1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Bülow JM, Rinderknecht H, Becker N, Köhler K, Wagner A, Yang Y, Bundkirchen K, Neunaber C, Relja B. Exploring the Bone-Liver Axis: Impact of Acute Ethanol Intoxication on Post-Traumatic Liver Inflammation and Damage Following Femur Fracture. Int J Mol Sci 2025; 26:4923. [PMID: 40430063 PMCID: PMC12112679 DOI: 10.3390/ijms26104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/12/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
Bone fracture activates the immune system and induces inflammation crucial for fracture healing but may also affect trauma-distant organs like the liver. Acute alcohol intoxication (AAI) dysregulates immune responses and affects organ damage post-trauma. However, the bone-liver axis and alcohol's role in this process remain poorly understood. This study explores liver inflammation and damage following fracture, with and without prior AAI. Twenty-four male C57BL/6J mice were randomly assigned to four groups (n = 6) and received either NaCl (control) or 35% ethanol via gavage. Mice underwent femur osteotomy with external fixation or sham surgery. After 24 h, liver damage was assessed using hematoxylin-eosin and activated caspase-3 staining. Liver inflammation was evaluated through CXCL1 and polymorphonuclear leukocyte (PMNL) immunostaining, cytokine gene and protein expression analyses, and immune cell profiling in the liver via flow cytometry. Western blotting assessed NF-κB and Wnt signaling. Neither fracture alone nor with AAI caused significant liver damage. However, fracture significantly increased PMNL infiltration and altered monocyte populations, effects that were amplified by AAI. The hepatic neutrophil-to-monocyte ratio significantly decreased after fracture and was absent in the fracture AAI group. CXCL1 increased post-fracture, while MCP-1 and IL-10 decreased significantly, with AAI further significantly amplifying these changes. Wnt1 and Wnt3a levels increased significantly after fracture and were further strongly elevated by AAI. AAI completely abolished fracture-induced significant β-catenin reduction and significantly increased its phosphorylation, effects that potentially involve an AAI-induced β-catenin stabilization as well as its increased degradation. NF-κB activation was significantly decreased, while A20 expression significantly increased after fracture and AAI. Fracture influences the inflammatory liver response and signaling pathways, effects which were further modulated by AAI.
Collapse
Affiliation(s)
- Jasmin Maria Bülow
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, 89081 Ulm, Germany; (J.M.B.); (H.R.); (N.B.); (A.W.); (Y.Y.)
| | - Helen Rinderknecht
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, 89081 Ulm, Germany; (J.M.B.); (H.R.); (N.B.); (A.W.); (Y.Y.)
| | - Nils Becker
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, 89081 Ulm, Germany; (J.M.B.); (H.R.); (N.B.); (A.W.); (Y.Y.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35390 Giessen, Germany;
| | - Alessa Wagner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, 89081 Ulm, Germany; (J.M.B.); (H.R.); (N.B.); (A.W.); (Y.Y.)
| | - Yuntao Yang
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, 89081 Ulm, Germany; (J.M.B.); (H.R.); (N.B.); (A.W.); (Y.Y.)
| | - Katrin Bundkirchen
- Hannover Medical School, Department of Trauma Surgery, 30625 Hannover, Germany; (K.B.); (C.N.)
| | - Claudia Neunaber
- Hannover Medical School, Department of Trauma Surgery, 30625 Hannover, Germany; (K.B.); (C.N.)
| | - Borna Relja
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, 89081 Ulm, Germany; (J.M.B.); (H.R.); (N.B.); (A.W.); (Y.Y.)
| |
Collapse
|
3
|
Lee J, Cheong H. The Role of A20 in Cancer: Friend or Foe? Cells 2025; 14:544. [PMID: 40214497 PMCID: PMC11988600 DOI: 10.3390/cells14070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB signaling and autophagy. In this review, we summarize the dual roles of A20 in tumorigenesis, highlighting its ability to promote tumor progression in cancers, such as breast and melanoma, while functioning as a tumor suppressor in lymphomas and hepatocellular carcinoma. We discuss the interplay of A20 with autophagy, a process that is important for maintaining cellular homeostasis and influencing tumor dynamics. By integrating recent findings, we provide insight into how dysregulation of A20 and its associated pathways can either suppress or drive cancer development, which may lead to improved therapeutic intervention.
Collapse
Affiliation(s)
| | - Heesun Cheong
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
4
|
Dasharathy S, Pranay, Devadas SK, Tripathi E, Karyala P. Emerging role of deubiquitinases in modulating cancer chemoresistance. Drug Discov Today 2025; 30:104339. [PMID: 40118446 DOI: 10.1016/j.drudis.2025.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Chemotherapy remains a gold standard in cancer treatment by targeting the rapidly dividing cancer cells. However, chemoresistance is a major obstacle to successful cancer treatment, often leading to recurrence, metastasis, and high mortality. Deubiquitinases (DUBs), enzymes that remove ubiquitin and stabilize proteins, have been implicated in chemoresistance and can either promote therapeutic resistance or enhance sensitivity depending on their targets. In this review, we highlight the chemoresistance mechanisms of DUBs in various cancers, including breast, lung, liver, gastrointestinal, colorectal, ovarian, prostate, and blood cancers. Given these mechanisms, the development of DUB inhibitors has gained considerable attention in cancer therapeutics and combination therapies involving these inhibitors show potential to overcome drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Sukeerthi Dasharathy
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Pranay
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Santhosh K Devadas
- Department of Medical Oncology, Ramaiah Medical College and Hospital, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| | - Prashanthi Karyala
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| |
Collapse
|
5
|
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X, He S. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109406. [PMID: 39700916 DOI: 10.1016/j.plaphy.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive. In this study, we identified the Z9807 genotype as highly tolerant to salt stress, exhibiting superior leaf wilting resistance, antioxidant activity, catalase activity, K+/Na+ ratio, and growth compared to the salt-sensitive ZJ0102. Comparative transcriptome analysis revealed marked differences in salt stress responses between Z9807 and ZJ0102. This study identified a considerable number of differentially expressed genes associated with salt tolerance across multiple time points. By integration of QTL and GWAS mapping data, we successfully identified 621 candidate genes associated with salt tolerance. Weighted gene correlation network analysis exhibited three co-expression modules related to salt-tolerant Z9807 samples, ultimately identifying 15 core salt-tolerant candidate genes. We also conducted in-depth research on the salt tolerance of the stress-associated protein (SAP) GhSAP6 (GhSAP6_At and GhSAP6_Dt homologs). Results revealed that these candidate genes may inhibit salt tolerance through Virus-Induced Gene Silencing (VIGS) and transgenic overexpression assays conducted in Arabidopsis thaliana. Furthermore, we used yeast two-hybrid and luciferase assay experiments to confirm the ubiquitin degradation pathway between selected interacting proteins and verified the interaction with RAD23C. This study will provide new insights into the mechanisms related to salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Adeel Ahmad
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, 60000, Pakistan
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| |
Collapse
|
6
|
Philip R, Elhani I, Gallou S, Boysson HD, Martin Silva N, Georgin-Lavialle S, Deshayes S, Aouba A. A20 haploinsufficiency diagnosis beyond systemic lupus erythematosus: A systematic review of the literature. Autoimmun Rev 2025; 24:103722. [PMID: 39672252 DOI: 10.1016/j.autrev.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathophysiology remains incompletely understood, involving genetic and epigenetic factors. However, an increasing small subset of patients present with monogenic lupus, providing insight into the pathogenesis of the disease. This systematic review focuses on SLE associated with A20 haploinsufficiency (HA20), a monogenic disorder associated with tumor necrosis factor alpha-induced protein 3 gene (TNFAIP3) variants. Besides the mainly auto-inflammatory phenotypic expression of HA20 mimicking Behçet's disease spectrum, some of its clinical and biological manifestations are part of the spectrum of autoimmune diseases, including glomerulonephritis as well as the frequent presence of antinuclear antibodies, sometimes with anti-DNA specificity. Among all the 191 HA20 patients reported in the literature, we identified 16 patients (8.4 %) with a compatible diagnosis of SLE. When estimable, the SLICC 2012 and EULAR/ACR 2019 classification criteria were positive for 92.9 % of them. A majority had multi-system involvement, mainly cutaneous (81.3 %), musculoskeletal (56.3 %), and/or renal (56.3 %) manifestations. They also seemed to exhibit differences compared to other SLE patients: higher prevalence of fever, chronic cutaneous lupus erythematosus, oral and genital ulcers, neuropsychiatric manifestations, autoimmune cytopenia, and elevated biologic inflammatory markers. This review highlights the necessity of considering TNFAIP3 variants in SLE patients with early-onset disease, familial history, and/or specific clinical manifestations suggestive of autoinflammatory diseases. Recognizing HA20-SLE patients may improve our understanding of SLE pathogenesis and lead to better therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Rémi Philip
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France.
