1
|
Kim SJ, Chung HC, Park SY, Lee JM, Han JH. Beneficial effects of probiotics on dysbiosis of gut microbiota induced by antibiotic treatment in healthy dogs. Res Vet Sci 2025; 191:105674. [PMID: 40347600 DOI: 10.1016/j.rvsc.2025.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
The gut microbiota plays a crucial role in maintaining host health. While numerous studies have explored the impact of antibiotics on the gut microbiota in humans, limited research has examined how antibiotics affect the gut microbiome in dogs. This study investigated the effects of antibiotic treatment on the gut microbiota of dogs and assessed whether probiotic supplementation could prevent antibiotic-induced dysbiosis. Fourteen healthy young dogs undergoing castration were included in the study. All dogs received a single injection of cefovecin immediately after surgery. The probiotics group (7 dogs) was given a probiotic complex daily starting on the day of surgery and continuing for two weeks, while the non-probiotics group (7 dogs) received no supplementation. Fecal samples were collected on the day of surgery and two weeks later during the follow-up visit for suture removal for microbiome analysis. In microbial diversity analysis, α-diversity was significantly higher in the probiotic-supplemented group compared to the non-probiotics group (p < 0.05). β-diversity analysis revealed significant differences in microbial community composition in the non-probiotics group after antibiotic treatment (p < 0.05), while no significant differences were observed in the probiotics group. Relative abundance analysis indicated that Clostridioides, a marker of antibiotic-induced dysbiosis, significantly increased in dogs without probiotics after antibiotic treatment (p < 0.05). In contrast, Butyricicoccus, a butyrate-producing bacterium with gut health benefits, was significantly enriched in the probiotics group (p < 0.05). These findings suggest that probiotic supplementation supports healthier gut microbiome recovery following antibiotic treatment and highlights its potential to enhance gut microbiota restoration and mitigate gut dysbiosis caused by antibiotics.
Collapse
Affiliation(s)
- Sung-Jae Kim
- Department of Companion Animal Health, Kyungbok University, Namyangju 12051, South Korea
| | - Hee-Chun Chung
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soo-Yeon Park
- Department of Companion Animal Health, Seojeong University, Yangju 11429, South Korea
| | - Jae-Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.
| | - Jeong-Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
2
|
Chen Y, Li X, Sun X, Kou Y, Ma X, Song L, Zhang H, Xie F, Song Z, Yuan C, Huang S, Wu Y. Joint transcriptomics and metabolomics unveil the protective mechanism of tamarind seed polysaccharide against antibiotic-induced intestinal barrier damage. Int J Biol Macromol 2025; 305:140999. [PMID: 39952497 DOI: 10.1016/j.ijbiomac.2025.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Intestinal barrier damage is frequently caused by antibiotic therapy, potentially leading to bacterial translocation and toxin leakage, which triggers inflammation and increases the risk of various diseases. In this study, Tamarind seed polysaccharides (TSP) with different molecular weights were administered to mice during the recovery phase from clindamycin-induced intestinal barrier damage. The results indicated that TSP restored the shortened colon length, reduced the enlarged cecum index, and decreased the elevated level of inflammatory infiltration. Biochemical testing revealed that TSP decreased the levels of intestinal permeability biomarkers and inflammatory factors that were elevated by clindamycin treatment. Transcriptomics and non-targeted metabolomics analyses respectively uncovered changes in colon gene expression and fecal metabolites. The joint analysis of these omics data identified critical pathways, including arachidonic acid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings suggest that TSP could be a promising dietary supplement for protecting the intestinal barrier and alleviating inflammation.
Collapse
Affiliation(s)
- Yinan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianbao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxing Kou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Siyan Huang
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China; Yunnan Special Favor Biotechnology Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhou J, Zhu J, Zhang P, Tao C, Hong X, Zhang Z. Global, regional, and national burdens of Clostridioides difficile infection over recent decades: a trend analysis informed by the Global Burden of Disease Study. Microbiol Spectr 2025:e0129024. [PMID: 40272190 DOI: 10.1128/spectrum.01290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
This study aimed to assess the global burden of Clostridioides difficile infection (CDI) from 1990 to 2019, focusing on disability-adjusted life years (DALYs) rates, mortality, and trends. Data were extracted from the Global Burden of Disease Study 2019 and analyzed globally, regionally, and nationally by age, sex, region, and socio-demographic index (SDI). Measures included age-standardized DALYs rate (ASDR), mortality rate (ASMR), and average annual percentage changes (AAPCs). Decomposition analysis and Bayesian age-period-cohort model were used to evaluate factors affecting CDI trends and predict future progress, respectively. Globally, the overall ASDR and ASMR of CDI showed an increasing trend (AAPCASDR = 1.39, 95% CI: 1.23-1.55; AAPCASMR = 2.79, 95% CI: 2.66-2.93). High SDI countries showed the highest ASDR (18.86, 95% CI: 17.46-20.24) and ASMR (0.99, 95% CI: 0.87- 1.11), with the fastest growth rate (AAPCASDR = 2.84, 95% CI: 2.64-3.04; AAPCASMR = 4.26, 95% CI: 3.98-4.55). Conversely, the low SDI regions exhibit negative growth; however, some low-middle SDI regions, such as South Africa, experienced a heavy disease burden. While most of the disease burden occurs in people over 70 years of age, the burden of children under 5 years of age should also be considered. Moreover, the increased burden on high SDI regions is primarily driven by epidemiological changes. CDI burden has risen globally, particularly in high SDI regions. Moreover, clinicians should take care to consider the burden in individuals under 5 years of age.IMPORTANCEThe global burden of Clostridioides difficile infection (CDI) is increasing, with notable disparities across regions, age groups, and socioeconomic levels. The higher mortality and disability risks, particularly among older adults, children under 5, and in high socio-demographic index regions, highlight the urgent need for targeted public health interventions and policy adjustments to address these vulnerabilities and reduce the impact of CDI on global health.
Collapse
Affiliation(s)
- Jianmei Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jie Zhu
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Pengyue Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chunhui Tao
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaodan Hong
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Clinical Virus Research Institute, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Zhou H, Tang L, Fenton KA, Song X. Exploring and evaluating microbiome resilience in the gut. FEMS Microbiol Ecol 2025; 101:fiaf046. [PMID: 40302016 PMCID: PMC12065411 DOI: 10.1093/femsec/fiaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/30/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025] Open
Abstract
The gut ecosystem is closely related to human gastrointestinal health and overall wellness. Microbiome resilience refers to the capability of a microbial community to resist or recover from perturbations to its original state of balance. So far, there is no consensus on the criteria for assessing microbiome resilience. This article provides new insights into the metrics and techniques for resilience assessment. We discussed several potential parameters, such as microbiome structure, keystone species, biomarkers, persistence degree, recovery rate, and various research techniques in microbiology, metagenomics, biochemistry, and dynamic modeling. The article further explores the factors that influence the gut microbiome resilience. The microbiome structure (i.e. abundance and diversity), keystone species, and microbe-microbe interplays determine microbiome resilience. Microorganisms employ a variety of mechanisms to achieve the microbiome resilience, including flexible metabolism, quorum sensing, functional redundancy, microbial cooperation, and competition. Host-microbe interactions play a crucial role in maintaining microbiome stability and functionality. Unlike other articles, we focus on the regulation of host immune system on microbiome resilience. The immune system facilitates bacterial preservation and colonization, community construction, probiotic protection, and pathogen elimination through the mechanisms of immunological tolerance, immune-driven microbial compartmentalization, and immune inclusion and exclusion. Microbial immunomodulation indirectly modulates microbiome resilience.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Kristin A Fenton
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
5
|
Bonomo MG, D’Angelo S, Picerno V, Carriero A, Salzano G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients 2025; 17:1323. [PMID: 40284188 PMCID: PMC12030176 DOI: 10.3390/nu17081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by joint inflammation and skin lesions. Recent research has underscored the critical role of gut microbiota-comprising bacteria, fungi, viruses, and archaea-in the pathogenesis and progression of PsA. This narrative review synthesizes the latest findings on the influence of gut microbiota on PsA, focusing on mechanisms such as immune modulation, microbial dysbiosis, the gut-joint axis, and its impact on treatment. Advances in high-throughput sequencing and metagenomics have revealed distinct microbial profiles associated with PsA. Studies show that individuals with PsA have a unique gut microbiota composition, differing significantly from healthy controls. Alterations in the abundance of specific bacterial taxa, including a decrease in beneficial bacteria and an increase in potentially pathogenic microbes, contribute to systemic inflammation by affecting the intestinal barrier and promoting immune responses. This review explores the impact of various factors on gut microbiota composition, including age, hygiene, comorbidities, and medication use. Additionally, it highlights the role of diet, probiotics, and fecal microbiota transplantation as promising strategies to modulate gut microbiota and alleviate PsA symptoms. The gut-skin-joint axis concept illustrates how gut microbiota influences not only gastrointestinal health but also skin and joint inflammation. Understanding the complex interplay between gut microbiota and PsA could lead to novel, microbiome-based therapeutic approaches. These insights offer hope for improved patient outcomes through targeted manipulation of the gut microbiota, enhancing both diagnosis and treatment strategies for PsA.
