1
|
Hegde PS, Agni MB, Rai P, Sadananda M, Mirajkar AM, Kumar BM, Ranade AV, Gowda KMD. Unraveling the synergistic effects of Astaxanthin and DHA on perinatal undernutrition-induced oxidative stress and cognitive deficit. Learn Behav 2025:10.3758/s13420-025-00673-4. [PMID: 40341979 DOI: 10.3758/s13420-025-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/11/2025]
Abstract
Perinatal undernutrition sensitizes offspring to the development of chronic adult metabolic diseases, including cognitive dysfunction, which poses significant public health issues. Undernutrition is the most powerful condition of physiological stress, and epidemiological studies indicate detrimental effects on cognitive function and behavior in human offspring exposed to inadequate perinatal nutrition, leading to increased peroxidation of PUFAs in the brain. To address these issues, the present study investigated the protective effects of the antioxidant nutraceuticals astaxanthin (AsX) and docosahexaenoic acid (DHA) on the protective effect of DHA in the presence of antioxidants on the cognitive dysfunction and oxidative stress induced by perinatal undernutrition. Using a Wistar rat model, AsX and DHA improved learning and memory skills in perinatally undernourished offspring. The cognitive parameters included the RAM and NOR tests, and the oxidative stress parameters were assessed by the estimation of GSH, MDA, total nitrite, and TAC. This study revealed spatial learning, memory dysfunction, and abnormal exploratory behavior in offspring exposed to perinatal undernutrition at different time points in postnatal life, and these effects were ameliorated by AsX and DHA. Similarly, oxidative stress induced by perinatal undernutrition was also ameliorated by AsX and DHA. Induced oxidative stress was significantly correlated with cognitive function. This study revealed the potential of AsX and DHA supplementation during the perinatal period for the future development of cognitive dysfunction.
Collapse
Affiliation(s)
- Pramukh Subrahmanya Hegde
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Megha Bhat Agni
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Praveen Rai
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Monika Sadananda
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| | - A M Mirajkar
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - B Mohana Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine (NUCSReM), Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - K M Damodara Gowda
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
Luo X, Huang B, Xu P, Wang H, Zhang B, Lin L, Liao J, Hu M, Liu X, Huang J, Fu Y, Kilby MD, Kellems RE, Fan X, Xia Y, Baker PN, Qi H, Tong C. The Placenta Regulates Intrauterine Fetal Growth via Exosomal PPARγ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404983. [PMID: 39951006 PMCID: PMC12005745 DOI: 10.1002/advs.202404983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/25/2024] [Indexed: 04/19/2025]
Abstract
Abnormal adipogenesis is a major contributor to fetal growth restriction (FGR) and its associated complications. However, the underlying etiology remains unclear. Here, it is reported that the placentas of women with pregnancies complicated with FGR exhibit peroxisome proliferator-activated receptor γ (PPARγ) inactivation. In mice, trophoblast-specific ablation of murine PPARγ reproduces the phenotype of human fetuses with FGR and defective adipogenesis. Coculture of trophoblasts with preadipocytes significantly improves preadipocyte commitment and differentiation and increases the transcription of a series of adipogenic genes via intercellular transfer of exosomal PPARγ proteins. Moreover, nanoparticle-mediated placenta-specific delivery of rosiglitazone (RGZ) significantly rescues adipogenesis defects in an FGR-induced mouse model. In summary, the placenta is a major reservoir of PPARγ. An insufficient supply of placental PPARγ to fetal preadipocytes via exosomes during late gestation is a major mechanism underlying FGR. Preclinically, placenta-targeted RGZ administration can be a promising interventional therapy for FGR and/or defective intrauterine fat development.
Collapse
Affiliation(s)
- Xiaofang Luo
- Reproductive Medicine CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Biao Huang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Ping Xu
- Department of Biochemistry & Molecular BiologyUniversity of Texas McGovern Medical School at HoustonHoustonTX77030USA
| | - Hao Wang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Baozhen Zhang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Li Lin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Jiujiang Liao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Mingyu Hu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Jiayu Huang
- Reproductive Medicine CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Mark D. Kilby
- Institute of Metabolism and System ResearchUniversity of Birmingham, and the Fetal Medicine CentreBirmingham Women's and Children's Foundation TrustEdgbastonB15 2TTUK
| | - Rodney E. Kellems
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Xiujun Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yang Xia
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Philip N. Baker
- College of Life SciencesUniversity of LeicesterLeicesterLE1 7RHUK
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Chao Tong
- National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren's Hospital of Chongqing Medical UniversityChongqing401122China
| |
Collapse
|
3
|
Ye L, Huang Y, Chen K, Hang C, Ying Y, Zu L, Luo X, Du L. Early postnatal moderate catch‑up growth in rats with nutritional intrauterine growth restriction preserves pulmonary vascular and cognitive function in adulthood. Exp Ther Med 2024; 27:183. [PMID: 38515647 PMCID: PMC10952380 DOI: 10.3892/etm.2024.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Intrauterine growth restriction (IUGR) with rapid postnatal catch-up growth is strongly associated with pulmonary vascular dysfunction in adulthood, whereas IUGR with delayed growth in early postnatal life results in long-term brain deficits. In the present study, it was hypothesized that IUGR with early moderate catch-up growth may alleviate pulmonary vascular remodeling in adulthood without affecting memory function. An IUGR model was established by restricting maternal nutrition during pregnancy. Different growth patterns were achieved by adjusting the litter size in each group during lactation. Rats meeting the weight requirement at weaning were selected for subsequent studies at three time points (3, 9 and 13 weeks). Cognitive function was evaluated using a Y-maze. Invasive hemodynamic measurements were conducted to measure the mean pulmonary arterial pressure (mPAP). In addition, primary pulmonary artery smooth muscle cells (PASMCs) and pulmonary vascular endothelial cells (PVECs) were cultured to investigate their role in the increase in mPAP following rapid catch-up growth. The results showed that memory function deficits in the rats in the delayed growth group were associated with reduced proliferation of neural stem cells in the subgranular zone of the hippocampus. Furthermore, moderate catch-up growth at the three time points improved memory function while maintaining a normal mPAP. In adult IUGR rats experiencing rapid catch-up growth, although memory function improved, elevated mPAP and medial thickening of pulmonary arterioles were observed. Additionally, PASMCs exhibited excessive proliferation, migration and anti-apoptotic activity in the rapid catch-up group, and PVECs also displayed excessive proliferation. These results suggested that moderate catch-up growth after IUGR is a better strategy for optimal cognition and cardiovascular health in adulthood compared with rapid catch-up growth or delayed growth.
Collapse
Affiliation(s)
- Lixia Ye
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Yajie Huang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Kewei Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Chengcheng Hang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Yuhan Ying
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Lu Zu
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Xiaofei Luo
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| |
Collapse
|
4
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Zhang H, Zhang X, Wang Y, Zhao X, Zhang L, Li J, Zhang Y, Wang P, Liang H. Dietary Folic Acid Supplementation Attenuates Maternal High-Fat Diet-Induced Fetal Intrauterine Growth Retarded via Ameliorating Placental Inflammation and Oxidative Stress in Rats. Nutrients 2023; 15:3263. [PMID: 37513681 PMCID: PMC10385450 DOI: 10.3390/nu15143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The placenta is particularly susceptible to inflammation and oxidative stress, leading to placental vascular dysfunction and placental insufficiency, which is associated with fetal intrauterine growth restriction (IUGR). It is unknown whether folic acid (FA) supplementation can alleviate high-fat diet-induced IUGR in rats by improving placental function. In this study, pregnant rats were randomized into one of four diet-based groups: (1) control diet (CON), (2) control diet supplemented with FA, (3) high-fat diet (HFD), and (4) high-fat diet supplemented with FA (HFD + FA). Dams were sacrificed at gestation day 18.5 (GD18.5). The results indicated that dietary FA supplementation normalized a maternal HFD-induced decrease in fetal weight. The decrease in placental efficiency, labyrinth zone (LZ) area, blood sinusoid area, vascular density, and the levels of angiogenesis factors induced by a maternal HFD were alleviated by the addition of FA, suggesting that FA supplementation can alleviate placental vascular dysplasia. Furthermore, FA supplementation increased the protein expressions of SIRT1, inhibited NF-κB transcriptional activation, attenuated the levels of NF-κB/downstream pro-inflammatory cytokines, induced Nrf2 activation, and increased downstream target protein expression. In conclusion, we found that dietary FA supplementation during pregnancy could improve maternal HFD-induced IUGR by alleviating placental inflammation and oxidative stress, which may be associated with the regulation of SIRT1 and its mediated NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (X.Z.); (Y.W.); (X.Z.); (L.Z.); (J.L.); (Y.Z.); (P.W.)
| |
Collapse
|
6
|
Cerf ME. Maternal and Child Health, Non-Communicable Diseases and Metabolites. Metabolites 2023; 13:756. [PMID: 37367913 DOI: 10.3390/metabo13060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mothers influence the health and disease trajectories of their children, particularly during the critical developmental windows of fetal and neonatal life reflecting the gestational-fetal and lactational-neonatal phases. As children grow and develop, they are exposed to various stimuli and insults, such as metabolites, that shape their physiology and metabolism to impact their health. Non-communicable diseases, such as diabetes, cardiovascular disease, cancer and mental illness, have high global prevalence and are increasing in incidence. Non-communicable diseases often overlap with maternal and child health. The maternal milieu shapes progeny outcomes, and some diseases, such as gestational diabetes and preeclampsia, have gestational origins. Metabolite aberrations occur from diets and physiological changes. Differential metabolite profiles can predict the onset of non-communicable diseases and therefore inform prevention and/or better treatment. In mothers and children, understanding the metabolite influence on health and disease can provide insights for maintaining maternal physiology and sustaining optimal progeny health over the life course. The role and interplay of metabolites on physiological systems and signaling pathways in shaping health and disease present opportunities for biomarker discovery and identifying novel therapeutic agents, particularly in the context of maternal and child health, and non-communicable diseases.