| | - Inès Elhani
- AP-HP, Tenon Hospital, Department of Internal Medicine, Paris, France; Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA) INSERM UMRS-938, USA; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), France
| | - Sophie Gallou
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Hubert De Boysson
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Nicolas Martin Silva
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France
| | - Sophie Georgin-Lavialle
- AP-HP, Tenon Hospital, Department of Internal Medicine, Paris, France; Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA) INSERM UMRS-938, USA; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), France
| | - Samuel Deshayes
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Achille Aouba
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, 14000 Caen, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| |
Collapse
|
7
|
Lv B, Deng H, Wei J, Feng Q, Liu B, Zuo A, Bai Y, Liu J, Dong J, Ma P. SmJAZs-SmbHLH37/SmERF73-SmSAP4 module mediates jasmonic acid signaling to balance biosynthesis of medicinal metabolites and salt tolerance in Salvia miltiorrhiza. THE NEW PHYTOLOGIST 2024; 244:1450-1466. [PMID: 39262232 DOI: 10.1111/nph.20110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Salvia miltiorrhiza holds significant importance in traditional Chinese medicine. Stress-associated proteins (SAP), identified by A20/AN1 zinc finger structural domains, play crucial roles in regulating plant growth, development, resistance to biotic and abiotic stress, and hormone responses. Herein, we conducted a genome-wide identification of the SAP gene family in S. miltiorrhiza. The expression analysis revealed a significant upregulation of SmSAP4 under methyl jasmonate (MeJA) and salt stress. Overexpressing SmSAP4 in S. miltiorrhiza hairy roots increased tanshinones content while decreasing salvianolic acids content, while RNAi-silencing SmSAP4 had the opposite effect. SmSAP4 overexpression in both Arabidopsis thaliana and S. miltiorrhiza hairy roots decreased their salt stress tolerance, accompanied by increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a hindered ability to maintain the Na+ : K+ ratio. Further investigations demonstrated that MeJA alleviated the inhibitory effect of SmJAZ3 on SmSAP4 activation by SmbHLH37 and SmERF73. However, MeJA did not affect the inhibition of SmSAP4 activation by SmJAZ8 through SmbHLH37. In summary, our research reveals that SmSAP4 negatively regulates the accumulation of salvianic acid through the SmJAZs-SmbHLH37/SmERF73-SmSAP4 module and positively impacting the accumulation of tanshinones. Additionally, it functions as a negative regulator under salt stress.
Collapse
Affiliation(s)
- Bingbing Lv
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Huaiyu Deng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jia Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Qiaoqiao Feng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Bo Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Anqi Zuo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
8
|
Asgari D, Stewart AJ, Meisel RP. The role of uncertainty and negative feedback loops in the evolution of induced immune defenses. G3 (BETHESDA, MD.) 2024; 14:jkae182. [PMID: 39106431 PMCID: PMC11457078 DOI: 10.1093/g3journal/jkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander J Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
9
|
Li G, Zhang J, Zhao Z, Wang J, Li J, Xu W, Cui Z, Sun P, Yuan H, Wang T, Li K, Bai X, Ma X, Li P, Fu Y, Cao Y, Bao H, Li D, Liu Z, Zhu N, Tang L, Lu Z. RNF144B negatively regulates antiviral immunity by targeting MDA5 for autophagic degradation. EMBO Rep 2024; 25:4594-4624. [PMID: 39285245 PMCID: PMC11467429 DOI: 10.1038/s44319-024-00256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.
Collapse
Affiliation(s)
- Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Weihong Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Ning Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
10
|
Dou Z, Bonacci TR, Shou P, Landoni E, Woodcock MG, Sun C, Savoldo B, Herring LE, Emanuele MJ, Song F, Baldwin AS, Wan Y, Dotti G, Zhou X. 4-1BB-encoding CAR causes cell death via sequestration of the ubiquitin-modifying enzyme A20. Cell Mol Immunol 2024; 21:905-917. [PMID: 38937625 PMCID: PMC11291893 DOI: 10.1038/s41423-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.
Collapse
Affiliation(s)
- Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Yisong Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
12
|
Lei Y, Sun W, Xu T, Shan J, Gao M, Lin H. Selenomethionine modulates the JAK2 / STAT3 / A20 pathway through oxidative stress to alleviate LPS-induced pyroptosis and inflammation in chicken hearts. Biochim Biophys Acta Gen Subj 2024; 1868:130564. [PMID: 38272191 DOI: 10.1016/j.bbagen.2024.130564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells 2024; 13:581. [PMID: 38607020 PMCID: PMC11011519 DOI: 10.3390/cells13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.
Collapse
Affiliation(s)
- Tatyana Ageeva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
14
|
Karri U, Harasimowicz M, Carpio Tumba M, Schwartz DM. The Complexity of Being A20: From Biological Functions to Genetic Associations. J Clin Immunol 2024; 44:76. [PMID: 38451381 DOI: 10.1007/s10875-024-01681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.