Collapse
Affiliation(s)
- Maria Grazia Bonomo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| | - Salvatore D’Angelo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Valentina Picerno
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Antonio Carriero
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Giovanni Salzano
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| |
Collapse
|
6
|
Vuotto F, Bru JP, Canoui E, Caseris M, Chopin MCC, Cohen R, Diamantis S, Dinh A, Fillatre P, Gauzit R, Gillet Y, Jonville-Bera AP, Lafaurie M, Lesprit P, Lorrot M, Lourtet J, Maulin L, Poitrenaud D, Pariente A, Raymond J, Strady C, Stahl JP, Varon E, Welker Y, Bonnet E. The latest updates on the proper use of fluoroquinolones - Actualisation 2025 update by the SPILF and the GPIP. Infect Dis Now 2025; 55:105062. [PMID: 40216161 DOI: 10.1016/j.idnow.2025.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/27/2025]
Affiliation(s)
- F Vuotto
- Maladies Infectieuses, CHU Lille, Hôpital Huriez, 59 000 Lille, France.
| | - J P Bru
- Maladies Infectieuses, CH Annecy Genevois, 74374 Pringy, France
| | - E Canoui
- Équipe mobile d'infectiologie, CHU Cochin, APHP, 75014 Paris, France
| | - M Caseris
- Équipe Opérationnelle d'Infectiologie, Hôpital mère enfant Robert Debré, APHP, 75019 Paris, France
| | - M C C Chopin
- Service de Maladies Infectieuses, CH Boulogne-sur-Mer, 62321 Boulogne-sur-Mer, France
| | - R Cohen
- Unité Petits Nourrissons, CHI, 94000 Créteil, France
| | - S Diamantis
- Maladies Infectieuses et Tropicales, groupe hospitalier Sud Ile de France, 77000 Melun, France
| | - A Dinh
- Maladies Infectieuses et Tropicales, Hôpitaux R. Poincaré-A. Paré, 92380 Garches, France
| | - P Fillatre
- Service de Réanimation Polyvalente, CH Yves Le Foll, 22000 Saint Brieuc, France
| | - R Gauzit
- Infectiologie transversale, CHU Cochin, APHP, 75014 Paris, France
| | - Y Gillet
- Service d'urgences et réanimation pédiatrique, équipe mobile d'infectiologie pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69229 Lyon, France
| | | | - M Lafaurie
- Service des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - P Lesprit
- Université Grenoble Alpes, Maladies Infectieuses et tropicales, CHU Grenoble Alpes, Grenoble, France
| | - M Lorrot
- Service de Pédiatrie Générale et Equipe d'infectiologie, Hôpital Armand Trousseau, AP-HP, Sorbonne Université. URMS 1123 ECEVE, 75019 Paris, France
| | - J Lourtet
- Service de Bactériologie, Hôpital Saint Antoine, 75012 Paris, France
| | - L Maulin
- Maladies Infectieuses et Tropicales, CHIAP, 13616 Aix en Provence, France
| | - D Poitrenaud
- Unité fonctionnelle d'Infectiologie Régionale, CH Ajaccio 20303 Ajaccio, France
| | - A Pariente
- Pharmacoépidémiologie et Bon Usage du Médicament, Service de Pharmacologie Médicale, Pôle de Santé Publique, CHU de Bordeaux, France
| | - J Raymond
- Bactériologie : Centre Hospitalier Bicêtre, 94270 Kremlin- Bicêtre, France
| | - C Strady
- Maladies Infectieuses et Tropicales, groupe hospitalier Sud Ile de France, 77000 Melun, France
| | - J P Stahl
- Infectiologie, Université Grenoble Alpes, 38700 La Tronche, France
| | - E Varon
- Laboratoire de Biologie Médicale et Centre National de Référence des Pneumocoques, France
| | - Y Welker
- Maladies Infectieuses, CHI, 78100 Saint Germain en Laye, France
| | - E Bonnet
- Maladies Infectieuses et Tropicales, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France
| |
Collapse
|
7
|
Park SJ, Kim M, Jeong J, Park YJ, Jeong S, Kim M, Kim HJ, Song J, Kim SM, Chang J, Kim KH, Ko A, Park SM. Association between antibiotic use and the risk of rheumatoid arthritis: a retrospective cohort study in South Korea. Rheumatology (Oxford) 2025; 64:1732-1740. [PMID: 39340800 DOI: 10.1093/rheumatology/keae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/28/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Certain studies propose that antibiotic use may influence RA incidence, but the clear association between antibiotics and RA remains unclear. Therefore, this study aimed to examine the relationship between antibiotics and RA risk to provide additional epidemiological evidence. METHODS This population-based retrospective cohort study was conducted with adults aged 40 years or older using the Korean National Health Insurance Service database. Antibiotic exposure was measured from 2003 to 2007. Study participants were followed up from 1 January 2008 to 31 December 2019. Multivariable Cox hazard regression was utilized to evaluate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for the risk of RA according to accumulative days of antibiotic use and the number of antibiotic classes used, respectively. RESULTS During 3 395 590 person-years of follow-up, 29 274 cases of RA were identified. Participants who used antibiotics for 91 or more days had a higher risk of RA (aHR, 1.79; 95% CI, 1.67-1.92) than antibiotic non-users. Additionally, individuals who used four or more kinds of antibiotic classes had a higher risk of RA (aHR, 1.61; 95% CI, 1.51-1.71) than those who did not prescribe antibiotics. The risk of RA was positively associated with both higher cumulative days of antibiotic exposure and a larger number of drug classes. These trends were maintained in sensitivity analyses, including variations in antibiotic exposure periods. CONCLUSION Our findings suggest a possible association between the long-term use of antibiotics and RA incidence. Further studies are necessary for a clearer understanding of this association.
Collapse
Affiliation(s)
- Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Minkyung Kim
- College of Nursing, Korea University, Seoul, South Korea
| | - Jihui Jeong
- Department of Medicine, Inje University, Busan, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Minseo Kim
- College of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Hye Jun Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jihun Song
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Min Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Public Healthcare Center, Seoul National University Hospital, Seoul, South Korea
| | - Ahryoung Ko
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
9
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
10
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
11
|
Fiala O, Buti S, Fujita K, de Liaño AG, Fukuokaya W, Kimura T, Yanagisawa T, Giannatempo P, Angel M, Mennitto A, Molina-Cerrillo J, Bourlon MT, Soares A, Takeshita H, Calabrò F, Ortega C, Kucharz J, Milella M, Seront E, Park SH, Tural D, Benedetti G, Ürün Y, Battelli N, Melichar B, Poprach A, Buchler T, Kopecký J, Conteduca V, Monteiro FSM, Massari F, Gupta S, Santoni M. Concomitant medications in patients with metastatic urothelial carcinoma receiving enfortumab vedotin: real-world data from the ARON-2 EV study. Clin Exp Metastasis 2025; 42:18. [PMID: 39976819 PMCID: PMC11842414 DOI: 10.1007/s10585-025-10335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Patients with metastatic urothelial carcinoma (mUC) are typically elderly and often have other comorbidities that require the use of concomitant medications. In our study we evaluated the association of concomitant use of antibiotics (ATBs), proton pump inhibitors (PPIs), corticosteroids, statins, metformin and insulin with patient outcomes and we validated the prognostic role of a concomitant drug score in mUC patients treated with enfortumab vedotin (EV) monotherapy. Data from 436 patients enrolled in the ARON-2EV retrospective study were analyzed according to the concomitant medications used at baseline. Finally, the patients were stratified into three risk groups according to the concomitant drug score based on ATBs, corticosteroids and PPIs. Statistical analysis involved Fisher exact test, Kaplan-Meier method, log-rank test, and univariate/multivariate Cox proportional hazard regression models. Inferior survival outcomes were observed in ATB users compared to non-users (OS: 7.3 months, 95%CI 5.0 - 12.3 vs 13.7 months, 95%CI 12.2 - 47.3, p = 0.001; PFS: 5.1 months 95%CI 3.3 - 17.7 vs 8.3 months, 95%CI 7.1 - 47.3, p = 0.001) and also in corticosteroid users compared to non-users (OS: 8.4 months, 95%CI 6.6 - 10.0 vs 14.2 months, 95%CI 12.7 - 47.3, p < 0.001; PFS: 6.0 months 95%CI 4.6 - 7.9 vs 8.9 months, 95%CI 7.2 - 47.3, p = 0.004). In the Cox multivariate analysis, the concomitant drug score was a significant factor predicting both OS (HR = 1.32 [95% CI 1.03 - 1.68], p = 0.026) and PFS (HR = 1.23 [95% CI 1.01 - 1.51], p = 0.044). Our findings suggest detrimental impact of concomitant use of ATBs and corticosteroids on survival outcomes and the prognostic utility of the concomitant drug score in previously treated mUC patients receiving EV.
