1
|
Majdalawieh AF, Khatib BK, Terro TM. α-Mangostin Is a Xanthone Derivative from Mangosteen with Potent Immunomodulatory and Anti-Inflammatory Properties. Biomolecules 2025; 15:681. [PMID: 40427574 PMCID: PMC12108668 DOI: 10.3390/biom15050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
α-Mangostin, a bioactive xanthone derived from the Garcinia mangostana L. Clusiaceae (G. mangostana) fruit, has demonstrated significant anti-inflammatory and immunomodulatory properties. Chronic inflammation plays a critical role in the pathogenesis of various diseases, including metabolic disorders, autoimmune conditions, and cancer. Conventional anti-inflammatory therapies, such as non-steroidal anti-inflammatory drugs (NSAIDs), often carry undesirable side effects, prompting the need for safer, natural alternatives. This review consolidates the existing literature on the mechanisms by which α-mangostin exerts its anti-inflammatory effects, including the suppression of pro-inflammatory cytokines, modulation of immune cell activity, and inhibition of key signaling pathways such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, α-mangostin exhibits immunomodulatory properties by influencing both innate and adaptive immune responses, affecting macrophage polarization, T cell differentiation, and cytokine production. Its efficacy has been observed in numerous disease models, including joint disorders, digestive and metabolic conditions, hepatic diseases, neurological disorders, and respiratory ailments. The potential therapeutic applications of α-mangostin as an anti-inflammatory agent warrant further investigation through preclinical and clinical studies to validate its efficacy and safety.
Collapse
Affiliation(s)
- Amin F. Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (B.K.K.); (T.M.T.)
- Advanced Biosciences and Bioengineering Research Center, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Bayan K. Khatib
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (B.K.K.); (T.M.T.)
| | - Tala M. Terro
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (B.K.K.); (T.M.T.)
| |
Collapse
|
2
|
Seidel F, Morrison MC, Arnoldussen I, Verweij V, Attema J, de Ruiter C, van Duyvenvoorde W, Snabel J, Geenen B, Franco A, Wiesmann M, Kleemann R, Kiliaan AJ. Obesity accelerates age-related memory deficits and alters white matter tract integrity in Ldlr-/-.Leiden mice. Brain Behav Immun Health 2025; 45:100991. [PMID: 40291340 PMCID: PMC12032874 DOI: 10.1016/j.bbih.2025.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Obesity in mid-adulthood has been suggested to promote brain aging and is associated with progressive cognitive impairment later in life. However, the structural and functional alterations that underlie obesity-related cognitive dysfunction are still poorly understood, partly owing to the lack of translational models replicating age- and obesity-related brain pathology. Methods The effect of age and high-fat diet (HFD)-induced obesity was investigated in adult Ldlr-/-.Leiden mice, an established translational model for obesity and its comorbidities. During mid-adulthood, from three to eight months of age, brain structure and function (hippocampal volume, cortical thickness, white matter integrity, cerebral blood flow (CBF), resting-state functional connectivity) were monitored with brain magnetic resonance imaging, and cognitive function was evaluated using cognitive tests. Brain pathology was further examined with histopathological and gene expression analyses. Results Ldlr-/-.Leiden mice showed age-related decreases in cortical thickness, CBF, brain connectivity, and neurogenesis along with the development of neuroinflammation and (short-term) memory impairments. On HFD feeding, Ldlr-/-.Leiden mice exhibited similar features, but memory deficits started at a younger age than in chow-fed mice. HFD-fed mice additionally showed a rise in CBF with concomitant decline in fractional anisotropy in white matter tracts. Analyses of hippocampal gene expression further revealed an age-related suppression of processes related to metabolic and neuronal function while HFD feeding strongly activated neuroinflammatory pathways. Conclusions Ldlr-/-.Leiden mice show similar critical age-related changes in brain structure and function as observed in humans. In this mouse model, HFD feeding particularly trigger disturbances in brain blood perfusion and white matter tract integrity, which may underlie an accelerated cognitive decline in obesity.
Collapse
Affiliation(s)
- Florine Seidel
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Ilse Arnoldussen
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Vivienne Verweij
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Jessica Snabel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Bram Geenen
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Ayla Franco
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Maximilian Wiesmann
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Wang G, Li Z, Ni W, Ye H, Liu Y, Chen L, Wang L, Liu C, Chen J, Wang X, Ding X, Zhao L, Ge X, Wang Y, Ye Y, Kiwa T, Zang L, Wang J, Dai C, Liu B. A small molecule esculetin accelerates postprandial lipid clearance involving activation of C/EBPβ and CD36-mediated phagocytosis by adipose tissue macrophages. Theranostics 2025; 15:5910-5930. [PMID: 40365299 PMCID: PMC12068311 DOI: 10.7150/thno.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Adipose tissue buffers dietary lipids to maintain postprandial lipid homeostasis. Adipose tissue macrophages (ATMs) mediate the phagocytosis of postprandial lipids from the exogenous diet, generating high-density lipoprotein (HDL) particles that facilitate lipid circulation and excretion. However, the underlying mechanisms remain poorly understood. This study investigates the effects of esculetin, a coumarin compound, on postprandial cholesterol circulation and excretion following a high-fat meal. Methods: Mice were fed a lipid-rich meal for three days to assess the effects of esculetin on postprandial lipid circulation, using serum lipid profiling and metabolomics analysis. Epididymal white adipose tissue (eWAT) removal and flow cytometry were performed to analyze ATMs and confirm their role in mediating esculetin's effects on postprandial lipemia. Epigenetic profiling, transcriptome analysis, chromatin immunoprecipitation, and Terahertz chemical microscopy were employed to elucidate the molecular targets and mechanisms of esculetin. Results: Esculetin significantly elevates postprandial HDL cholesterol levels to values comparable to pitavastatin and modifies serum metabolites involved in bile-mediated cholesterol excretion, leading to increased bile acid concentrations in the bile. This effect is mediated by an increased ratio and phagocytic activity of a subset of ATMs expressing the scavenger receptor CD36, as eWAT removal and CD36 blockade inhibit this response. Furthermore, esculetin enhances the uptake of oxidized LDL via CD36, as demonstrated in cultured macrophages, and induces epigenetic changes controlled by the key transcription factor C/EBPβ, accompanied by increased C/EBPβ binding to the Cd36 promoter. A direct interaction between esculetin and C/EBPβ was observed using Terahertz chemical microscopy. Additionally, the activation of C/EBPβ by esculetin in ATMs was confirmed in vivo. Conclusion: Esculetin accelerates postprandial lipid circulation by binding to C/EBPβ and enhancing CD36-dependent phagocytosis in ATMs.
Collapse
Affiliation(s)
- Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Zhaokai Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Changjiang Liu
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xue Ding
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaofeng Ge
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Yuanchao Ye
- Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Toshihiko Kiwa
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Linghe Zang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jin Wang
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| |
Collapse
|
4
|
Wang X, Liu J, Yu K, Huang Z, Liu H, Li X. Association between TyG-related parameters and NAFLD risk in Japanese non-obese population. Sci Rep 2025; 15:7119. [PMID: 40016248 PMCID: PMC11868368 DOI: 10.1038/s41598-025-88478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes a substantial proportion of cases among the non-obese population, yet it is frequently overlooked. Studies investigating the association between triglyceride-glucose (TyG)-related parameters (TyG-BMI, TyG-WC, TyG-WHtR) and NAFLD in non-obese individuals is limited. Thus, this study aims to investigate the association between TyG-related parameters and NAFLD in non-obese individuals to improve early detection and intervention strategies for NAFLD in this population. A cross-sectional analysis was conducted using data from the NAFLD database, including 11,987 participants who underwent health examinations between 2004 and 2015. Logistic regression models were employed to evaluate the relationship between TyG-related parameters and NAFLD risk, incorporating cubic spline functions and smooth curve fitting to identify potential nonlinear relationships. ROC curve analysis was conducted to assess the predictive performance of thee parameters. After controlling for confounding variables, the incidence of NAFLD in non-obese individuals increased with higher TyG-related parameters. Notably, nonlinear relationships between the TyG index and its related parameters regarding NAFLD risk were identified. The areas under the ROC curve for the TyG index and its related parameters were 0.7984, 0.8553, 0.8584, and 0.8353, respectively. Importantly, the predictive ability of the TyG index and its related parameters was stronger in the female population than in that of males. A positive and nonlinear relationship exists between the TyG-related parameters in relation to the risk of NAFLD. The TyG-related parameters exhibit predictive capabilities for NAFLD, with TyG-related parameters demonstrating greater strength than the TyG index itself.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Gastroenterology, The First People's Hospital of Chenzhou, Chenzhou, 423001, China
| | - Jie Liu
- Department of Emergency Medicine, Shenzhen New Frontier United Family Hospital, Shenzhen, 518000, China
| | - Ke Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhenhua Huang
- Department of Emergency Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Hanxiong Liu
- Department of Gastroenterology, The First People's Hospital of Chenzhou, Chenzhou, 423001, China.
| | - Xiang Li
- Department of Medical Ultrasonics, Shenzhen Pingle orthopaedic hospital, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Jang H, Joung H, Chu J, Cho M, Kim YW, Kim KH, Shin CH, Lee J, Ha JH. Lactobacillus delbrueckii subsp. lactis CKDB001 Ameliorates Metabolic Complications in High-Fat Diet-Induced Obese Mice. Nutrients 2024; 16:4260. [PMID: 39770882 PMCID: PMC11677567 DOI: 10.3390/nu16244260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND/OBJECTIVES Functional probiotics, particularly Lactobacillus delbrueckii subsp. lactis CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems. Here, we investigated the effects of L. delbrueckii subsp. lactis CKDB001 on insulin resistance, dyslipidemia, MASLD, and lipid metabolism in a murine model of high-fat diet (HFD)-induced obesity. METHODS The mice were divided into four groups (n = 12 per group)-normal chow diet (NCD), high fat diet (HFD), HFD with L. delbrueckii subsp. lactis CKDB001 (LL), and HFD with resmetirom (positive control (PC), a thyroid receptor β agonist). The experimental animals were fed NCD or HFD for 12 weeks, followed by an additional 12-week oral treatment with LL or resmetirom. RESULTS LL supplementation reduced body weight, insulin levels, and HOMA-IR compared with those in the HFD group, indicating improved insulin sensitivity. Additionally, LL reduced serum triglyceride (TG) levels without affecting total cholesterol (TC) levels. HFD consumption increased liver weight and hepatic TG and TC levels, indicating ectopic fat accumulation; however, LL supplementation reversed these changes, indicating a liver-specific effect on cholesterol metabolism. Furthermore, LL administration attenuated NAFLD activity scores, reduced hepatic fibrosis, improved liver function markers (aspartate aminotransferase), and enhanced Adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, LL did not considerably affect the expression of genes related to lipid metabolism. In epididymal adipose tissue, LL treatment reduced leptin levels but had no effect on adiponectin; additionally, histological analysis showed an increase in adipocyte size, potentially linked to enhanced energy metabolism. CONCLUSIONS Collectively, these findings suggest that LL could be a promising therapeutic candidate for improving insulin sensitivity, reducing hepatic lipid accumulation, and mitigating MASLD.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyunchae Joung
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Microbiome Research Laboratory, Chong Kun Dang Bio (CKDBiO) Research Institute, Ansan 15604, Republic of Korea
| | - Jaeryang Chu
- Microbiome Research Laboratory, Chong Kun Dang Bio (CKDBiO) Research Institute, Ansan 15604, Republic of Korea
| | - Minseo Cho
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeon-Woo Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyung Hwan Kim
- Microbiome Research Laboratory, Chong Kun Dang Bio (CKDBiO) Research Institute, Ansan 15604, Republic of Korea
| | - Chang Hun Shin
- Chong Kun Dang Bio (CKDBiO) Research Institute, Ansan 15604, Republic of Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
6
|
Inia JA, Attema J, de Ruiter C, Menke AL, Caspers MPM, Verschuren L, Wilson M, Arlantico A, Brightbill HD, Jukema JW, van den Hoek AM, Princen HMG, Chen MZ, Morrison MC. Therapeutic effects of FGF21 mimetic bFKB1 on MASH and atherosclerosis in Ldlr-/-.Leiden mice. FASEB J 2024; 38:e70087. [PMID: 39463193 PMCID: PMC11580715 DOI: 10.1096/fj.202401397r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).Leiden mice received a high-fat diet for 20 weeks, followed by treatment with an isotype control antibody or bFKB1 for 12 weeks. Effects on plasma risk markers and (histo)pathology of liver, adipose tissue, and heart were evaluated alongside hepatic transcriptomics analysis. bFKB1 lowered body weight (-21%) and adipose tissue mass (-22%) without reducing food intake. The treatment also improved plasma insulin (-80%), cholesterol (-48%), triglycerides (-76%), alanine transaminase (ALT: -79%), and liver weight (-43%). Hepatic steatosis and inflammation were strongly reduced (macrovesicular steatosis -34%; microvesicular steatosis -100%; inflammation -74%) and while the total amount of fibrosis was not affected, bFKB1 did decrease new collagen formation (-49%). Correspondingly, hepatic transcriptomics and pathway analysis revealed the mechanistic background underlying these histological improvements, demonstrating broad inactivation of inflammatory and profibrotic transcriptional programs by bFKB1. In epididymal white adipose tissue, bFKB1 reduced adipocyte size (-16%) and inflammation (-52%) and induced browning, signified by increased uncoupling protein-1 (UCP1) protein expression (8.5-fold increase). In the vasculature, bFKB1 had anti-atherogenic effects, lowering total atherosclerotic lesion area (-38%). bFKB1 has strong beneficial metabolic effects associated with a reduction in hepatic steatosis, inflammation, and atherosclerosis. Analysis of new collagen formation and profibrotic transcriptional programs indicate that bFKB1 treatment may have antifibrotic potential in a longer treatment duration as well.