Collapse
Affiliation(s)
- Urekha Karri
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Magdalena Harasimowicz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Manuel Carpio Tumba
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Daniella M Schwartz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
16
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
17
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Zhang F, Zhang L. A20 haploinsufficiency in a neonate caused by a large deletion on chromosome 6q. Pediatr Rheumatol Online J 2024; 22:12. [PMID: 38183052 PMCID: PMC10770963 DOI: 10.1186/s12969-023-00947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Haploinsufficiency of A20 (HA20) is a rare monogenic disease caused by heterozygous loss-of-function mutations in the tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene located on chromosome 6q23.3. The majority of disease-causing mutations in most cases of HA20 comprise single nucleotide variations, small insertions, or deletions in TNFAIP3, which result in a premature termination codon and subsequent disruption of its anti-inflammatory role. Large deletions have been reported sporadically. HA20 patients may present with a variety of autoinflammatory and autoimmune features during early childhood; however, cases with neonatal onset are rare. Here, we describe a Chinese neonate presenting with concomitant inflammatory and other syndromic manifestations caused by a 5.15 Mb interstitial deletion in chromosome 6; these deletions affect TNFAIP3. Taken together, the data extend the clinical and genetic spectra of HA20.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Changsha, Hunan, China.
| |
Collapse
|
19
|
Merino-Vico A, van Hamburg JP, Tuijnenburg P, Frazzei G, Al-Soudi A, Bonasia CG, Helder B, Rutgers A, Abdulahad WH, Stegeman CA, Sanders JS, Bergamaschi L, Lyons PA, Bijma T, van Keep L, Wesenhagen K, Jongejan A, Olsson H, de Vries N, Kuijpers TW, Heeringa P, Tas SW. Targeting NF-κB signaling in B cells as a potential new treatment modality for ANCA-associated vasculitis. J Autoimmun 2024; 142:103133. [PMID: 37931331 DOI: 10.1016/j.jaut.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-β (IKKβ, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aram Al-Soudi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Boy Helder
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura van Keep
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kirsten Wesenhagen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
JIang W, Dong J, Zhang W, Huang Z, Guo T, Zhang K, Jiang X, Du T. Development and Validation of a Prognostic Model based on 11 E3-related Genes for Colon Cancer Patients. Curr Pharm Des 2024; 30:935-951. [PMID: 38898815 DOI: 10.2174/0113816128292398240306160051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Colon cancer is a common tumor in the gastrointestinal tract with a poor prognosis. According to research reports, ubiquitin-dependent modification systems have been found to play a crucial role in the development and advancement of different types of malignant tumors, including colon cancer. However, further investigation is required to fully understand the mechanism of ubiquitination in colon cancer. METHODS We collected the RNA expression matrix of the E3 ubiquitin ligase-related genes (E3RGs) from the patients with colon adenocarcinoma (COAD) using The Cancer Genome Atlas program (TCGA). The "limma" package was used to obtain differentially expressed E3RGs between COAD and adjacent normal tissues. Then, univariate COX regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct the prognostic signature and nomogram model. Afterward, we used the original copy number variation data of COAD to find potential somatic mutation and employed the "pRRophetic" package to investigate the disparity in the effectiveness of chemotherapy drugs between high and low-risk groups. The RT-qPCR was also implied to detect mRNA expression levels in tumor tissues. RESULTS A total of 137 differentially expressed E3RG3 were screened and 11 genes (CORO2B, KCTD9, RNF32, BACH2, RBCK1, DPH7, WDR78, UCHL1, TRIM58, WDR72, and ZBTB18) were identified for the construction of prognostic signatures. The Kaplan-Meier curve showed a worse prognosis for patients with high risk both in the training and test cohorts (P = 1.037e-05, P = 5.704e-03), and the area under the curve (AUC) was 0.728 and 0.892 in the training and test cohorts, respectively. Based on the stratified analysis, this 11- E3RGs signature was a novel and attractive prognostic model independent of several clinicopathological parameters (age, sex, stage, TNM) in COAD. The DEGs were subjected to GO and KEGG analysis, which identified pathways associated with cancer progression. These pathways included the cAMP signaling pathway, calcium signaling pathway, Wnt signaling pathway, signaling pathways regulating stem cell pluripotency, and proteoglycans in cancer. Additionally, immune infiltration analysis revealed significant differences in the infiltration of macrophages M0, T cells follicular helper, and plasma cells between the two groups. CONCLUSION We developed a novel independent risk model consisting of 11 E3RGs and verified the effectiveness of this model in test cohorts, providing important insights into survival prediction in COAD and several promising targets for COAD therapy.
Collapse
Affiliation(s)
- Wanju JIang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth Peoples Hospital, Tongji University, Shanghai 200072, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kehui Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Shim JA, Lee SM, Jeong JW, Kim H, Son WJ, Park JH, Song P, Im SH, Bae S, Park JH, Jo Y, Hong C. NFAT1 and NFκB regulates expression of the common γ-chain cytokine receptor in activated T cells. Cell Commun Signal 2023; 21:309. [PMID: 37904191 PMCID: PMC10617197 DOI: 10.1186/s12964-023-01326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Cytokines of the common γ chain (γc) family are critical for the development, differentiation, and survival of T lineage cells. Cytokines play key roles in immunodeficiencies, autoimmune diseases, allergies, and cancer. Although γc is considered an assistant receptor to transmit cytokine signals and is an indispensable receptor in the immune system, its regulatory mechanism is not yet well understood. OBJECTIVE This study focused on the molecular mechanisms that γc expression in T cells is regulated under T cell receptor (TCR) stimulation. METHODS The γc expression in TCR-stimulated T cells was determined by flow cytometry, western blot and quantitative RT-PCR. The regulatory mechanism of γc expression in activated T cells was examined by promoter-luciferase assay and chromatin immunoprecipitation assays. NFAT1 and NFκB deficient cells generated using CRISPR-Cas9 and specific inhibitors were used to examine their role in regulation of γc expression. Specific binding motif was confirmed by γc promotor mutant cells generated using CRISPR-Cas9. IL-7TgγcTg mice were used to examine regulatory role of γc in cytokine signaling. RESULTS We found that activated T cells significantly upregulated γc expression, wherein NFAT1 and NFκB were key in transcriptional upregulation via T cell receptor stimulation. Also, we identified the functional binding site of the γc promoter and the synergistic effect of NFAT1 and NFκB in the regulation of γc expression. Increased γc expression inhibited IL-7 signaling and rescued lymphoproliferative disorder in an IL-7Tg animal model, providing novel insights into T cell homeostasis. CONCLUSION Our results indicate functional cooperation between NFAT1 and NFκB in upregulating γc expression in activated T cells. As γc expression also regulates γc cytokine responsiveness, our study suggests that γc expression should be considered as one of the regulators in γc cytokine signaling and the development of T cell immunotherapies. Video Abstract.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - So Min Lee
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jin Woo Jeong
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyori Kim
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Woo Jae Son
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
- University of Science & Technology (UST), KIOM Campus, Korean Convergence Medicine Major, Daejeon, 34054, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yuna Jo
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- Department of Anatomy, Pusan National University School of Medicine, Room 515, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea.
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea.