Collapse
Affiliation(s)
- Ondřej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University Prague, Alej Svobody 80, 304 60, Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Alfonso Gómez de Liaño
- Department of Medical Oncology, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas, Spain
| | - Wataru Fukuokaya
- Department of Urology, The Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8471, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8471, Japan
| | - Takafumi Yanagisawa
- Department of Urology, The Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8471, Japan
| | - Patrizia Giannatempo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Martin Angel
- Clinical Oncology, Genitourinary Oncology Unit, Alexander Fleming Institute, Buenos Aires, Argentina
| | - Alessia Mennitto
- Department of Medical Oncology, Azienda Ospedaliera Universitaria "Maggiore Della Carit", Novara, Italy
| | | | - Maria T Bourlon
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Escuela de Medicina, Mexico-Universidad Panamericana, Mexico City, Mexico
| | - Andrey Soares
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Latin American Cooperative Oncology Group-LACOG, Porto Alegre, Brazil
| | - Hideki Takeshita
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Fabio Calabrò
- Medical Oncology 1-IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Ortega
- Dipartimento di Oncologia, Ospedale Michele E Pietro Ferrero-Verduno (CN) ASLCN2 Alba E, Bra, Italy
| | - Jakub Kucharz
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Warsaw, Warsaw, Poland
| | - Michele Milella
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134, Verona, Italy
| | - Emmanuel Seront
- Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Se Hoon Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Deniz Tural
- Department of Medical Oncology, Koc University Medical Faculty, Istanbul, Türkiye
| | | | - Yüksel Ürün
- Department of Medical Oncology, Ankara University Faculty of Medicine, 06620, Ankara, Türkiye
| | | | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Jindřich Kopecký
- Department of Oncology, University Hospital in Hradec Králové, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matteo Santoni
- Medical Oncology Unit, Macerata Hospital, Macerata, Italy
| |
Collapse
|
12
|
Xu Y, Chen L, Guo X, Zhang J, Guo X, He Z, Zhang J, Han D. Highly sensitive label-free photoelectrochemical aptasensor based on Cu 2MoS 4@Ti 3C 2T x MXene heterojunction for tetracycline detection in milk. Mikrochim Acta 2025; 192:165. [PMID: 39954140 DOI: 10.1007/s00604-025-07016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
A label-free photoelectrochemical (PEC) biosensing strategy was constructed based on a Cu2MoS4@Ti3C2Tx MXene heterojunction for the sensitive detection of tetracycline (TC) in milk. The Cu2MoS4@Ti3C2Tx MXene heterojunction substantially facilitates the separation of photogenerated electron-hole pairs, a key element in enhancing the photocurrent response. Cu2MoS4, renowned for its visible-light absorption and photocatalytic properties, is combined synergistically with Ti3C2Tx MXene, contributing a large surface area and outstanding electrical conductivity. The heterojunction not only elevates photocatalytic efficiency but also provides abundant π-π stacking sites on the surface of Ti3C2Tx MXene. These sites enable the direct immobilization of the TC aptamer without chemical modification, thereby minimizing marker interference and improving the detection accuracy. Furthermore, the heterojunction structure broadens the light-absorption spectrum and enhances charge-transfer efficiency, resulting in a higher photocurrent response. The proposed PEC aptasensor demonstrates a favorable linear response to TC within the concentration range 5 to 300 nM, with a detection limit of 1.24 nM. These results are comparable to those achieved by high-performance liquid chromatography. This study is expected to pioneer a novel approach for the design of a label-free PEC aptasensor applicable to the bioanalysis of food samples.
Collapse
Affiliation(s)
- Yuying Xu
- School of Food Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction By Ministry and Province), Shihezi, 832003, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Lijuan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaohui Guo
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction By Ministry and Province), Shihezi, 832003, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction By Ministry and Province), Shihezi, 832003, Xinjiang, China.
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Ziqian He
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jiani Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction By Ministry and Province), Shihezi, 832003, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
13
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
14
|
Duman H, Karav S. Fiber and the gut microbiome and its impact on inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:51-76. [DOI: 10.1016/b978-0-443-18979-1.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Luo Y, Sheikh TMM, Li X, Yuan Y, Yao F, Wang M, Guo X, Wu J, Shafiq M, Xie Q, Jiao X. Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Virulence 2024; 15:2428843. [PMID: 39620486 PMCID: PMC11622590 DOI: 10.1080/21505594.2024.2428843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024] Open
Abstract
Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - YuMeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Jilong Wu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Litvinov E, Litvinov A. Impact of Clindamycin on the Oral-Gut Axis: Gastrointestinal Side Effects and Clostridium difficile Infection in 45 Patients. Cureus 2024; 16:e75381. [PMID: 39781176 PMCID: PMC11710861 DOI: 10.7759/cureus.75381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Introduction The use of antibiotics such as oral clindamycin has been effective in treating bacterial infections. However, this medication often comes with significant side effects, particularly those affecting the gastrointestinal (GI) system. This study aims to evaluate the impact of different doses of clindamycin on GI health, specifically examining side effects like stomach upset, diarrhea duration, stomach pain, and recovery time. Given that clindamycin is frequently prescribed, understanding its impact on the oral-gut axis is critical to optimizing antibiotic therapy and reducing adverse events. Background Clindamycin, a lincosamide antibiotic, is widely used to treat a variety of bacterial infections. It acts by inhibiting bacterial protein synthesis but, like many antibiotics, also has unintended consequences for human gut health. The oral-gut axis represents a complex connection where antibiotics, such as clindamycin, can significantly alter the microbiota, leading to imbalances that manifest as diarrhea, abdominal pain, and other digestive issues. This study aims to explore these effects in depth by comparing two common doses of clindamycin, 300 mg versus 600 mg, and the impact of each dose on the severity and duration of GI side effects. Materials and methods This study involves 45 patients prescribed clindamycin for various bacterial infections. The patients were evaluated in two groups: 22 patients who received 300 mg and 23 patients who received 600 mg. Treatment duration ranged from seven to 10 days. Data collection focused on patient-reported symptoms, including the presence and duration of stomach upset, the length of diarrhea episodes, the persistence of stomach pain, and the overall recovery time. Statistical analysis included independent t-tests to compare symptom severity between the groups and chi-squared tests to assess differences in the incidence of side effects, while regression analysis was used to examine predictors of prolonged GI symptoms. Results The results of the study showed that 98% of patients experienced some side effects from oral clindamycin. Among those receiving the 600 mg dose, the frequency and severity of side effects were significantly higher compared to the 300 mg group. Specifically, the average duration of diarrhea in the 600 mg group was five days, compared to three days in the 300 mg group. Similarly, the average length of stomach pain in the higher dose group was seven days, compared to four days for those taking the lower dose. Chi-squared analysis indicated a significant association between the higher dose and increased incidence of GI symptoms. Regression analysis further showed that the 600 mg dose was a significant predictor of prolonged GI disturbances, underscoring a dose-dependent relationship. Conclusion The findings of this case study highlight that oral clindamycin, particularly at higher doses, is associated with increased GI side effects, including prolonged diarrhea and stomach pain. Almost all patients experienced side effects, with those on the 600 mg dose suffering more severe and prolonged symptoms compared to those on the 300 mg dose. The results suggest avoiding the prescription of oral clindamycin unless absolutely necessary, to reduce adverse outcomes and improve compliance. It is recommended to prioritize first-line antibiotics and reserve oral clindamycin as a secondary option. Further research is needed to investigate strategies for prescribing.
Collapse
Affiliation(s)
| | - Alan Litvinov
- Private Practice and Research, American Dental Association, Penfield, USA
| |
Collapse
|
17
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
18
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
20
|
Shankar S, Majumder S, Mukherjee S, Bhaduri A, Kasturi R, Ghosh S, Iacucci M, Shivaji UN. Inflammatory bowel disease: a narrative review of disease evolution in South Asia and India over the last decade. Therap Adv Gastroenterol 2024; 17:17562848241258360. [PMID: 39575157 PMCID: PMC11580062 DOI: 10.1177/17562848241258360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 11/24/2024] Open
Abstract
The rapid emergence of inflammatory bowel disease (IBD) in Asia in the last two decades is anticipated to pose significant challenges to the healthcare systems of developing countries including India. Several epidemiological factors in the Asia Pacific region have been explored as risk factors for the development of IBD. In this narrative review, we discuss the evolution of adult-onset and paediatric IBD in South Asia and India, in relation to the current global epidemiology, over the last decade. The focus lies on the changing epidemiological landscape of IBD in Asia which signals a paradigm shift in the disease trajectory of a chronic, relapsing, complex disease. We enumerate the disease burden of IBD in India and Asia, analyse the risk factors for its recent rise in incidence and briefly discuss the unique entity of very early-onset IBD. We also list the locoregional challenges in diagnosis and management along with suggestions to overcome them. We highlight the lacunae in data which warrants further research. The anticipated infrastructural challenges and disease evolution are likely to be similar in most newly industrialized countries across South Asia. A combined effort led by IBD experts in the region to understand the true disease burden is important. A strong collaborative network on research and formulation of preventive strategies relevant to the region will help reduce the burden in the future.