Collapse
Affiliation(s)
- José A. Inia
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
- Department of CardiologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | - Joline Attema
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Aswin L. Menke
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | | | - Lars Verschuren
- Department of Microbiology and Systems BiologyTNOLeidenThe Netherlands
| | | | | | | | - J. Wouter Jukema
- Department of CardiologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Anita M. van den Hoek
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Hans M. G. Princen
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Mark Z. Chen
- Translational ImmunologyGenentech Inc.South San FranciscoCaliforniaUSA
| | - Martine C. Morrison
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| |
Collapse
|
7
|
Boesch M, Lindhorst A, Feio-Azevedo R, Brescia P, Silvestri A, Lannoo M, Deleus E, Jaekers J, Topal H, Topal B, Ostyn T, Wallays M, Smets L, Van Melkebeke L, Härtlova A, Roskams T, Bedossa P, Verbeek J, Govaere O, Francque S, Sifrim A, Voet T, Rescigno M, Gericke M, Korf H, van der Merwe S. Adipose tissue macrophage dysfunction is associated with a breach of vascular integrity in NASH. J Hepatol 2024; 80:397-408. [PMID: 37977244 DOI: 10.1016/j.jhep.2023.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS In non-alcoholic fatty liver disease (NAFLD), monocytes infiltrate visceral adipose tissue promoting local and hepatic inflammation. However, it remains unclear what drives inflammation and how the immune landscape in adipose tissue differs across the NAFLD severity spectrum. We aimed to assess adipose tissue macrophage (ATM) heterogeneity in a NAFLD cohort. METHODS Visceral adipose tissue macrophages from lean and obese patients, stratified by NAFLD phenotypes, underwent single-cell RNA sequencing. Adipose tissue vascular integrity and breaching was assessed on a protein level via immunohistochemistry and immunofluorescence to determine targets of interest. RESULTS We discovered multiple ATM populations, including resident vasculature-associated macrophages (ResVAMs) and distinct metabolically active macrophages (MMacs). Using trajectory analysis, we show that ResVAMs and MMacs are replenished by a common transitional macrophage (TransMac) subtype and that, during NASH, MMacs are not effectively replenished by TransMac precursors. We postulate an accessory role for MMacs and ResVAMs in protecting the adipose tissue vascular barrier, since they both interact with endothelial cells and localize around the vasculature. However, across the NAFLD severity spectrum, alterations occur in these subsets that parallel an adipose tissue vasculature breach characterized by albumin extravasation into the perivascular tissue. CONCLUSIONS NAFLD-related macrophage dysfunction coincides with a loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. IMPACT AND IMPLICATIONS Our study describes for the first time the myeloid cell landscape in human visceral adipose tissue at single-cell level within a cohort of well-characterized patients with non-alcoholic fatty liver disease. We report unique non-alcoholic steatohepatitis-specific transcriptional changes within metabolically active macrophages (MMacs) and resident vasculature-associated macrophages (ResVAMs) and we demonstrate their spatial location surrounding the vasculature. These dysfunctional transcriptional macrophage states coincided with the loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. Our study provides a theoretical basis for new therapeutic strategies to be directed towards reinstating the endogenous metabolic, homeostatic and cytoprotective functions of ResVAMs and MMacs, including their role in protecting vascular integrity.
Collapse
Affiliation(s)
- Markus Boesch
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | | | - Rita Feio-Azevedo
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Paola Brescia
- IRCCS Humanitas Research Hospital, Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | | | - Ellen Deleus
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Joris Jaekers
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Halit Topal
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Baki Topal
- Department of Abdominal Surgery, UZ Leuven, Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Lena Smets
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - Lukas Van Melkebeke
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium
| | - Pierre Bedossa
- Department of Pathology, Physiology and Imaging, Beaujon Hospital Paris Diderot University, Paris, France
| | - Jef Verbeek
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Olivier Govaere
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Translational Research in Inflammation and Immunology (TWI2N), Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium; Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, Milan, Italy
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Schalk van der Merwe
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Colella F, Ramachandran P. Adipose tissue macrophage dysfunction in human MASLD - Cause or consequence? J Hepatol 2024; 80:390-393. [PMID: 38122832 DOI: 10.1016/j.jhep.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Fabio Colella
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
9
|
Favero G, Golic I, Arnaboldi F, Cappella A, Korac A, Monsalve M, Stacchiotti A, Rezzani R. Cardiometabolic Changes in Sirtuin1-Heterozygous Mice on High-Fat Diet and Melatonin Supplementation. Int J Mol Sci 2024; 25:860. [PMID: 38255934 PMCID: PMC10815439 DOI: 10.3390/ijms25020860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism in obese rodents. Melatonin, a pineal indoleamine, acting as a SIRT1 modulator, may alleviate cardiometabolic damage. In the present study, we morphologically characterized the heart, eWAT, and iBAT in male heterozygous SIRT1+/- mice (HET mice) on a high-fat diet (60%E lard) versus a standard rodent diet (8.5% E fat) and drinking melatonin (10 mg/kg) for 16 weeks. Wild-type (WT) male C57Bl6/J mice were similarly fed for comparison. Cardiomyocyte fibrosis and endoplasmic reticulum (ER) stress response worsened in HET mice on a high-fat diet vs. other groups. Lipid peroxidation, ER, and mitochondrial stress were assessed by 4 hydroxy-2-nonenal (4HNE), glucose-regulated protein78 (GRP78), CCAA/enhancer-binding protein homologous protein (CHOP), heat shock protein 60 (HSP60), and mitofusin2 immunostainings. Ultrastructural analysis indicated the prevalence of atypical inter-myofibrillar mitochondria with short, misaligned cristae in HET mice on a lard diet despite melatonin supplementation. Abnormal eWAT adipocytes, crown-like inflammatory structures, tumor necrosis factor alpha (TNFα), and iBAT whitening characterized HET mice on a hypercaloric fatty diet and were maintained after melatonin supply. All these data suggest that melatonin's mechanism of action is strictly linked to full SIRT1 expression, which is required for the exhibition of effective antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (R.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Igor Golic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (I.G.); (A.K.)
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (F.A.); (A.C.)
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (F.A.); (A.C.)
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (I.G.); (A.K.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomedicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (F.A.); (A.C.)
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (R.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
10
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
11
|
Gart E, van Duyvenvoorde W, Snabel JM, de Ruiter C, Attema J, Caspers MPM, Lek S, van Heuven BJ, Speksnijder AGCL, Giera M, Menke A, Salic K, Bence KK, Tesz GJ, Keijer J, Kleemann R, Morrison MC. Translational characterization of the temporal dynamics of metabolic dysfunctions in liver, adipose tissue and the gut during diet-induced NASH development in Ldlr-/-.Leiden mice. Heliyon 2023; 9:e13985. [PMID: 36915476 PMCID: PMC10006542 DOI: 10.1016/j.heliyon.2023.e13985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood. Methods High-fat-diet (HFD)-fed Ldlr-/-.Leiden mice were compared to chow-fed controls. At t = 0, 8, 16, 28 and 38w mice were euthanized, and liver, WAT depots and gut were analyzed biochemically, histologically and by lipidomics and transcriptomics together with circulating factors to investigate the sequence of pathogenic events and organ cross-talk during NAFLD development. Results HFD-induced obesity was associated with an increase in visceral fat, plasma lipids and hyperinsulinemia at t = 8w, along with increased liver steatosis and circulating liver damage biomarkers. In parallel, upstream regulator analysis predicted that lipid catabolism regulators were deactivated and lipid synthesis regulators were activated. Subsequently, hepatocyte hypertrophy, oxidative stress and hepatic inflammation developed. Hepatic collagen accumulated from t = 16 w and became pronounced at t = 28-38 w. Epididymal WAT was maximally hypertrophic from t = 8 w, which coincided with inflammation development. Mesenteric and subcutaneous WAT hypertrophy developed slower and did not appear to reach a maximum, with minimal inflammation. In gut, HFD significantly increased permeability, induced a shift in microbiota composition from t = 8 w and changed circulating gut-derived metabolites. Conclusion HFD-fed Ldlr-/-.Leiden mice develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NAFLD patients, underlining their translational value. We demonstrate that marked epididymal-WAT inflammation, and gut permeability and dysbiosis precede the development of NAFLD stressing the importance of a multiple-organ approach in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Jessica M Snabel
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Kendra K Bence
- Pfizer Worldwide Research, Development & Medical, Internal Medicine Research Unit, Cambridge, MA, USA
| | - Gregory J Tesz
- Pfizer Worldwide Research, Development & Medical, Internal Medicine Research Unit, Cambridge, MA, USA
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| |
Collapse
|
12
|
Liu C, Schönke M, Spoorenberg B, Lambooij JM, van der Zande HJP, Zhou E, Tushuizen ME, Andreasson AC, Park A, Oldham S, Uhrbom M, Ahlstedt I, Ikeda Y, Wallenius K, Peng XR, Guigas B, Boon MR, Wang Y, Rensen PCN. FGF21 protects against hepatic lipotoxicity and macrophage activation to attenuate fibrogenesis in nonalcoholic steatohepatitis. eLife 2023; 12:83075. [PMID: 36648330 PMCID: PMC9928421 DOI: 10.7554/elife.83075] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Analogues of the hepatokine fibroblast growth factor 21 (FGF21) are in clinical development for type 2 diabetes and nonalcoholic steatohepatitis (NASH) treatment. Although their glucose-lowering and insulin-sensitizing effects have been largely unraveled, the mechanisms by which they alleviate liver injury have only been scarcely addressed. Here, we aimed to unveil the mechanisms underlying the protective effects of FGF21 on NASH using APOE*3-Leiden.CETP mice, a well-established model for human-like metabolic diseases. Liver-specific FGF21 overexpression was achieved in mice, followed by administration of a high-fat high-cholesterol diet for 23 weeks. FGF21 prevented hepatic lipotoxicity, accompanied by activation of thermogenic tissues and attenuation of adipose tissue inflammation, improvement of hyperglycemia and hypertriglyceridemia, and upregulation of hepatic programs involved in fatty acid oxidation and cholesterol removal. Furthermore, FGF21 inhibited hepatic inflammation, as evidenced by reduced Kupffer cell (KC) activation, diminished monocyte infiltration, and lowered accumulation of monocyte-derived macrophages. Moreover, FGF21 decreased lipid- and scar-associated macrophages, which correlated with less hepatic fibrosis as demonstrated by reduced collagen accumulation. Collectively, hepatic FGF21 overexpression limits hepatic lipotoxicity, inflammation, and fibrogenesis. Mechanistically, FGF21 blocks hepatic lipid influx and accumulation through combined endocrine and autocrine signaling, respectively, which prevents KC activation and lowers the presence of lipid- and scar-associated macrophages to inhibit fibrogenesis.