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
24
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
25
|
Luo M, Wang X, Wu S, Yang C, Su Q, Huang L, Fu K, An S, Xie F, To KKW, Wang F, Fu L. A20 promotes colorectal cancer immune evasion by upregulating STC1 expression to block "eat-me" signal. Signal Transduct Target Ther 2023; 8:312. [PMID: 37607946 PMCID: PMC10444827 DOI: 10.1038/s41392-023-01545-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have induced durable clinical responses in a subset of patients with colorectal cancer (CRC). However, the dis-satisfactory response rate and the lack of appropriate biomarkers for selecting suitable patients to be treated with ICIs pose a major challenge to current immunotherapies. Inflammation-related molecule A20 is closely related to cancer immune response, but the effect of A20 on "eat-me" signal and immunotherapy efficacy remains elusive. We found that A20 downregulation prominently improved the antitumor immune response and the efficacy of PD-1 inhibitor in CRC in vitro and in vivo. Higher A20 expression was associated with less infiltration of immune cells including CD3 (+), CD8 (+) T cells and macrophages in CRC tissues and also poorer prognosis. Gain- and loss-A20 functional studies proved that A20 could decrease the "eat-me" signal calreticulin (CRT) protein on cell membrane translocation via upregulating stanniocalcin 1 (STC1), binding to CRT and detaining in mitochondria. Mechanistically, A20 inhibited GSK3β phosphorylating STC1 at Thr86 to slow down the degradation of STC1 protein. Our findings reveal a new crosstalk between inflammatory molecule A20 and "eat-me" signal in CRC, which may represent a novel predictive biomarker for selecting CRC patients most likely to benefit from ICI therapy.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qiao Su
- Laboratory Animal Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Lamei Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Fachao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
26
|
Sheveleva O, Protasova E, Nenasheva T, Butorina N, Melnikova V, Gerasimova T, Sakovnich O, Kurinov A, Grigor’eva E, Medvedev S, Lyadova I. A Model of iPSC-Derived Macrophages with TNFAIP3 Overexpression Reveals the Peculiarities of TNFAIP3 Protein Expression and Function in Human Macrophages. Int J Mol Sci 2023; 24:12868. [PMID: 37629049 PMCID: PMC10454046 DOI: 10.3390/ijms241612868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.
Collapse
Affiliation(s)
- Olga Sheveleva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Elena Protasova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Nina Butorina
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Victoria Melnikova
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Olga Sakovnich
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Alexander Kurinov
- Laboratory of Regeneration Problems, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Elena Grigor’eva
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Sergey Medvedev
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| |
Collapse
|
27
|
Carman LE, Samulevich ML, Aneskievich BJ. Repressive Control of Keratinocyte Cytoplasmic Inflammatory Signaling. Int J Mol Sci 2023; 24:11943. [PMID: 37569318 PMCID: PMC10419196 DOI: 10.3390/ijms241511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The overactivity of keratinocyte cytoplasmic signaling contributes to several cutaneous inflammatory and immune pathologies. An important emerging complement to proteins responsible for this overactivity is signal repression brought about by several proteins and protein complexes with the native role of limiting inflammation. The signaling repression by these proteins distinguishes them from transmembrane receptors, kinases, and inflammasomes, which drive inflammation. For these proteins, defects or deficiencies, whether naturally arising or in experimentally engineered skin inflammation models, have clearly linked them to maintaining keratinocytes in a non-activated state or returning cells to a post-inflamed state after a signaling event. Thus, together, these proteins help to resolve acute inflammatory responses or limit the development of chronic cutaneous inflammatory disease. We present here an integrated set of demonstrated or potentially inflammation-repressive proteins or protein complexes (linear ubiquitin chain assembly complex [LUBAC], cylindromatosis lysine 63 deubiquitinase [CYLD], tumor necrosis factor alpha-induced protein 3-interacting protein 1 [TNIP1], A20, and OTULIN) for a comprehensive view of cytoplasmic signaling highlighting protein players repressing inflammation as the needed counterpoints to signal activators and amplifiers. Ebb and flow of players on both sides of this inflammation equation would be of physiological advantage to allow acute response to damage or pathogens and yet guard against chronic inflammatory disease. Further investigation of the players responsible for repressing cytoplasmic signaling would be foundational to developing new chemical-entity pharmacologics to stabilize or enhance their function when clinical intervention is needed to restore balance.
Collapse
Affiliation(s)
- Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
28
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
29
|
Rohwedder I, Wackerbarth LM, Heinig K, Ballweg A, Altstätter J, Ripphahn M, Nussbaum C, Salvermoser M, Bierschenk S, Straub T, Gunzer M, Schmidt-Supprian M, Kolben T, Schulz C, Ma A, Walzog B, Heinig M, Sperandio M. A20 and the noncanonical NF-κB pathway are key regulators of neutrophil recruitment during fetal ontogeny. JCI Insight 2023; 8:155968. [PMID: 36633909 PMCID: PMC9977499 DOI: 10.1172/jci.insight.155968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Newborns are at high risk of developing neonatal sepsis, particularly if born prematurely. This has been linked to divergent requirements the immune system has to fulfill during intrauterine compared with extrauterine life. By transcriptomic analysis of fetal and adult neutrophils, we shed new light on the molecular mechanisms of neutrophil maturation and functional adaption during fetal ontogeny. We identified an accumulation of differentially regulated genes within the noncanonical NF-κB signaling pathway accompanied by constitutive nuclear localization of RelB and increased surface expression of TNF receptor type II in fetal neutrophils, as well as elevated levels of lymphotoxin α in fetal serum. Furthermore, we found strong upregulation of the negative inflammatory regulator A20 (Tnfaip3) in fetal neutrophils, which was accompanied by pronounced downregulation of the canonical NF-κB pathway. Functionally, overexpressing A20 in Hoxb8 cells led to reduced adhesion of these neutrophil-like cells in a flow chamber system. Conversely, mice with a neutrophil-specific A20 deletion displayed increased inflammation in vivo. Taken together, we have uncovered constitutive activation of the noncanonical NF-κB pathway with concomitant upregulation of A20 in fetal neutrophils. This offers perfect adaption of neutrophil function during intrauterine fetal life but also restricts appropriate immune responses particularly in prematurely born infants.