Collapse
Affiliation(s)
- Marlon E Cerf
- Grants, Innovation and Product Development, South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
7
|
Xie XM, Cao QL, Sun YJ, Zhang J, Liu KL, Qin YF, Long WJ, Luo ZJ, Li XW, Liang XH, Yuan GD, Luo XP, Xuan XP. LRP6 Bidirectionally Regulates Insulin Sensitivity through Insulin Receptor and S6K Signaling in Rats with CG-IUGR. Curr Med Sci 2023; 43:274-283. [PMID: 36913109 DOI: 10.1007/s11596-022-2683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/27/2022] [Indexed: 03/14/2023]
Abstract
OBJECTIVE Intrauterine growth restriction followed by postnatal catch-up growth (CG-IUGR) increases the risk of insulin resistance-related diseases. Low-density lipoprotein receptor-related protein 6 (LRP6) plays a substantial role in glucose metabolism. However, whether LRP6 is involved in the insulin resistance of CG-IUGR is unclear. This study aimed to explore the role of LRP6 in insulin signaling in response to CG-IUGR. METHODS The CG-IUGR rat model was established via a maternal gestational nutritional restriction followed by postnatal litter size reduction. The mRNA and protein expression of the components in the insulin pathway, LRP6/β-catenin and mammalian target of rapamycin (mTOR)/S6 kinase (S6K) signaling, was determined. Liver tissues were immunostained for the expression of LRP6 and β-catenin. LRP6 was overexpressed or silenced in primary hepatocytes to explore its role in insulin signaling. RESULTS Compared with the control rats, CG-IUGR rats showed higher homeostasis model assessment for insulin resistance (HOMA-IR) index and fasting insulin level, decreased insulin signaling, reduced mTOR/S6K/ insulin receptor substrate-1 (IRS-1) serine307 activity, and decreased LRP6/β-catenin in the liver tissue. The knockdown of LRP6 in hepatocytes from appropriate-for-gestational-age (AGA) rats led to reductions in insulin receptor (IR) signaling and mTOR/S6K/IRS-1 serine307 activity. In contrast, LRP6 overexpression in hepatocytes of CG-IUGR rats resulted in elevated IR signaling and mTOR/S6K/IRS-1 serine307 activity. CONCLUSION LRP6 regulated the insulin signaling in the CG-IUGR rats via two distinct pathways, IR and mTOR-S6K signaling. LRP6 may be a potential therapeutic target for insulin resistance in CG-IUGR individuals.
Collapse
Affiliation(s)
- Xue-Mei Xie
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiu-Li Cao
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu-Jie Sun
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhang
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Kai-Li Liu
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying-Fen Qin
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wen-Jun Long
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zuo-Jie Luo
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wei Li
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xing-Huan Liang
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guan-Dou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiu-Ping Xuan
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Role of Adipose Tissue microRNAs in the Onset of Metabolic Diseases and Implications in the Context of the DOHaD. Cells 2022; 11:cells11233711. [PMID: 36496971 PMCID: PMC9739499 DOI: 10.3390/cells11233711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The worldwide epidemic of obesity is associated with numerous comorbid conditions, including metabolic diseases such as insulin resistance and diabetes, in particular. The situation is likely to worsen, as the increase in obesity rates among children will probably lead to an earlier onset and more severe course for metabolic diseases. The origin of this earlier development of obesity may lie in both behavior (changes in nutrition, physical activity, etc.) and in children's history, as it appears to be at least partly programmed by the fetal/neonatal environment. The concept of the developmental origin of health and diseases (DOHaD), involving both organogenesis and epigenetic mechanisms, encompasses such programming. Epigenetic mechanisms include the action of microRNAs, which seem to play an important role in adipocyte functions. Interestingly, microRNAs seem to play a particular role in propagating local insulin resistance to other key organs, thereby inducing global insulin resistance and type 2 diabetes. This propagation involves the active secretion of exosomes containing microRNAs by adipocytes and adipose tissue-resident macrophages, as well as long-distance communication targeting the muscles and liver, for example. Circulating microRNAs may also be useful as biomarkers for the identification of populations at risk of subsequently developing obesity and metabolic diseases.
Collapse
|
9
|
de Vasconcelos DAA, Nachbar RT, Pinheiro CH, do Amaral CL, Crisma AR, Vitzel KF, Abreu P, Alonso-Vale MI, Lopes AB, Bento-Santos A, Falcão-Tebas F, de Santana DF, do Nascimento E, Curi R, Pithon-Curi TC, Hirabara SM, Leandro CG. Maternal low-protein diet reduces skeletal muscle protein synthesis and mass via Akt-mTOR pathway in adult rats. Front Nutr 2022; 9:947458. [PMID: 36110404 PMCID: PMC9468266 DOI: 10.3389/fnut.2022.947458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Several studies have demonstrated that a maternal low-protein diet induces long-term metabolic disorders, but the involved mechanisms are unclear. This study investigated the molecular effects of a low-protein diet during pregnancy and lactation on glucose and protein metabolism in soleus muscle isolated from adult male rats. Female rats were fed either a normal protein diet or low-protein diet during gestation and lactation. After weaning, all pups were fed a normal protein diet until the 210th day postpartum. In the 7th month of life, mass, contractile function, protein and glucose metabolism, and the Akt-mTOR pathway were measured in the soleus muscles of male pups. Dry weight and contractile function of soleus muscle in the low-protein diet group rats were found to be lower compared to the control group. Lipid synthesis was evaluated by measuring palmitate incorporation in white adipose tissue. Palmitate incorporation was higher in the white adipose tissue of the low-protein diet group. When incubated soleus muscles were stimulated with insulin, protein synthesis, total amino acid incorporation and free amino acid content, glucose incorporation and uptake, and glycogen synthesis were found to be reduced in low-protein diet group rats. Fasting glycemia was higher in the low-protein diet group. These metabolic changes were associated with a decrease in Akt and GSK-3β signaling responses to insulin and a reduction in RPS6 in the absence of the hormone. There was also notably lower expression of Akt in the isolated soleus muscle of low-protein diet group rats. This study is the first to demonstrate how maternal diet restriction can reduce skeletal muscle protein and mass by downregulating the Akt-mTOR pathway in adulthood.
Collapse
Affiliation(s)
- Diogo Antonio Alves de Vasconcelos
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco, Recife, Brazil
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Tadeu Nachbar
- Quebec Heart and Lung Institute Research Center, Laval University, Quebec City, QC, Canada
| | - Carlos Hermano Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cátia Lira do Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Phablo Abreu
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Alonso-Vale
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andressa Bolsoni Lopes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano Bento-Santos
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
| | - Filippe Falcão-Tebas
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - David Filipe de Santana
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
| | - Elizabeth do Nascimento
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Carol Góis Leandro
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
| |
Collapse
|
10
|
Dietary Complex and Slow Digestive Carbohydrates Promote Bone Mass and Improve Bone Microarchitecture during Catch-Up Growth in Rats. Nutrients 2022; 14:nu14061303. [PMID: 35334960 PMCID: PMC8951765 DOI: 10.3390/nu14061303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Catch-up growth is a process that promotes weight and height gains to recover normal growth patterns after a transient period of growth inhibition. Accelerated infant growth is associated with reduced bone mass and quality characterized by poor bone mineral density (BMD), content (BMC), and impaired microarchitecture. The present study evaluated the effects of a diet containing slow (SDC) or rapid (RDC) digestible carbohydrates on bone quality parameters during the catch-up growth period in a model of diet-induced stunted rats. The food restriction period negatively impacted BMD, BMC, and microarchitecture of appendicular and axial bones. The SDC diet was shown to improve BMD and BMC of appendicular and axial bones after a four-week refeeding period in comparison with the RDC diet. In the same line, the micro-CT analysis revealed that the trabecular microarchitecture of tibiae and vertebrae was positively impacted by the dietary intervention with SDC compared to RDC. Furthermore, features of the cortical microstructure of vertebra bones were also improved in the SDC group animals. Similarly, animals allocated to the SDC diet displayed modest improvements in growth plate thickness, surface, and volume compared to the RDC group. Diets containing the described SDC blend might contribute to an adequate bone formation during catch-up growth thus increasing peak bone mass, which could be linked to reduced fracture risk later in life in individuals undergoing transient undernutrition during early life.
Collapse
|
11
|
Long W, Zhou T, Xuan X, Cao Q, Luo Z, Qin Y, Ning Q, Luo X, Xie X. IUGR with catch-up growth programs impaired insulin sensitivity through LRP6/IRS-1 in male rats. Endocr Connect 2022; 11:EC-21-0203.R1. [PMID: 34825892 PMCID: PMC8789020 DOI: 10.1530/ec-21-0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 11/11/2022]
Abstract
Intrauterine growth restriction combined with postnatal accelerated growth (CG-IUGR) could lead to long-term detrimental metabolic outcomes characterized by insulin resistance. As an indispensable co-receptor of Wnt signaling, LRP6 plays a critical role in the susceptibility of metabolic disorders. However, whether LRP6 is involved in the metabolic programing is still unknown. We hypothesized that CG-IUGR programed impaired insulin sensitivity through the impaired LRP6-mediated Wnt signaling in skeletal muscle. A CG-IUGR rat model was employed. The transcriptional and translational alterations of the components of the Wnt and the insulin signaling in the skeletal muscle of the male CG-IUGR rats were determined. The role of LRP6 on the insulin signaling was evaluated by shRNA knockdown or Wnt3a stimulation of LRP6. Compared with controls, the male CG-IUGR rats showed an insulin-resistant phenotype, with impaired insulin signaling and decreased expression of LRP6/β-catenin in skeletal muscle. LRP6 knockdown led to reduced expression of the IR-β/IRS-1 in C2C12 cell line, while Wnt3a-mediated LRP6 expression increased the expression of IRS-1 and IGF-1R but not IR-β in the primary muscle cells of male CG-IUGR rats. The impaired LRP6/β-catenin/IGF-1R/IRS-1 signaling is probably one of the critical mechanisms underlying the programed impaired insulin sensitivity in male CG-IUGR.
Collapse
Affiliation(s)
- Wenjun Long
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tuo Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuping Xuan
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuli Cao
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuemei Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Correspondence should be addressed to X Xie:
| |
Collapse
|
12
|
Quiroga S, Juárez YR, Marcone MP, Vidal MA, Genaro AM, Burgueño AL. Prenatal stress promotes insulin resistance without inflammation or obesity in C57BL/6J male mice. Stress 2021; 24:987-997. [PMID: 34581257 DOI: 10.1080/10253890.2021.1978425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
During gestation, stress exposure increases the risk of developing cognitive and physiological alterations in either the long or short term. Among them, metabolic alterations have been described. Adipose tissue is responsible for the secretion of several factors involved in controlling body weight and energy expenditure, the regulation of insulin sensitivity, and the development of inflammation, among others. Moreover, the liver regulates glucose homeostasis and lipid metabolism, playing an essential role in developing insulin resistance. In this work, we analyzed if prenatal stress leads to alterations in metabolism and the relationship between these alterations and gene expression in the adipose tissue and the liver. Prenatal stress-exposed animals developed disturbances in the glucose and insulin response curve, showing in both tests higher glycemia than the control group. However, they did not exhibit increased body weight. At the same time, in the adipose tissue, we observed an increase in mRNA expression of Leptin and Resistin and a decrease in Adiponectin. In the liver, we observed a lower mRNA expression of several genes involved in glucose metabolism and fatty acid oxidation, such as Sirt1, Pgc1α, Pparα, among others. In both tissues, we observed a lower expression of inflammatory genes. These results suggest that prenatal stress exposure produces insulin resistance at both physiological and molecular levels without pro-inflammatory signaling or obesity.