Collapse
Affiliation(s)
- Cong Liu
- Department of Medicine, Division of Endocrinology, Leiden University Medical CenterLeidenNetherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeidenNetherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical CenterLeidenNetherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeidenNetherlands
| | - Borah Spoorenberg
- Department of Medicine, Division of Endocrinology, Leiden University Medical CenterLeidenNetherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeidenNetherlands
| | - Joost M Lambooij
- Department of Parasitology, Leiden University Medical CenterLeidenNetherlands
- Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | | | - Enchen Zhou
- Department of Medicine, Division of Endocrinology, Leiden University Medical CenterLeidenNetherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeidenNetherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical CenterLeidenNetherlands
| | - Anne-Christine Andreasson
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Andrew Park
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZenecaGaithersburgUnited States
| | - Stephanie Oldham
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGaithersburgUnited States
| | - Martin Uhrbom
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Yasuhiro Ikeda
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZenecaGaithersburgUnited States
| | - Kristina Wallenius
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical CenterLeidenNetherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical CenterLeidenNetherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeidenNetherlands
| | - Yanan Wang
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anChina
| | - Patrick CN Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical CenterLeidenNetherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeidenNetherlands
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
13
|
Riezu-Boj JI, Barajas M, Pérez-Sánchez T, Pajares MJ, Araña M, Milagro FI, Urtasun R. Lactiplantibacillus plantarum DSM20174 Attenuates the Progression of Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Metabolic Risk Factors, and Attenuating Adipose Inflammation. Nutrients 2022; 14:nu14245212. [PMID: 36558371 PMCID: PMC9787191 DOI: 10.3390/nu14245212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, reaching epidemic proportions worldwide. Targeting the gut-adipose tissue-liver axis by modulating the gut microbiota can be a promising therapeutic approach in NAFLD. Lactiplantibacillus plantarum, a potent lactic-acid-producing bacterium, has been shown to attenuate NAFLD. However, to our knowledge, the possible effect of the Lactiplantibacillus plantarum strain DSM20174 (L.p. DSM20174) on the gut-adipose tissue axis, diminishing inflammatory mediators as fuel for NAFLD progression, is still unknown. Using a NAFLD mouse model fed a high-fat, high-fructose (HFHF) diet for 10 weeks, we show that L.p DSM20174 supplementation of HFHF mice prevented weight gain, improved glucose and lipid homeostasis, and reduced white adipose inflammation and NAFLD progression. Furthermore, 16S rRNA gene sequencing of the faecal microbiota suggested that treatment of HFHF-fed mice with L.p DSM20174 changed the diversity and altered specific bacterial taxa at the levels of family, genus, and species in the gut microbiota. In conclusion, the beneficial effects of L.p DSM20174 in preventing fatty liver progression may be related to modulations in the composition and potential function of gut microbiota associated with lower metabolic risk factors and a reduced M1-like/M2-like ratio of macrophages and proinflammatory cytokine expression in white adipose tissue and liver.
Collapse
Affiliation(s)
- José I. Riezu-Boj
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Tania Pérez-Sánchez
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - María J. Pajares
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.I.M.); (R.U.); Tel.: +34-948-425600 (F.I.M.); +34-948-169000 (R.U.)
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Correspondence: (F.I.M.); (R.U.); Tel.: +34-948-425600 (F.I.M.); +34-948-169000 (R.U.)
| |
Collapse
|
14
|
Liu F, Chen S, Li X, Li S, Xiao Y, Han J, Tu Y, Bao Y, Bai W, Yu H. Obesity-Induced Hepatic Steatosis Is Partly Mediated by Visceral Fat Accumulation in Subjects with Overweight/Obesity: A Cross-Sectional Study. Obes Facts 2022; 16:164-172. [PMID: 36257286 PMCID: PMC10028367 DOI: 10.1159/000527595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION We explored whether visceral fat accumulation mediates the development of hepatic steatosis in individuals living with overweight and obesity. METHODS This cross-sectional study enrolled 769 outpatients with overweight and obesity aged 18-65 years. The controlled attenuation parameter (CAP) was used to quantify the degree of hepatic steatosis. Visceral fat accumulation, represented by the visceral fat area (VFA), was measured using magnetic resonance imaging. The associations of body mass index (BMI), VFA, and CAP with each other were assessed by univariate analysis, multivariate linear regression, and mediation analysis, respectively. RESULTS Compared with women, male subjects had higher BMI, VFA, and CAP levels. In both sex, CAP was positively correlated with BMI and VFA by the univariate analysis. After adjusting for demographic and serum characteristics, the linear correlation coefficients between BMI and CAP were 1.738 (95% confidence interval (CI): 1.100, 2.377), 1.524 (95% CI: 0.798, 2.249), and 2.650 (95% CI: 1.292, 4.009) in all subjects, females, and males, respectively, while those between VFA and CAP were 0.190 (95% CI: 0.133, 0.247), 0.184 (95% CI: 0.117, 0.252), and 0.194 (95% CI: 0.086, 0.301). Mediation analysis showed that visceral fat accumulation contributed to 51.37%, 53.85%, and 26.51% of obesity-induced hepatic steatosis in the total, female, and male subjects, respectively. CONCLUSION Visceral fat accumulation partially mediates obesity-induced hepatic steatosis in individuals with overweight and obesity, especially in women. More focus on visceral fat reduction is needed in individuals with obesity.
Collapse
Affiliation(s)
- Fengjing Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
- Department of Endocrinology, Haikou Orthopedic and Diabetes Hospital, Haikou, China
| | - Si Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Xiao Li
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Shaobo Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yunfeng Xiao
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yinfang Tu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
15
|
Predictive Power of Tissue and Circulating Biomarkers for the Severity of Biopsy-Validated Chronic Liver Diseases. J Clin Med 2022; 11:jcm11205985. [PMID: 36294318 PMCID: PMC9604565 DOI: 10.3390/jcm11205985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Although liver biopsy remains the gold standard for the diagnosis and the monitoring of liver disease, non-invasive biomarkers have been recently suggested to predict liver disease severity, progression, and response to therapy. We investigated multiple tissue and circulating markers of angiogenesis in predicting the severity of biopsy-validated chronic liver diseases in patients with chronic hepatitis C virus (HCV) and in NAFLD/NASH patients. Methods: We studied samples from forty-six patients with HCV and/or NAFLD who underwent liver biopsy, liver ultrasonography, and liver stiffness measurement. Ishak and Brunt scores were calculated. Expression of selective genes and luminex analyses of 17 different circulating pro-angiogenic factors were performed. Results: The phenotype of NAFLD/NASH or HCV subjects was similar, except for insulin, which was expressed at higher levels in NAFLD/NASH patients. A Mann−Whitney test showed significant differences for the circulating levels of HB-EGF and for follistatin between HCV and NAFLD/NASH patients. In HCV patients, we found an inverse correlation between disease stage and BMP-9 and VEGF-A circulating levels, while in NASH/NAFLD direct correlations between stage and BMP-9 and VEGF-A circulating levels were noted. The K-means algorithm divided HCV and NASH/NAFLD patients in two clusters with significant differences between them. Logistic regression models showed a positive relationship with BMP-9 levels for NASH/NAFLD and with HB-EGF circulating concentrations for HCV. ROC analysis showed for BMP-9 > 1188 pg/mL a worse disease in NASH/NAFLD, whereas for HB-EGF < 61 pg/mL a higher severity of disease in HCV. Conclusion: Our data show that circulating biomarker profiles can identify the severity of chronic liver disease of NAFLD/NASH or HCV origin.
Collapse
|
16
|
Zhang B, Qin S, Wu Y, Zhang R, Xu Y, Yang C. Rhamnolipids Regulate Lipid Metabolism, Immune Response, and Gut Microbiota in Rats. Front Nutr 2022; 9:886256. [PMID: 35571898 PMCID: PMC9096903 DOI: 10.3389/fnut.2022.886256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Gut microbes influence lipid metabolism and immune responses that are key features of metabolic disorders. This study examined effects of bacterial rhamnolipids (RLS) on lipid metabolism, immune response, and gut microbiota in rats. Methods Twenty-four Sprague-Dawley rats were randomly divided into three groups and gavage-fed for seven weeks with normal saline (NCO group), 50 mg/kg bw RLS (RLS1 group), and 100 mg/kg bw RLS (RLS2 group). Results Compared with those of the NCO group, the RLS1 and RLS2 groups showed significantly decreased fat weight, relative fat weight, and adipocyte size (P < 0.05). Furthermore, RLS1 and RLS2 significantly decreased concentrations of triglycerides, low-density lipoprotein-cholesterol, and non-esterified fatty acids and increased high-density lipoprotein-cholesterol levels (P < 0.05). However, the total cholesterol content among the three groups (P > 0.05) were not significantly different. Serum concentrations of interleukin-1β, interleukin-6, and tumor necrosis factor-α were significantly lower in the RLS2 group than those in the NCO group (P < 0.05). The relative mRNA expression of fatty acid synthase was significantly decreased, while those of carnitine palmitoyltransferase-1, carnitine palmitoyltransferase-2, and peroxisome proliferator-activated receptor-gamma coactivator-1α were significantly increased in the RLS2 group compared with those in the NCO group (P < 0.05). Moreover, the relative abundances of Lactobacillus, Roseburia, Ruminococcus-1, and Parabacteroides were significantly higher in the RLS2 group than those in the NCO group (P < 0.05). Conclusion Our findings suggest that RLS reduces fat deposition, inhibits inflammation, regulates intestinal flora, and promotes the proliferation of beneficial bacteria in rats.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
17
|
Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina (B Aires) 2022; 58:medicina58050641. [PMID: 35630058 PMCID: PMC9147364 DOI: 10.3390/medicina58050641] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the “multiple-hit” hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver–gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue’s hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.
Collapse
|
18
|
Antiobesity and Hepatoprotective Effects of Protein Hydrolysates Derived from Protaetia brevitarsis in an Obese Mouse Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4492132. [PMID: 35386305 PMCID: PMC8977302 DOI: 10.1155/2022/4492132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Background Obesity induced by excessive nutrients can cause fatty liver and metabolic dysfunction, which leads to hepatic dysfunction and local/systemic inflammatory responses. Previously, we analyzed the antioxidant, antilipotoxicity, and anti-inflammatory effects of protein hydrolysates in vitro. The aim of the present study is to investigate the antiobesity and hepatoprotective effects of protein hydrolysates derived from Protaectia brevitas (PHPB) in an obese mouse model. Methods For this in vivo study, 40 mice were included and divided into four groups: (1) normal diet group, (2) high-fat-diet (ctrl(–)) group, (3) high-fat-diet and silymarin-treated (ctrl(+)) group, and (4) high-fat-diet and PHPB-treated group. After 6 weeks of treatment, body weight and the amount of daily food intake were observed. Moreover, the major organs and blood of animals were collected for the analysis of serum chemistry, histopathological examination, and obesity- and inflammation-related gene expressions. Results The body weight and the amount of daily food intake significantly decreased in the PHPB-treated group compared with those in the ctrl(–) group. The levels of serum ALT, AST, ALP, creatinine, blood urea nitrogen, glucose, bilirubin, total cholesterol, TG, low-density lipoprotein, IL-6, TNF-α, and IGF-1 significantly reduced in the PHPB-treated group, whereas the serum free fatty acid, albumin, high-density lipoprotein, and adiponectin concentrations increased. In the analysis of weight of the liver, kidney, lungs, spleen, and fat tissues (from epididymal, perirenal, and mesentery tissues), the PHPB-treated group showed decreased values compared with the ctrl(–) group. In the histopathological analysis, the PHPB-treated group showed significantly reduced macrovesicular fatty change and inflammatory cell infiltration in the liver, and the size of the adipocyte in the epididymis also significantly decreased. The obesity- and inflammation-related gene (IL-6, TNF-α, IGF-1, leptin, AP2/FABP4, AMPK-α2, β3AR, and PPAR-γ) expressions in the liver and epididymal adipose tissue were reduced in the PHPB-treated group. Conclusions Overall, the results of this study suggest that the protein hydrolysates that derived from Protaectia brevitas produce antiobesity and hepatoprotective effects via anti-inflammatory activities.
Collapse
|
19
|
Morrison MC, Gart E, van Duyvenvoorde W, Snabel J, Nielsen MJ, Leeming DJ, Menke A, Kleemann R. Heat-Inactivated Akkermansia muciniphila Improves Gut Permeability but Does Not Prevent Development of Non-Alcoholic Steatohepatitis in Diet-Induced Obese Ldlr-/-.Leiden Mice. Int J Mol Sci 2022; 23:ijms23042325. [PMID: 35216439 PMCID: PMC8878538 DOI: 10.3390/ijms23042325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023] Open
Abstract
The development of non-alcoholic steatohepatitis (NASH) has been associated with alterations in gut microbiota composition and reduced gut barrier function. Akkermansia muciniphila is a gut microbe that is thought to have health-promoting properties, including the ability to improve gut barrier function and host metabolism, both when administered live and after heat-inactivation. We questioned whether heat-inactivated A. muciniphila may reduce NASH development. Ldlr−/−.Leiden mice, a translational, diet-induced model for NASH, were fed a NASH-inducing high-fat diet (HFD) supplemented with heat-inactivated A. muciniphila. After 28 weeks, effects of the treatment on obesity and associated metabolic dysfunction in the gut (microbiota composition and permeability), adipose tissue, and liver were studied relative to an untreated HFD control. Treatment with heat-inactivated A. muciniphila did not affect body weight or adiposity and had no effect on plasma lipids, blood glucose, or plasma insulin. Heat-inactivated A. muciniphila had some minor effects on mucosal microbiota composition in ileum and colon and improved gut barrier function, as assessed by an in vivo functional gut permeability test. Epidydimal white adipose tissue (WAT) hypertrophy and inflammation were not affected, but heat-inactivated A. muciniphila did reduce hypertrophy in the mesenteric WAT which is in close proximity to the intestine. Heat-inactivated A. muciniphila did not affect the development of NASH or associated fibrosis in the liver and did not affect circulating bile acids or markers of liver fibrosis, but did reduce PRO-C4, a type IV collagen synthesis marker, which may be associated with gut integrity. In conclusion, despite beneficial effects in the gut and mesenteric adipose tissue, heat-inactivated A. muciniphila did not affect the development of NASH and fibrosis in a chronic disease setting that mimics clinically relevant disease stages.