Collapse
Affiliation(s)
- Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Kristina Heinig
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Annamaria Ballweg
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Johannes Altstätter
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Myriam Ripphahn
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Melanie Salvermoser
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Susanne Bierschenk
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center Munich, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University of Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | | | | | - Christian Schulz
- Medical Clinic I, University Hospital, LMU Munich, Munich, Germany
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany.,Department of Informatics, TU Munich, Munich, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Guryanova SV, Kataeva A. Inflammation Regulation by Bacterial Molecular Patterns. Biomedicines 2023; 11:biomedicines11010183. [PMID: 36672691 PMCID: PMC9855958 DOI: 10.3390/biomedicines11010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Stimulation of innate immunity by bacterial molecular patterns can induce an enhanced cellular immune response to pathogens that are associated with innate immune memory shaped by epigenetic changes. Immunological memory can be expressed in the acceleration/intensification of inflammation, as well as in the exact opposite-to maintain tolerance and non-response to a repeated stimulus. Tolerance is one of the central concepts of immunity and is ensured by the consistency of all parts of the immune response. The severe consequences of inflammation force researchers to study in detail all stages of the downstream pathways that are activated after exposure to a stimulus, while the formation of non-response to a pro-inflammatory stimulus has not yet received a detailed description. Elucidation of the mechanism of tolerance is an urgent task for the prevention and treatment of inflammatory diseases. The aim of this investigation was to study the dynamic changes in the gene expression of A20 and ATF3, the inflammation suppressors, against the background of the expression of the genes of the innate immunity receptors TLR4 and NOD2 and the pro-inflammatory cytokine TNF-α under the influence of TLR4 and NOD2 agonists, lipopolysaccharide (LPS) and glucosaminylmuramyl dipeptide (GMDP). The mechanism of inflammation regulation by bioregulators of bacterial origin-LPS and GMDP-was evaluated in vitro in human peripheral blood mononuclear cells and in vivo after i.p. administration of LPS and GMDP to mice. Gene expression was assessed by RT-PCR. Innate immune receptors and the pro-inflammatory cytokine TNF-α were found to develop early in response to LPS and GMDP, both in vitro and in vivo. Genes of cytosolic proteins controlling inflammation (A20 and ATF3) were expressed later. Prior exposure of the innate immune system to LPS and muramyl peptides may modulate host defense against acute inflammation. As a result of the study, new data were obtained on dynamic changes in deubiquitinase A20 and the transcription factor ATF3, which are involved in the limitation and suppression of inflammatory reactions caused by fragments of bacterial cell walls-LPS and GMDP. Thus, bioregulators of bacterial origin LPS and GMDP, along with pro-inflammatory factors, activate the expression of genes that suppress inflammation, which should be considered when analyzing data from studies of the pro-inflammatory properties of LPS and GMDP and when developing drugs based on them.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ministry of Science and Higher Education of the Russian Federation, 117997 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
- Correspondence: ; Tel.: +7-9153150073
| | | |
Collapse
|
31
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
32
|
Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911148. [PMID: 36232471 PMCID: PMC9569556 DOI: 10.3390/ijms231911148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls related to aging. Thus far, the roles of cellular senescence and bacterial infection in the pathogenesis of atherosclerosis have been speculated to be independent of each other. Some types of macrophages, vascular endothelial cells, and vascular smooth muscle cells are in a senescent state at the sites of atherosclerotic lesions. Likewise, bacterial infections and accumulations of lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, have also been observed in the atherosclerotic lesions of patients. This review introduces the integration of these two potential pathways in atherosclerosis. Previous studies have suggested that LPS directly induces cellular senescence in cultured monocytes/macrophages and vascular cells. In addition, LPS enhances the inflammatory properties (senescence-associated secretory phenotype [SASP]) of senescent endothelial cells. Thus, LPS derived from Gram-negative bacteria could exaggerate the pathogenesis of atherosclerosis by inducing and enhancing cellular senescence and the SASP-associated inflammatory properties of specific vascular cells in atherosclerotic lesions. This proposed mechanism can provide novel approaches to preventing and treating this common age-related disease.
Collapse
|
33
|
Ghazisaeedi F, Meens J, Hansche B, Maurischat S, Schwerk P, Goethe R, Wieler LH, Fulde M, Tedin K. A virulence factor as a therapeutic: the probiotic Enterococcus faecium SF68 arginine deiminase inhibits innate immune signaling pathways. Gut Microbes 2022; 14:2106105. [PMID: 35921516 PMCID: PMC9351580 DOI: 10.1080/19490976.2022.2106105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The probiotic bacterial strain Enterococcus faecium SF68 has been shown to alleviate symptoms of intestinal inflammation in human clinical trials and animal feed supplementation studies. To identify factors involved in immunomodulatory effects on host cells, E. faecium SF68 and other commensal and clinical Enterococcus isolates were screened using intestinal epithelial cell lines harboring reporter fusions for NF-κB and JNK(AP-1) activation to determine the responses of host cell innate immune signaling pathways when challenged with bacterial protein and cell components. Cell-free, whole-cell lysates of E. faecium SF68 showed a reversible, inhibitory effect on both NF-κB and JNK(AP-1) signaling pathway activation in intestinal epithelial cells and abrogated the response to bacterial and other Toll-like receptor (TLR) ligands. The inhibitory effect was species-specific, and was not observed for E. avium, E. gallinarum, or E. casseliflavus. Screening of protein fractions of E. faecium SF68 lysates yielded an active fraction containing a prominent protein identified as arginine deiminase (ADI). The E. faecium SF68 arcA gene encoding arginine deiminase was cloned and introduced into E. avium where it conferred the same NF-κB inhibitory effects on intestinal epithelial cells as seen for E. faecium SF68. Our results indicate that the arginine deiminase of E. faecium SF68 is responsible for inhibition of host cell NF-κB and JNK(AP-1) pathway activation, and is likely to be responsible for the anti-inflammatory and immunomodulatory effects observed in prior clinical human and animal trials. The implications for the use of this probiotic strain for preventive and therapeutic purposes are discussed.
Collapse
Affiliation(s)
- Fereshteh Ghazisaeedi
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Jochen Meens
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - Bianca Hansche
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,Sanofi-AventisGmbH, Berlin, Germany
| | - Sven Maurischat
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Schwerk
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - Lothar H. Wieler
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,Robert Koch Institute, Berlin, Germany
| | - Marcus Fulde
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Berlin, Germany,CONTACT Karsten Tedin Institute of Microbiology and Epizootics, Centre for Infection Medicine, Free University of Berlin, Robert-von-Ostertag-Strasse7, Berlin14163Germany
| |
Collapse
|
34
|
Valenzuela NM. Late phase endothelial cell inflammation is characterized by interferon response genes and driven by JAK/STAT, not NFκB. Vascul Pharmacol 2022; 146:107090. [PMID: 35908591 DOI: 10.1016/j.vph.2022.107090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Chronic vascular inflammation underlies many diseases, including atherosclerosis, autoimmune vasculitides and transplant rejection. The resolution of inflammation is critical for proper healing and restoration of homeostasis, but the timing and signaling mechanisms involved in the return to a non-inflamed state are not well understood. Pro-adhesive gene expression, phenotype and secretome of human endothelial cells was measured in primary human aortic endothelium under chronic TNFα stimulation, and after short-term TNFα priming followed by withdrawal. The effects of NFκB, MAPK and JAK1/2 inhibitors on TNFα-induced gene expression were tested. The majority of inducible TNFα effectors, such as E-selectin, VCAM-1 and most chemokines, required continuous exposure for reinforcement of the altered phenotype, and were NFκB dependent. However, 3 h priming with TNFα induced late phase STAT activation and interferon response genes after 18 h, as well as enhanced ICAM-1, BST2 and CXCR3 ligand expression. Chronic activation was autonomous of continuous TNFα, and could be blocked by the JAK1/2 inhibitor ruxolitinib. The results demonstrate that NFκB is not a significant driver of the later phase of endothelial cell activation by TNFα, but that sustained inflammation is JAK1/2-dependent and characterized by adaptive chemokines.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| |
Collapse
|
35
|
Ramakrishnan RK, Bajbouj K, Guimei M, Rawat SS, Kalaji Z, Hachim MY, Mahboub B, Ibrahim SM, Hamoudi R, Halwani R, Hamid Q. Bcl10 Regulates Lipopolysaccharide-Induced Pro-Fibrotic Signaling in Bronchial Fibroblasts from Severe Asthma Patients. Biomedicines 2022; 10:1716. [PMID: 35885021 PMCID: PMC9312497 DOI: 10.3390/biomedicines10071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-β1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals.