Collapse
Affiliation(s)
- Sahana Shankar
- Division of Paediatric Gastroenterology, Department of Paediatrics, Mazumdar Shaw Medical Center, NH Health City, Bangalore, India
| | - Snehali Majumder
- Department of Clinical Research, Narayana Hrudayalaya, NH Health City, Bangalore, India APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Suparna Mukherjee
- Department of Clinical Nutrition and Dietetics, Narayana Hrudayalaya, NH Health City, Bangalore, India
| | | | - Rangarajan Kasturi
- Department of Gastroenterology, Mazumdar Shaw Medical Center, a Unit of Narayana Health, Bangalore, India
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Uday N. Shivaji
- Institute of Immunology and Immunotherapy, University of Birmingham, 2nd Floor, Institute of Translational Medicine, Heritage Building, Mindelsohn Way, Birmingham B15 2TH, UK Department of Gastroenterology, Mazumdar Shaw Medical Center, a Unit of Narayana Health, Bangalore, India
| |
Collapse
|
21
|
Rosenkrantz O, Wheler J, Westphal Thrane MC, Pedersen L, Sørensen HT. The Danish National Hospital Medication Register: A Resource for Pharmacoepidemiology. Clin Epidemiol 2024; 16:783-792. [PMID: 39559743 PMCID: PMC11572433 DOI: 10.2147/clep.s487838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Background The Danish National Hospital Medication Register (DHMR), one of the first nationwide in-hospital medication registries in the world, contains detailed information on medication administration and dispensing. Objective To provide an overview of the information recorded in the DHMR and to highlight its strengths and limitations as a pharmacoepidemiological research tool. Methods We reviewed the registry´s geographic and clinical specialty coverage and medications recorded according to the main groups of the Anatomical Therapeutic Chemical classification system. Results From May 2018 through December 2023, the DHMR recorded data on more than 1.9 million unique patients from all approximately 50 public hospitals and associated hospital outpatient clinics, totaling 105.3 million recordings of hospital medication use. The registry records detailed data on the indication for medication, medication type, pharmaceutical form, dosage, and administration time, collected through electronic medical record systems. Although the data quality has not yet been evaluated in a scientific context, some potential limitations are known. These include regional differences in the data collection and a lack of data from certain clinical specialties. Due to its recent establishment in 2018, the registered number of patients treated may still be limited for some rarely used medications. Conclusion The DHMR is an important new resource for research in Denmark. Combined with the Danish National Prescription Registry, which covers all community pharmacies, it offers access to accurate data on medication exposure in the Danish population. Users should be aware of potential issues with lack of information before 2018.
Collapse
Affiliation(s)
- Oscar Rosenkrantz
- Department of Clinical Epidemiology and Center for Population Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen, Denmark
| | - Jannik Wheler
- Department of Clinical Epidemiology and Center for Population Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | | | - Lars Pedersen
- Department of Clinical Epidemiology and Center for Population Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology and Center for Population Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Mak WY, He Q, Yang W, Xu N, Zheng A, Chen M, Lin J, Shi Y, Xiang X, Zhu X. Application of MIDD to accelerate the development of anti-infectives: Current status and future perspectives. Adv Drug Deliv Rev 2024; 214:115447. [PMID: 39277035 DOI: 10.1016/j.addr.2024.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
This review examines the role of model-informed drug development (MIDD) in advancing antibacterial and antiviral drug development, with an emphasis on the inclusion of host system dynamics into modeling efforts. Amidst the growing challenges of multidrug resistance and diminishing market returns, innovative methodologies are crucial for continuous drug discovery and development. The MIDD approach, with its robust capacity to integrate diverse data types, offers a promising solution. In particular, the utilization of appropriate modeling and simulation techniques for better characterization and early assessment of drug resistance are discussed. The evolution of MIDD practices across different infectious disease fields is also summarized, and compared to advancements achieved in oncology. Moving forward, the application of MIDD should expand into host system dynamics as these considerations are critical for the development of "live drugs" (e.g. chimeric antigen receptor T cells or bacteriophages) to address issues like antibiotic resistance or latent viral infections.
Collapse
Affiliation(s)
- Wen Yao Mak
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China; Clinical Research Centre (Penang General Hospital), Institute for Clinical Research, National Institute of Health, Malaysia
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Wenyu Yang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Nuo Xu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Aole Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Min Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Jiaying Lin
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China.
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 201203 Shanghai, China.
| |
Collapse
|
23
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
24
|
Taghaddos D, Saqib Z, Bai X, Bercik P, Collins SM. Post-infectious ibs following Clostridioides difficile infection; role of microbiota and implications for treatment. Dig Liver Dis 2024; 56:1805-1809. [PMID: 38653643 DOI: 10.1016/j.dld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Up to 25% of patients recovering from antibiotic-treated Clostridioides difficile infection (CDI) develop functional symptoms reminiscent of Post-Infectious Irritable Bowel Syndrome (PI-IBS). For patients with persistent symptoms following infection, a clinical dilemma arises as to whether to provide additional antibiotic treatment or to adopt a conservative symptom-based approach. Here, we review the literature on CDI-related PI-IBS and compare the findings with PI-IBS. We review proposed mechanisms, including the role of C. difficile toxins and the microbiota, and discuss implications for therapy. We suggest that gut dysfunction post-CDI may be initiated by toxin-induced damage to enteroglial cells and that a dysbiotic gut microbitota maintains the clinical phenotype over time, prompting consideration of microbiota-directed therapies. While Fecal Microbial Transplant (FMT) is currently reserved for recurrent CDI (rCDI), we propose that microbiota-directed therapies may have a role in primary CDI in order to avoid or mitigate futher antibiotic treatment that further disrupts the microbiota and thus prevent PI-IBS. We discuss novel microbial transfer therapies and as they emerge, we recommend clinical trials to determine whether microbial transfer therapy of the primary infection prevents both rCDI and CDI-related PI- IBS.
Collapse
Affiliation(s)
- Dana Taghaddos
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xiaopeng Bai
- Division of Gastroenterology, Kyushu University, Japan
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
25
|
Hostler CJ, Krishnan J, Parish A, Baroco A, Cooper P, Donceras O, Lautenbach E, Tolomeo P, Sansossio T, Santos CAQ, Schwartz D, Zhang H, Welbel S, Lokhnygina Y, Anderson DJ. Postoperative outcomes after receipt of ertapenem antimicrobial prophylaxis for colon surgery: a multicenter retrospective cohort study. Infect Control Hosp Epidemiol 2024:1-6. [PMID: 39363596 DOI: 10.1017/ice.2024.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
OBJECTIVE To evaluate postoperative outcomes among patients undergoing colon surgery who receive perioperative prophylaxis with ertapenem compared to other antibiotic regimens. DESIGN AND SETTING Multicenter retrospective cohort study among adults undergoing colon surgery in seven hospitals across three health systems from 1/1/2010 to 9/1/2015. METHODS Generalized linear mixed logistic regression models were applied to assess differential odds of select outcomes among patients who received perioperative prophylaxis with ertapenem compared to other regimens. Postoperative outcomes of interest included surgical site infection (SSI), Clostridioides difficile infection (CDI) and clinical culture positivity for carbapenem-resistant Enterobacteraciae (CRE). Inverse probability weights were applied to account for differing covariate distributions across ertapenem and non-ertapenem groups. RESULTS A total of 2,109 patients were included for analysis. The odds of postoperative SSI was 1.56 times higher among individuals who received ertapenem than among those receiving other perioperative antimicrobial prophylaxis regimens in our cohort (46 [3.5%] vs 20 [2.5%]; IPW-weighted OR 1.56, [95% CI, 1.08-2.26], P = .02). No statistically significant differences in odds of postoperative CDI (24 [1.8%] vs 16 [2.0%]; IPW-weighted OR 1.07 [95% CI, .68-1.68], P = .78) were observed between patients who received ertapenem prophylaxis compared to other regimens. Clinical CRE culture positivity was rare in both groups (.2%-.5%) and did not differ statistically. CONCLUSIONS Ertapenem use for perioperative prophylaxis was associated with increased odds of SSI among patients undergoing colon surgery in our study population, though no differences in CDI or clinical CRE culture positivity were identified. Further study and replication of these findings are needed.
