1
|
McElwee KJ, Sundberg JP. Innovative strategies for the discovery of new drugs against androgenetic alopecia. Expert Opin Drug Discov 2025; 20:517-536. [PMID: 40029254 DOI: 10.1080/17460441.2025.2473905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Androgenetic alopecia (AGA) is the most common cause of hair loss worldwide. The significant psychological and social impact of AGA continues to drive demand for more effective treatments beyond the limited options currently available. AREAS COVERED The authors review the key components of AGA pathogenesis, as well as current treatments, and therapeutic techniques under development. Innovative strategies for AGA drug discovery are still needed, given the significant unmet medical needs and the limited efficacy of both current and emerging treatments. The authors outline relevant preclinical models, such as hair follicle (HF) cell cultures, 3D spheroids, organoids, follicle explants, and animal models, highlighting their advantages and limitations in AGA research. Finally, they summarize the primary objectives in AGA treatment development, including direct hair growth promotion, interference with androgen signaling, and HF rejuvenation, identifying key pathogenesis intervention points for treatment development. EXPERT OPINION Developing better in vitro models, possibly using induced pluripotent stem cell (iPSC) systems, could greatly accelerate drug discovery. Similarly, a superior in vivo model could significantly expedite drug discovery. Near future development research should focus on drug delivery improvements. Longer term, treatments targeting AGA's underlying pathophysiology and promoting HF rejuvenation or true regeneration would provide the most benefit to prospective patients.
Collapse
Affiliation(s)
- Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
You J, Jang Y, Sim J, Ryu D, Cho E, Park D, Jung E. Anti-Hair Loss Effect of Veratric Acid on Dermal Papilla Cells. Int J Mol Sci 2025; 26:2240. [PMID: 40076862 PMCID: PMC11900597 DOI: 10.3390/ijms26052240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
The activation of hair follicle dermal papilla cells (HFDPCs), a critical target of hair loss relief, can be achieved through the upregulation of proliferation, the stimulation of hair inducibility, and the inhibition of cellular senescence. Veratric acid (VA) is a major benzoic acid found in fruits and vegetables. The biological activity of VA on HFDPCs remains to be elucidated. In this study, we investigated the capacity of VA for hair loss mitigation. An MTT assay, Ki67 staining, quantitative RT-PCR (qRT-PCR), and a Western blot analysis were performed to confirm the proliferative effect of VA. Hair inductivity was determined through a cell aggregation assay and ALP staining. Annexin V/PI staining was performed to confirm the anti-apoptotic effect of VA. The inhibitory effect of VA on cellular senescence was confirmed by a β-galactosidase (β-gal) assay and qRT-PCR using replicative senescence and oxidative stress-induced senescence models. As a result, VA dose-dependently upregulated the proliferation of HFDPCs, the expression of growth factors, and β-catenin protein levels. VA also dose-dependently increased ALP activity and cell aggregation and decreased apoptotic cells through the regulation of BCL2 and BAX expression. Moreover, VA reduced β-gal activity and the senescence-associated secretory phenotype (SASP) in a dose-dependent manner in senescent HFDPCs. These findings suggest that VA may serve as a potential therapeutic agent for alleviating hair loss by targeting multiple pathways involved in HFDPC activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eunsun Jung
- Biospectrum Life Science Institute, Sinsu-ro, Suji-gu, Yongin-City 16827, Gyeonggi-Do, Republic of Korea; (J.Y.); (Y.J.); (J.S.); (D.R.); (E.C.); (D.P.)
| |
Collapse
|
3
|
Chu X, Zhou Z, Qian X, Shen H, Cheng H, Zhang J. Functional regeneration strategies of hair follicles: advances and challenges. Stem Cell Res Ther 2025; 16:77. [PMID: 39985119 PMCID: PMC11846195 DOI: 10.1186/s13287-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
Hair follicles are essential appendages of human skin that function in protection, sensation, thermoregulation and social interactions. The multicellular components, particularly the dermal papilla, matrix and bulge housing stem cells, enable cyclic hair growth postnatally. However, miniaturization and loss of hair follicles can occur in the context of ageing, trauma and various alopecia-related diseases. Conventional treatments involve the redistribution of existing follicles, which may not be viable in patients lacking follicular resources. Recent progress in the comprehension of morphogenesis and the development of biomaterials has significantly advanced follicle reconstruction, incorporating organ germ assembling, stem cell induction and bioprinting techniques. Despite these advancements, fully restoring hair follicles remains challenging due to the complexities of replicating embryonic signals and sustaining growth cycles. Identifying suitable cell sources for clinical applications also presents a hurdle. Here, we retrospect the progress made in the field of hair follicle regeneration, aiming to offer an exhaustive analysis on the benefits and limitations of these methods, and to foster the development of innovative solutions.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Shen
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Hanxiao Cheng
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
4
|
Hamida OB, Kim MK, Sung YK, Kim MK, Kwack MH. Hair Regeneration Methods Using Cells Derived from Human Hair Follicles and Challenges to Overcome. Cells 2024; 14:7. [PMID: 39791708 PMCID: PMC11720663 DOI: 10.3390/cells14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI). Many studies have developed and focused on various methods to optimize the EMI through in vivo and in vitro approaches for hair regeneration. The culturing of human hair mesenchymal cells resulted in the loss of trichogenicity and inductive properties of DP cells, limiting their potential application in de novo hair follicle generation in vivo. Epithelial stem cells derived from human hair follicles are challenging to isolate and culture, making it difficult to obtain enough cells for hair regeneration purposes. Mesenchymal stem cells and epithelial stem cells derived from human hair follicles lose their ability to form hair follicles during culture, limiting the study of hair follicle formation in vivo. Therefore, many attempts and methods have been developed to overcome these limitations. Here, we review the possible and necessary cell methods and techniques used for human hair follicle regeneration and the restoration of hair follicle cell inductivity in culture.