Collapse
Affiliation(s)
- Martine C. Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (E.G.); (W.v.D.); (J.S.); (A.M.); (R.K.)
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands
- Correspondence:
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (E.G.); (W.v.D.); (J.S.); (A.M.); (R.K.)
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (E.G.); (W.v.D.); (J.S.); (A.M.); (R.K.)
| | - Jessica Snabel
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (E.G.); (W.v.D.); (J.S.); (A.M.); (R.K.)
| | - Mette Juul Nielsen
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark; (M.J.N.); (D.J.L.)
| | - Diana Julie Leeming
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark; (M.J.N.); (D.J.L.)
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (E.G.); (W.v.D.); (J.S.); (A.M.); (R.K.)
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (E.G.); (W.v.D.); (J.S.); (A.M.); (R.K.)
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
20
|
Dai B, Xu J, Li X, Huang L, Hopkins C, Wang H, Yao H, Mi J, Zheng L, Wang J, Tong W, Chow DHK, Li Y, He X, Hu P, Chen Z, Zu H, Li Y, Yao Y, Jiang Q, Qin L. Macrophages in epididymal adipose tissue secrete osteopontin to regulate bone homeostasis. Nat Commun 2022; 13:427. [PMID: 35058428 PMCID: PMC8776868 DOI: 10.1038/s41467-021-27683-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Epididymal white adipose tissue (eWAT) secretes an array of cytokines to regulate the metabolism of organs and tissues in high-fat diet (HFD)-induced obesity, but its effects on bone metabolism are not well understood. Here, we report that macrophages in eWAT are a main source of osteopontin, which selectively circulates to the bone marrow and promotes the degradation of the bone matrix by activating osteoclasts, as well as modulating bone marrow-derived macrophages (BMDMs) to engulf the lipid droplets released from adipocytes in the bone marrow of mice. However, the lactate accumulation induced by osteopontin regulation blocks both lipolysis and osteoclastogenesis in BMDMs by limiting the energy regeneration by ATP6V0d2 in lysosomes. Both surgical removal of eWAT and local injection of either clodronate liposomes (for depleting macrophages) or osteopontin-neutralizing antibody show comparable amelioration of HFD-induced bone loss in mice. These results provide an avenue for developing therapeutic strategies to mitigate obesity-related bone disorders.
Collapse
Affiliation(s)
- Bingyang Dai
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chelsea Hopkins
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Honglian Wang
- Research Center for Integrated Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho-Kiu Chow
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yao Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Son HK, Kim BH, Lee J, Park S, Oh CB, Jung S, Lee JK, Ha JH. Partial Replacement of Dietary Fat with Krill Oil or Coconut Oil Alleviates Dyslipidemia by Partly Modulating Lipid Metabolism in Lipopolysaccharide-Injected Rats on a High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:843. [PMID: 35055664 PMCID: PMC8775371 DOI: 10.3390/ijerph19020843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
This study investigated the effects of partial replacement of dietary fat with krill oil (KO) or coconut oil (CO) on dyslipidemia and lipid metabolism in rats fed with a high-fat diet (HFD). Sprague Dawley rats were divided into three groups as follows: HFD, HFD + KO, and HFD + CO. The rats were fed each diet for 10 weeks and then intraperitoneally injected with phosphate-buffered saline (PBS) or lipopolysaccharide (LPS) (1 mg/kg). The KO- and CO-fed rats exhibited lower levels of serum lipids and aspartate aminotransferases than those of the HFD-fed rats. Rats fed with HFD + KO displayed significantly lower hepatic histological scores and hepatic triglyceride (TG) content than rats fed with HFD. The KO supplementation also downregulated the adipogenic gene expression in the liver. When treated with LPS, the HFD + KO and HFD + CO groups reduced the adipocyte size in the epididymal white adipose tissues (EAT) relative to the HFD group. These results suggest that KO and CO could improve lipid metabolism dysfunction.
Collapse
Affiliation(s)
- Hee-Kyoung Son
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
| | - Bok-Hee Kim
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea;
| | - Jisu Lee
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Seohyun Park
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Chung-Bae Oh
- Office of Technical Liaison, Industry Support Team, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - Sunyoon Jung
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Jennifer K. Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Jung-Heun Ha
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
22
|
Viraragavan A, Willmer T, Patel O, Basson A, Johnson R, Pheiffer C. Cafeteria diet induces global and Slc27a3-specific hypomethylation in male Wistar rats. Adipocyte 2021; 10:108-118. [PMID: 33570456 PMCID: PMC7889207 DOI: 10.1080/21623945.2021.1886697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased visceral adipose tissue (VAT) is associated with metabolic dysfunction, while subcutaneous adipose tissue (SAT) is considered protective. The mechanisms underlying these differences are not fully elucidated. This study aimed to investigate molecular differences in VAT and SAT of male Wistar rats fed a cafeteria diet (CD) or a standard rodent diet (STD) for three months. The expression of fatty acid metabolism genes was analysed by quantitative real-time PCR. Global and gene-specific DNA methylation was quantified using the Imprint® Methylated DNA Quantification Kit and pyrosequencing, respectively. Bodyweight, retroperitoneal fat mass, insulin resistance, leptin and triglyceride concentrations and adipocyte hypertrophy were higher in CD- compared to STD-fed rats. The expression of solute carrier family 27 member 3 (Slc27a3), a fatty acid transporter, was 9.6-fold higher in VAT and 6.3-fold lower in SAT of CD- versus STD-fed rats. Taqman probes confirmed increased Slc27a3 expression, while pyrosequencing showed Slc27a3 hypomethylation in VAT of CD- compared to STD-fed rats. The CD decreased global methylation in both VAT and SAT, although no depot differences were observed. Dysregulated fatty acid influx in VAT, in response to a CD, provides insight into the mechanisms underlying depot-differences in adipose tissue expansion during obesity and metabolic disease. Abbreviations: CD: cafeteria diet; E2F1: E2F Transcription Factor 1; EMSA: electrophoretic mobility shift assay; EGFR: epidermal growth factor receptor; GCF: GC-Rich Sequence DNA-Binding Factor; HOMA-IR: Homeostasis model for insulin resistance; NKX2-1: NK2 homeobox 1; PCR: Polymerase chain reaction; qRT-PCR: quantitative real-time PCR; RF: retroperitoneal fat; SAT: subcutaneous adipose tissue; Slc27a3: solute carrier family 27 member 3; STD: standard diet; TNFα: tumour necrosis factor alpha; TTS: transcriptional start site; T2D: Type 2 Diabetes; VAT: visceral adipose tissue; WT1 I: Wilms’ tumour protein 1
Collapse
Affiliation(s)
- Amsha Viraragavan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Albertus Basson
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
23
|
van den Hoek AM, de Jong JCBC, Worms N, van Nieuwkoop A, Voskuilen M, Menke AL, Lek S, Caspers MPM, Verschuren L, Kleemann R. Diet and exercise reduce pre-existing NASH and fibrosis and have additional beneficial effects on the vasculature, adipose tissue and skeletal muscle via organ-crosstalk. Metabolism 2021; 124:154873. [PMID: 34478753 DOI: 10.1016/j.metabol.2021.154873] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) has become one of the most common liver diseases and is still without approved pharmacotherapy. Lifestyle interventions using exercise and diet change remain the current treatment of choice and even a small weight loss (5-7%) can already have a beneficial effect on NASH. However, the underlying molecular mechanisms of exercise and diet interventions remain largely elusive, and it is unclear whether they exert their health effects via similar or different pathways. METHODS Ldlr-/-.Leiden mice received a high fat diet (HFD) for 30 weeks to establish a severe state of NASH/fibrosis with simultaneous atherosclerosis development. Groups of mice were then either left untreated (control group) or were treated for 20 weeks with exercise (running wheel), diet change (switch to a low fat chow diet) or the combination thereof. The liver and distant organs including heart, white adipose tissue (WAT) and muscle were histologically examined. Comprehensive transcriptome analysis of liver, WAT and muscle revealed the organ-specific effects of exercise and diet and defined the underlying pathways. RESULTS Exercise and dietary change significantly reduced body weight, fat mass, adipocyte size and improved myosteatosis and muscle function with additive effects of combination treatment. WAT inflammation was significantly improved by diet change, tended to be reduced with exercise, and combination therapy had no additive effect. Hepatic steatosis and inflammation were almost fully reversed by exercise and diet change, while hepatic fibrosis tended to be improved with exercise and was significantly improved with diet change. Additive effects for the combination therapy were shown for liver steatosis and associated liver lipids, and atherosclerosis, but not for hepatic inflammation and fibrosis. Pathway analysis revealed complementary effects on metabolic pathways and lipid handling processes, thereby substantiating the added value of combined lifestyle treatment. CONCLUSIONS Exercise, diet change and the combination thereof can reverse established NASH/fibrosis in obese Ldlr-/-.Leiden mice. In addition, the lifestyle interventions had beneficial effects on atherosclerosis, WAT inflammation and muscle function. For steatosis and other parameters related to adiposity or lipid metabolism, exercise and dietary change affected more distinct pathways that acted complementary when the interventions were combined resulting in an additive effect for the combination therapy on important endpoints including NASH and atherosclerosis. For inflammation, exercise and diet change shared several underlying pathways resulting in a net similar effect when the interventions were combined.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Atherosclerosis/diet therapy
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Diet, Fat-Restricted
- Diet, High-Fat
- Lipid Metabolism
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis/diet therapy
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Mice
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Non-alcoholic Fatty Liver Disease/diet therapy
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/pathology
- Non-alcoholic Fatty Liver Disease/therapy
- Physical Conditioning, Animal/physiology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.
| | - Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marijke Voskuilen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Department of Vascular Surgery, Leiden University Medical Center, Leiden (LUMC), the Netherlands
| |
Collapse
|
24
|
Krill Oil Treatment Increases Distinct PUFAs and Oxylipins in Adipose Tissue and Liver and Attenuates Obesity-Associated Inflammation via Direct and Indirect Mechanisms. Nutrients 2021; 13:nu13082836. [PMID: 34444996 PMCID: PMC8401900 DOI: 10.3390/nu13082836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
The development of obesity is characterized by the metabolic overload of tissues and subsequent organ inflammation. The health effects of krill oil (KrO) on obesity-associated inflammation remain largely elusive, because long-term treatments with KrO have not been performed to date. Therefore, we examined the putative health effects of 28 weeks of 3% (w/w) KrO supplementation to an obesogenic diet (HFD) with fat derived mostly from lard. The HFD with KrO was compared to an HFD control group to evaluate the effects on fatty acid composition and associated inflammation in epididymal white adipose tissue (eWAT) and the liver during obesity development. KrO treatment increased the concentrations of EPA and DHA and associated oxylipins, including 18-HEPE, RvE2 and 14-HDHA in eWAT and the liver. Simultaneously, KrO decreased arachidonic acid concentrations and arachidonic-acid-derived oxylipins (e.g., HETEs, PGD2, PGE2, PGF2α, TXB2). In eWAT, KrO activated regulators of adipogenesis (e.g., PPARγ, CEBPα, KLF15, STAT5A), induced a shift towards smaller adipocytes and increased the total adipocyte numbers indicative for hyperplasia. KrO reduced crown-like structures in eWAT, and suppressed HFD-stimulated inflammatory pathways including TNFα and CCL2/MCP-1 signaling. The observed eWAT changes were accompanied by reduced plasma leptin and increased plasma adiponectin levels over time, and improved insulin resistance (HOMA-IR). In the liver, KrO suppressed inflammatory signaling pathways, including those controlled by IL-1β and M-CSF, without affecting liver histology. Furthermore, KrO deactivated hepatic REL-A/p65-NF-κB signaling, consistent with increased PPARα protein expression and a trend towards an increase in IkBα. In conclusion, long-term KrO treatment increased several anti-inflammatory PUFAs and oxylipins in WAT and the liver. These changes were accompanied by beneficial effects on general metabolism and inflammatory tone at the tissue level. The stimulation of adipogenesis by KrO allows for safe fat storage and may, together with more direct PPAR-mediated anti-inflammatory mechanisms, attenuate inflammation.