Collapse
Affiliation(s)
- Sofia Quiroga
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Yamila Raquel Juárez
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María Paula Marcone
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María Agustina Vidal
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Ana María Genaro
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Adriana Laura Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
13
|
Zheng J, Zhang L, Liu J, Li Y, Zhang J. Long-Term Effects of Maternal Low-Protein Diet and Post-weaning High-Fat Feeding on Glucose Metabolism and Hypothalamic POMC Promoter Methylation in Offspring Mice. Front Nutr 2021; 8:657848. [PMID: 34485357 PMCID: PMC8415226 DOI: 10.3389/fnut.2021.657848] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Substantial evidence indicated that maternal malnutrition could increase the susceptibility to obesity, insulin resistance, and type 2 diabetes in adulthood. It is increasingly apparent that the brain, especially the hypothalamus, plays a critical role in glucose homeostasis. However, little information is known about the mechanisms linking maternal protein restriction combined with post-weaning high-fat (HF) feeding with altered expression of brain neurotransmitters, and investigations into the epigenetic modifications of hypothalamus in offspring have not been fully elucidated. Our objective was to explore the effects of maternal protein restriction combined with post-weaning HF feeding on glucose metabolism and hypothalamic POMC methylation in male offspring mice. C57/BL6 mice were fed on either low-protein (LP) or normal chow (NC) diet throughout gestation and lactation. Then, the male offspring were randomly weaned to either NC or high-fat (HF) diet until 32 weeks of age. Gene expressions and DNA methylation of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in male offspring. The results showed that birth weights and body weights at weaning were both significantly lower in male offspring mice of the dams fed with a LP diet. Maternal protein restriction combined with post-weaning high-fat feeding, predisposes higher body weight, persistent glucose intolerance (from weaning to 32 weeks of age), hyperinsulinemia, and hyperleptinemia in male offspring mice. POMC and MC4R expressions were significantly increased in offspring mice fed with maternal LP and postnatal high-fat diet (P < 0.05). Furthermore, maternal protein restriction combined with post-weaning high-fat feeding induced hypomethylation of POMC promoter in the hypothalamus (P < 0.05) and POMC-specific methylation (%) was negatively correlated with the glucose response to a glucose load in male offspring mice (r = -0.42, P = 0.039). In conclusion, maternal LP diet combined with post-weaning high-fat feeding predisposed the male offspring to impaired glucose metabolism and hypothalamic POMC hypomethylation. These findings can advance our thinking about hypothalamic POMC gene methylation between maternal LP diet combined with post-weaning high-fat feeding and metabolic health in offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jiayi Liu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yanli Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Ma D, Chen Z, Wang Y, Yu X, Xin Q, Chen Y. Effects of rapid growth on fasting insulin and insulin resistance: a system review and meta-analysis. Eur J Clin Nutr 2021; 75:1193-1204. [PMID: 33328601 DOI: 10.1038/s41430-020-00831-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/31/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022]
Abstract
Infants with congenital deficiency have high risk of glucose metabolism disorder, and often experience rapid growth in early childhood. However, the role of rapid growth on glucose metabolism is controversial. We conducted a systematic review and meta-analysis to examine the association of rapid growth with fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR). We searched EMBASE and Medline for English articles, and CNKI and WANFANG database for Chinese articles. Studies measuring the associations between rapid growth and insulin or HOMA-IR were included. Relevant information was extracted independently by two reviewers. Random effects model was adopted for combined and stratified analyses. At last, twenty-two relevant studies for insulin and 20 for HOMA-IR were identified. Rapid growth was associated with high insulin (weighted mean differences [WMD] 5.544, 95% confidence interval [CI] [1.436, 9.653], P = 0.008) and high HOMA-IR (WMD 0.194, 95% CI [0.098, 0.290], P < 0.001). This elevated association was statistically significant in rapid growth subjects that were >6 years old, full-term, and from developed countries. However, rapid growth among low birth weight subjects did not lead to high insulin and HOMA-IR, but decreased HOMA-IR among preterm children (WMD -0.305, 95% CI [-0.607, -0.004], P = 0.047). Follow-up age was positively correlated with HOMA-IR (r = 0.095, P < 0.001). This meta-analysis suggested that rapid growth would result in high insulin and HOMA-IR, especially for full-term infants. However, rapid growth is relatively harmless for subjects who are <6 years old, low birth weight or SGA, and is even protective for preterm subjects.
Collapse
Affiliation(s)
- Defu Ma
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zekun Chen
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Ying Wang
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xue Yu
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Qinghua Xin
- Academy of Occupational Health and Occupational Medicine, Shandong, China
| | - Yunli Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Pereyra I, López-Arana S, Horta BL. Undernutrition and suboptimal growth during the first year are associated with glycemia but not with insulin resistance in adulthood. CAD SAUDE PUBLICA 2021; 37:e00120320. [PMID: 34346980 DOI: 10.1590/0102-311x00120320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022] Open
Abstract
This study aimed to assess whether weight, length, and conditional growth during the first year are associated with glycemia and insulin resistance among young adults. A non-concurrent longitudinal design was used in the study. This is a population-based cohort study, composed of people aged from 22 to 28 years. We estimated z-scores from birth to the first year and the infants were classified as stunted, underweight, overweight, obese, wasted, and at risk of wasting, using cut-offs proposed by the World Health Organization (Child Growth Standards, 2006). Conditional weight and length gain variables were estimated. Glycemia, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and single point insulin sensitivity estimator (SPISE) were evaluated in adulthood. Multiple linear regressions that includes the variables associated with glycemia and insulin resistance were used. In total, 1,070 subjects were evaluated and glycemia in adulthood was higher among subjects who were wasted or at risk of wasting at 12 months (β coefficient = 2.77; 95%CI: 0.37; 5.21). In relation to normal weight, those subjects who were overweight at 12 months showed the lowest glycemia (β coefficient = -2.39; 95%CI: -4.32; -0.36). Conditional weight gain in the first year was negatively associated with glycemia in adulthood (β coefficient = -0.65; 95%CI: -1.23; -0.08). SPISE was higher among underweight subjects, and negatively associated with conditional relative weight gain and conditional linear growth in the first year. In conclusion, we found that undernutrition and suboptimal growth were associated with higher glycemia.
Collapse
Affiliation(s)
- Isabel Pereyra
- Universidad Católica del Uruguay, Canelones, Paraguay.,Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
16
|
Maternal Metformin Intervention during Obese Glucose-Intolerant Pregnancy Affects Adiposity in Young Adult Mouse Offspring in a Sex-Specific Manner. Int J Mol Sci 2021; 22:ijms22158104. [PMID: 34360870 PMCID: PMC8347264 DOI: 10.3390/ijms22158104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. Methods: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. Results: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. Conclusions: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.
Collapse
|
17
|
Rodgers A, Sferruzzi-Perri AN. Developmental programming of offspring adipose tissue biology and obesity risk. Int J Obes (Lond) 2021; 45:1170-1192. [PMID: 33758341 PMCID: PMC8159749 DOI: 10.1038/s41366-021-00790-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
Obesity is reaching epidemic proportions and imposes major negative health crises and an economic burden in both high and low income countries. The multifaceted nature of obesity represents a major health challenge, with obesity affecting a variety of different organs and increases the risk of many other noncommunicable diseases, such as type 2 diabetes, fatty liver disease, dementia, cardiovascular diseases, and even cancer. The defining organ of obesity is the adipose tissue, highlighting the need to more comprehensively understand the development and biology of this tissue to understand the pathogenesis of obesity. Adipose tissue is a miscellaneous and highly plastic endocrine organ. It comes in many different sizes and shades and is distributed throughout many different locations in the body. Though its development begins prenatally, quite uniquely, it has the capacity for unlimited growth throughout adulthood. Adipose tissue is also a highly sexually dimorphic tissue, patterning men and women in different ways, which means the risks associated with obesity are also sexually dimorphic. Recent studies show that environmental factors during prenatal and early stages of postnatal development have the capacity to programme the structure and function of adipose tissue, with implications for the development of obesity. This review summarizes the evidence for a role for early environmental factors, such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during gestation in the programming of adipose tissue and obesity in the offspring. We will also discuss the complexity of studying adipose tissue biology and the importance of appreciating nuances in adipose tissue, such as sexual dimorphism and divergent responses to metabolic and endocrine stimuli. Given the rising levels of obesity worldwide, understanding how environmental conditions in early life affects adipose tissue phenotype and the subsequent development of obesity is of absolute importance.
Collapse
Affiliation(s)
- Amanda Rodgers
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Decrease in leptin mediates rat bone metabolism impairments during high-fat diet-induced catch-up growth by modulating the OPG/RANKL balance. 3 Biotech 2021; 11:103. [PMID: 33552831 DOI: 10.1007/s13205-021-02658-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Due to catch-up growth (CUG), there are adverse effects on human health. However, there is little information about its influence on bone metabolism. This study aimed to investigate the effects of leptin on bone metabolism and formation during high-fat diet (HFD)-induced CUG. We randomly divided male Wistar rats (5 weeks old) into four groups: control (CTL), caloric restriction and normal chow (RN), caloric restriction (4 weeks), and HFD (RH), and RH + leptin antagonist (RH + LEPA). We monitored body weights, biochemical markers, and epididymal and perirenal fat in these rats. We then performed Hematoxylin and Eosin (H&E) staining to evaluate bone metabolism. We detected osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa b ligand (RANKL) by qRT-PCR and immunohistochemistry (IHC). We found that HFD increased the body weights in rats. In RN, RH, and RH + LEPA groups, major biochemical markers of bone metabolism in rat serum were significantly altered. We found that epididymal and perirenal fat tissues of RH and RH + LEPA groups were higher than those in the RN group. Severe bone formation impairment in the distal diaphysis and metaphysis of the left femora and lumbar vertebra was seen in the RH group compared to RN, which was even aggravated by a leptin antagonist. OPG in the left femora and lumbar vertebra was lower in RH than the RN group. The leptin antagonist decreased OPG during CUG in the RH group, whereas RANKL expression showed an opposite alteration. During HFD-induced CUG, bone formation was mediated by OPG and RANKL and was affected by the leptin content.