Collapse
Affiliation(s)
- Christopher J Hostler
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University, Durham, NC, USA
- Durham VA Health Care System, Durham, NC, USA
| | - Jay Krishnan
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University, Durham, NC, USA
| | - Alice Parish
- Duke Department of Bioinformatics and Biostatistics, Duke University, Durham, NC, USA
| | | | | | - Onofre Donceras
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Ebbing Lautenbach
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pam Tolomeo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carlos A Q Santos
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - David Schwartz
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Helen Zhang
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Sharon Welbel
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Yuliya Lokhnygina
- Duke Department of Bioinformatics and Biostatistics, Duke University, Durham, NC, USA
| | - Deverick J Anderson
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University, Durham, NC, USA
| |
Collapse
|
26
|
Ccami‐Bernal F, Barriga‐Chambi F, Ortiz‐Benique ZN, Ferrary E, Torres R. Variability of the Microbiota in Chronic Rhinosinusitis: A Scoping Review. OTO Open 2024; 8:e70029. [PMID: 39381800 PMCID: PMC11460754 DOI: 10.1002/oto2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
Objective Chronic rhinosinusitis (CRS) is characterized by a persistent inflammation of the nasal and paranasal sinus mucosa that could be potentially linked to a dysregulation between the microbiota and the immune system. We aim to explore general, methodological, and microbiological aspects of microbiota research in CRS compared to disease-free individuals. Data Sources Embase, Ovid MEDLINE, PubMed, Scopus, and Web of Science. Review Methods All studies comparing the composition of the resident microbiota of the sinonasal cavities in 2 groups: CRS and normal participants. We conducted systematic study selection, data extraction, and analysis first using the title and abstract, and then the full texts based on predefined inclusion and exclusion criteria. Compiled and presented findings include sampling site and technique, and microbiological results such as the relative abundance and the variability of the composition of the microbiota in both groups. Results Twenty-seven studies, using genomic identification with 16s RNA were analyzed. Case definitions primarily followed EPOS or AAO-HNS guidelines, with endoscopic swabs (82%), and middle meatus sampling (74%) being prevalent techniques. Despite relative abundance variability, patterns emerged across studies, indicating an increase in Haemophilus (19%) and Pseudomonas (11%), and decrease in Propionibacterium (15%) and Anaerococcus (11%). Another pattern was observed, showing a decreased alpha diversity (6/19; 22%) in CRS compared to normal individuals. Conclusion While variations exist among studies, analysis of CRS microbiota suggests an association with dysbiosis, potentially contributing to chronic inflammation. Future research must prioritize standardized criteria for diagnostics and patient selection, fostering a more comprehensive understanding of CRS microbiota.
Collapse
Affiliation(s)
- Fabricio Ccami‐Bernal
- Laboratorio de Microbiología Molecular, Facultad de MedicinaUniversidad Nacional de San Agustín de ArequipaArequipaPeru
| | - Fernanda Barriga‐Chambi
- Laboratorio de Microbiología Molecular, Facultad de MedicinaUniversidad Nacional de San Agustín de ArequipaArequipaPeru
| | - Zhamanda N. Ortiz‐Benique
- Laboratorio de Microbiología Molecular, Facultad de MedicinaUniversidad Nacional de San Agustín de ArequipaArequipaPeru
| | - Evelyne Ferrary
- Université Paris Cité, Institut Pasteur, AP‐HP, Inserm, Fondation Pour l'Audition, Institut de l'AuditionIHU reConnectParisFrance
- Unité Fonctionnelle Implants Auditifs et Explorations Fonctionnelle, Service ORL, GHU Pitié‐SalpêtrièreAP‐HP/Sorbonne UniversitéParisFrance
| | - Renato Torres
- Laboratorio de Microbiología Molecular, Facultad de MedicinaUniversidad Nacional de San Agustín de ArequipaArequipaPeru
- Université Paris Cité, Institut Pasteur, AP‐HP, Inserm, Fondation Pour l'Audition, Institut de l'AuditionIHU reConnectParisFrance
| |
Collapse
|
27
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Ullah H, Ali M, Ma R, Alioui Y, Ali S, Ilyas M, Rahman MU, Ahmed Farooqui N, Siddiqui NZ, Xin Y, Wang L. Polysaccharides derived from Deglet Noor dates modulate amoxicillin-induced dysbiosis and enhance intestinal barrier function. J Funct Foods 2024; 120:106350. [DOI: 10.1016/j.jff.2024.106350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
29
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
30
|
Lee JW, Park SJ, Park YJ, Jeong S, Song J, Kim HJ, Chang J, Kim KH, Kim JS, Oh YH, Cho Y, Park SM. Association between antibiotics use and osteoporotic fracture risk: a nationally representative retrospective cohort study. Arch Osteoporos 2024; 19:81. [PMID: 39212806 PMCID: PMC11364706 DOI: 10.1007/s11657-024-01438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This population-based retrospective cohort study aimed to estimate the association between antibiotic exposure and osteoporotic fracture risk. Long-term antibiotic use was associated with the risk of osteoporotic fracture. An increase in the number of antibiotic classes prescribed may also be associated with an increased osteoporotic fracture risk. PURPOSE This study aims to examine the association between antibiotic usage and osteoporotic fractures in a large cohort of Korean adults, with a specific focus on the duration of antibiotic exposure and the number of antibiotic classes used. METHODS This retrospective cohort study from the National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS) database from January 1, 2002, to December 31, 2019, included 167,370 Korean adults aged 50 years or older (mean [SD] age, 59.3 [7.82] years; 65,425 [39.09%] women). The cumulative antibiotic prescription days and the classes of antibiotics prescribed between 2004 and 2008 were exposure variables, respectively. The main outcome was a newly diagnosed osteoporotic fracture during follow-up. Cox proportional hazard regression was used to determine the adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for the incident osteoporotic fractures associated with antibiotic exposure. RESULTS The antibiotic user group with 91 days had a higher risk of osteoporotic fracture in comparison to the antibiotic non-user group (aHR, 1.12; 95% CI, 1.03-1.21). Additionally, those who used more than four different antibiotic classes had an elevated risk of osteoporotic fracture compared to the non-user group (aHR, 1.10; 95% CI, 1.02-1.18). CONCLUSION This extensive population-based cohort study conducted on a large population has identified an association between the utilization of antibiotics and an elevated risk of osteoporotic fractures. The cumulative days exposed to antibiotics and osteoporotic fractures may be positively associated.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Health Convergence, Ewha Womans University, Seoul, South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Jihun Song
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Jun Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Public Healthcare Center, Seoul National University Hospital, Seoul, South Korea
| | - Ji Soo Kim
- International Healthcare Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-Si, South Korea
| | - Yoosun Cho
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
31
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
32
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
33
|
Llor C, Frimodt-Møller N, Miravitlles M, Kahlmeter G, Bjerrum L. Optimising antibiotic exposure by customising the duration of treatment for respiratory tract infections based on patient needs in primary care. EClinicalMedicine 2024; 74:102723. [PMID: 39070175 PMCID: PMC11278592 DOI: 10.1016/j.eclinm.2024.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Primary care antimicrobial stewardship programs have limited success in reducing antibiotic use, prompting the search for new strategies. Convincing general practitioners to resist antibiotic prescription amid uncertainty or patient demands usually poses a significant challenge. Despite common practice, standard durations for common infections lack support from clinical studies. Contrary to common belief, extending antibiotic treatment beyond the resolution of symptoms does not seem to prevent or reduce antimicrobial resistance. Shortening the duration of antibiotic therapy has shown to be effective in mitigating the spread of resistance, particularly in cases of pneumonia. Recent hospital randomised trials suggest that ending antibiotic courses by day three for most lower respiratory tract infections is effective and safe. While community studies are scarce, it is likely that these shorter, tailored courses to meet patients' needs would also be effective and safe in primary care. Therefore, primary care studies should investigate the outcomes of advising patients to discontinue antibiotic treatment upon symptom resolution. Implementing patient-centred, customised treatment durations, rather than fixed courses, is crucial for meeting individual patient needs.