Collapse
|
25
|
Di(2-ethylhexyl)phthalate exposure exacerbates metabolic disorders in diet-induced obese mice. Food Chem Toxicol 2021; 156:112439. [PMID: 34303773 DOI: 10.1016/j.fct.2021.112439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Both phthalate exposure and obesity are positively associated with metabolic disorders. The study aimed to investigate whether DEHP exposure caused metabolic disorders in an obesity-dependent manner. Both lean and diet-induced obese mice were subjected to environmentally relevant DEHP exposure. DEHP-treated obese mice exhibited higher glucose intolerance and insulin resistance than obese mice; the metabolic disorders were accompanied by increased blood levels of leptin, LDL cholesterol, and alanine transaminase. In obese mice, DEHP enhanced macrophage infiltration into epididymal white adipose tissue (eWAT) and hepatic tissue, and promoted hepatic steatosis/steatohepatitis. The DEHP effects were not observed in lean mice. Transcriptomic changes in eWAT and hepatic tissue were determined with microarray analysis. Results indicated that obesity and DEHP synergistically regulated carbohydrate uptake, lipolysis, and abnormality of adipose tissue, via the upstream regulators Pparg, Lipe, Cd44, and Irs1. Meanwhile, obesity and DEHP differentially modulated transcriptomic changes in hepatic tissue. Obesity was associated with lipid/cholesterol synthesis, lipid accumulation, and inflammation in hepatic tissue via the upstream regulators Zbtb20 and Nr1i2. In obese mice, DEHP exposure caused hepatic injury, cell migration, and changes in glycogen quantity mainly via Cd44. Microarray analysis suggested the potential mechanism underlying the early onset of metabolic disorders in DEHP-treated obese mice.
Collapse
|
26
|
Eswaran S, Babbar A, Drescher HK, Hitch TCA, Clavel T, Muschaweck M, Ritz T, Kroy DC, Trautwein C, Wagner N, Schippers A. Upregulation of Anti-Oxidative Stress Response Improves Metabolic Changes in L-Selectin-Deficient Mice but Does Not Prevent NAFLD Progression or Fecal Microbiota Shifts. Int J Mol Sci 2021; 22:ijms22147314. [PMID: 34298930 PMCID: PMC8306675 DOI: 10.3390/ijms22147314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a growing global health problem. NAFLD progression involves a complex interplay of imbalanced inflammatory cell populations and inflammatory signals such as reactive oxygen species and cytokines. These signals can derive from the liver itself but also from adipose tissue or be mediated via changes in the gut microbiome. We analyzed the effects of a simultaneous migration blockade caused by L-selectin-deficiency and an enhancement of the anti-oxidative stress response triggered by hepatocytic Kelch-like ECH-associated protein 1 (Keap1) deletion on NAFLD progression. (2) Methods: L-selectin-deficient mice (Lsel−/−Keap1flx/flx) and littermates with selective hepatic Keap1 deletion (Lsel−/−Keap1Δhepa) were compared in a 24-week Western-style diet (WD) model. (3) Results: Lsel−/−Keap1Δhepa mice exhibited increased expression of erythroid 2-related factor 2 (Nrf2) target genes in the liver, decreased body weight, reduced epidydimal white adipose tissue with decreased immune cell frequencies, and improved glucose response when compared to their Lsel−/−Keap1flx/flx littermates. Although WD feeding caused drastic changes in fecal microbiota profiles with decreased microbial diversity, no genotype-dependent shifts were observed. (4) Conclusions: Upregulation of the anti-oxidative stress response improves metabolic changes in L-selectin-deficient mice but does not prevent NAFLD progression and shifts in the gut microbiota.
Collapse
Affiliation(s)
- Sreepradha Eswaran
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
| | - Anshu Babbar
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hannah K. Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (T.C.A.H.); (T.C.)
| | - Thomas Clavel
- Functional Microbiome Research Group, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (T.C.A.H.); (T.C.)
| | - Moritz Muschaweck
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
| | - Thomas Ritz
- Institute of Pathology, Ruprecht-Karls-University Heidelberg, D-69117 Heidelberg, Germany;
| | - Daniela C. Kroy
- Department of Internal Medicine III, University Hospital, RWTH Aachen, D-52074 Aachen, Germany; (D.C.K.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, D-52074 Aachen, Germany; (D.C.K.); (C.T.)
| | - Norbert Wagner
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
- Correspondence: (N.W.); (A.S.)
| | - Angela Schippers
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
- Correspondence: (N.W.); (A.S.)
| |
Collapse
|
27
|
Park YJ, Cominguez DC, Kim HJ, Jin JS, Koh DJ, Kim SY, Lim YW, Park YB, An HJ. Therapeutic effects of Gambi-jung for the treatment of obesity. Biomed Pharmacother 2021; 141:111838. [PMID: 34182414 DOI: 10.1016/j.biopha.2021.111838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Obesity is known as metabolic syndrome and it affects many tissues including adipose tissue, liver, and central nervous system (CVS). Gambi-jung (GBJ) is a modified prescription of Taeumjowi-tang (TJT), which has been used to treat obesity in Korea. GBJ is composed of 90% Ephedra sinica Stapf (ES). Therefore, the present study was designed to assess the antiobesity effects of GBJ and to compare the effects of GBJ and ES on obesity. GBJ administration remarkably reduced the body weight, Body mass index (BMI), and body fat percentage compared to the ES administration in human subjects. GBJ-treated mice had lower white adipose tissue (WAT) amounts than ES-treated mice. GBJ and ES administration enhanced adenosine monophosphate-activated protein kinase (AMPK) expression in 3T3-L1 adipocytes, epididymal WAT and liver of HFD-induced obese mice. Moreover, GBJ and ES reduced food intake by suppressing the mRNA levels of orexigenic peptides, agouti-related protein (AgRP) and neuropeptide-Y (NPY), as well as AMPK in the brain of HFD-induced obese mice. Furthermore, GBJ-treated mice had dramatically lower expression of macrophage marker F4/80 in epididymal WAT than those of ES-treated mice. Based on these results, we suggest the use of GBJ as a natural drug to control weight gain.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Divina C Cominguez
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, Republic of Korea.
| | - Duck-Jae Koh
- Nubebe Korean Medical Clinic, Republic of Korea.
| | | | - Young-Woo Lim
- Nubebe Mibyeong Research Institute, Republic of Korea.
| | | | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
28
|
Fourman LT, Stanley TL, Zheng I, Pan CS, Feldpausch MN, Purdy J, Aepfelbacher J, Buckless C, Tsao A, Corey KE, Chung RT, Torriani M, Kleiner DE, Hadigan CM, Grinspoon SK. Clinical Predictors of Liver Fibrosis Presence and Progression in Human Immunodeficiency Virus-Associated Nonalcoholic Fatty Liver Disease. Clin Infect Dis 2021; 72:2087-2094. [PMID: 32270862 DOI: 10.1093/cid/ciaa382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) affects more than one-third of people living with human immunodeficiency virus (HIV). Nonetheless, its natural history is poorly understood, including which patients are most likely to have a progressive disease course. METHODS We leveraged a randomized trial of the growth hormone-releasing hormone analogue tesamorelin to treat NAFLD in HIV. Sixty-one participants with HIV-associated NAFLD were randomized to tesamorelin or placebo for 12 months with serial biopsies. RESULTS In all participants with baseline biopsies (n = 58), 43% had hepatic fibrosis. Individuals with fibrosis had higher NAFLD Activity Score (NAS) (mean ± standard deviation [SD], 3.6 ± 2.0 vs 2.0 ± 0.8; P < .0001) and visceral fat content (mean ± SD, 284 ± 91 cm2 vs 212 ± 95 cm2; P = .005), but no difference in hepatic fat or body mass index. Among placebo-treated participants with paired biopsies (n = 24), 38% had hepatic fibrosis progression over 12 months. For each 25 cm2 higher visceral fat at baseline, odds of fibrosis progression increased by 37% (odds ratio, 1.37 [95% confidence interval, 1.03-2.07]). There was no difference in baseline NAS between fibrosis progressors and nonprogressors, though NAS rose over time in the progressor group (mean ± SD, 1.1 ± 0.8 vs -0.5 ± 0.6; P < .0001). CONCLUSIONS In this longitudinal study of HIV-associated NAFLD, high rates of hepatic fibrosis and progression were observed. Visceral adiposity was identified as a novel predictor of worsening fibrosis. In contrast, baseline histologic characteristics did not relate to fibrosis progression.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Zheng
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chelsea S Pan
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan N Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Purdy
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julia Aepfelbacher
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Colleen Buckless
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Tsao
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen E Corey
- Liver Center, Gastroenterology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center, Gastroenterology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Colleen M Hadigan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
AB-Kefir Reduced Body Weight and Ameliorated Inflammation in Adipose Tissue of Obese Mice Fed a High-Fat Diet, but Not a High-Sucrose Diet. Nutrients 2021; 13:nu13072182. [PMID: 34202894 PMCID: PMC8308298 DOI: 10.3390/nu13072182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Consumption of different types of high-calorie foods leads to the development of various metabolic disorders. However, the effects of multi-strain probiotics on different types of diet-induced obesity and intestinal dysbiosis remain unclear. In this study, mice were fed a control diet, high-fat diet (HFD; 60% kcal fat and 20% kcal carbohydrate), or western diet (WD; 40% kcal fat and 43% kcal carbohydrate) and administered with multi-strain AB-Kefir containing six strains of lactic acid bacteria and a Bifidobacterium strain, at 109 CFU per mouse for 10 weeks. Results demonstrated that AB-Kefir reduced body weight gain, glucose intolerance, and hepatic steatosis with a minor influence on gut microbiota composition in HFD-fed mice, but not in WD-fed mice. In addition, AB-Kefir significantly reduced the weight and size of adipose tissues by regulating the expression of CD36, Igf1, and Pgc1 in HFD-fed mice. Although AB-Kefir did not reduce the volume of white adipose tissue, it markedly regulated CD36, Dgat1 and Mogat1 mRNA expression. Moreover, the abundance of Eubacterium_coprostanoligenes_group and Ruminiclostridium significantly correlated with changes in body weight, liver weight, and fasting glucose in test mice. Overall, this study provides important evidence to understand the interactions between probiotics, gut microbiota, and diet in obesity treatment.
Collapse
|
30
|
Shin Y, Lee M, Lee D, Jang J, Shin SS, Yoon M. Fenofibrate Regulates Visceral Obesity and Nonalcoholic Steatohepatitis in Obese Female Ovariectomized C57BL/6J Mice. Int J Mol Sci 2021; 22:3675. [PMID: 33916086 PMCID: PMC8038108 DOI: 10.3390/ijms22073675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022] Open
Abstract
Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (-38%, p < 0.05), visceral adipose tissue mass (-46%, p < 0.05), and visceral adipocyte size (-20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (-69%, p < 0.05) and infiltration of macrophages (-72%, p < 0.05), while concomitantly upregulating the expression of fatty acid β-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.