Collapse
|
19
|
Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease†. Biol Reprod 2020; 104:734-744. [PMID: 33330924 PMCID: PMC8023432 DOI: 10.1093/biolre/ioaa224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing prevalence of metabolic diseases places a substantial burden on human health throughout the world. It is believed that predisposition to metabolic disease starts early in life, a period of great susceptibility to epigenetic reprogramming due to environmental insults. Assisted reproductive technologies (ART), i.e., treatments for infertility, may affect embryo development, resulting in multiple adverse health outcomes in postnatal life. The most frequently observed alteration in ART pregnancies is impaired placental nutrient transfer. Moreover, consequent intrauterine growth restriction and low birth weight followed by catch-up growth can all predict future obesity, insulin resistance, and chronic metabolic diseases. In this review, we have focused on evidence of adverse metabolic alterations associated with ART, which can contribute to the development of chronic adult-onset diseases, such as metabolic syndrome, type 2 diabetes, and cardiovascular disease. Due to high phenotypic plasticity, ART pregnancies can produce both offspring with adverse health outcomes, as well as healthy individuals. We further discuss the sex-specific and age-dependent metabolic alterations reflected in ART offspring, and how the degree of interference of a given ART procedure (from mild to more severe manipulation of the egg) affects the occurrence and degree of offspring alterations. Over the last few years, studies have reported signs of cardiometabolic alterations in ART offspring that are detectable at a young age but that do not appear to constitute a high risk of disease and morbidity per se. These abnormal phenotypes could be early indicators of the development of chronic diseases, including metabolic syndrome, in adulthood. The early detection of metabolic alterations could contribute to preventing the onset of disease in adulthood. Such early interventions may counteract the risk factors and improve the long-term health of the individual.
Collapse
Affiliation(s)
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
Influence of prenatal stress on metabolic abnormalities induced by postnatal intake of a high-fat diet in BALB/c mice. J Dev Orig Health Dis 2020; 12:721-730. [PMID: 33118903 DOI: 10.1017/s2040174420000987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prenatal insults during fetal development result in increased likelihood of developing chronic disease. Obesity, the biggest risk factor for the development of metabolic disease, is affected by several genetic and environmental factors. High-fat diet (HFD) consumption is usually linked with the development of obesity. The main goal of this study was to analyze the impact of the exposure to a HFD in prenatally stressed animals. For this purpose, we subjected pregnant BALB/c mice to restraint stress for 2 h a day between gestational day (GD) 14 and GD 21. Prenatally stressed and control offspring of both sexes were postnatally exposed to a HFD for 24 weeks. We found that prenatal stress (PS) per se produced disturbances in males such as increased total blood cholesterol and triglycerides, with a decrease in mRNA expression of sirtuin-1. When these animals were fed a HFD, we observed a rise in glucose and insulin levels and an increase in visceral adipose tissue gene expression of leptin, resistin, and interleukin-1 beta. Although females proved to be more resilient to PS consequences, when they were fed a HFD, they showed significant metabolic impairment. In addition to the changes observed in males, females also presented an increase in body weight and adiposity and a rise in cholesterol levels.
Collapse
|
21
|
de Toro-Martín J, Fernández-Marcelo T, González-Rodríguez Á, Escrivá F, Valverde ÁM, Álvarez C, Fernández-Millán E. Defective liver glycogen autophagy related to hyperinsulinemia in intrauterine growth-restricted newborn wistar rats. Sci Rep 2020; 10:17651. [PMID: 33077861 PMCID: PMC7573689 DOI: 10.1038/s41598-020-74702-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal malnutrition plays a critical role in the developmental programming of later metabolic diseases susceptibility in the offspring, such as obesity and type 2 diabetes. Because the liver is the major organ that produces and supplies blood glucose, we aimed at defining the potential role of liver glycogen autophagy in the programming of glucose metabolism disturbances. To this end, newborns were obtained from pregnant Wistar rats fed ad libitum with a standard diet or 65% food-restricted during the last week of gestation. We found that newborns from undernourished mothers showed markedly high basal insulin levels whereas those of glucagon were decreased. This unbalance led to activation of the mTORC1 pathway and inhibition of hepatic autophagy compromising the adequate handling of glycogen in the very early hours of extrauterine life. Restoration of autophagy with rapamycin but not with glucagon, indicated no defect in autophagy machinery per se, but in signals triggered by glucagon. Taken together, these results support the notion that hyperinsulinemia is an important mechanism by which mobilization of liver glycogen by autophagy is defective in food-restricted animals. This early alteration in the hormonal control of liver glycogen autophagy may influence the risk of developing metabolic diseases later in life.
Collapse
Affiliation(s)
- Juan de Toro-Martín
- Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
| | - Tamara Fernández-Marcelo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain
| | - Águeda González-Rodríguez
- Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ISCIII, Madrid, Spain
| | - Fernando Escrivá
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ángela M Valverde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Carmen Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Kadayifci FZ, Haggard S, Jeon S, Ranard K, Tao D, Pan YX. Early-life Programming of Type 2 Diabetes Mellitus: Understanding the Association between Epigenetics/Genetics and Environmental Factors. Curr Genomics 2020; 20:453-463. [PMID: 32477001 PMCID: PMC7235385 DOI: 10.2174/1389202920666191009110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Type 2 Diabetes Mellitus is an increasing public health problem that poses a severe social and economic burden affecting both developed and developing countries. Defects in insulin signaling itself are among the earliest indications that an individual is predisposed to the development of insulin resistance and subsequently Type 2 Diabetes Mellitus. To date, however, the underlying molecular mechanisms which result in resistance to the actions of insulin are poorly understood. Furthermore, it has been shown that maternal obesity is associated with an increased risk of obesity and insulin resistance in the offspring. However, the genetic and/or epigenetic modifications within insulin-sensitive tissues such as the liver and skeletal muscle, which contribute to the insulin-resistant phenotype, still remain unknown. More importantly, a lack of in-depth understanding of how the early life environment can have long-lasting effects on health and increased risk of Type 2 Diabetes Mellitus in adulthood poses a major limitation to such efforts. The focus of the current review is thus to discuss recent experimental and human evidence of an epigenetic component associated with components of nutritional programming of Type 2 Diabetes Mellitus, including altered feeding behavior, adipose tissue, and pancreatic beta-cell dysfunction, and transgenerational risk transmission.
Collapse
Affiliation(s)
- Fatma Z Kadayifci
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sage Haggard
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sookyoung Jeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katie Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dandan Tao
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
24
|
Weeks O, Bossé GD, Oderberg IM, Akle S, Houvras Y, Wrighton PJ, LaBella K, Iversen I, Tavakoli S, Adatto I, Schwartz A, Kloosterman D, Tsomides A, Charness ME, Peterson RT, Steinhauser ML, Fazeli PK, Goessling W. Fetal alcohol spectrum disorder predisposes to metabolic abnormalities in adulthood. J Clin Invest 2020; 130:2252-2269. [PMID: 32202514 PMCID: PMC7190939 DOI: 10.1172/jci132139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel D. Bossé
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Akle
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yariv Houvras
- Department of Surgery and
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Paul J. Wrighton
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle LaBella
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabelle Iversen
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Arkadi Schwartz
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daan Kloosterman
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Tsomides
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Matthew L. Steinhauser
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Pouneh K. Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev 2019; 55:100957. [PMID: 31473332 DOI: 10.1016/j.arr.2019.100957] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Traditionally, genetics and lifestyle are considered as main determinants of aging-associated pathological conditions. Accumulating evidence, however, suggests that risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. Type 2 diabetes (T2D), an age-related disease generally manifested after the age of 40, is among such disorders. Since several age-related conditions, such as pro-inflammatory states, are characteristic of both T2D and aging, this disease is conceptualized by many authors as a kind of premature or accelerated aging. There is substantial evidence that intrauterine growth restriction (IUGR), induced by poor or unbalanced nutrient intake, exposure to xenobiotics, maternal substance abuse etc., may impair fetal development, thereby causing the fetal adipose tissue and pancreatic beta cell dysfunction. Consequently, persisting adaptive changes may occur in the glucose-insulin metabolism, including reduced capacity for insulin secretion and insulin resistance. These changes can lead to an improved ability to store fat, thus predisposing to T2D development in later life. The modulation of epigenetic regulation of gene expression likely plays a central role in linking the adverse environmental conditions early in life to the risk of T2D in adulthood. In animal models of IUGR, long-term persistent changes in both DNA methylation and expression of genes implicated in metabolic processes have been repeatedly reported. Findings from human studies confirming the role of epigenetic mechanisms in linking early-life adverse experiences to the risk for T2D in adult life are scarce compared to data from animal studies, mainly because of limited access to suitable biological samples. It is, however, convincing evidence that these mechanisms may also operate in human beings. In this review, theoretical models and research findings evidencing the role of developmental epigenetic variation in the pathogenesis of T2D are summarized and discussed.
Collapse
Affiliation(s)
| | - Oleh Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
26
|
The impact of exposure to cafeteria diet during pregnancy or lactation on offspring growth and adiposity before weaning. Sci Rep 2019; 9:14173. [PMID: 31578441 PMCID: PMC6775089 DOI: 10.1038/s41598-019-50448-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to maternal obesity during early-life can have adverse consequences for offspring growth and adiposity. We aimed to assess the relative contributions of exposure to maternal obesity, induced by a highly varied cafeteria diet, during pregnancy and lactation on these measures in rat offspring prior to weaning. Female Wistar rats were fed either a control (C) or cafeteria diet (O) for 8 weeks before mating, throughout pregnancy and lactation. Offspring were cross-fostered at birth to a dam on the same (CC,OO) or alternate diet prior to birth (CO,OC). Feeding a cafeteria diet based on 40 different foods, was associated with a sustained period of elevated energy intake before birth and during lactation (up to 1.7-fold), through increased sugar, total fat and saturated fat intake, and lower protein consumption. Cafeteria fed dams sustained greater weight than animals fed a control chow diet and greater perirenal adiposity by the end of lactation. Exposure to obesity during pregnancy was associated with lower offspring birth weight and body weight in early-postnatal life. In contrast, exposure during lactation alone reduced offspring weight but increased adiposity in male CO offspring before weaning. This research highlights that exposure to maternal obesity during lactation alone can programme adiposity in a sex specific manner.
