more highly in pig SLCs clones compared with differentiated LCs. Through qRT-PCR, western blot (WB), TUNEL, EDU and flow cytometry, miR-205 was found to induce cell apoptosis, but did not affect proliferation or differentiation in both TM3 and GC-1spg mouse cell lines. Through luciferase reporter assays and WB, RAP2B was identified as a target gene of miR-205. Besides, overexpression of miR-205 inhibited the expressions of PI3K, Akt and p-AKT. All these findings were helpful for elucidating the regulation mechanism in pig LCs.
Collapse
Affiliation(s)
- Yang Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Rui Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Lin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wenjing Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingyue Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yanghai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Shuai Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wuzi Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
31
|
Eliveld J, van Daalen SKM, de Winter-Korver CM, van der Veen F, Repping S, Teerds K, van Pelt AMM. A comparative analysis of human adult testicular cells expressing stem Leydig cell markers in the interstitium, vasculature, and peritubular layer. Andrology 2020; 8:1265-1276. [PMID: 32416031 PMCID: PMC7496384 DOI: 10.1111/andr.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
Background Origin of human adult Leydig cells (ALCs) is not well understood. This might be partly due to limited data available on the identification and location of human precursor and stem Leydig cells (SLCs) which hampers the study on the development of ALCs. Objectives The aim of the present study was to investigate whether described human (PDGFRα, NGFR) and rodent (NES, PDGFRα, THY1, NR2F2) SLC markers are expressed by a common cell population within human adult testicular interstitial cells in vivo and before and after in vitro propagation. Materials and methods Immunohistochemical analyses were used to identify localization of human adult testicular interstitial cells expressing described SLC markers. Next, interstitial cells were isolated and cultured. The percentage of cells expressing one or more SLC markers was determined before and after culture using flow cytometry. Results NR2F2 and PDGFRα were present in peritubular, perivascular, and Leydig cells, while THY1 was expressed in peritubular and perivascular cells. Although NES and NGFR were expressed in endothelial cells, co‐localization with PDGFRα was found for both in vitro, although for NGFR only after culture. All marker positive cells were able to undergo propagation in vitro. Discussion The partly overlap in localization and overlap in expression in human testicular cells indicate that PDGFRα, NR2F2, and THY1 are expressed within the same ALC developmental lineage from SLCs. Based on the in vitro results, this is also true for NES and after in vitro propagation for NGFR. Conclusion Our results that earlier described SLC markers are expressed in overlapping human interstitial cell population opens up further research strategies aiming for a better insight in the Leydig cell lineage and will be helpful for development of strategies to cure ALC dysfunction.
Collapse
Affiliation(s)
- Jitske Eliveld
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cindy M de Winter-Korver
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fulco van der Veen
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katja Teerds
- Department of Animal Sciences, Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Li X, Wang Y, Zhu Q, Yuan K, Su Z, Ge F, Ge RS, Huang Y. Epidermal growth factor regulates the development of stem and progenitor Leydig cells in rats. J Cell Mol Med 2020; 24:7313-7330. [PMID: 32441057 PMCID: PMC7339176 DOI: 10.1111/jcmm.15302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor (EGF) has many physiological roles. However, its effects on stem and progenitor Leydig cell development remain unclear. Rat stem and progenitor Leydig cells were cultured with different concentrations of EGF alone or in combination with EGF antagonist, erlotinib or cetuximab. EGF (1 and 10 ng/mL) stimulated the proliferation of stem Leydig cells on the surface of seminiferous tubules and isolated CD90+ stem Leydig cells and progenitor Leydig cells but it blocked their differentiation. EGF also exerted anti‐apoptotic effects of progenitor Leydig cells. Erlotinib and cetuximab are able to reverse EGF‐mediated action. Gene microarray and qPCR of EGF‐treated progenitor Leydig cells revealed that the down‐regulation of steroidogenesis‐related proteins (Star and Hsd3b1) and antioxidative genes. It was found that EGF acted as a proliferative agent via increasing phosphorylation of AKT1. In conclusion, EGF stimulates the proliferation of rat stem and progenitor Leydig cells but blocks their differentiation.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiming Yuan
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Su
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fei Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yadong Huang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Huang H, Zhong L, Zhou J, Hou Y, Zhang Z, Xing X, Sun J. Leydig-like cells derived from reprogrammed human foreskin fibroblasts by CRISPR/dCas9 increase the level of serum testosterone in castrated male rats. J Cell Mol Med 2020; 24:3971-3981. [PMID: 32160419 PMCID: PMC7171312 DOI: 10.1111/jcmm.15018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
In the past few years, Leydig cell (LC) transplantation has been regarded as an effective strategy for providing physiological patterns of testosterone in vivo. Recently, we have successfully converted human foreskin fibroblasts (HFFs) into functional Leydig‐like cells (iLCs) in vitro by using the CRISPR/dCas9 system, which shows promising potential for seed cells. However, it is not known whether the reprogrammed iLCs can survive or restore serum testosterone levels in vivo. Therefore, in this study, we evaluate whether reprogrammed iLCs can restore the serum testosterone levels of castrated rats when they are transplanted into the fibrous capsule. We first developed the castrated Sprague Dawley rat model through bilateral orchiectomy and subsequently injected extracellular matrix gel containing transplanted cells into the fibrous capsule of castrated rats. Finally, we evaluated dynamic serum levels of testosterone and luteinizing hormone (LH) in castrated rats, the survival of implanted iLCs, and the expression levels of Leydig steroidogenic enzymes by immunofluorescence staining and Western blotting. Our results demonstrated that implanted iLCs could partially restore the serum testosterone level of castrated rats, weakly mimic the role of adult Leydig cells in the hypothalamic‐pituitary‐gonadal axis for a short period, and survive and secrete testosterone, through 6 weeks after transplantation. Therefore, this study may be valuable for treating male hypogonadism in the future.