Collapse
Affiliation(s)
- Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Surendra Singh Rawat
- College of Medicine, Mohammed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates; (S.S.R.); (M.Y.H.)
| | - Zaina Kalaji
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates; (S.S.R.); (M.Y.H.)
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Rashid Hospital, Dubai Health Authority, Dubai P.O. Box 4545, United Arab Emirates
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Immunology Research Lab, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Meakins-Christie Laboratories, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
36
|
Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers. PLoS Genet 2022; 18:e1010235. [PMID: 35648786 PMCID: PMC9191726 DOI: 10.1371/journal.pgen.1010235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
The transcription factor NF-κB, which plays an important role in cell fate determination, is involved in the activation of super-enhancers (SEs). However, the biological functions of the NF-κB SEs in gene control are not fully elucidated. We investigated the characteristics of NF-κB-mediated SE activity using fluorescence imaging of RelA, single-cell transcriptome and chromatin accessibility analyses in anti-IgM-stimulated B cells. The formation of cell stimulation-induced nuclear RelA foci was abolished in the presence of hexanediol, suggesting an underlying process of liquid-liquid phase separation. The gained SEs induced a switch-like expression and enhanced cell-to-cell variability in transcriptional response. These properties were correlated with the number of gained cis-regulatory interactions, while switch-like gene induction was associated with the number of NF-κB binding sites in SE. Our study suggests that NF-κB SEs have an important role in the transcriptional regulation of B cells possibly through liquid condensate formation consisting of macromolecular interactions. NF-κB produces an all-or-none activation response upon the activation of B cell receptors. These dynamics modulate the amplitude and frequency of target mRNA induction in cell populations. In this research, we performed single-cell assessment of chromatin accessibility and RNA expression, coupled with fluorescence imaging to characterize the nuclear dynamics of NF-κB proteins in B cell upon receptor stimulation. We found that upon cellular activation, NF-κB-mediated long-range activation of enhancers cooperatively evoked RNA production. In addition, predicted DNA contacts brought by open chromatin led to the high heterogeneity of RNA levels in cell populations. Stimuli-dependent NF-κB foci formation was further inhibited by 1,6-hexanediol (liquid-liquid phase separation inhibitor) and JQ1 (coactivator protein BRD4 inhibitor). We thus propose that nuclear NF-κB plays an important role in the transcriptional regulation of B cell development possibly through the formation of liquid condensates.
Collapse
|
37
|
Bai W, Huo S, Li J, Shao J. Advances in the Study of the Ubiquitin-Editing Enzyme A20. Front Pharmacol 2022; 13:845262. [PMID: 35592427 PMCID: PMC9110840 DOI: 10.3389/fphar.2022.845262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Ubiquitin modification is a common post-translational protein modification and an important mechanism whereby the body regulates protein levels and functions. As a common enzyme associated with ubiquitin modification, the ubiquitin-editing enzyme A20 may be closely associated with the development of numerous pathological processes through its different structural domains. The aim of this paper is to provide an overview of the following: advances in ubiquitination research, the structure and function of A20, and the relationships between A20 and immune inflammatory response, apoptosis, necroptosis, pyroptosis, and autophagy.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
38
|
Martire S, Valentino P, Marnetto F, Mirabile L, Capobianco M, Bertolotto A. The impact of pre-freezing storage time and temperature on gene expression of blood collected in EDTA tubes. Mol Biol Rep 2022; 49:4709-4718. [PMID: 35279776 PMCID: PMC9262796 DOI: 10.1007/s11033-022-07320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022]
Abstract
Background Blood is a common source of RNA for gene expression studies. However, it is known to be vulnerable to pre-analytical variables. Although RNA stabilization systems have been shown to reduce such influence, traditional EDTA tubes are still widely used since they are less expensive and enable to study specific leukocyte populations. This study aimed to assess the influence of storage time and temperature between blood sampling and handling on RNA from peripheral blood mononuclear cells (PBMCs). Methods and results Nine blood samples were collected in EDTA tubes from 10 healthy donors. One tube from each donor was immediately processed for PBMC isolation, while the others were first incubated at either 4 degrees Celsius (°C) or room temperature for 2, 4, 6 and 24 h. RNA yield and quality and the expression level of fourt housekeeping (B2M, CASC3, GAPDH, HPRT1) and 8 target genes (CD14, CD19, CD20, IL10, MxA, TNF, TNFAIP3, NR4A2) were compared between samples. RNA yield, quality and integrity did not vary significantly with time and temperature. B2M was the most stable housekeeping gene, while the others were increasingly influenced by storing time, especially at 4 °C. Even when normalized to B2M, the expression level of some target genes, particularly TNFAIP3 and NR4A2, was highly affected by delays in blood processing at either temperature, already from 2 h. Conclusion Pre-analytical processing has a great impact on transcript expression from blood collected in EDTA tubes, especially on genes related to inflammation. Standardized procedure of blood handling are needed to obtain reliable results. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07320-5.
Collapse
Affiliation(s)
- Serena Martire
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy.
| | - Paola Valentino
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy
| | - Fabiana Marnetto
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10100, Turin, Italy
| | - Luca Mirabile
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marco Capobianco
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- SCDO Neurologia and CRESM, University Hospital AOU San Luigi Gonzaga, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Antonio Bertolotto
- Clinical Neurobiology Unit, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
- Koelliker Hospital, 10100, Turin, Italy
| |
Collapse
|
39
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
40
|
Polymyxin Induces Significant Transcriptomic Perturbations of Cellular Signalling Networks in Human Lung Epithelial Cells. Antibiotics (Basel) 2022; 11:antibiotics11030307. [PMID: 35326770 PMCID: PMC8944768 DOI: 10.3390/antibiotics11030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Inhaled polymyxins are increasingly used to treat pulmonary infections caused by multidrug-resistant Gram-negative pathogens. We have previously shown that apoptotic pathways, autophagy and oxidative stress are involved in polymyxin-induced toxicity in human lung epithelial cells. In the present study, we employed human lung epithelial cells A549 treated with polymyxin B as a model to elucidate the complex interplay of multiple signalling networks underpinning cellular responses to polymyxin toxicity. Polymyxin B induced toxicity (1.0 mM, 24 h) in A549 cells was assessed by flow cytometry and transcriptomics was performed using microarray. Polymyxin B induced cell death was 19.0 ± 4.2% at 24 h. Differentially expressed genes (DEGs) between the control and polymyxin B treated cells were identified with Student’s t-test. Pathway analysis was conducted with KEGG and Reactome and key hub genes related to polymyxin B induced toxicity were examined using the STRING database. In total we identified 899 DEGs (FDR < 0.01), KEGG and Reactome pathway analyses revealed significantly up-regulated genes related to cell cycle, DNA repair and DNA replication. NF-κB and nucleotide-binding oligomerization domain-like receptor (NOD) signalling pathways were identified as markedly down-regulated genes. Network analysis revealed the top 5 hub genes (i.e., degree) affected by polymyxin B treatment were PLK1(48), CDK20 (46), CCNA2 (42), BUB1 (40) and BUB1B (37). Overall, perturbations of cell cycle, DNA damage and pro-inflammatory NF-κB and NOD-like receptor signalling pathways play key roles in polymyxin-induced toxicity in human lung epithelial cells. Noting that NOD-like receptor signalling represents a group of key sensors for microorganisms and damage in the lung, understanding the mechanism of polymyxin-induced pulmonary toxicity will facilitate the optimisation of polymyxin inhalation therapy in patients.