Collapse
Affiliation(s)
- Carl Llor
- University Institute in Primary Care Research Jordi Gol, Catalan Institute of Health, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Research Unit for General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Gunnar Kahlmeter
- Department of Clinical Microbiology, Central Hospital, EUCAST Development Laboratory, Växjö, Sweden
| | - Lars Bjerrum
- Section and Research Unit of General Practice, Department of Public Health, University of Copenhagen, Denmark
| |
Collapse
|
34
|
de Paula YH, Resende M, Chaves RF, Barbosa JA, Garbossa CAP, Costa MDO, Rigo F, Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Cantarelli VDS. A new approach: preventive protocols with yeast products and essential oils can reduce the in-feed use of antibiotics in growing-finishing pigs. Transl Anim Sci 2024; 8:txae104. [PMID: 39185353 PMCID: PMC11344245 DOI: 10.1093/tas/txae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
The objective of this study was to evaluate the effects of yeast products (YP) and essential oils (EO) in total or partial replacement to in-feed antibiotic protocols (growth promoter and prophylactic), both in recommended doses and in overdose of prophylactic antibiotics (PA), on growth performance, and diarrhea incidence in the growing-finishing pigs; and fecal microbiota in market hogs. Four hundred pigs (20.36 ± 2.64 kg) were assigned to five treatments in a randomized block design: diets with prophylactic and growth promoter antibiotics (ANT); ANT with 30% more PA (ANT+30); diets with less PA and YP (ANT+Y); diets with less PA, YP and EO (ANT+Y+EO); and antibiotics-free diets with YP and EO (Y+EO). The content of the active components of the YP was 60% purified β-1,3/1,6-glucans extracted from Saccharomyces cerevisiae yeast (Macrogard), 20% functional water-soluble MOS (HyperGen), and 18% MOS, extracted from Saccharomyces cerevisiae yeast (ActiveMOS). From 0 to 14 d, pigs of the ANT+30, ANT+Y, and ANT+Y+EO treatments showed a greater body weight (BW) and average daily gain (ADG) compared to pigs from the Y+EO group. From 14 to 35 d, pigs of ANT+30 and ANT+Y+EO treatments were heavier than Y+EO group. At 105 d, ANT pigs had a higher BW than the Y+EO group. For the entire period, ADG of ANT pigs was greater, and feed conversion ratio better than Y+EO pigs. From 0 to 35 d, pigs of the Y+EO treatment showed a higher diarrhea incidence compared to pigs of the other groups. From 49 to 70 d, ANT+Y and ANT+Y+EO treatments showed a lower diarrhea incidence than Y+EO group, which remained the case during the overall period. At 105 d, the alpha diversity of fecal microbiota by Shannon Entropy was lower in ANT, ANT+30, and Y+EO groups than observed for ANT+Y+EO group. The abundance of Firmicutes phylum and Firmicutes/Bacteroidetes ratio was higher in ANT than in ANT+Y+EO pigs. Proteobacteria phylum abundance in ANT+Y+EO was higher than ANT, ANT+Y, and Y+EO. Peptostreptococcaceae family abundance was higher in ANT, ANT+30, and ANT+Y groups than in ANT+Y+EO and Y+EO groups. ANT+Y+EO and Y+EO groups show a lower abundance of SMB53 genus than ANT and ANT+30 groups. In conclusion, the use of YP and EO, in partial replacement to the in-feed antibiotic protocols, does not reduce the growth performance, can replace antibiotic growth promotors, and reduce the in-feed use of PA in growing-finishing pigs. The use of YP and EO, together with PA, increases the microbial diversity, despite having important genera for weight gain in less abundance. Overdose of PA does not improve growth performance and reduces microbial diversity, which does not characterize it as an efficient preventive protocol.
Collapse
Affiliation(s)
| | - Maíra Resende
- Animal Science Department, Federal University of Lavras, Lavras, Brazil
| | | | | | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lehr K, Lange UG, Hipler NM, Vilchez-Vargas R, Hoffmeister A, Feisthammel J, Buchloh D, Schanze D, Zenker M, Gockel I, Link A, Jansen-Winkeln B. Prediction of anastomotic insufficiency based on the mucosal microbiome prior to colorectal surgery: a proof-of-principle study. Sci Rep 2024; 14:15335. [PMID: 38961176 PMCID: PMC11222535 DOI: 10.1038/s41598-024-65320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Anastomotic leakage (AL) is a potentially life-threatening complication following colorectal cancer (CRC) resection. In this study, we aimed to unravel longitudinal changes in microbial structure before, during, and after surgery and to determine if microbial alterations may be predictive for risk assessment between sufficient anastomotic healing (AS) and AL prior surgery. We analysed the microbiota of 134 colon mucosal biopsies with 16S rRNA V1-V2 gene sequencing. Samples were collected from three location sites before, during, and after surgery, and patients received antibiotics after the initial collection and during surgery. The microbial structure showed dynamic surgery-related changes at different time points. Overall bacterial diversity and the abundance of some genera such as Faecalibacterium or Alistipes decreased over time, while the genera Enterococcus and Escherichia_Shigella increased. The distribution of taxa between AS and AL revealed significant differences in the abundance of genera such as Prevotella, Faecalibacterium and Phocaeicola. In addition to Phocaeicola, Ruminococcus2 and Blautia showed significant differences in abundance between preoperative sample types. ROC analysis of the predictive value of these genera for AL revealed an AUC of 0.802 (p = 0.0013). In summary, microbial composition was associated with postoperative outcomes, and the abundance of certain genera may be predictive of postoperative complications.
Collapse
Affiliation(s)
- Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Undine Gabriele Lange
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Noam Mathias Hipler
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Albrecht Hoffmeister
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology and Pneumology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jürgen Feisthammel
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology and Pneumology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Dorina Buchloh
- Clinic for General and Visceral Surgery, Protestant Deaconess House Leipzig, Leipzig, Germany
| | - Denny Schanze
- Institute of Human Genetics, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Ines Gockel
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany.
| | - Boris Jansen-Winkeln
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Clinic for General, Visceral, Thoracic and Vascular Surgery, Clinic St. Georg Leipzig, Leipzig, Germany.
| |
Collapse
|
36
|
Huang J, Lin Y, Ding X, Lin S, Li X, Yan W, Chen M. Alteration of the gut microbiome in patients with heart failure: A systematic review and meta-analysis. Microb Pathog 2024; 192:106647. [PMID: 38788811 DOI: 10.1016/j.micpath.2024.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024]
Abstract
Recent research has revealed that alterations of the gut microbiome (GM) play a comprehensive role in the pathophysiology of HF. However, findings in this field remain controversial. In this study, we focus on differences in GM diversity and abundance between HF patients and non-HF people, based on previous 16 S ribosomal RNA (16rRNA) gene sequencing. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive search of PubMed, Web of Science, Embase, Cochrane Library, and Ovid databases using the keyword "Heart failure" and "Gastrointestinal Microbiome". A significant decrease in alpha diversity was observed in the HF patients (Chao1, I2 = 87.5 %, p < 0.001; Shannon index, I2 = 62.8 %, p = 0.021). At the phylum level, the HF group exhibited higher abundances of Proteobacteria (I2 = 92.0 %, p = 0.004) and Actinobacteria (I2 = 82.5 %, p = 0.010), while Bacteroidetes (I2 = 45.1 %, p = 0.017) and F/B ratio (I2 = 0.0 %, p<0.001) were lower. The Firmicutes showed a decreasing trend but did not reach statistical significance (I2 = 82.3 %, p = 0.127). At the genus level, the relative abundances of Streptococcus, Bacteroides, Alistipes, Bifidobacterium, Escherichia-Shigella, Enterococcus and Klebsiella were increased in the HF group, whereas Ruminococcus, Faecalibacterium, Dorea and Megamona exhibited decreased relative abundances. Dialister, Blautia and Prevotella showed decreasing trends but without statistical significance. This observational meta-analysis suggests that GM changes are associated with HF, manifesting as alterations in GM abundance, disruptions in the production of short-chain fatty acids (SCFAs) bacteria, and an increase in trimethylamine N-oxide (TMAO) producing bacteria.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Yongping Lin
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Xiangwei Ding
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Song Lin
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Xin Li
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Wei Yan
- Department of Cardiology, Nanjing Pukou People's Hospital, Nanjing, 211800, China
| | - Minglong Chen
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
37
|
Lemée P, Chapalain X, Bailly P, Sparrow RL, Jean-Michel V, Prat G, Renault A, Tonnelier JM, Aubron C. PROACTIVE SCREENING ALGORITHM FOR EARLY-ONSET PNEUMONIA IN PATIENTS WITH OUT-OF-HOSPITAL CARDIAC ARREST: A BEFORE-AFTER IMPLEMENTATION STUDY. Shock 2024; 62:13-19. [PMID: 38661180 DOI: 10.1097/shk.0000000000002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Introduction : Early-onset pneumonia (EOP) occurs in around 50% of critically ill patients with out-of-hospital cardiac arrest (OHCA) and is associated with increased morbidity. Prompt diagnosis of EOP in these patients is difficult because of targeted temperature management and the postcardiac arrest syndrome. We hypothesized that an algorithm for proactive screening of EOP would improve patient outcomes. Methods : We conducted a single-center observational study comparing the outcomes of mechanically ventilated adult patients with OHCA, before (study period 1) and after (study period 2) implementation of an algorithm for proactive diagnosis of EOP, including an early distal pulmonary specimen. An inverse probability treatment weighted multivariable regression was performed to identify independent parameters associated with duration of mechanical ventilation. A subgroup analysis was conducted in patients alive on day 5 after intensive care unit admission. Results : Over the 4-year study period, 190 patients (99 and 91 for study periods 1 and 2, respectively) were enrolled. The overall incidence of EOP was 57.4% and was similar between both study periods. Although there was no difference in the time interval to antibiotic initiation, study period 2 was independently associated with higher SpO 2 /FiO 2 ratios on days 3 and 4. We also observed a decrease in mechanical ventilation time in study period 2 (4.5 [1-11.3] vs. 3 [2-5.8] days; P = 0.07), and this reached statistical significance in the subgroup analysis of patients alive at day 5 (10 [5-17] vs. 5 [3-9] days, P = 0.01). Conclusion: In critically ill patients with OHCA, proactive diagnosis of EOP was not associated with a significant change in the time to antibiotic initiation. Further research is warranted to better define optimal diagnosis and management of EOP in this setting.