Collapse
Affiliation(s)
- Yujin Shin
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (Y.S.); (M.L.); (D.L.); (J.J.)
| | - Mijeong Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (Y.S.); (M.L.); (D.L.); (J.J.)
| | - Dongju Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (Y.S.); (M.L.); (D.L.); (J.J.)
| | - Joonseong Jang
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (Y.S.); (M.L.); (D.L.); (J.J.)
| | - Soon Shik Shin
- Department of Formula Sciences, College of Korean Medicine, Dongeui University, Busan 47340, Korea
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (Y.S.); (M.L.); (D.L.); (J.J.)
| |
Collapse
|
31
|
Inglis A, Ubungen R, Farooq S, Mata P, Thiam J, Saleh S, Shibin S, Al-Mohanna FA, Collison KS. Strain-based and sex-biased differences in adrenal and pancreatic gene expression between KK/HlJ and C57BL/6 J mice. BMC Genomics 2021; 22:180. [PMID: 33711921 PMCID: PMC7953684 DOI: 10.1186/s12864-021-07495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/26/2021] [Indexed: 11/15/2022] Open
Abstract
Background The ever-increasing prevalence of diabetes and associated comorbidities serves to highlight the necessity of biologically relevant small-animal models to investigate its etiology, pathology and treatment. Although the C57BL/6 J model is amongst the most widely used mouse model due to its susceptibility to diet-induced obesity (DIO), there are a number of limitations namely [1] that unambiguous fasting hyperglycemia can only be achieved via dietary manipulation and/or chemical ablation of the pancreatic beta cells. [2] Heterogeneity in the obesogenic effects of hypercaloric feeding has been noted, together with sex-dependent differences, with males being more responsive. The KK mouse strain has been used to study aspects of the metabolic syndrome and prediabetes. We recently conducted a study which characterized the differences in male and female glucocentric parameters between the KK/HlJ and C57BL/6 J strains as well as diabetes-related behavioral differences (Inglis et al. 2019). In the present study, we further characterize these models by examining strain- and sex-dependent differences in pancreatic and adrenal gene expression using Affymetrix microarray together with endocrine-associated serum analysis. Results In addition to strain-associated differences in insulin tolerance, we found significant elevations in KK/HlJ mouse serum leptin, insulin and aldosterone. Additionally, glucagon and corticosterone were elevated in female mice of both strains. Using 2-factor ANOVA and a significance level set at 0.05, we identified 10,269 pancreatic and 10,338 adrenal genes with an intensity cut-off of ≥2.0 for all 4 experimental groups. In the pancreas, gene expression upregulated in the KK/HlJ strain related to increased insulin secretory granule biofunction and pancreatic hyperplasia, whereas ontology of upregulated adrenal differentially expressed genes (DEGs) related to cell signaling and neurotransmission. We established a network of functionally related DEGs commonly upregulated in both endocrine tissues of KK/HlJ mice which included the genes coding for endocrine secretory vesicle biogenesis and regulation: PCSK2, PCSK1N, SCG5, PTPRN, CHGB and APLP1. We also identified genes with sex-biased expression common to both strains and tissues including the paternally expressed imprint gene neuronatin. Conclusion Our novel results have further characterized the commonalities and diversities of pancreatic and adrenal gene expression between the KK/HlJ and C57BL/6 J strains as well as differences in serum markers of endocrine physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07495-4.
Collapse
Affiliation(s)
- Angela Inglis
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Rosario Ubungen
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Sarah Farooq
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Princess Mata
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Jennifer Thiam
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Soad Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Sherin Shibin
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Kate S Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
32
|
Olga L, van Diepen J, Bobeldijk-Pastorova I, Gross G, Prentice P, Snowden S, Furse S, Kooistra T, Hughes I, Schoemaker M, van Tol E, van Duyvenvoorde W, Wielinga P, Ong K, Dunger D, Kleemann R, Koulman A. Lipid ratios representing SCD1, FADS1, and FADS2 activities as candidate biomarkers of early growth and adiposity. EBioMedicine 2021; 63:103198. [PMID: 33421943 PMCID: PMC7806876 DOI: 10.1016/j.ebiom.2020.103198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Altered lipid metabolism in early life has been associated with subsequent weight gain and predicting this could aid in obesity prevention and risk management. Here, a lipidomic approach was used to identify circulating markers for future obesity risk in translational murine models and validate in a human infant cohort. METHODS Lipidomics was performed on the plasma of APOE*3 Leiden, Ldlr-/-.Leiden, and the wild-type C57BL/6J mice to capture candidate biomarkers predicting subsequent obesity parameters after exposure to high-fat diet. The identified candidate biomarkers were mapped onto corresponding lipid metabolism pathways and were investigated in the Cambridge Baby Growth Study. Infants' growth and adiposity were measured at 0-24 months. Capillary dried blood spots were sampled at 3 months for lipid profiling analysis. FINDINGS From the mouse models, cholesteryl esters were correlated with subsequent weight gain and other obesity parameters after HFD period (Spearman's r≥0.5, FDR p values <0.05) among APOE*3 Leiden and Ldlr-/-.Leiden mice, but not among the wild-type C57BL/6J. Pathway analysis showed that those identified cholesteryl esters were educts or products of desaturases activities: stearoyl-CoA desaturase-1 (SCD1) and fatty acid desaturase (FADS) 1 and 2. In the human cohort, lipid ratios affected by SCD1 at 3 months was inversely associated with 3-12 months weight gain (B±SE=-0.31±0.14, p=0.027), but positively with 12-24 months weight and adiposity gains (0.17±0.07, p=0.02 and 0.17±0.07, 0.53±0.26, p=0.04, respectively). Lipid ratios affected by SCD1 and FADS2 were inversely associated with adiposity gain but positively with height gain between 3-12 months. INTERPRETATION From murine models to human setting, the ratios of circulating lipid species indicating key desaturase activities in lipid metabolism were associated with subsequent body size increase, providing a potential tool to predict early life weight gain.
Collapse
Affiliation(s)
- L. Olga
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - J.A. van Diepen
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - I. Bobeldijk-Pastorova
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - G. Gross
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - P.M. Prentice
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - S.G. Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - S. Furse
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - T. Kooistra
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - I.A. Hughes
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - M.H. Schoemaker
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - E.A.F. van Tol
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands,Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - W. van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - P.Y. Wielinga
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - K.K. Ong
- Department of Paediatrics, University of Cambridge, Cambridge, UK,MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK,Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories’ or (IMS-MRL), University of Cambridge, Cambridge, UK
| | - D.B. Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK,Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories’ or (IMS-MRL), University of Cambridge, Cambridge, UK
| | - R. Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands,Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - A. Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK,MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK,Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories’ or (IMS-MRL), University of Cambridge, Cambridge, UK,Corresponding author: Dr Albert Koulman, Scientific Director of the NIHR BRC Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories University of Cambridge School of Clinical Medicine Cambridge Biomedical Campus Cambridge CB2 0QQ United Kingdom. Telephone: +44 (0)1223 336792+44 (0)1223 336792+44 (0)1223 336792
| |
Collapse
|
33
|
Liu L, Liang CX, Wang XW, Pei KX, Ma XD, Zhang CX, Dong JH, Gao MM, Liao JW. Preliminary adipose removal did not prevent diet-induced metabolic disorders in mice. Chin Med J (Engl) 2021; 134:716-724. [PMID: 33410621 PMCID: PMC7989994 DOI: 10.1097/cm9.0000000000001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Obesity is a fundamental factor in metabolic disorders such as hyperlipidemia, insulin resistance, fatty liver, and atherosclerosis. However, effective preventive measures are still lacking. This study aimed to investigate different surgical protocols for removing partial adipose tissue before the onset of obesity and determine whether, and by which protocol, preliminary adipose removal could exert potent preventive effects against diet-induced metabolic disorders. METHODS Male low-density lipoprotein receptor (LDL-R) knockout (KO) mice were randomly divided into four groups and subjected to epididymal fat removal (Epi-FR) surgery, subcutaneous fat removal (suQ-FR) surgery, both subcutaneous and epididymal fat removal (Epi + suQ-FR) surgery, or sham-operation. After 1 week of recovery, all mice were given a high-fat diet (HFD) for 10 weeks to induce metabolic disorders. RESULTS In the Epi-FR group and the sham-operated group, the mean numbers of the residual subcutaneous fat were 28.59 mg/g and 18.56 mg/g, respectively. The expression of relative genes such as Pparg, Cebpa, Dgat2, Fabp4 and Cd36 in the residual subcutaneous fat increased 2.62, 3.90, 3.11, 2.06, 1.78 times in the Epi-FR group compared with that in the sham-operated group. Whereas in the other fat-removal groups, the residual fat depots had no significant change in either size or gene expression, as compared with those of the sham-operated group. Plasma lipid and glucose levels and insulin sensitivity, as detected by the glucose tolerance test, were not significantly alleviated in the three fat removal groups. Liver mass or lipid content was not attenuated in any of the three fat removal groups. The atherosclerosis burdens in the entire inner aorta and aortic root did not decrease in any of the three fat removal groups. CONCLUSIONS Our data suggest that removal of epididymal adipose or subcutaneous adipose alone or in combination before the onset of obesity did not protect against hyperlipidemia, insulin resistance, fatty liver, or atherosclerosis in LDL-R KO mice fed with a HFD. Hence, adipose removal possibly does not represent a potential approach in preventing obesity-related metabolic disorders in the obesity-susceptible population.
Collapse
Affiliation(s)
- Lin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Chen-Xi Liang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiao-Wei Wang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ke-Xin Pei
- Department of Cardiology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xin-Di Ma
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chun-Xi Zhang
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jing-Hui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ming-Ming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jia-Wei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
34
|
Mueller AM, Kleemann R, Gart E, van Duyvenvoorde W, Verschuren L, Caspers M, Menke A, Krömmelbein N, Salic K, Burmeister Y, Seilheimer B, Morrison MC. Cholesterol Accumulation as a Driver of Hepatic Inflammation Under Translational Dietary Conditions Can Be Attenuated by a Multicomponent Medicine. Front Endocrinol (Lausanne) 2021; 12:601160. [PMID: 33815271 PMCID: PMC8014004 DOI: 10.3389/fendo.2021.601160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is characterised by dysfunctional lipid metabolism and cholesterol homeostasis, and a related chronic inflammatory response. NAFLD has become the most common cause of chronic liver disease in many countries, and its prevalence continues to rise in parallel with increasing rates of obesity. Here, we evaluated the putative NAFLD-attenuating effects of a multicomponent medicine consisting of 24 natural ingredients: Hepar compositum (HC-24). METHODS Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) with a macronutrient composition and cholesterol content comparable to human diets for 24 weeks to induce obesity-associated metabolic dysfunction, including hepatic steatosis and inflammation. HC-24 or vehicle control was administered intraperitoneally 3 times/week (1.5 ml/kg) for the last 18 weeks of the study. Histological analyses of liver and adipose tissue were combined with extensive hepatic transcriptomics analysis. Transcriptomics results were further substantiated with ELISA, immunohistochemical and liver lipid analyses. RESULTS HFD feeding induced obesity and metabolic dysfunction including adipose tissue inflammation and increased gut permeability. In the liver, HFD-feeding resulted in a disturbance of cholesterol homeostasis and an associated inflammatory response. HC-24 did not affect body weight, metabolic risk factors, adipose tissue inflammation or gut permeability. While HC-24 did not alter total liver steatosis, there was a pronounced reduction in lobular inflammation in HC-24-treated animals, which was associated with modulation of genes and proteins involved in inflammation (e.g., neutrophil chemokine Cxcl1) and cholesterol homeostasis (i.e., predicted effect on 'cholesterol' as an upstream regulator, based on gene expression changes associated with cholesterol handling). These effects were confirmed by CXCL1 ELISA, immunohistochemical staining of neutrophils and biochemical analysis of hepatic free cholesterol content. Intrahepatic free cholesterol levels were found to correlate significantly with the number of inflammatory aggregates in the liver, thereby providing a potential rationale for the observed anti-inflammatory effects of HC-24. CONCLUSIONS Free cholesterol accumulates in the liver of Ldlr-/-.Leiden mice under physiologically translational dietary conditions, and this is associated with the development of hepatic inflammation. The multicomponent medicine HC-24 reduces accumulation of free cholesterol and has molecular and cellular anti-inflammatory effects in the liver.