Collapse
Affiliation(s)
- Ons Ben Hamida
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| |
Collapse
|
5
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
6
|
Lee E, Choi MS, Cho BS, Won YJ, Lee JH, Kim SR, Kim MH, Jeon JH, Park GH, Kwon HH, Lee J, Park KY, Park BC. The efficacy of adipose stem cell-derived exosomes in hair regeneration based on a preclinical and clinical study. Int J Dermatol 2024; 63:1212-1220. [PMID: 39155501 DOI: 10.1111/ijd.17406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a prevalent hair loss disorder with psychological repercussions. Traditional treatments have limitations, leading to the exploration of regenerative therapies such as exosomes derived from adipose tissue stem cells (ASC-Exosomes). METHODS First, using human hair follicle (HF) dermal papilla cells (hDPCs) treated with ASC-Exosomes, ALP, VCAN, β-catenin, and LEF-1 levels with RT-PCR and p-GSK3β, GSK3β, β-catenin, ALP, and β-actin levels with western blot analysis were assessed. Hair shaft elongation test and assay for ALP, Ki-67, and β-catenin were done using human HF organ culture. Patients with AGA had ASC-Exosomes treatment and were evaluated for hair counts, photographic assessments, subjective satisfaction, and safety profiles. RESULTS ASC-Exosomes impact hDPCs, increasing proliferation and the upregulation of hair growth-related genes, including ALP, VCAN, β-catenin, and LEF-1. The Wnt/β-catenin pathway was activated, indicating their role in promoting hair growth. ASC-Exosomes also promoted hair shaft elongation and ALP activity, suggesting a potential for hair regeneration. Thirty participants with AGA enrolled and treated over 24 weeks. The subjects experienced a significant increase in total hair density, improved global photographic assessments, and reported higher subjective satisfaction without severe adverse reactions. CONCLUSION This research contributes to the growing body of evidence supporting the use of exosomes in hair loss treatment, offering a safe and effective alternative for individuals with AGA.
Collapse
Affiliation(s)
- Ester Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Republic of Korea
| | - Mi Soo Choi
- Department of Dermatology, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Dermatologic Translational Research Institute, Cheonan, Republic of Korea
| | - Byong Seong Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Republic of Korea
| | - Yu Jin Won
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Republic of Korea
| | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, Republic of Korea
| | - Soon Re Kim
- Dermatologic Translational Research Institute, Cheonan, Republic of Korea
| | - Myung Hwa Kim
- Department of Dermatology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ju Hung Jeon
- Department of Dermatology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | | | | | - Joon Lee
- Dod Dermatologic Clinic, Seoul, Republic of Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Byung Cheol Park
- Department of Dermatology, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Dermatologic Translational Research Institute, Cheonan, Republic of Korea
| |
Collapse
|
7
|
Kim S, Jeon KB, Park HM, Kim J, Lim CM, Yoon DY. Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7. J Microbiol Biotechnol 2024; 34:506-515. [PMID: 37994116 PMCID: PMC11016756 DOI: 10.4014/jmb.2310.10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.
Collapse
Affiliation(s)
- Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Kwack MH, Hamida OB, Kim MK, Kim MK, Sung YK. Establishment and characterization of matched immortalized human frontal and occipital scalp dermal papilla cell lines from androgenetic alopecia. Sci Rep 2023; 13:21421. [PMID: 38049592 PMCID: PMC10696020 DOI: 10.1038/s41598-023-48942-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Androgenetic alopecia (AGA), also known as male pattern baldness, is a common hair loss condition influenced by genetic and hormonal factors. Variations in gene expression and androgen responsiveness have been observed between the frontal and occipital regions of AGA patients. However, obtaining and cultivating frontal hair follicles is challenging. Therefore, no matched frontal and occipital dermal papilla (DP) cell lines have been reported yet. This study aimed to establish matched immortalized human frontal and occipital scalp DP cell lines from AGA patients. Simian virus 40 large T antigen (SV40T-Ag) and human telomerase reverse transcriptase (hTERT) were introduced into primary human DP cells. The obtained cell lines were characterized by assessing their gene expression patterns, androgen receptor (AR) levels, and the presence of 5-alpha reductase (5αR). Additionally, we examined their response to dihydrotestosterone (DHT) and evaluated cell viability. The conditioned medium from the frontal DP cell line inhibited human hair follicle growth, leading to reduced keratinocyte proliferation and increased apoptosis. Furthermore, when the cells were cultured in a 3D environment mimicking in vivo conditions, the 3D cultured frontal DP cell line exhibited weaker sphere aggregation than the occipital DP cell line due to the increased expression of matrix metalloproteinase 1 (MMP1), MMP3, and MMP9. Additionally, the expression of DP signature genes was inhibited in the 3D cultured frontal DP cell line. These matched frontal and occipital DP cell lines hold significant potential as valuable resources for research on hair loss. Their establishment allows us to investigate the differences between frontal and occipital DP cells, contributing to a better understanding of the molecular mechanisms underlying AGA. Furthermore, these cell lines may be valuable for developing targeted therapeutic approaches for hair loss conditions.