Collapse
|
27
|
Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019; 62:1789-1801. [PMID: 31451874 PMCID: PMC6731191 DOI: 10.1007/s00125-019-4951-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
The type 2 diabetes epidemic and one of its predisposing factors, obesity, are major influences on global health and economic burden. It is accepted that genetics and the current environment contribute to this epidemic; however, in the last two decades, both human and animal studies have consolidated considerable evidence supporting the 'developmental programming' of these conditions, specifically by the intrauterine environment. Here, we review the various in utero exposures that are linked to offspring obesity and diabetes in later life, including epidemiological insights gained from natural historical events, such as the Dutch Hunger Winter, the Chinese famine and the more recent Quebec Ice Storm. We also describe the effects of gestational exposure to endocrine disruptors, maternal infection and smoking to the fetus in relation to metabolic programming. Causal evidence from animal studies, motivated by human observations, is also discussed, as well as some of the proposed underlying molecular mechanisms for developmental programming of obesity and type 2 diabetes, including epigenetics (e.g. DNA methylation and histone modifications) and microRNA interactions. Finally, we examine the effects of non-pharmacological interventions, such as improving maternal dietary habits and/or increasing physical activity, on the offspring epigenome and metabolic outcomes.
Collapse
Affiliation(s)
- Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Level 4, Box 289, Addenbrooke's Treatment Centre, Cambridge, CB2 0QQ, UK
| | - Line Hjort
- Department of Endocrinology, the Diabetes and Bone-metabolic Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Level 4, Box 289, Addenbrooke's Treatment Centre, Cambridge, CB2 0QQ, UK.
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
28
|
Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth. Pediatr Res 2019; 86:195-201. [PMID: 31091532 DOI: 10.1038/s41390-019-0428-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although prenatal and postnatal programming of metabolic diseases in adulthood is well established, the mechanisms underpinning metabolic programming are not. Dlk1, a key regulator of fetal development, inhibits adipocyte differentiation and restricts fetal growth. METHODS Assess DLk1 expression in a Wistar rat model of catch-up growth following intrauterine restriction. Dams fed ad libitum delivered control pups (C) and dams on a 50% calorie-restricted diet delivered pups with low birth weight (R). Restricted offspring fed a standard rat chow showed catch-up growth (R/C) but those kept on a calorie-restricted diet did not (R/R). RESULTS Decreased Dlk1 expression was observed in adipose tissue and skeletal muscle of R/C pups along with excessive visceral fat accumulation, decreased circulating adiponectin, increased triglycerides and HOMA-IR (from p < 0.05 to p < 0.0001). Moreover, in R/C pups the reduced Dlk1 expression in adipose tissue and skeletal muscle correlated with visceral fat (r = -0.820, p < 00001) and HOMA-IR (r = -0.745, p = 0.002). CONCLUSIONS Decreased Dlk1 expression relates to visceral fat expansion and insulin resistance in a rat model of catch-up growth following prenatal growth restriction. Modulation of Dlk1 expression could be among the targets for the early prevention of fetal programming of adult metabolic disorders.
Collapse
|
29
|
George G, Draycott SAV, Muir R, Clifford B, Elmes MJ, Langley-Evans SC. Exposure to maternal obesity during suckling outweighs in utero exposure in programming for post-weaning adiposity and insulin resistance in rats. Sci Rep 2019; 9:10134. [PMID: 31300679 PMCID: PMC6626015 DOI: 10.1038/s41598-019-46518-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to maternal obesity during early development programmes adverse metabolic health in rodent offspring. We assessed the relative contributions of obesity during pregnancy and suckling on metabolic health post-weaning. Wistar rat offspring exposed to control (C) or cafeteria diet (O) during pregnancy were cross-fostered to dams on the same (CC, OO) or alternate diet during suckling (CO, OC) and weaned onto standard chow. Measures of offspring metabolic health included growth, adipose tissue mass, and 12-week glucose and insulin concentrations during an intraperitoneal glucose tolerance test (ipGTT). Exposure to maternal obesity during lactation was a driver for reduced offspring weight post-weaning, higher fasting blood glucose concentrations and greater gonadal adiposity (in females). Males displayed insulin resistance, through slower glucose clearance despite normal circulating insulin and lower mRNA expression of PIK3R1 and PIK3CB in gonadal fat and liver respectively. In contrast, maternal obesity during pregnancy up-regulated the insulin signalling genes IRS2, PIK3CB and SREBP1-c in skeletal muscle and perirenal fat, favouring insulin sensitivity. In conclusion exposure to maternal obesity during lactation programmes offspring adiposity and insulin resistance, overriding exposure to an optimal nutritional environment in utero, which cannot be alleviated by a nutritionally balanced post-weaning diet.
Collapse
Affiliation(s)
- Grace George
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Sally A V Draycott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Ronan Muir
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Bethan Clifford
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Matthew J Elmes
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Simon C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
30
|
Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM. Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction. Reprod Toxicol 2019; 89:74-82. [PMID: 31260803 DOI: 10.1016/j.reprotox.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are implicated in the developmental mis-programming of energy metabolism. This study examined the impact of combined gestational and lactational exposure to the fungicide tolylfluanid (TF) on metabolic physiology in adult offspring. C57BL/6 J dams received standard rodent chow or the same diet containing 67 mg/kg TF. Offspring growth and metabolism were assessed up to 22 weeks of age. TF-exposed offspring exhibited reduced weaning weight. Body weight among female offspring remained low throughout the study, while male offspring matched controls by 17 weeks of age. Female offspring exhibited reduced glucose tolerance, markedly enhanced systemic insulin sensitivity, reduced adiposity, and normal gluconeogenic capacity during adulthood. In contrast, male offspring exhibited impaired glucose tolerance with unchanged insulin sensitivity, no differences in adiposity, and increased gluconeogenic capacity. These data indicate that developmental exposure to TF induces sex-specific metabolic disruptions that recapitulate key aspects of other in utero growth restriction models.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Shane M Regnier
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; Pritzker School of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Andrew G Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Manami Hara
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Fidel Haro
- University of Chicago, Chicago, IL, United States
| | - Hani Aldirawi
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael P Dybala
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
31
|
Hafner H, Chang E, Carlson Z, Zhu A, Varghese M, Clemente J, Abrishami S, Bagchi DP, MacDougald OA, Singer K, Gregg B. Lactational High-Fat Diet Exposure Programs Metabolic Inflammation and Bone Marrow Adiposity in Male Offspring. Nutrients 2019; 11:nu11061393. [PMID: 31234301 PMCID: PMC6628038 DOI: 10.3390/nu11061393] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Overnutrition during critical windows of development plays a significant role in life-long metabolic disease risk. Early exposure to excessive nutrition may result in altered programming leading to increased susceptibility to obesity, inflammation, and metabolic complications. This study investigated the programming effects of high-fat diet (HFD) exposure during the lactation period on offspring adiposity and inflammation. Female C57Bl/6J dams were fed a normal diet or a 60% HFD during lactation. Offspring were weaned onto a normal diet until 12 weeks of age when half were re-challenged with HFD for 12 weeks. Metabolic testing was performed throughout adulthood. At 24 weeks, adipose depots were isolated and evaluated for macrophage profiling and inflammatory gene expression. Males exposed to HFD during lactation had insulin resistance and glucose intolerance as adults. After re-introduction to HFD, males had increased weight gain and worsened insulin resistance and hyperglycemia. There was increased infiltration of pro-inflammatory CD11c+ adipose tissue macrophages, and bone marrow was primed to produce granulocytes and macrophages. Bone density was lower due to enhanced marrow adiposity. This study demonstrates that maternal HFD exposure during the lactational window programs offspring adiposity, inflammation, and impaired glucose homeostasis.
Collapse
Affiliation(s)
- Hannah Hafner
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Eric Chang
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Zach Carlson
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Allen Zhu
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Mita Varghese
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Jeremy Clemente
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Simin Abrishami
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Devika P Bagchi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Kanakadurga Singer
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| | - Brigid Gregg
- Division of Diabetes, Endocrinology and Metabolism, Department of Pediatrics, University of Michigan Medicine, Ann Arbor, MI 48105, USA.
| |
Collapse
|
32
|
Li N, Huang S, Jiang L, Dai Z, Li T, Han D, Wang J. Characterization of the Early Life Microbiota Development and Predominant Lactobacillus Species at Distinct Gut Segments of Low- and Normal-Birth-Weight Piglets. Front Microbiol 2019; 10:797. [PMID: 31040838 PMCID: PMC6476964 DOI: 10.3389/fmicb.2019.00797] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Microbial exposure during early life plays a pivotal role in modulating the health and intestinal development of the host. Our recent study showed that the low-birth-weight (LBW) piglets harbored a different fecal microbiota compared to normal-birth-weight (NBW) piglets during early life with a lower abundance of the genus Lactobacillus. Considering the spatial variations in gut microbiota at distinct gut locations, this study was designed to further investigate the differences in the microbiota composition and predominant Lactobacillus species in the ileum and colon between LBW and NBW piglets during early life, including day 7 (D7), day 21 (D21, before weaning), and day 35 (D35, 2 weeks after weaning). Compared with the normal group, LBW piglets harbored a significantly lower proportion of short-chain fatty acids producing microbes, such as Ruminococcaceae and Prevotellaceae in the ileum on D7, Alistipes and Lachnospiraceae in the colon on D7, Blautia in the colon on D21, and Ruminiclostridium 9 in the colon on D35. The relative abundance of the phylum Bacteroidetes was also declined in both ileum and colon of LBW piglets on D7. Meanwhile, the levels of total SCFAs on D7, D21, and D35, acetate and valerate on D7 and D21, propionate on D21, and lactate on D21 and D35, were also declined in the colon of LBW piglets. Moreover, functional alterations in the gut microbiota of LBW piglets were characterized by differentially abundant microbial genes involved in multiple pathways such as amino acid metabolism, energy metabolism, replication and repair, and metabolism of cofactors and vitamins in the colon. Additionally, lower numbers of L. salivarius on D7 and L. amylovorus on D21 resided in the colon of LBW piglets compared to those in the normal ones. Collectively, LBW piglets have altered bacterial communities, microbial metabolism and gene functions in the ileum and colon during early life, especially the colonic community. This work will help to develop novel ideas in identifying the reliable biomarkers affecting the gut microbiota development in LBW piglets during early life and facilitate the development of new nutritional interventions.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APDA, Miguel PM, Lupinsky D, Dalmaz C, Silveira PP. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav 2019; 204:336-346. [PMID: 30880239 DOI: 10.1016/j.physbeh.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Recent studies have implicated a role for impulsivity in the altered eating behaviors and the increased risk for obesity consistently associated with intrauterine growth restriction (IUGR). Changes in dopamine transmission within prefrontal areas are believed to contribute to these adverse outcomes. Here we investigated the impulsive behavior toward a delayed reward and evaluated dopamine levels and its receptors in the medial prefrontal (mPFC) and orbitofrontal (OFC) cortex of female adult rats exposed to IUGR. From day 10 of pregnancy and until birth, Sprague-Dawley dams received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, all pups were adopted by Adlib mothers, generating the groups Adlib/Adlib (control) and FR/Adlib (intrauterine growth-restricted). Adult impulsive behavior was evaluated using a Tolerance to Delay of Reward Task. In vivo dopamine responses to sweet food intake were measured by voltammetry, and D1, D2 and DAT levels were accessed by Western Blot. Animals from FR group showed a pronounced aversion to delayed rewards. DA response to sweet food was found to be blunted in the mPFC of FR animals, whereas in the OFC, the DA levels appear to be unaffected by reward consumption. Moreover, FR animals presented reduced D1 receptors in the OFC and a later increase in the mPFC D2 levels. These findings suggest that IUGR female rats are more impulsive and that the associated mechanism involves changes in the dopamine signaling in both the mPFC and OFC.