Collapse
Affiliation(s)
- Hua Huang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Xing
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Chen P, Zirkin BR, Chen H. Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications. Endocr Rev 2020; 41:5610863. [PMID: 31673697 PMCID: PMC7753054 DOI: 10.1210/endrev/bnz013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Androgen deficiency (hypogonadism) affects males of all ages. Testosterone replacement therapy (TRT) is effective in restoring serum testosterone and relieving symptoms. TRT, however, is reported to have possible adverse effects in part because administered testosterone is not produced in response to the hypothalamic-pituitary-gonadal (HPG) axis. Progress in stem cell biology offers potential alternatives for treating hypogonadism. Adult Leydig cells (ALCs) are generated by stem Leydig cells (SLCs) during puberty. SLCs persist in the adult testis. Considerable progress has been made in the identification, isolation, expansion and differentiation of SLCs in vitro. In addition to forming ALCs, SLCs are multipotent, with the ability to give rise to all 3 major cell lineages of typical mesenchymal stem cells, including osteoblasts, adipocytes, and chondrocytes. Several regulatory factors, including Desert hedgehog and platelet-derived growth factor, have been reported to play key roles in the proliferation and differentiation of SLCs into the Leydig lineage. In addition, stem cells from several nonsteroidogenic sources, including embryonic stem cells, induced pluripotent stem cells, mature fibroblasts, and mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord have been transdifferentiated into Leydig-like cells under a variety of induction protocols. ALCs generated from SLCs in vitro, as well as Leydig-like cells, have been successfully transplanted into ALC-depleted animals, restoring serum testosterone levels under HPG control. However, important questions remain, including: How long will the transplanted cells continue to function? Which induction protocol is safest and most effective? For translational purposes, more work is needed with primate cells, especially human.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Haolin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
35
|
Curley M, Gonzalez ZN, Milne L, Hadoke P, Handel I, Péault B, Smith LB. Human Adipose-derived Pericytes Display Steroidogenic Lineage Potential in Vitro and Influence Leydig Cell Regeneration in Vivo in Rats. Sci Rep 2019; 9:15037. [PMID: 31636275 PMCID: PMC6803635 DOI: 10.1038/s41598-019-50855-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Exogenous androgen replacement is used to treat symptoms associated with low testosterone in males. However, adverse cardiovascular risk and negative fertility impacts impel development of alternative approaches to restore/maintain Leydig cell (LC) androgen production. Stem Leydig cell (SLC) transplantation shows promise in this regard however, practicality of SLC isolation/transplantation impede clinical translation. Multipotent human adipose-derived perivascular stem cells (hAd-PSCs) represent an attractive extragonadal stem cell source for regenerative therapies in the testis but their therapeutic potential in this context is unexplored. We asked whether hAd-PSCs could be converted into Leydig-like cells and determined their capacity to promote regeneration in LC-ablated rat testes. Exposure of hAd-PSCs to differentiation-inducing factors in vitro upregulated steroidogenic genes but did not fully induce LC differentiation. In vivo, no difference in LC-regeneration was noted between Sham and hAd-PSC-transplanted rats. Interestingly, Cyp17a1 expression increased in hAd-PSC-transplanted testes compared to intact vehicle controls and the luteinising hormone/testosterone ratio returned to Vehicle control levels which was not the case in EDS + Sham animals. Notably, hAd-PSCs were undetectable one-month after transplantation suggesting this effect is likely mediated via paracrine mechanisms during the initial stages of regeneration; either directly by interacting with regenerating LCs, or through indirect interactions with trophic macrophages.