Collapse
Affiliation(s)
- Pauline Lemée
- Departement de Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Xavier Chapalain
- Departement d'anesthésie-Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Pierre Bailly
- Departement de Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Rosemary L Sparrow
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Jean-Michel
- Departement de Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Gwenael Prat
- Departement de Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Anne Renault
- Departement de Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | - Jean-Marie Tonnelier
- Departement de Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
38
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
MacVittie S, Doroodian S, Alberto A, Sogin M. Microbiome depletion and recovery in the sea anemone, Exaiptasia diaphana, following antibiotic exposure. mSystems 2024; 9:e0134223. [PMID: 38757963 PMCID: PMC11237641 DOI: 10.1128/msystems.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Microbial species that comprise host-associated microbiomes play an essential role in maintaining and mediating the health of plants and animals. While defining the role of individual or even complex communities is important toward quantifying the effect of the microbiome on host health, it is often challenging to develop causal studies that link microbial populations to changes in host fitness. Here, we investigated the impacts of reduced microbial load following antibiotic exposure on the fitness of the anemone, Exaiptasia diaphana and subsequent recovery of the host's microbiome. Anemones were exposed to two different types of antibiotic solutions for 3 weeks and subsequently held in sterilized seawater for a 3-week recovery period. Our results revealed that both antibiotic treatments reduced the overall microbial load during and up to 1 week post-treatment. The observed reduction in microbial load was coupled with reduced anemone biomass, halted asexual reproduction rates, and for one of the antibiotic treatments, the partial removal of the anemone's algal symbiont. Finally, our amplicon sequencing results of the 16S rRNA gene revealed that anemone bacterial composition only shifted in treated individuals during the recovery phase of the experiment, where we also observed a significant reduction in the overall diversity of the microbial community. Our work implies that the E. diaphana's microbiome contributes to host fitness and that the recovery of the host's microbiome following disturbance with antibiotics leads to a reduced, but stable microbial state.IMPORTANCEExaiptasia diaphana is an emerging model used to define the cellular and molecular mechanisms of coral-algal symbioses. E. diaphana also houses a diverse microbiome, consisting of hundreds of microbial partners with undefined function. Here, we applied antibiotics to quantify the impact of microbiome removal on host fitness as well as define trajectories in microbiome recovery following disturbance. We showed that reduction of the microbiome leads to negative impacts on host fitness, and that the microbiome does not recover to its original composition while held under aseptic conditions. Rather the microbiome becomes less diverse, but more consistent across individuals. Our work is important because it suggests that anemone microbiomes play a role in maintaining host fitness, that they are susceptible to disturbance events, and that it is possible to generate gnotobiotic individuals that can be leveraged in microbiome manipulation studies to investigate the role of individual species on host health.
Collapse
Affiliation(s)
- Sophie MacVittie
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| | - Saam Doroodian
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| | - Aaron Alberto
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| | - Maggie Sogin
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| |
Collapse
|
40
|
Luo S, Lou F, Yan L, Dong Y, Zhang Y, Liu Y, Ji P, Jin X. Comprehensive analysis of the oral microbiota and metabolome change in patients of burning mouth syndrome with psychiatric symptoms. J Oral Microbiol 2024; 16:2362313. [PMID: 38835338 PMCID: PMC11149574 DOI: 10.1080/20002297.2024.2362313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Background Burning mouth syndrome (BMS) is a chronic idiopathic facial pain with intraoral burning or dysesthesia. BMS patients regularly suffer from anxiety/depression, and the association of psychiatric symptoms with BMS has received considerable attention in recent years. The aims of this study were to investigate the potential interplay between psychiatric symptoms and BMS. Methods Using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS) to evaluate the oral microbiota and saliva metabolism of 40 BMS patients [including 29 BMS patients with depression or anxiety symptoms (DBMS)] and 40 age matched healthy control (HC). Results The oral microbiota composition in BMS exhibited no significant differences from HC, although DBMS manifested decreased α-diversity relative to HC. Noteworthy was the discernible elevation in the abundance of proinflammatory microorganisms within the oral microbiome of individuals with DBMS. Parallel findings in LC/MS analyses revealed discernible disparities in metabolites between DBMS and HC groups. Principal differential metabolites were notably enriched in amino acid metabolism and lipid metabolism, exhibiting associations with infectious and immunological diseases. Furthermore, the integrated analysis underscores a definitive association between the oral microbiome and metabolism in DBMS. Conclusions This study suggests possible future modalities for better understanding the pathogenesis and personalized treatment plans of BMS.
Collapse
Affiliation(s)
- Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Yan
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yunmei Dong
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yingying Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yang Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Wang L, Cao Y, Lou E, Zhao X, Chen X. The role of gut fungi in Clostridioides difficile infection. Biomed J 2024; 47:100686. [PMID: 38086471 PMCID: PMC11220531 DOI: 10.1016/j.bj.2023.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 06/10/2024] Open
Abstract
Clostridioides difficile, the etiological agent of C. difficile infection (CDI), elicits a spectrum of diarrheal symptoms with varying severity and the potential to result in severe complications such as colonic perforation, pseudomembranous colitis, and toxic megacolon. The perturbation of gut microbiome, often triggered by antibiotic usage, represents the primary factor augmenting the risk of CDI. This underscores the significance of interactions between C. difficile and the microbiome in determining pathogen adaptability. In recent years, researchers have increasingly recognized the pivotal role played by intestinal microbiota in host health and its therapeutic potential as a target for medical interventions. While extensive evidence has been established regarding the involvement of gut bacteria in CDI, our understanding of symbiotic interactions between hosts and fungi within intestinal microbiota remains limited. Herein, we aim to comprehensively elucidate both composition and key characteristics of gut fungal communities that significantly contribute to CDI, thereby enhancing our comprehension from pharmacological and biomarker perspectives while exploring their prospective therapeutic applications for CDI.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Eddie Lou
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuanyin Zhao
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
43
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
44
|
Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics (Basel) 2024; 13:436. [PMID: 38786164 PMCID: PMC11117328 DOI: 10.3390/antibiotics13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies have demonstrated that even short-term antibiotic exposure can cause a large and persistent disturbance to human colonic microbiota. The recovery and sustainability of the gut microbiome after dysbiosis have been associated with fewer CDI recurrences. Fecal microbiota transplantation (FMT) refers to the procedure in which human donor stool is processed and transplanted to a patient with CDI. It has been historically used in patients with pseudomembranous colitis even before the discovery of Clostridioides difficile. More recent research supports the use of FMT as part of the standard therapy of recurrent CDI. This article will be an in-depth review of five microbiome therapeutic products that are either under investigation or currently commercially available: Rebyota (fecal microbiota, live-jslm, formerly RBX2660), Vowst (fecal microbiota spores, live-brpk, formerly SER109), VE303, CP101, and RBX7455. Included in this review is a comparison of the products' composition and dosage forms, available safety and efficacy data, and investigational status.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Aaron Hunt
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Larry Danziger
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Emily N. Drwiega
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| |
Collapse
|
45
|
Raghu AK, Palanikumar I, Raman K. Designing function-specific minimal microbiomes from large microbial communities. NPJ Syst Biol Appl 2024; 10:46. [PMID: 38702322 PMCID: PMC11068740 DOI: 10.1038/s41540-024-00373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Microorganisms exist in large communities of diverse species, exhibiting various functionalities. The mammalian gut microbiome, for instance, has the functionality of digesting dietary fibre and producing different short-chain fatty acids. Not all microbes present in a community contribute to a given functionality; it is possible to find a minimal microbiome, which is a subset of the large microbiome, that is capable of performing the functionality while maintaining other community properties such as growth rate and metabolite production. Such a minimal microbiome will also contain keystone species for SCFA production in that community. In this work, we present a systematic constraint-based approach to identify a minimal microbiome from a large community for a user-proposed function. We employ a top-down approach with sequential deletion followed by solving a mixed-integer linear programming problem with the objective of minimising the L1-norm of the membership vector. Notably, we consider quantitative measures of community growth rate and metabolite production rates. We demonstrate the utility of our algorithm by identifying the minimal microbiomes corresponding to three model communities of the gut, and discuss their validity based on the presence of the keystone species in the community. Our approach is generic, flexible and finds application in studying a variety of microbial communities. The algorithm is available from https://github.com/RamanLab/minMicrobiome .