Collapse
Affiliation(s)
- Márcio Bonesso Alves
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Daniela Pereira Laureano
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania Diniz Machado
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Patrícia Maidana Miguel
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Derek Lupinsky
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada
| |
Collapse
|
34
|
Prenatal Malnutrition-Induced Epigenetic Dysregulation as a Risk Factor for Type 2 Diabetes. Int J Genomics 2019; 2019:3821409. [PMID: 30944826 PMCID: PMC6421750 DOI: 10.1155/2019/3821409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes (T2D) is commonly regarded as a disease originating from lifestyle-related factors and typically occurring after the age of 40. There is, however, consistent experimental and epidemiological data evidencing that the risk for developing T2D may largely depend on conditions early in life. In particular, intrauterine growth restriction (IUGR) induced by poor or unbalanced nutrient intake can impair fetal growth and also cause fetal adipose tissue and pancreatic β-cell dysfunction. On account of these processes, persisting adaptive changes can occur in the glucose-insulin metabolism. These changes can include reduced ability for insulin secretion and insulin resistance, and they may result in an improved capacity to store fat, thereby predisposing to the development of T2D and obesity in adulthood. Accumulating research findings indicate that epigenetic regulation of gene expression plays a critical role in linking prenatal malnutrition to the risk of later-life metabolic disorders including T2D. In animal models of IUGR, changes in both DNA methylation and expression levels of key metabolic genes were repeatedly found which persisted until adulthood. The causal link between epigenetic disturbances during development and the risk for T2D was also confirmed in several human studies. In this review, the conceptual models and empirical data are summarized and discussed regarding the contribution of epigenetic mechanisms in developmental nutritional programming of T2D.
Collapse
|
35
|
Aiken CE, Tarry-Adkins JL, Ashmore TJ, Ozanne SE. Early life environment influences the trajectory of post-partum weight loss in adult female rats. Reprod Biomed Online 2018; 38:779-786. [PMID: 30885667 PMCID: PMC6491499 DOI: 10.1016/j.rbmo.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
RESEARCH QUESTION The physiological processes of pregnancy and lactation require profound changes in maternal metabolism and energy balance. The timescale of metabolic reversion after pregnancy, in particular post-partum weight loss, is highly variable between individuals. Currently, mechanisms influencing post-partum metabolic recovery are not well understood. The hypothesis tested here is that, in common with other metabolic and obesity-related outcomes, capacity for post-partum weight loss is influenced by developmental programming. DESIGN Adult female Wistar rats exposed to a maternal low-protein diet in utero then weaned onto a control diet post-natally (recuperated group) were compared with controls. Adult females from both groups underwent pregnancy at 3 months of age. Weight changes and metabolic parameters during pregnancy and lactation were compared between control and recuperated groups, and also with non-pregnant littermates. RESULTS Pregnancy weight gain was not different between the control and recuperated groups, but post-partum recuperated animals remained significantly heavier than both post-partum control animals (P<0.05) and their non-pregnant recuperated littermates (P<0.05) at the end of lactation. Post-partum recuperated animals had more intra-abdominal fat mass (P<0.05) and higher serum triglyceride concentrations (P<0.01) than controls. Post-partum recuperated animals also had increased expression of IL6, NRF2 and ALOX12 (key regulators of inflammation and lipoxygenase activity) in the intra-abdominal adipose tissue compared with control groups. CONCLUSIONS Mothers who themselves have been exposed to adverse early life environments are likely to have slower metabolic recovery from pregnancy than controls. Failure to return to pre-pregnancy weight after delivery predisposes to persisting sequential inter-pregnancy weight gain, which can represent a significant metabolic burden across a life course involving several pregnancies.
Collapse
Affiliation(s)
- C E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, United Kingdom.
| | - J L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - T J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
36
|
Tang A, Slopen N, Nelson CA, Zeanah CH, Georgieff MK, Fox NA. Catch-up growth, metabolic, and cardiovascular risk in post-institutionalized Romanian adolescents. Pediatr Res 2018; 84:842-848. [PMID: 30323348 PMCID: PMC6330119 DOI: 10.1038/s41390-018-0196-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reduced prenatal growth followed by rapid postnatal weight gain are risk factors for developing metabolic and cardiovascular disease. Children reared in institutions experience a similar pattern of growth restriction followed by catch-up growth after removal. We explored whether patterns of catch-up growth affect metabolic and cardiovascular outcomes in previously institutionalized adolescents. METHOD A longitudinal study of institutionalized infants randomized to care as usual (n = 68) or foster care intervention (n = 68), and never institutionalized controls (n = 127). Body mass index (BMI) was measured at baseline (20 months), 30, 42 months, and ages 8, 12, 16. At age 16, metabolic and pro-inflammatory markers were derived from blood samples. RESULTS Four BMI trajectories were derived (i.e., average-stable, low-stable, elevated, and accelerated). The accelerated trajectory was comprised predominately of children randomized to foster care, who also exhibited higher levels of glycosylated hemoglobin and C-reactive protein than the other three trajectories. Also, children placed in foster care at younger ages were more likely to be on the accelerated rather than the average-stable trajectory. CONCLUSIONS Although catch-up growth is viewed as a positive improvement among post-institutionalized children, rapid/continuous increases in body size pose a health concern. Attention should be given to monitoring weight gain, diet, and physical activity.
Collapse
Affiliation(s)
- Alva Tang
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Natalie Slopen
- Shool of Public Health, University of Maryland, College Park, MD, USA
| | - Charles A Nelson
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael K Georgieff
- Department of Pediatrics, Institute of Child Development, and Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
37
|
Ibáñez CA, Vázquez-Martínez M, León-Contreras JC, Reyes-Castro LA, Rodríguez-González GL, Bautista CJ, Nathanielsz PW, Zambrano E. Different Statistical Approaches to Characterization of Adipocyte Size in Offspring of Obese Rats: Effects of Maternal or Offspring Exercise Intervention. Front Physiol 2018; 9:1571. [PMID: 30524294 PMCID: PMC6262415 DOI: 10.3389/fphys.2018.01571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023] Open
Abstract
Adipocyte size (AS) shows asymmetric distribution related to current metabolic state, e.g., adipogenesis or lipolysis. We profiled AS distribution using different statistical approaches in offspring (F1) of control (C) and obese (MO) mothers (F0) with and without F0 or F1 exercise. Offspring from F0 exercise were designated CF0ex and MOF0ex. Exercised F1 of sedentary mothers were designated CF1ex and MOF1ex. F1 retroperitoneal fat cross-sectional AS was measured by median, cumulative distributions, data dispersion and extreme values based on gamma distribution modeling. F1 metabolic parameters: body weight, retroperitoneal fat, adiposity index (AI), serum leptin, triglycerides (TG) and insulin resistance index (IRI) were measured. Male and female F1 AS showed different cumulative distribution between C and MO (p < 0.0001) therefore comparisons were performed among C, CF0ex and CF1ex groups and MO, MOF0ex and MOF1ex groups. MO AI was higher than C (p < 0.05) and male MOF1ex AI lower than MO (p < 0.05). Median AS was higher in male and female MO vs. C (p < 0.05). Male and female MOF0ex and MOF1ex reduced median AS (p < 0.05). Lower AS dispersion was observed in male CF1ex and MOF1ex vs. CF0ex and MOF0ex, respectively. MO reduced small and increased large adipocyte proportions vs. C (p < 0.05); MOF0ex increased small and MOF1ex the proportion of large adipocytes vs. MO (p < 0.05). MOF0ex reduced male IRI and female TG vs. MO (p < 0.05). MOF1ex reduced male and female leptin (p < 0.05); CF1ex reduced male leptin (p < 0.05). Conclusions: several factors, diet, physical activity and gender modify AS distribution. Conventional AS distribution methods normally do not include analyzes of extreme, large and small adipocytes, which characterize different phenotypes. Maternal high fat diet affects F1 AS distribution, which was programmed during development. F0ex and F1ex have gender specific F1 beneficial effects. AS distribution characterization helps explain adipose tissue metabolic changes in different physiological conditions and will aid design of efficacious interventions to prevent and/or recuperate adverse developmental programming outcomes. Finally, precise identification of effects of specific interventions as exercise of F0 and/or F1 are needed to improve outcomes in obese women and their obesity prone offspring.
Collapse
Affiliation(s)
- Carlos A Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magaly Vázquez-Martínez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Carlos León-Contreras
- Experimental Patology Section, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Claudia J Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie WY, United States
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
38
|
Bacon WA, Hamilton RS, Yu Z, Kieckbusch J, Hawkes D, Krzak AM, Abell C, Colucci F, Charnock-Jones DS. Single-Cell Analysis Identifies Thymic Maturation Delay in Growth-Restricted Neonatal Mice. Front Immunol 2018; 9:2523. [PMID: 30443254 PMCID: PMC6221967 DOI: 10.3389/fimmu.2018.02523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Fetal growth restriction (FGR) causes a wide variety of defects in the neonate which can lead to increased risk of heart disease, diabetes, anxiety and other disorders later in life. However, the effect of FGR on the immune system, is poorly understood. We used a well-characterized mouse model of FGR in which placental Igf-2 production is lost due to deletion of the placental specific Igf-2 P0 promotor. The thymi in such animals were reduced in mass with a ~70% reduction in cellularity. We used single cell RNA sequencing (Drop-Seq) to analyze 7,264 thymus cells collected at postnatal day 6. We identified considerable heterogeneity among the Cd8/Cd4 double positive cells with one subcluster showing marked upregulation of transcripts encoding a sub-set of proteins that contribute to the surface of the ribosome. The cells from the FGR animals were underrepresented in this cluster. Furthermore, the distribution of cells from the FGR animals was skewed with a higher proportion of immature double negative cells and fewer mature T-cells. Cell cycle regulator transcripts also varied across clusters. The T-cell deficit in FGR mice persisted into adulthood, even when body and organ weights approached normal levels due to catch-up growth. This finding complements the altered immunity found in growth restricted human infants. This reduction in T-cellularity may have implications for adult immunity, adding to the list of adult conditions in which the in utero environment is a contributory factor.