Collapse
Affiliation(s)
- Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Zaniah N Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Patrick Hadoke
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - Ian Handel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom
| | - Bruno Péault
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom.,Department of Orthopaedic Surgery and Broad Stem Cell Center, University of California at Los Angeles, 615 Charles E Young Dr S, Los Angeles, CA, 90095, USA
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom. .,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
36
|
Guan X, Chen P, Zhao X, Hao X, Chen F, Ji M, Wen X, Lin H, Ye L, Chen H. Characterization of stem cells associated with seminiferous tubule of adult rat testis for their potential to form Leydig cells. Stem Cell Res 2019; 41:101593. [PMID: 31704538 DOI: 10.1016/j.scr.2019.101593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Adult testicular Leydig cells arise from stem cells in the neonatal and adult testis. The nature of these stem Leydig cells (SLCs) have not been well characterized. We have found previously that a group cells expressing CD90, a cell surface glycoprotein that may play roles in cell-cell and cell-matrix interactions and associated with the seminiferous tubule surface, have the ability to form Leydig cells. As yet, the relationship between this CD90+ cell population and SLCs reported previously by other groups is still unknown. In the present study, we systematically characterized these CD90+ cells by their ability to express multiple potential SLC markers and to proliferate and differentiate into Leydig cells in vitro. First, we have found by qPCR and immunohistochemical staining that the CD90+ cells do not express any of the markers of the common seminiferous tubular cells, including myoid, Sertoli, germ and Leydig cells, as well as macrophages. Moreover, when the CD90+ cells were isolated by fluorescent-sorting, the cells expressed high levels of all the potential SLC marker genes, including Nestin, Cd51, Coup-tf2, Arx, Pdgfra and Tcf21. Also, CD90-positive, but not -negative, cells were able to form Leydig cells in vitro with the proper inducing medium. Overall, the results indicated that the tubule-associated CD90+ cells represent a population of SLC in adult testis.
Collapse
Affiliation(s)
- Xiaoju Guan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xingxing Zhao
- Department of Anesthesiology, Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinrui Hao
- Department of Anesthesiology, Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fenfen Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Minpeng Ji
- Department of Anesthesiology, Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Wen
- Department of Anesthesiology, Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Han Lin
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
| | - Haolin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
37
|
Chen P, Guan X, Zhao X, Chen F, Yang J, Wang Y, Hu Y, Lian Q, Chen H. Characterization and differentiation of CD51 + Stem Leydig cells in adult mouse testes. Mol Cell Endocrinol 2019; 493:110449. [PMID: 31102608 DOI: 10.1016/j.mce.2019.110449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
It was reported previously that adult mouse stem Leydig cells (SLCs) express CD51 (integrin α-chain V). However, it is still unclear whether all CD51+ cells are SLCs. In the present study, we found that CD51+ cells can be classified into two sub-groups, a weakly-staining group (CD51+) and a strongly-staining group (CD51++). The CD51+ cells expressed common SLC marker genes, including Nestin, Pdgfra and Coup-tf2, while CD51++ cells did not express these genes. Instead, they expressed macrophage markers, such as F4/80, Cd115 and Tnfa. When these cells were induced to differentiate in vitro, the CD51+ cells, but not CD51++ cells, formed Leydig cells. Overall, our results showed that although SLCs expressed CD51, not all CD51-expressing cells are SLCs. The cells that expressed high levels of CD51 are actually macrophages.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoju Guan
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingxing Zhao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenfen Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Yiyan Wang
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yue Hu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haolin Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Mo J, Chen X, Ni C, Wu K, Li X, Zhu Q, Ma L, Chen Y, Zhang S, Wang Y, Lian Q, Ge RS. Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats. J Cell Mol Med 2019; 23:5618-5631. [PMID: 31222931 PMCID: PMC6653537 DOI: 10.1111/jcmm.14461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leika Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Patra T, Gupta MK. Cryopreservation of murine testicular Leydig cells by modified solid surface vitrification with supplementation of antioxidants. Cryobiology 2019; 88:38-46. [PMID: 30959024 DOI: 10.1016/j.cryobiol.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