Collapse
Affiliation(s)
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | | | - Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | | | - Bernd Seilheimer
- Systems Research and Development, Heel GmbH, Baden-Baden, Germany
| | - Martine C. Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Martine C. Morrison,
| |
Collapse
|
35
|
Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front Pharmacol 2020; 11:603926. [PMID: 33343375 PMCID: PMC7745178 DOI: 10.3389/fphar.2020.603926] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) develops from non-alcoholic fatty liver disease (NAFLD). Currently, around 25% of the population is estimated to have NAFLD, and 25% of NAFLD patients are estimated to have NASH. NASH is typically characterized by liver steatosis inflammation, and fibrosis driven by metabolic disruptions such as obesity, diabetes, and dyslipidemia. NASH patients with significant fibrosis have increased risk of developing cirrhosis and liver failure. Currently, NASH is the second leading cause for liver transplant in the United States. More importantly, the risk of developing hepatocellular carcinoma from NASH has also been highlighted in recent studies. Patients may have NAFLD for years before progressing into NASH. Although the pathogenesis of NASH is not completely understood, the current “multiple-hits” hypothesis suggests that in addition to fat accumulation, elevated oxidative and ER stress may also drive liver inflammation and fibrosis. The development of clinically relevant animal models and pharmacological treatments for NASH have been hampered by the limited understanding of the disease mechanism and a lack of sensitive, non-invasive diagnostic tools. Currently, most pre-clinical animal models are divided into three main groups which includes: genetic models, diet-induced, and toxin + diet-induced animal models. Although dietary models mimic the natural course of NASH in humans, the models often only induce mild liver injury. Many genetic and toxin + diet-induced models rapidly induce the development of metabolic disruption and serious liver injury, but not without their own shortcomings. This review provides an overview of the “multiple-hits” hypothesis and an evaluation of the currently existing animal models of NASH. This review also provides an update on the available interventions for managing NASH as well as pharmacological agents that are currently undergoing clinical trials for the treatment of NASH.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council, Centre for Personalised Therapeutics Technologies, Lancaster, CBR, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
A Translational Mouse Model for NASH with Advanced Fibrosis and Atherosclerosis Expressing Key Pathways of Human Pathology. Cells 2020; 9:cells9092014. [PMID: 32883049 PMCID: PMC7565967 DOI: 10.3390/cells9092014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disorder that is associated with an increased incidence of cardiovascular disease and type 2 diabetes. Animal models adequately mimicking this condition are scarce. We herein investigate whether Ldlr−/−. Leiden mice on different high-fat diets represent a suitable NASH model. Ldlr−/−. Leiden mice were fed a healthy chow diet or fed a high-fat diet (HFD) containing lard or a fast food diet (FFD) containing milk fat. Additionally, the response to treatment with obeticholic acid (OCA) was evaluated. Both high-fat diets induced obesity, hyperlipidemia, hyperinsulinemia, and increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Mice on both diets developed progressive macro- and microvesicular steatosis, hepatic inflammation, and fibrosis, along with atherosclerosis. HFD induced more severe hyperinsulinemia, while FFD induced more severe hepatic inflammation with advanced (F3) bridging fibrosis, as well as more severe atherosclerosis. OCA treatment significantly reduced hepatic inflammation and fibrosis, and it did not affect atherosclerosis. Hepatic transcriptome analysis was compared with human NASH and illustrated similarity. The present study defines a translational model of NASH with progressive liver fibrosis and simultaneous atherosclerosis development. By adaptation of the fat content of the diet, either insulin resistance (HFD) or hepatic inflammation and fibrosis (FFD) can be aggravated.
Collapse
|
37
|
Lonardo A, Mantovani A, Lugari S, Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol 2020; 19:359-366. [PMID: 32349939 DOI: 10.1016/j.aohep.2020.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is continuing to rise in many countries, paralleling the epidemic of obesity worldwide. In the last years, the concept of metabolically healthy obesity [MHO, generally defined as obesity without metabolic syndrome (MetS)] has raised considerable scientific interest. MHO is a complex phenotype with risks intermediate between metabolically healthy individuals with normal-weight (NWMH) and patients who are obese and metabolically unhealthy (MUO, i.e. obesity with MetS). In this review we aimed to examine the association and pathophysiological link of NAFLD with MHO and MUO. Compared to NWMH individuals, patients with obesity, regardless of the presence of MetS features, are at higher risk of all-cause mortality and cardiovascular events. Moreover, MHO patients have a greater risk of NAFLD development and progression compared to NWMH individuals. However, this risk is generally lower than that of MUO patients, suggesting a stronger adverse effect of coexisting MetS disorders than obesity per se on the severity of NAFLD. Nevertheless, since MHO is a dynamic state (with a significant proportion of MHO subjects progressing to MUO over time) and NAFLD itself may predict the transition from MHO to MUO, we believe that any effort should be made to identify NAFLD in all obese individuals, although they appear to be "metabolically healthy". Future research is needed to better understand the role of NAFLD and other pathogenic factors potentially involved in the transition from MHO to MUO and to elucidate how this transition may affect the presence and severity of NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit of Metabolic Syndrome, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | | | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| |
Collapse
|
38
|
Feng S, Belwal T, Li L, Limwachiranon J, Liu X, Luo Z. Phytosterols and their derivatives: Potential health‐promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 2020; 19:1243-1267. [DOI: 10.1111/1541-4337.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- College of Food Science and TechnologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light IndustryZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Xingquan Liu
- School of Agriculture and Food SciencesZhejiang Agriculture and Forestry University Hangzhou 311300 People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Ningbo Research InstituteZhejiang University Ningbo 315100 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
39
|
Tengeler AC, Gart E, Wiesmann M, Arnoldussen IAC, van Duyvenvoorde W, Hoogstad M, Dederen PJ, Verweij V, Geenen B, Kozicz T, Kleemann R, Morrison MC, Kiliaan AJ. Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr -/- .Leiden mice. FASEB J 2020; 34:9575-9593. [PMID: 32472598 DOI: 10.1096/fj.202000455r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
The obesity epidemic increases the interest to elucidate impact of short-chain fatty acids on metabolism, obesity, and the brain. We investigated the effects of propionic acid (PA) and caproic acid (CA) on metabolic risk factors, liver and adipose tissue pathology, brain function, structure (by MRI), and gene expression, during obesity development in Ldlr-/- .Leiden mice. Ldlr-/- .Leiden mice received 16 weeks either a high-fat diet (HFD) to induce obesity, or chow as reference group. Next, obese HFD-fed mice were treated 12 weeks with (a) HFD + CA (CA), (b) HFD + PA (PA), or (c) a HFD-control group. PA reduced the body weight and systolic blood pressure, lowered fasting insulin levels, and reduced HFD-induced liver macrovesicular steatosis, hypertrophy, inflammation, and collagen content. PA increased the amount of glucose transporter type 1-positive cerebral blood vessels, reverted cerebral vasoreactivity, and HFD-induced effects in microstructural gray and white matter integrity of optic tract, and somatosensory and visual cortex. PA and CA also reverted HFD-induced effects in functional connectivity between visual and auditory cortex. However, PA mice were more anxious in open field, and showed reduced activity of synaptogenesis and glutamate regulators in hippocampus. Therefore, PA treatment should be used with caution even though positive metabolic, (cerebro) vascular, and brain structural and functional effects were observed.
Collapse
Affiliation(s)
- Anouk C Tengeler
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ilse A C Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marloes Hoogstad
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pieter J Dederen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Robert Kleemann
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Preclinical Imaging Centre, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Jiranugrom P, Yoo ID, Park MW, Ryu JH, Moon JS, Yi SS. NOX4 Deficiency Exacerbates the Impairment of Cystatin C-Dependent Hippocampal Neurogenesis by a Chronic High Fat Diet. Genes (Basel) 2020; 11:genes11050567. [PMID: 32438638 PMCID: PMC7291165 DOI: 10.3390/genes11050567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Hippocampal neurogenesis is linked with a cognitive process under a normal physiological condition including learning, memory, pattern separation, and cognitive flexibility. Hippocampal neurogenesis is altered by multiple factors such as the systemic metabolic changes. NADPH oxidase 4 (NOX4) has been implicated in the regulation of brain function. While the role of NOX4 plays in the brain, the mechanism by which NOX4 regulates hippocampal neurogenesis under metabolic stress is unclear. In this case, we show that NOX4 deficiency exacerbates the impairment of hippocampal neurogenesis by inhibiting neuronal maturation by a chronic high fat diet (HFD). NOX4 deficiency resulted in less hippocampal neurogenesis by decreasing doublecortin (DCX)-positive neuroblasts, a neuronal differentiation marker, and their branched-dendrites. Notably, NOX4 deficiency exacerbates the impairment of hippocampal neurogenesis by chronic HFD. Moreover, NOX4 deficiency had a significant reduction of Cystatin C levels, which is critical for hippocampal neurogenesis, under chronic HFD as well as normal chow (NC) diet. Furthermore, the reduction of Cystatin C levels was correlated with the impairment of hippocampal neurogenesis in NOX4 deficient and wild-type (WT) mice under chronic HFD. Our results suggest that NOX4 regulates the impairment of Cystatin C-dependent hippocampal neurogenesis under chronic HFD.
Collapse
Affiliation(s)
- Piyanart Jiranugrom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Chemical Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang Hospital-Cheonan, Cheonan 31151, Korea;
| | - Min Woo Park
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea;
| | - Ji Hwan Ryu
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea;
- Correspondence: (J.-S.M.); (S.S.Y.); Tel.: +82-41-530-4873 (S.S.Y.); Fax: +82-41-530-1085 (S.S.Y.)
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Correspondence: (J.-S.M.); (S.S.Y.); Tel.: +82-41-530-4873 (S.S.Y.); Fax: +82-41-530-1085 (S.S.Y.)
| |
Collapse
|
41
|
Warmink K, Kozijn AE, Bobeldijk I, Stoop R, Weinans H, Korthagen NM. High-fat feeding primes the mouse knee joint to develop osteoarthritis and pathologic infrapatellar fat pad changes after surgically induced injury. Osteoarthritis Cartilage 2020; 28:593-602. [PMID: 32222415 DOI: 10.1016/j.joca.2020.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Obesity is one of the greatest risk factors for osteoarthritis (OA) and evidence is accumulating that inflammatory mediators and innate immunity play an important role. The infrapatellar fat pad (IPFP) could be a potential local source of inflammatory mediators in the knee. Here, we combine surgical joint damage with high-fat feeding in mice to investigate inflammatory responses in the IPFP during OA development. DESIGN Mice (n = 30) received either a low-fat diet (LFD), high-fat diet (HFD) for 18 weeks or switched diets (LFD > HFD) after 10 weeks. OA was induced by surgical destabilization of the medial meniscus (DMM), contralateral knees served as sham controls. An additional HFD-only group (n = 15) received no DMM. RESULTS The most pronounced inflammation, characterized by macrophage crown-like structures (CLS), was found in HFD + DMM mice, CLS increased compared to HFD only (mean difference = 7.26, 95%CI [1.52-13.0]) and LFD + DMM (mean difference = 6.35, 95%CI [0.53-12.18). The M1 macrophage marker iNOS increased by DMM (ratio = 2.48, 95%CI [1.37-4.50]), while no change in M2 macrophage marker CD206 was observed. Fibrosis was minimal by HFD alone, but in combination with DMM it increased with 23.45% (95%CI [13.67-33.24]). CONCLUSIONS These findings indicate that a high-fat diet alone does not trigger inflammation or fibrosis in the infrapatellar fat pad, but in combination with an extra damage trigger, like DMM, induces inflammation and fibrosis in the infrapatellar fat pad. These data suggest that HFD provides a priming effect on the infrapatellar fat pad and that combined actions bring the joint in a metabolic state of progressive OA.
Collapse
Affiliation(s)
- K Warmink
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - A E Kozijn
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands; Metabolic Health Research, TNO, Leiden, the Netherlands.
| | - I Bobeldijk
- Metabolic Health Research, TNO, Leiden, the Netherlands.
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands.
| | - H Weinans
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - N M Korthagen
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Equine Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
42
|
Daemen S, Schilling JD. The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Front Immunol 2020; 10:3133. [PMID: 32038642 PMCID: PMC6987434 DOI: 10.3389/fimmu.2019.03133] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with the development of metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. The presence of chronic, low-grade inflammation appears to be an important mechanistic link between excess nutrients and clinical disease. The onset of these metabolic disorders coincides with changes in the number and phenotype of macrophages in peripheral organs, particularly in the liver and adipose tissue. Macrophage accumulation in these tissues has been implicated in tissue inflammation and fibrosis, contributing to metabolic disease progression. Recently, the concept has emerged that changes in macrophage metabolism affects their functional phenotype, possibly triggered by distinct environmental metabolic cues. This may be of particular importance in the setting of obesity, where both liver and adipose tissue are faced with a high metabolic burden. In the first part of this review we will discuss current knowledge regarding macrophage dynamics in both adipose tissue and liver in obesity. Then in the second part, we will highlight data linking macrophage metabolism to functional phenotype with an emphasis on macrophage activation in metabolic disease. The importance of understanding how tissue niche influences macrophage function in obesity will be highlighted. In addition, we will identify important knowledge gaps and outstanding questions that are relevant for future research in this area and will facilitate the identification of novel targets for therapeutic intervention in associated metabolic diseases.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
43
|
Zhang S, Wong YT, Tang KY, Kwan HY, Su T. Chinese Medicinal Herbs Targeting the Gut-Liver Axis and Adipose Tissue-Liver Axis for Non-Alcoholic Fatty Liver Disease Treatments: The Ancient Wisdom and Modern Science. Front Endocrinol (Lausanne) 2020; 11:572729. [PMID: 33101207 PMCID: PMC7556113 DOI: 10.3389/fendo.2020.572729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. The pathogenesis of NAFLD is complex. Frontline western medicines only ameliorate the symptoms of NAFLD. On the contrary, the uniqueness of Chinese medicine in its interpretation of NAFLD and the holistic therapeutic approach lead to a promising therapeutic efficacy. Recent studies reveal that the gut-liver axis and adipose tissue-liver axis play important roles in the development of NAFLD. Interestingly, with advanced technology, many herbal formulae are found to target the gut-liver axis and adipose tissue-liver axis and resolve the inflammation in NAFLD. This is the first review summarizes the current findings on the Chinese herbal formulae that target the two axes in NAFLD treatment. This review not only demonstrates how the ancient wisdom of Chinese medicine is being interpreted by modern pharmacological studies, but also provides valuable information for the further development of the herbal-based treatment for NAFLD.