Collapse
Affiliation(s)
- Wendi A Bacon
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Russell S Hamilton
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ziyi Yu
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jens Kieckbusch
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Delia Hawkes
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom
| | - Ada M Krzak
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Sidiropoulou EJ, Paltoglou G, Valsamakis G, Margeli A, Mantzou A, Papassotiriou I, Hassiakos D, Iacovidou N, Mastorakos G. Biochemistry, hormones and adipocytokines in prepubertal children born with IUGR evoke metabolic, hepatic and renal derangements. Sci Rep 2018; 8:15691. [PMID: 30356143 PMCID: PMC6200759 DOI: 10.1038/s41598-018-34075-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Children born with IUGR develop features of the metabolic syndrome and exhibit deranged markers of hepatorenal physiology. Metabolic and hepatorenal biochemistry and the rs9939609 FTO polymorphism were investigated in prepubertal children born with IUGR. Ninety-eight prepubertal children (46 IUGR and 52 AGA), subdivided in <5 years and >5 years old groups were included. Anthropometry; creatinine, eGFR, urea, AST, ALT, triglycerides, uric acid, total cholesterol, HDL-c, LDL-c, glucose, C-peptide, insulin and glucagon z-scores; HOMA-IR; leptin and adiponectin concentrations; rs9939609 FTO polymorphism frequency were measured. In males, weight and ALT were higher and adiponectin was lower, in IUGR < 5 years; C-peptide, insulin and leptin were higher in IUGR > 5 years; C-peptide was higher in all IUGR, than the respective AGA. In females, creatinine and triglycerides were higher in IUGR < 5 years old; creatinine was higher and eGFR was lower in all IUGR, than the respective AGA. In males and females, creatinine was higher in all IUGR, than the respective AGA; C-peptide, insulin and HOMA-IR were lower, and AST was higher in IUGR < 5 than in IUGR > 5 years old. FTO rs9939609 frequency did not differ between IUGR and AGA. In conclusion prepubertal males born with IUGR increased weight, insulin and leptin and decreased adiponectin, as compared to males born AGA, emerge as early metabolic syndrome characteristics. The concentrations of these hormones do not differ between prepubertal males and females born with IUGR. Weight control, healthy nutrition and physical exercise should be recommended to these children. The deranged renal (particularly evident in females below the age of 5) and liver biochemistry in prepubertal children born with IUGR suggests that hepatorenal derangements might commence in utero. Regular checkup of biochemical and lipid profile is recommended for all children born with IUGR.
Collapse
Affiliation(s)
- Elpida J Sidiropoulou
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - George Paltoglou
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - George Valsamakis
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Alexandra Margeli
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Aimilia Mantzou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitrios Hassiakos
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - George Mastorakos
- Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece.
| |
Collapse
|
40
|
Berends LM, Dearden L, Tung YCL, Voshol P, Fernandez-Twinn DS, Ozanne SE. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018; 61:2225-2234. [PMID: 30043179 PMCID: PMC6133152 DOI: 10.1007/s00125-018-4694-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS Intra-uterine growth restriction (IUGR) followed by accelerated postnatal growth is associated with an increased risk of obesity and type 2 diabetes. We aimed to determine central and peripheral insulin sensitivity in mice that underwent IUGR followed by postnatal catch-up growth and investigate potential molecular mechanisms underpinning their physiology. METHODS We used a C57BL/6J mouse model of maternal diet-induced IUGR (maternal diet, 8% protein) followed by cross-fostering to a normal nutrition dam (maternal diet, 20% protein) and litter size manipulation to cause accelerated postnatal catch-up growth. We performed intracerebroventricular insulin injection and hyperinsulinaemic-euglycaemic clamp studies to examine the effect of this early nutritional manipulation on central and peripheral insulin resistance. Furthermore, we performed quantitative real-time PCR and western blotting to examine the expression of key insulin-signalling components in discrete regions of the hypothalamus. RESULTS IUGR followed by accelerated postnatal growth caused impaired glucose tolerance and peripheral insulin resistance. In addition, these 'recuperated' animals were resistant to the anorectic effects of central insulin administration. This central insulin resistance was associated with reduced protein levels of the p110β subunit of phosphoinositide 3-kinase (PI3K) and increased serine phosphorylation of IRS-1 in the arcuate nucleus (ARC) of the hypothalamus. Expression of the gene encoding protein tyrosine phosphatase 1B (PTP1B; Ptpn1) was also increased specifically in this region of the hypothalamus. CONCLUSIONS/INTERPRETATION Mice that undergo IUGR followed by catch-up growth display peripheral and central insulin resistance in adulthood. Recuperated offspring show changes in expression/phosphorylation of components of the insulin signalling pathway in the ARC. These defects may contribute to the resistance to the anorectic effects of central insulin, as well as the impaired glucose homeostasis seen in these animals.
Collapse
Affiliation(s)
- Lindsey M Berends
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yi Chun L Tung
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Peter Voshol
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
41
|
Silveira PP, Pokhvisneva I, Gaudreau H, Rifkin-Graboi A, Broekman BFP, Steiner M, Levitan R, Parent C, Diorio J, Meaney MJ. Birth weight and catch up growth are associated with childhood impulsivity in two independent cohorts. Sci Rep 2018; 8:13705. [PMID: 30209275 PMCID: PMC6135839 DOI: 10.1038/s41598-018-31816-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Individuals born after intrauterine growth restriction (IUGR) are more impulsive towards palatable foods, but it is not clear 1) if IUGR-related impulsivity is specific for foods and solely based on response inhibition and 2) if the development of impulsivity is due to being born IUGR per se or to growing up fast in the first few years of life (catch up growth). Children were classified in the IUGR group if the birth weight ratio was below 0.85. Delta z score for BMI was used as a measure of catch up growth. In MAVAN (N = 274), impulsivity was measured by the Information Sampling Task from the Cambridge Neuropsychological Test Automated Battery (IST - CANTAB), and in GUSTO using the Sticker Delay Task (N = 327). There is a significant effect of interaction between being born IUGR and the magnitude of catch up growth on the reflection impulsivity from IST-CANTAB at 60 months, in which greater catch up growth associates with greater impulsivity in the IST fixed condition in IUGR children. The finding was reproduced in children from the GUSTO cohort using the Sticker Delay Task. We confirmed that catch up growth interacts with IUGR, having a major role in the development of impulsivity in the first years of life and influencing inhibitory control and decision making processes.
Collapse
Affiliation(s)
- Patrícia P Silveira
- Department of Psychiatry, McGill University & Sackler Institute for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada.
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Hélène Gaudreau
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, L8N 3K7, Canada
| | - Robert Levitan
- Department of Psychiatry, University of Toronto and Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Carine Parent
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Josie Diorio
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Michael J Meaney
- Department of Psychiatry, McGill University & Sackler Institute for Epigenetics & Psychobiology at McGill University, Montreal, Quebec, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
42
|
Li N, Huang S, Jiang L, Wang W, Li T, Zuo B, Li Z, Wang J. Differences in the Gut Microbiota Establishment and Metabolome Characteristics Between Low- and Normal-Birth-Weight Piglets During Early-Life. Front Microbiol 2018; 9:1798. [PMID: 30245669 PMCID: PMC6137259 DOI: 10.3389/fmicb.2018.01798] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022] Open
Abstract
Low-birth-weight (LBW) piglets are at a high-risk for postnatal growth failure, mortality, and metabolic disorders later in life. Early-life microbial exposure is a potentially effective intervention strategy for modulating the health and metabolism of the host. Yet, it has not been well elucidated whether the gut microbiota development in LBW piglets is different from their normal littermates and its possible association with metabolite profiles. In the current study, 16S rRNA gene sequencing and metabolomics was used to investigate differences in the fecal microbiota and metabolites between LBW and normal piglets during early-life, including day 3 (D3), 7 (D7), 14 (D14), 21 (D21, before weaning), and 35 (D35, after birth). Compared to their normal littermates, LBW piglets harbored low proportions of Faecalibacterium on D3, Flavonifractor on D7, Lactobacillus, Streptococcus, and Prevotella on D21, as well as Howardella on D21 and D35. However, the abundance of Campylobacter on D7 and D21, Prevotella on D14 and D35, Oscillibacter and Moryella on D14 and D21, and Bacteroides on D21 was significantly higher in LBW piglets when compared with normal piglets. The results of the metabolomics analysis suggested that LBW significantly affected fecal metabolites involved in fatty acid metabolism (e.g., linoleic acid, α-linolenic acid, and arachidonic acid), amino acid metabolism (e.g., valine, phenylalanine, and glutamic acid), as well as bile acid biosynthesis (e.g., glycocholic acid, 25-hydroxycholesterol, and chenodeoxycholic acid). Spearman correlation analysis revealed a significant negative association between Campylobacter and N1-acetylspermine on D7, Moryella and linoleic acid on D14, Prevotella and chenodeoxycholic acid on D21, and Howardella and phenylalanine on D35, respectively. Collectively, LBW piglets have a different gut bacterial community structure when compared with normal-birth-weight (NBW) piglets during early-life, especially from 7 to 21 days of age. Also, a distinctive metabolic status in LBW piglets might be partly associated with the altered intestinal microbiota. These findings may further elucidate the factors potentially associated with the impaired growth and development of LBW piglets and facilitate the development of nutritional interventions.