Collapse
|
41
|
Tocotrienol in Pre-Eclampsia Prevention: A Mechanistic Analysis in Relation to the Pathophysiological Framework. Cells 2022; 11:cells11040614. [PMID: 35203265 PMCID: PMC8870475 DOI: 10.3390/cells11040614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.
Collapse
|
42
|
Yin H, Karayel O, Chao YY, Seeholzer T, Hamp I, Plettenburg O, Gehring T, Zielinski C, Mann M, Krappmann D. A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-κB signaling in activated T cells. Cell Mol Life Sci 2022; 79:112. [PMID: 35099607 PMCID: PMC8803816 DOI: 10.1007/s00018-022-04154-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/03/2022]
Abstract
T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.
Collapse
Affiliation(s)
- Hongli Yin
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Ying-Yin Chao
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University Jena, Jena, Germany.,Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Isabel Hamp
- Institute for Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167, Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167, Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Christina Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
43
|
Dinallo V, Di Fusco D, Di Grazia A, Laudisi F, Troncone E, Di Maggio G, Franzè E, Marafini I, Colantoni A, Ortenzi A, Stolfi C, Di Daniele N, Monteleone I, Monteleone G. The Deubiquitinating Enzyme OTUD5 Sustains Inflammatory Cytokine Response in Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:122-132. [PMID: 34232309 DOI: 10.1093/ecco-jcc/jjab121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS The inflammatory bowel disease [IBD]-associated immune response is marked by excessive production of a variety of inflammatory cytokines, which are supposed to sustain and amplify the pathological process. OTUD5 is a deubiquitinating enzyme, which regulates cytokine production by both innate and adaptive immune cells. Here, we investigated the expression and role of OTUD5 in IBD. METHODS OTUD5 expression was evaluated in mucosal samples of patients with Crohn's disease [CD], patients with ulcerative colitis [UC], and controls, as well as in mice with trinitrobenzene-sulphonic acid [TNBS]-induced colitis by real-time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Moreover, OTUD5 was assessed in lamina propria mononuclear cells [LPMC] stimulated with inflammatory cytokines. TNF-α, IL-6, and IL-10 were evaluated in LPMCs of IBD patients and in colitic mice transfected with a specific OTUD5 antisense oligonucleotide [AS]. RESULTS OTUD5 protein, but not RNA, expression was increased in inflamed ileal and colonic mucosal samples of patients with CD and patients with UC as compared with controls. In IBD, OTUD5-expressing cells were abundant in both epithelial and lamina propria compartments, and non-CD3+, HLA-DR+ LPMC were one of the major sources of the protein. OTUD5 expression was enhanced by IFN-γ through a p38/MAPK-dependent mechanism, and the AS-induced knockdown of OTUD5 in LPMCs of IBD patients and colitic mice reduced TNF-α. CONCLUSIONS Our data show that OTUD5 is overexpressed in both CD and UC and suggest the involvement of such a protein in the amplification of the aberrant cytokine response in IBD.
Collapse
Affiliation(s)
- Vincenzo Dinallo
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Giulia Di Maggio
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of 'Tor Vergata', Rome, Italy
| | | |
Collapse
|
44
|
Guryanova SV, Gigani OB, Gudima GO, Kataeva AM, Kolesnikova NV. Dual Effect of Low-Molecular-Weight Bioregulators of Bacterial Origin in Experimental Model of Asthma. Life (Basel) 2022; 12:192. [PMID: 35207480 PMCID: PMC8879587 DOI: 10.3390/life12020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Asthma is one of the most common noncommunicable diseases, affecting over 200 million people. A large number of drugs control asthma attacks, but there is no effective therapy. Identification of reasons for asthma and preventing this disease is a relevant task. The influence of bacterial components is necessary for the normal development of the immune system and the formation of an adequate immune response to antigens. In the absence of microorganisms or their insufficient exposure, the prerequisites are formed for excessive reactivity to harmless antigens. In the present study, we analyzed cellular and humoral factors in a standard mouse model of OVA-induced asthma modified by 5-fold intraperitoneal injection of bacterial cell wall fragments of glucosaminylmuramyl dipeptide (GMDP) 5 μg/animal or 1 μg lipopolysaccharide (LPS) per animal for 5 days before sensitization by ovalbumin (OVA). Preliminary administration of LPS or GMDP to animals significantly reduced goblet cells as well as the number of neutrophils, lymphocytes, and eosinophils in bronchoalveolar lavage, wherein GMDP corrected neutrophilia to a 2-fold degree, and LPS reduced the severity of eosinophilia by 1.9 times. With OVA administration of GMDP or LPS at the sensitization stage, an increase in the total number of bronchoalveolar lavage cells due to neutrophils, macrophages, lymphocytes, and eosinophils in relation to the group with asthma without GMDP or LPS was observed. The administration of GMDP or LPS to normal mice without asthma for 5 days had no statistically significant effect on the change in the number and population composition of cells in bronchoalveolar lavage in comparison with the control group receiving PBS. As a result of a study in a mouse model of asthma, a dual effect of LPS and GMDP was established: the introduction of LPS or GMDP before sensitization reduces neutrophilia and eosinophilia, while the introduction of LPS or GMDP together with an allergen significantly increases neutrophilia and eosinophilia. The study of the immunoglobulin status shows that in normal-asthma mice, GMDP and LPS slightly increase IgA in bronchoalveolar lavage; at the same time, in the asthma model, injections of GMDP or LPS before sensitization contribute to a significant decrease in IgA (2.6 times and 2.1 times, respectively) in BALF and IgE (2.2 times and 2.0 times, respectively) in blood serum. In an experimental model of asthma, the effect of GMDP and LPS was multidirectional: when they are repeatedly administered before sensitization, the bacterial components significantly reduce the severity of the allergic process, while in the case of a joint injection with an allergen, they increase the influx of macrophages, lymphocytes, and neutrophils into the lungs, which can aggravate the course of pathological process. Thus, the insufficient effect of antigens of a bacterial nature, in particular, with prolonged use of antibiotics can be compensated for by substances based on low-molecular-weight bioregulators of bacterial origin to establish the missing signals for innate immunity receptors, whose constant activation at a certain level is necessary to maintain homeostasis.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Ministry of Science and Higher Education of the Russian Federation, 117997 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Olga B. Gigani
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Georgii O. Gudima
- National Research Center-Institute of Immunology of the Federal Medico-Biological Agency, 115522 Moscow, Russia;
| | - Anastasiya M. Kataeva
- Medical Institute, Peoples’ Friendship University of Russia (RUDN University), Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia; (O.B.G.); (A.M.K.)