Collapse
Affiliation(s)
- Aswathy K Raghu
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India
- Department of Chemical and Biological Engineering, Northwestern University, IL, 60208, USA
| | - Indumathi Palanikumar
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600 036, India
| | - Karthik Raman
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600 036, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, 600 036, India.
| |
Collapse
|
46
|
Yamada J, Fukui T, Yatani A, Mimura C, Fukuda K, Hazama D, Katsurada N, Nagano T, Yamamoto M, Tachihara M. Impact of concurrent medications on the outcome of immunotherapy in non-small cell lung carcinoma. Thorac Cancer 2024; 15:1228-1236. [PMID: 38622898 PMCID: PMC11128370 DOI: 10.1111/1759-7714.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND There have been reports on the impact of concurrent drugs on the outcome of immunotherapy for non-small cell lung carcinoma (NSCLC). However, the effect of some drugs, such as antibiotics and nonsteroidal anti-inflammatory drugs (NSAIDs), has not been clarified in patients with NSCLC. In the present study, we aimed to assess the association between concurrent drugs and the outcomes of immune checkpoint inhibitors (ICIs) alone or in combination with chemotherapy for patients with advanced NSCLC. METHODS We retrospectively assessed patients with advanced NSCLC who underwent ICI treatment between September 2017 and December 2021 at Kobe University Hospital. We evaluated the data regarding the use of antibiotics within 30 days before ICI initiation, as well as the use of proton pump inhibitors (PPIs) and NSAIDs during ICI initiation. RESULTS A total of 127 patients were assessed, among whom 28 (22.0%) patients received antibiotics, 39 (30.7%) PPIs, and 36 (28.3%) NSAIDs. No significant differences were observed between the patients with and without antibiotic use. However, patients using NSAIDs had significantly worse objective response rates (ORR) and progression-free survival (PFS) with ICI alone or in combination with chemotherapy compared to those who did not (ORR, 47.2% vs. 67.0%; p = 0.045. PFS, 6.3 months vs. 10.8 months; p = 0.02). Patients using PPIs demonstrated a worse ORR of ICI in combination with chemotherapy compared to those who did not (ORR, 45.2% vs. 72.6%; p = 0.013). CONCLUSIONS The unnecessary use of NSAIDs along with immunotherapy should be discouraged.
Collapse
Affiliation(s)
- Jun Yamada
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Takafumi Fukui
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Atsuhiko Yatani
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Chihiro Mimura
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Kiyoko Fukuda
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
47
|
Srikrishnaraj A, Lanting BA, Burton JP, Teeter MG. The Microbial Revolution in the World of Joint Replacement Surgery. JB JS Open Access 2024; 9:e23.00153. [PMID: 38638595 PMCID: PMC11023614 DOI: 10.2106/jbjs.oa.23.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and systemic inflammation are a novel area of research. Methods A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in bone health and PJI was performed. Results There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI. Conclusions Emerging evidence supports the role of the gut microbiota in the development of complications such as aseptic loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal microbial transplantation to moderate the risk of developing these complications. However, further investigation is required. Clinical Relevance Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.
Collapse
Affiliation(s)
- Arjuna Srikrishnaraj
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brent A. Lanting
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Jeremy P. Burton
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Matthew G. Teeter
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
48
|
Olson S, Welton L, Jahansouz C. Perioperative Considerations for the Surgical Treatment of Crohn's Disease with Discussion on Surgical Antibiotics Practices and Impact on the Gut Microbiome. Antibiotics (Basel) 2024; 13:317. [PMID: 38666993 PMCID: PMC11047551 DOI: 10.3390/antibiotics13040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Crohn's disease, a chronic inflammatory process of the gastrointestinal tract defined by flares and periods of remission, is increasing in incidence. Despite advances in multimodal medical therapy, disease progression often necessitates multiple operations with high morbidity. The inability to treat Crohn's disease successfully is likely in part because the etiopathogenesis is not completely understood; however, recent research suggests the gut microbiome plays a critical role. How traditional perioperative management, including bowel preparation and preoperative antibiotics, further changes the microbiome and affects outcomes is not well described, especially in Crohn's patients, who are unique given their immunosuppression and baseline dysbiosis. This paper aims to outline current knowledge regarding perioperative management of Crohn's disease, the evolving role of gut dysbiosis, and how the microbiome can guide perioperative considerations with special attention to perioperative antibiotics as well as treatment of Mycobacterium avium subspecies paratuberculosis. In conclusion, dysbiosis is common in Crohn's patients and may be exacerbated by malnutrition, steroids, narcotic use, diarrhea, and perioperative antibiotics. Dysbiosis is also a major risk factor for anastomotic leak, and special consideration should be given to limiting factors that further perturb the gut microbiota in the perioperative period.
Collapse
Affiliation(s)
- Shelbi Olson
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.O.); (L.W.)
| | - Lindsay Welton
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.O.); (L.W.)
| | - Cyrus Jahansouz
- Division of Colon and Rectal Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
49
|
Zhang L, Wang P, Huang J, Xing Y, Wong FS, Suo J, Wen L. Gut microbiota and therapy for obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1333778. [PMID: 38596222 PMCID: PMC11002083 DOI: 10.3389/fendo.2024.1333778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
There has been a major increase in Type 2 diabetes and obesity in many countries, and this will lead to a global public health crisis, which not only impacts on the quality of life of individuals well but also places a substantial burden on healthcare systems and economies. Obesity is linked to not only to type 2 diabetes but also cardiovascular diseases, musculoskeletal disorders, and certain cancers, also resulting in increased medical costs and diminished quality of life. A number of studies have linked changes in gut in obesity development. Dysbiosis, a deleterious change in gut microbiota composition, leads to altered intestinal permeability, associated with obesity and Type 2 diabetes. Many factors affect the homeostasis of gut microbiota, including diet, genetics, circadian rhythms, medication, probiotics, and antibiotics. In addition, bariatric surgery induces changes in gut microbiota that contributes to the metabolic benefits observed post-surgery. Current obesity management strategies encompass dietary interventions, exercise, pharmacotherapy, and bariatric surgery, with emerging treatments including microbiota-altering approaches showing promising efficacy. While pharmacotherapy has demonstrated significant advancements in recent years, bariatric surgery remains one of the most effective treatments for sustainable weight loss. However, access to this is generally limited to those living with severe obesity. This underscores the need for non-surgical interventions, particularly for adolescents and mildly obese patients. In this comprehensive review, we assess longitudinal alterations in gut microbiota composition and functionality resulting from the two currently most effective anti-obesity treatments: pharmacotherapy and bariatric surgery. Additionally, we highlight the functions of gut microbiota, focusing on specific bacteria, their metabolites, and strategies for modulating gut microbiota to prevent and treat obesity. This review aims to provide insights into the evolving landscape of obesity management and the potential of microbiota-based approaches in addressing this pressing global health challenge.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
50
|
Zhao H, Chai S, Wen Q, Wang S, Zhan S. Risk of type 2 diabetes and long-term antibiotic use in childhood: Evidence from the UK Biobank. Diabetes Res Clin Pract 2024; 209:111571. [PMID: 38342442 DOI: 10.1016/j.diabres.2024.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
AIMS This study aimed to investigate the association between long-term use of antibiotics during childhood and the risk of type 2 diabetes mellitus (T2DM) using a prospective cohort from the UK Biobank. METHODS Participants in the UK Biobank who completed the online survey for digestive health were included in this prospective cohort study. A Cox regression model adjusted for sociodemographic characteristics, general health factors, mental health, lifestyle factors, comorbidities, and medication use was used to estimate the hazard ratio (HR) and confidence interval (CI) of the association between long-term use of antibiotics in the childhood and incident T2DM. RESULTS The final analyses included 152,992 participants and 22,133 of them received long-term/recurrent antibiotics as children or teenagers. During the follow-up, 3370 and 681 incident T2DM cases occurred in the non-exposed and exposed groups respectively. Long-term use of antibiotics in childhood was associated with an increased risk of T2DM, with an HR of 1.16 (95 % CI, 1.07-1.27) after adjusting for potential confounders. Results in the subgroup analyses and sensitivity analyses were highly consistent with the primary analyses. CONCLUSIONS Long-term use of antibiotics in childhood is associated with the risk of T2DM in middle and old age in the UK Biobank population.
Collapse
Affiliation(s)
- Houyu Zhao
- School of Medicine, Chongqing University, Chongqing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Sanbao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China
| | - Qiaorui Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China.
| |
Collapse
|