Collapse
Affiliation(s)
- Shuwei Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yui-Tung Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Yu Tang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Hiu-Yee Kwan, ; Tao Su,
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hiu-Yee Kwan, ; Tao Su,
| |
Collapse
|
44
|
Tarantino G, Citro V, Capone D. Nonalcoholic Fatty Liver Disease: A Challenge from Mechanisms to Therapy. J Clin Med 2019; 9:15. [PMID: 31861591 PMCID: PMC7019297 DOI: 10.3390/jcm9010015] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Focusing on previously published mechanisms of non-alcoholic fatty liver disease (NAFLD), their uncertainty does not always permit a clear elucidation of the grassroot alterations that are at the basis of the wide-spread illness, and thus curing it is still a challenge. There is somehow exceptional progress, but many controversies persist in NAFLD research and clinical investigation. It is likely that hidden mechanisms will be brought to light in the near future. Hereby, the authors present, with some criticism, classical mechanisms that stand at the basis of NAFLD, and consider contextually different emerging processes. Without ascertaining these complex interactions, investigators have a long way left ahead before finding an effective therapy for NAFLD beyond diet and exercise.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, 80131 Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, 84014 Nocera Inferiore (Sa), Italy;
| | - Domenico Capone
- Care Department of Public Health and Drug-Use, Section of Medical Pharmacology and Toxicology, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
45
|
Li D, Liu Q, Lu X, Li Z, Wang C, Leung CH, Wang Y, Peng C, Lin L. α-Mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging (Albany NY) 2019; 11:11084-11110. [PMID: 31806859 PMCID: PMC6932911 DOI: 10.18632/aging.102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Low-grade chronic adipose tissue inflammation contributes to the onset and development of aging-related insulin resistance and type 2 diabetes. In the current study, α-mangostin, a xanthone isolated from mangosteen (Garcinia mangostana), was identified to ameliorate lipopolysaccharides-induced acute adipose tissue inflammation in mice, by reducing the expression of pro-inflammatory cytokines and chemokines. In a cohort of young (3 months) and old (18-20 months) mice, α-mangostin mitigated aging-associated adiposity, hyperlipidemia, and insulin resistance. Further study showed that α-mangostin alleviated aging-related adipose tissue inflammation by reducing macrophage content and shifting pro-inflammatory macrophage polarization. Moreover, α-mangostin protected the old mice against liver injury through suppressing the secretion of microRNA-155-5p from macrophages. The above results demonstrated that α-mangostin represents a new scaffold to alleviate adipose tissue inflammation, which might be a novel candidate to treat aging-related metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Qianyu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Murillo AL, Kaiser KA, Smith DL, Peterson CM, Affuso O, Tiwari HK, Allison DB. A Systematic Scoping Review of Surgically Manipulated Adipose Tissue and the Regulation of Energetics and Body Fat in Animals. Obesity (Silver Spring) 2019; 27:1404-1417. [PMID: 31361090 PMCID: PMC6707830 DOI: 10.1002/oby.22511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Surgical manipulations of adipose tissue by removal, or partial lipectomy, have demonstrated body fat compensation and recovered body weight, suggesting that the body is able to resist changes to body composition. However, the mechanisms underlying these observations are not well understood. The purpose of this scoping review is to provide an update on what is currently known about the regulation of energetics and body fat after surgical manipulations of adipose tissue in small mammals. METHODS PubMed and Scopus were searched to identify 64 eligible studies. Outcome measures included body fat, body weight, food intake, and circulating biomarkers. RESULTS Surgeries performed included lipectomy (72%) or transplantation (12%) in mice (35%), rats (35%), and other small mammals. Findings suggested that lipectomy did not have consistent long-term effects on reducing body weight and fat because regain occurred within 12 to 14 weeks post surgery. Hence, biological feedback mechanisms act to resist long-term changes of body weight or fat. Furthermore, whether this weight and fat regain occurred because of "passive" and "active" regulation under the "set point" or "settling point" theories cannot fully be discerned because of limitations in study designs and data collected. CONCLUSIONS The regulation of energetics and body fat are complex and dynamic processes that require further studies of the interplay of genetic, physiological, and behavioral factors.
Collapse
Affiliation(s)
| | - Kathryn A. Kaiser
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Health Behavior Birmingham, Alabama, United States
| | - Daniel L. Smith
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Nutrition Sciences Birmingham, Alabama, United States
| | - Courtney M. Peterson
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Nutrition Sciences Birmingham, Alabama, United States
| | - Olivia Affuso
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Epidemiology at the University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, United States
| |
Collapse
|
47
|
van den Brink W, van Bilsen J, Salic K, Hoevenaars FPM, Verschuren L, Kleemann R, Bouwman J, Ronnett GV, van Ommen B, Wopereis S. Current and Future Nutritional Strategies to Modulate Inflammatory Dynamics in Metabolic Disorders. Front Nutr 2019; 6:129. [PMID: 31508422 PMCID: PMC6718105 DOI: 10.3389/fnut.2019.00129] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity, type 2 diabetes, and other metabolic disorders have a large impact on global health, especially in Western countries. An important hallmark of metabolic disorders is chronic low-grade inflammation. A key player in chronic low-grade inflammation is dysmetabolism, which is defined as the inability to keep homeostasis resulting in loss of lipid control, oxidative stress, inflammation, and insulin resistance. Although often not yet detectable in the circulation, chronic low-grade inflammation can be present in one or multiple organs. The response to a metabolic challenge containing lipids may magnify dysfunctionalities at the tissue level, causing an overflow of inflammatory markers into the circulation and hence allow detection of early low-grade inflammation. Here, we summarize the evidence of successful application of metabolic challenge tests in type 2 diabetes, metabolic syndrome, obesity, and unhealthy aging. We also review how metabolic challenge tests have been successfully applied to evaluate nutritional intervention effects, including an "anti-inflammatory" mixture, dark chocolate, whole grain wheat and overfeeding. Additionally, we elaborate on future strategies to (re)gain inflammatory flexibility. Through epigenetic and metabolic regulation, the inflammatory response may be trained by regular mild and metabolic triggers, which can be understood from the perspective of trained immunity, hormesis and pro-resolution. New strategies to optimize dynamics of inflammation may become available.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Jolanda van Bilsen
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Femke P. M. Hoevenaars
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | | | - Ben van Ommen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
48
|
Sex-Specific Differences in Fat Storage, Development of Non-Alcoholic Fatty Liver Disease and Brain Structure in Juvenile HFD-Induced Obese Ldlr-/-.Leiden Mice. Nutrients 2019; 11:nu11081861. [PMID: 31405127 PMCID: PMC6723313 DOI: 10.3390/nu11081861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sex-specific differences play a role in metabolism, fat storage in adipose tissue, and brain structure. At juvenile age, brain function is susceptible to the effects of obesity; little is known about sex-specific differences in juvenile obesity. Therefore, this study examined sex-specific differences in adipose tissue and liver of high-fat diet (HFD)-induced obese mice, and putative alterations between male and female mice in brain structure in relation to behavioral changes during the development of juvenile obesity. METHODS In six-week-old male and female Ldlr-/-.Leiden mice (n = 48), the impact of 18 weeks of HFD-feeding was examined. Fat distribution, liver pathology and brain structure and function were analyzed imunohisto- and biochemically, in cognitive tasks and with MRI. RESULTS HFD-fed female mice were characterized by an increased perigonadal fat mass, pronounced macrovesicular hepatic steatosis and liver inflammation. Male mice on HFD displayed an increased mesenteric fat mass, pronounced adipose tissue inflammation and microvesicular hepatic steatosis. Only male HFD-fed mice showed decreased cerebral blood flow and reduced white matter integrity. CONCLUSIONS At young age, male mice are more susceptible to the detrimental effects of HFD than female mice. This study emphasizes the importance of sex-specific differences in obesity, liver pathology, and brain function.
Collapse
|
49
|
Drescher HK, Weiskirchen R, Fülöp A, Hopf C, de San Román EG, Huesgen PF, de Bruin A, Bongiovanni L, Christ A, Tolba R, Trautwein C, Kroy DC. The Influence of Different Fat Sources on Steatohepatitis and Fibrosis Development in the Western Diet Mouse Model of Non-alcoholic Steatohepatitis (NASH). Front Physiol 2019; 10:770. [PMID: 31293441 PMCID: PMC6603084 DOI: 10.3389/fphys.2019.00770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the leading cause of chronic liver injury and the third most common reason for liver transplantations in Western countries. It is unclear so far how different fat sources in Western diets (WD) influence the development of NASH. Our study investigates the impact of non-trans fat (NTF) and corn oil (Corn) as fat source in a WD mouse model of steatohepatitis on disease development and progression. C57BL/6J wildtype (WT) mice were fed “standard” WD (WD-Std), WD-NTF or WD-Corn for 24 weeks. WT animals treated with WD-NTF exhibit distinct features of the metabolic syndrome compared to WD-Std and WD-Corn. This becomes evident by a worsened insulin resistance and elevated serum ALT, cholesterol and triglyceride (TG) levels compared to WD-Corn. Animals fed WD-Corn on the contrary tend to a weakened disease progression in the described parameters. After 24 weeks feeding with WD-NTF and WD-Std, WD-Corn lead to a comparable steatohepatitis initiation by histomorphological changes and immune cell infiltration compared to WD-Std. Immune cell infiltration results in a significant increase in mRNA expression of the pro-inflammatory cytokines IL-6 and TNF-α, which is more pronounced in WD-NTF compared to WD-Std and WD-Corn. Interestingly the fat source has no impact on the composition of accumulating fat within liver tissue as determined by matrix-assisted laser desorption/ionization mass spectrometry imaging of multiple lipid classes. The described effects of different fat sources on the development of steatohepatitis finally resulted in variations in fibrosis development. Animals treated with WD-NTF displayed massive collagen accumulation, whereas WD-Corn even seems to protect from extracellular matrix deposition. Noteworthy, WD-Corn provokes massive histomorphological modifications in epididymal white adipose tissue (eWAT) and severe accumulation of extracellular matrix which are not apparent in WD-Std and WD-NTF treatment. Different fat sources in WD-Std contribute to strong steatohepatitis development in WT mice after 24 weeks treatment. Surprisingly, corn oil provokes histomorphological changes in eWAT tissue. Accordingly, both WD-NTF and WD-Corn appear suitable as alternative dietary treatment to replace “standard” WD-Std as a diet mouse model of steatohepatitis whereas WD-Corn leads to strong changes in eWAT morphology.
Collapse
Affiliation(s)
- Hannah K Drescher
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Annabelle Fülöp
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | | | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 - Forschungszentrum Jülich, Jülich, Germany
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Laura Bongiovanni
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Annette Christ
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - René Tolba
- Institute of Laboratory Animal Science and Experimental Surgery and Central Laboratory for Laboratory Animal Science, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela C Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
50
|
Dietary Glycotoxins Impair Hepatic Lipidemic Profile in Diet-Induced Obese Rats Causing Hepatic Oxidative Stress and Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6362910. [PMID: 31341532 PMCID: PMC6614994 DOI: 10.1155/2019/6362910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by excessive liver lipid accumulation, but insulin resistance is specifically associated with impaired lipid saturation, oxidation, and storage (esterification), besides increased de novo lipogenesis. We hypothesized that dietary glycotoxins could impair hepatic lipid metabolism in obesity contributing to lipotoxicity-driven insulin resistance and thus to the onset of nonalcoholic steatohepatitis (NASH). In diet-induced obese rats with methylglyoxal-induced glycation, magnetic resonance spectroscopy, mass spectrometry, and gas chromatography were used to assess liver composition in fatty acyl chains and phospholipids. High-fat diet-induced obesity increased liver lipid fraction and suppressed de novo lipogenesis but did not change fatty acid esterification and saturation or insulin sensitivity. Despite a similar increase in total lipid fraction when supplementing the high-fat diet with dietary glycotoxins, impairment in the suppression of de novo lipogenesis and decreased fatty acid unsaturation and esterification were observed. Moreover, glycotoxins also decreased polyunsaturated cardiolipins and caused oxidative stress, portal inflammation, and insulin resistance in high-fat diet-induced obese rats. Dietary glycated products do not change total lipid levels in the liver of obese rats but dramatically modify the lipidemic profile, leading to oxidative stress, hepatic lipotoxicity, and insulin resistance in obesity and thus contribute to the onset of NASH.
Collapse
|