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Vázquez-Gómez M, García-Contreras C, Torres-Rovira L, Astiz S, Óvilo C, González-Bulnes A, Isabel B. Maternal undernutrition and offspring sex determine birth-weight, postnatal development and meat characteristics in traditional swine breeds. J Anim Sci Biotechnol 2018; 9:27. [PMID: 29560268 PMCID: PMC5858148 DOI: 10.1186/s40104-018-0240-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/26/2018] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to determine how maternal undernutrition during pregnancy and offspring birth-weight can affect the postnatal development of offspring under farm conditions, which may lead to consequences in its meat and carcass quality. The current study involved a total of 80 litters from Iberian sows fed a diet fulfilling daily requirements (n = 47; control) or providing 70% daily requirements (n = 33; underfed) from d 38 to d 90 of gestation when fetal tissue development begins. After birth, piglets born live were classified as low birth-weight (LBW; < 1 kg) and normal birth-weight (NBW; ≥1 kg). During the growing phase, 240 control and 230 underfed pigs (50% males and females) distributed by BW category and sex were studied until the slaughter. Results At birth and weaning, there were significant differences in all morphological measures and weight between NBW and LBW piglets as expected (P < 0.0005), but few effects of the gestational feed restriction. During the growing phase, NBW pigs continued with higher weight than LBW pigs on all the days of evaluation (P < 0.05), even though control-LBW-females and LBW-males showed a catch-up growth. However, underfed pigs showed slower growth and higher feed conversion ratio than control pigs (P < 0.0001) at 215 days old. Moreover, the average daily weight gain (ADWG) for the overall period was greater for NBW, male and control pigs than for their LBW, female and underfed pigs (P < 0.0001, P< 0.0005 and P< 0.05, respectively) and NBW pigs were slaughtered at a younger age than LBW pigs (P < 0.0001). After slaughtering, control pigs also had higher carcass yield and backfat depth than underfed pigs (P < 0.0005) and the maternal nutritional effect caused main changes in the polar lipid fraction of liver and loin. The fatty acid composition of loin in control pigs had higher C18:1n-9 and n-3 FA concentrations, as well as lower ∑n-6/∑n-3 ratio, than in underfed pigs (P < 0.005). Conclusions In brief, results showed that the effects of maternal nutritional restriction appeared and increased with offspring age, causing worse developmental patterns for underfed pigs than for control pigs. Electronic supplementary material The online version of this article (10.1186/s40104-018-0240-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - B Isabel
- 1Faculty of Veterinary Medicine, UCM, Madrid, Spain
| |
Collapse
|
44
|
Segovia SA, Vickers MH, Harrison CJ, Patel R, Gray C, Reynolds CM. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring. Front Nutr 2018; 5:1. [PMID: 29564328 PMCID: PMC5845870 DOI: 10.3389/fnut.2018.00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl), high-salt (SD; 10% kcal from fat, 4% NaCl), high-fat (HF; 45% kcal from fat, 1% NaCl) or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl) diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r) and renin-angiotensin system (Agtr1a, Agtr1b) markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin-angiotensin regulation.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Rachna Patel
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Tarry-Adkins JL, Aiken CE, Ashmore TJ, Ozanne SE. Insulin-signalling dysregulation and inflammation is programmed trans-generationally in a female rat model of poor maternal nutrition. Sci Rep 2018; 8:4014. [PMID: 29507362 PMCID: PMC5838091 DOI: 10.1038/s41598-018-22383-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/20/2018] [Indexed: 12/24/2022] Open
Abstract
Developmental programming phenotypes can be recapitulated in subsequent generations not directly exposed to the initial suboptimal intrauterine environment. A maternal low-protein diet during pregnancy and postnatal catch-up growth (‘recuperated’) alters insulin signaling and inflammation in rat offspring (F1-generation). We aimed to establish if this phenotype is also present in F2-generation females. Insulin-receptor-substrate-1 protein expression was decreased in para-ovarian adipose tissue at 3 months in offspring exposed to a grand-maternal low-protein diet (F2-recuperated), vs. F2-control animals (p < 0.05). There was no effect of grand-maternal diet upon Insulin-receptor-substrate-1 mRNA. Protein-kinase C-zeta protein levels were increased at 3 and 6 months in F2-recuperated animals (p < 0.01 at both ages). Phosphorylated-Aktser473 levels were decreased in F2-recuperated animals (p < 0.001). Interleukin-1β protein levels were increased at 3 (p < 0.01) and (p < 0.001) 6 months in F2-recuperated animals. Vastus-lateralis insulin-receptor-β protein expression (p < 0.001) and pAktser473 (p < 0.01) were increased at 3 months in F2-recuperated animals compared to controls. At 6 months, PAktser473 was lower in F2-recuperated animals (p < 0.001). Aspects of insulin signalling dysregulation and inflammation present in offspring of low-protein fed dams can be transmitted to subsequent generations without further exposure to a suboptimal maternal diet. These findings contribute to our understanding of insulin-resistance in grandchildren of sub-optimally nourished individuals during pregnancy.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Thomas J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| |
Collapse
|
46
|
Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Maternal chromium restriction induces insulin resistance in adult mice offspring through miRNA. Int J Mol Med 2017; 41:1547-1559. [PMID: 29286159 PMCID: PMC5819906 DOI: 10.3892/ijmm.2017.3328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/08/2017] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence suggests that undernutrition during the fetal period may lead to glucose intolerance, impair the insulin response and induce insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, the present study aimed to determine the effects of maternal low Cr (LC) on glucose metabolism in C57BL mice offspring, and the involved mechanisms. Weaned C57BL mice were born from mothers fed a control diet or LC diet, and were then fed a control or LC diet for 13 weeks. Subsequently, the liver microRNA (miRNA/miR) expression profile was analyzed by miRNA array analysis. A maternal LC diet increased fasting serum glucose (P<0.05) and insulin levels (P<0.05), homeostasis model assessment of IR index (P<0.01), and the area under curve for glucose concentration during oral glucose tolerance test (P<0.01). In addition, 8 upregulated and 6 downregulated miRNAs were identified in the maternal LC group (fold change ≥2, P<0.05). miRNA‑gene networks, Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed miRNAs, and miRNA overexpression in HepG2 cells revealed the critical role of insulin signaling, via miR‑327, miR‑466f‑3p and miR‑223‑3p, in the effects of early life Cr restriction on glucose metabolism. In conclusion, maternal Cr restriction may irreversibly increase IR, which may involve a specific miRNA affecting the insulin signaling pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaofang Sun
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
47
|
Peng P, Ma CL, Wan SM, Jin WS, Gao Y, Huang TQ, Cheng Q, Ye CL. [Effect of metformin on insulin resistance during catch-up growth in mice with fetal growth restriction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1126-1130. [PMID: 28801297 PMCID: PMC6765734 DOI: 10.3969/j.issn.1673-4254.2017.08.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To study the efficacy of metformin intervention on insulin resistance during catch-up growth in mice with fetal growth restriction (FGR). METHODS Mouse models of FGR were established by low protein diet feeding of the pregnant mice. Both the newborn female mice with FGR and normal control (NC) mice were randomized for feeding with a standard diet (SF) or a high-fat diet (HF) after weaning and treatment with gavage of either metformin or normal saline. The mice were examined for vaginal opening time and the estrous cycle at the age of 8 weeks. At the age of 12 weeks, 6 mice in anestrus from each group were fasted for 12 h for measurement of body weight, height, poundera index (PI), fasting blood glucose (FBG), fasting insulin (Fins), follicle stimulating hormone (FSH) and anti-Mullerian hormone (AMH), and the HOMA-IR was calculated. The reproductive capacity of female mice was assessed by mixing them with male mice at the ratio of 2:1. The 3 × 2 factorial analysis was conducted to determine the interactions between FGR, high-fat feeding and metformin. RESULTS Factorial analysis showed that FGR and high-fat feeding had significant effects on the PI index, Fins, HOMA-IR, vaginal opening time, and AMH (P<0.05). Metformin significantly affected the factors related to high-fat feeding including weight, PI, FPG, Fins, HOMA-IR and estrous cycle (P<0.05) and the factors related to FGR with the exception of height and FSH (P<0.05). FGR significantly affected the factors tested except for body weight (P<0.05); high-fat feeding affected all the factors but the FSH (P<0.05); metformin affected all the factors but the height and FSH (P<0.05). In the female mice treated with saline, the pregnancy rates differed significantly between FGR mice with high-fat feeding and control mice with standard feeding, and between FGR mice with standard feeding and high-fat feeding (P<0.05). CONCLUSION FGR mice can present with delayed puberty with rare ovulation and adulthood insulin resistance, and high-fat feeding after birth can promote the catch-up growth of FGR mice. Metformin intervention is effective for improving insulin resistance and reproductive-endocrine disorders in FGR mice during catch-up growth.
Collapse
Affiliation(s)
- Ping Peng
- Department of Obstetrics and Gynecology, Guangzhou General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
49
|
Insulin-like Growth Factor 1 Mediates Adrenal Development Dysfunction in Offspring Rats Induced by Prenatal Food Restriction. Arch Med Res 2017; 48:488-497. [DOI: 10.1016/j.arcmed.2017.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/24/2017] [Indexed: 02/01/2023]
|
50
|
Castanys-Muñoz E, Kennedy K, Castañeda-Gutiérrez E, Forsyth S, Godfrey KM, Koletzko B, Ozanne SE, Rueda R, Schoemaker M, van der Beek EM, van Buuren S, Ong KK. Systematic review indicates postnatal growth in term infants born small-for-gestational-age being associated with later neurocognitive and metabolic outcomes. Acta Paediatr 2017; 106:1230-1238. [PMID: 28382722 PMCID: PMC5507303 DOI: 10.1111/apa.13868] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/01/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
We systematically reviewed papers published in English between 1994 and October 2015 on how postnatal weight gain and growth affect neurodevelopment and metabolic outcomes in term‐born small‐for‐gestational‐age (SGA) infants. Two randomised trials reported that enriched infant formulas that promoted early growth also increased fat mass, lean mass and blood pressure (BP), but had no effect on early neurocognitive outcomes. Meanwhile, 31 observational studies reported consistent positive associations between postnatal weight gain and growth with neurocognitive outcomes, adiposity, insulin resistance and BP. Conclusion: Few intervention studies exist, despite consistent positive associations between early growth and neurocognition in term‐born SGA infants.
Collapse
Affiliation(s)
| | - Kathy Kennedy
- UCL Great Ormond Street Hospital Institute of Child Health; London UK
| | | | | | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre; University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Berthold Koletzko
- Ludwig-Maximilians-Universität Munich; Dr. von Hauner Children's Hospital; University of Munich Medical Center; München Germany
| | - Susan E. Ozanne
- Metabolic Research Laboratories & MRC Metabolic Diseases Unit; Institute of Metabolic Science; University of Cambridge; Cambridge UK
| | | | | | - Eline M. van der Beek
- Nutricia Research; Danone Nutricia Early Life Nutrition; Utrecht The Netherlands
- Department of Pediatrics; University Medical Center Groningen; Groningen The Netherlands
| | - Stef van Buuren
- Netherlands Organisation for Applied Scientific Research TNO; Leiden The Netherlands
- University of Utrecht; Utrecht The Netherlands
| | - Ken K. Ong
- MRC Epidemiology Unit; University of Cambridge; Cambridge UK
| |
Collapse
|