| | - Natalya V. Kolesnikova
- Department of Clinical Immunology, Kuban State Medical University, Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia;
| |
Collapse
|
45
|
Schraivogel D, Kuhn TM, Rauscher B, Rodríguez-Martínez M, Paulsen M, Owsley K, Middlebrook A, Tischer C, Ramasz B, Ordoñez-Rueda D, Dees M, Cuylen-Haering S, Diebold E, Steinmetz LM. High-speed fluorescence image-enabled cell sorting. Science 2022; 375:315-320. [PMID: 35050652 PMCID: PMC7613231 DOI: 10.1126/science.abj3013] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fast and selective isolation of single cells with unique spatial and morphological traits remains a technical challenge. Here, we address this by establishing high-speed image-enabled cell sorting (ICS), which records multicolor fluorescence images and sorts cells based on measurements from image data at speeds up to 15,000 events per second. We show that ICS quantifies cell morphology and localization of labeled proteins and increases the resolution of cell cycle analyses by separating mitotic stages. We combine ICS with CRISPR-pooled screens to identify regulators of the nuclear factor κB (NF-κB) pathway, enabling the completion of genome-wide image-based screens in about 9 hours of run time. By assessing complex cellular phenotypes, ICS substantially expands the phenotypic space accessible to cell-sorting applications and pooled genetic screening.
Collapse
Affiliation(s)
- Daniel Schraivogel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit; Heidelberg, Germany
| | - Terra M. Kuhn
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit; Heidelberg, Germany
| | - Benedikt Rauscher
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit; Heidelberg, Germany
| | | | - Malte Paulsen
- European Molecular Biology Laboratory (EMBL), Flow Cytometry Core Facility; Heidelberg, Germany
| | | | | | - Christian Tischer
- European Molecular Biology Laboratory (EMBL); Advanced Light Microscopy Core Facility, Heidelberg, Germany
| | - Beáta Ramasz
- European Molecular Biology Laboratory (EMBL), Flow Cytometry Core Facility; Heidelberg, Germany
| | - Diana Ordoñez-Rueda
- European Molecular Biology Laboratory (EMBL), Flow Cytometry Core Facility; Heidelberg, Germany
| | - Martina Dees
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit; Heidelberg, Germany
| | - Sara Cuylen-Haering
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit; Heidelberg, Germany
| | | | - Lars M. Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit; Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Genome Technology Center; Palo Alto, CA, USA
| |
Collapse
|
46
|
IKKα plays a major role in canonical NF-kB signalling in colorectal cells. Biochem J 2022; 479:305-325. [PMID: 35029639 PMCID: PMC8883499 DOI: 10.1042/bcj20210783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
Inhibitor of kappa B (IκB) kinase β (IKKβ) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKβ in canonical NF-κB activation in colorectal cells using CRISPR–Cas9 knock-out cell lines, siRNA and selective IKKβ inhibitors. IKKα and IKKβ were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKβ alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells, IKKβ was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKβ. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKβ inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKβ contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKβ to date.
Collapse
|
47
|
Long KR, Rbaibi Y, Bondi CD, Ford BR, Poholek AC, Boyd-Shiwarski CR, Tan RJ, Locker JD, Weisz OA. Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells. Am J Physiol Renal Physiol 2022; 322:F14-F26. [PMID: 34747197 PMCID: PMC8698540 DOI: 10.1152/ajprenal.00259.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Agenesis of Corpus Callosum/genetics
- Agenesis of Corpus Callosum/metabolism
- Agenesis of Corpus Callosum/pathology
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- CRISPR-Associated Protein 9/genetics
- CRISPR-Cas Systems
- Cells, Cultured
- Databases, Genetic
- Gene Knockout Techniques
- Gene Regulatory Networks
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/pathology
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Male
- Mice, Knockout
- Monodelphis
- Myopia/genetics
- Myopia/metabolism
- Myopia/pathology
- Proteinuria/genetics
- Proteinuria/metabolism
- Proteinuria/pathology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/metabolism
- Renal Tubular Transport, Inborn Errors/pathology
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Kimberly R Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Corry D Bondi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - B Rhodes Ford
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cary R Boyd-Shiwarski
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
The functional role of miRNAs in inflammatory pathways associated with intestinal epithelial tight junction barrier regulation in IBD. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease – Crohn's disease and ulcerative colitis – is an immune-mediated chronic disorder with still not fully elucidated complex mechanisms of pathogenesis and pathophysiology. Intestinal epithelial barrier (IEB) dysregulation is one of the major underlying mechanisms of inflammatory process induction in IBD. Proper IEB integrity is maintained to a large extent by intercellular tight junctions, the function of which can be modified by many molecules, including miRNAs. MiRNAs belong to noncoding and non-messenger RNAs, which can modulate gene expression by binding predicted mRNAs.
In this review, we summarize and discuss the potential role of miRNAs in the regulation of inflammatory signaling pathways affecting the function of the intestinal epithelial barrier in IBD, with particular emphasis on therapeutic potentials. The aim of the review is also to determine the further development directions of the studies on miRNA in the modulation of the intestinal epithelial barrier in IBD.
Collapse
|
49
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Meng Q, Lu Q, Zhang Z, Liu J, Lou Y, Wang Y, Liu J. Nesfatin-1 inhibits free fatty acid (FFA)-induced endothelial inflammation via Gfi1/NF-κB signaling. Biosci Biotechnol Biochem 2021; 86:47-55. [PMID: 34724039 DOI: 10.1093/bbb/zbab186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/02/2021] [Indexed: 11/14/2022]
Abstract
Nesfatin-1 is a neuropeptide produced in the hypothalamus. It is known that Nesfatin-1 is involved in food uptake, fat storage, and other metabolic regulation. We hypothesized that Nesfatin-1 may play a role in cardiovascular tissue. Free fatty acids (FFAs) are known to be the risk factor for cardiovascular diseases. FFA-mediated endothelial dysfunction is the critical mechanism of many cardiovascular disorders. The present study explores the protective effects of Nesfatin-1 on FFA-induced endothelial inflammation and the underlying mechanism. We found that significantly increased lactate dehydrogenase release and production of inflammatory factors were observed in FFA-treated human aortic endothelial cells (HAECs), accompanied by the enhanced attachment of U937 monocytes to HAECs and upregulated cell adhesion molecule vascular cell adhesion molecule-1, which were dramatically reversed by the treatment with Nesfatin-1. In addition, the promoted level of nuclear regulator NF-κB p65 and transcriptional function of NF-κB in FFA-treated HAECs were greatly suppressed by HAECs. Growth Factor Independent 1 Transcriptional Repressor 1 (Gfi1), an important negative regulator of NF-κB activity, was significantly downregulated in HAECs by FFAs and was upregulated by Nesfatin-1. Lastly, the inhibitory effects of Nesfatin-1 against FFA-induced NF-κB activation and adhesion of U937 monocytes to HAECs were abolished by the knockdown of Gfi1. In conclusion, our data reveal that Nesfatin-1 inhibited FFA-induced endothelial inflammation mediated by the Gfi1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qingtao Meng
- Department of Cardiovascular Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qin Lu
- Department of Cardiology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhipeng Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jiyi Liu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yu Lou
- Department of Cardiology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuwei Wang
- Department of Cardiovascular Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jihong Liu
- Department of Cardiovascular Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|