Reports on the vitrification of somatic cells are scarce. Here, we show that Leydig cells (murine cell line TM3) could be successfully vitrified by both open vitrification [plastic straw (PS) and plastic vials (PV)] and closed ultravitrification [microdrop (MD) and solid surface vitrification (SSV)], after protocol optimization. However, open ultravitrification resulted in better post-warming viability than closed systems of vitrification with highest success obtained in modified SSV (84.8 ± 1.86%; p < 0.05). Leydig cells vitrified-warmed by modified SSV also showed superior (p < 0.05) cell growth, mitochondrial activity and cytoplasmic esterase enzyme activity, than MD, PS and PV, respectively. It was also observed that vitrified-warmed cells had higher level of ROS activity than non-vitrified control cells (41.6 ± 4.0 vs. 16.7 ± 1.0; p < 0.05). Treatment of cells with glutathione (GSH) or 2-mercaptoethanol (2-ME) (0, 10, 50, 100 μM) significantly (p < 0.05) reduced the ROS activity but had no significant (p > 0.05) effect on post-warm viability. Nevertheless, antioxidant-treated cells had improved mitochondrial activity, cytoplasmic esterase activity and cell growth during in vitro culture (p < 0.05). In conclusion, our results suggest that modified SSV offers a viable method for vitrifying single cell suspension of Leydig cells. To the best of our knowledge, this is the first report on cryopreservation of Leydig cells by vitrification.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
40
|
Nieschlag E, Nieschlag S. ENDOCRINE HISTORY: The history of discovery, synthesis and development of testosterone for clinical use. Eur J Endocrinol 2019; 180:R201-R212. [PMID: 30959485 DOI: 10.1530/eje-19-0071] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
As the most important male hormone, testosterone has an impact on almost all organs and body functions. The biological effects of testosterone and the testes have been known since antiquity, long before testosterone was identified as the active agent. Practical applications of this knowledge were castration of males to produce obedient servants, for punishment, for preservation of the prepubertal soprano voice and even for treatment of diseases. Testes were used in organotherapy and transplanted as treatment for symptoms of hypogonadism on a large scale, although these practices had only placebo effects. In reaction to such malpractice in the first half of the 20th century science and the young pharmaceutical industry initiated the search for the male hormone. After several detours together with their teams in 1935, Ernst Laqueur (Amsterdam) isolated and Adolf Butenandt (Gdansk) as well as Leopold Ruzicka (Zürich) synthesized testosterone. Since then testosterone has been available for clinical use. However, when given orally, testosterone is inactivated in the liver, so that parenteral forms of administration or modifications of the molecule had to be found. Over 85 years the testosterone preparations have been slowly improved so that now physiological serum levels can be achieved.
Collapse
Affiliation(s)
- Eberhard Nieschlag
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstr.11, Münster, Germany
| | - Susan Nieschlag
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstr.11, Münster, Germany
| |
Collapse
|
41
|
Arora H, Zuttion MSSR, Nahar B, Lamb D, Hare JM, Ramasamy R. Subcutaneous Leydig Stem Cell Autograft: A Promising Strategy to Increase Serum Testosterone. Stem Cells Transl Med 2018; 8:58-65. [PMID: 30280521 PMCID: PMC6312442 DOI: 10.1002/sctm.18-0069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 01/29/2023] Open
Abstract
Exogenous testosterone therapy can be used to treat testosterone deficiency; however, it has several adverse effects including infertility due to negative feedback on the hypothalamic-pituitary-gonadal (HPG) axis. Leydig stem cell (LSC) transplantation could provide a new strategy for treating testosterone deficiency, but clinical translatability of injecting stem cells inside the testis is not feasible. Here, we explore the feasibility of subcutaneously autografting LSCs in combination with Sertoli and myoid cells to increase testosterone. We also studied whether the grafted LSCs can be regulated by the HPG axis and the molecular mechanism behind this regulation. LSCs were isolated from the testes of 12-week-old C57BL/6 mice, and subcutaneously autografted in combination with Sertoli cells and myoid cells. We found that LSCs alone were incapable of self-renewal and differentiation. However, in combination with Sertoli cells and myoid cells, LSCs underwent self-renewal as well as differentiation into mature Leydig cells. As a result, the recipient mice that received the LSC autograft showed testosterone production with preserved luteinizing hormone. We found that testosterone production from the autograft was regulated by hedgehog (HH) signaling. Gain of function and loss of function study confirmed that Desert HH (DHH) agonist increased and DHH antagonist decreased testosterone production from autograft. This study is the first to demonstrate that LSCs, when autografted subcutaneously in combination with Sertoli cells and myoid cells, can increase testosterone production. Therefore, LSC autograft may provide a new treatment for testosterone deficiency while simultaneously preserving the HPG axis. Stem Cells Translational Medicine 2019;8:58-65.
Collapse
Affiliation(s)
- Himanshu Arora
- Department of Urology, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Miller School of MedicineThe Interdisciplinary Stem Cell Institute, University of MiamiMiami, FloridaUSA
| | | | - Bruno Nahar
- Department of Urology, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dolores Lamb
- Department of UrologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Joshua M. Hare
- Miller School of MedicineThe Interdisciplinary Stem Cell Institute, University of MiamiMiami, FloridaUSA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Miller School of MedicineThe Interdisciplinary Stem Cell Institute, University of MiamiMiami, FloridaUSA
| |
Collapse
|