Collapse
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea.
| | - Ons Ben Hamida
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| |
Collapse
|
9
|
Wang Y, Shen K, Sun Y, Cao P, Zhang J, Zhang W, Liu Y, Zhang H, Chen Y, Li S, Xu C, Han C, Qiao Y, Zhang Q, Wang B, Luo L, Yang Y, Guan H. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis. BURNS & TRAUMA 2023; 11:tkad034. [PMID: 37908562 PMCID: PMC10615254 DOI: 10.1093/burnst/tkad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 11/02/2023]
Abstract
Background Non-healing wounds are an intractable problem of major clinical relevance. Evidence has shown that dermal papilla cells (DPCs) may regulate the wound-healing process by secreting extracellular vesicles (EVs). However, low isolation efficiency and restricted cell viability hinder the applications of DPC-EVs in wound healing. In this study, we aimed to develop novel 3D-DPC spheroids (tdDPCs) based on self-feeder 3D culture and to evaluate the roles of tdDPC-EVs in stimulating angiogenesis and skin wound healing. Methods To address the current limitations of DPC-EVs, we previously developed a self-feeder 3D culture method to construct tdDPCs. DPCs and tdDPCs were identified using immunofluorescence staining and flow cytometry. Subsequently, we extracted EVs from the cells and compared the effects of DPC-EVs and tdDPC-EVs on human umbilical vein endothelial cells (HUVECs) in vitro using immunofluorescence staining, a scratch-wound assay and a Transwell assay. We simultaneously established a murine model of full-thickness skin injury and evaluated the effects of DPC-EVs and tdDPC-EVs on wound-healing efficiency in vivo using laser Doppler, as well as hematoxylin and eosin, Masson, CD31 and α-SMA staining. To elucidate the underlying mechanism, we conducted RNA sequencing (RNA-seq) of tdDPC-EV- and phosphate-buffered saline-treated HUVECs. To validate the RNA-seq data, we constructed knockdown and overexpression vectors of Krüppel-like factor 4 (KLF4). Western blotting, a scratch-wound assay, a Transwell assay and a tubule-formation test were performed to detect the protein expression, cell migration and lumen-formation ability of KLF4 and vascular endothelial growth factor A (VEGFA) in HUVECs incubated with tdDPC-EVs after KLF4 knockdown or overexpression. Dual-luciferase reporter gene assays were conducted to verify the activation effect of KLF4 on VEGFA. Results We successfully cultured tdDPCs and extracted EVs from DPCs and tdDPCs. The tdDPC-EVs significantly promoted the proliferation, lumen formation and migration of HUVECs. Unlike DPC-EVs, tdDPC-EVs exhibited significant advantages in terms of promoting angiogenesis, accelerating wound healing and enhancing wound-healing efficiency both in vitro and in vivo. Bioinformatics analysis and further functional experiments verified that the tdDPC-EV-regulated KLF4/VEGFA axis is pivotal in accelerating wound healing. Conclusions 3D cultivation can be utilized as an innovative optimization strategy to effectively develop DPC-derived EVs for the treatment of skin wounds. tdDPC-EVs significantly enhance wound healing via KLF4/VEGFA-driven angiogenesis.
Collapse
Affiliation(s)
- Yunwei Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yulin Sun
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Peng Cao
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, 804 South Shengli Street, Yinchuan, 750004, China
| | - Jia Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Hao Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yang Chen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Shaohui Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Chaolei Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Chao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yating Qiao
- Department of hair diagnosis and treatment, Peking University Shougang Hospital, 9 Jinyuanzhuang Road, Beijing, 100144, China
| | - Qingyi Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Bin Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| |
Collapse
|
10
|
Motter Catarino C, Cigaran Schuck D, Dechiario L, Karande P. Incorporation of hair follicles in 3D bioprinted models of human skin. SCIENCE ADVANCES 2023; 9:eadg0297. [PMID: 37831765 PMCID: PMC10575578 DOI: 10.1126/sciadv.adg0297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Current approaches fail to adequately introduce complex adnexal structures such as hair follicles within tissue engineered models of skin. Here, we report on the use of 3D bioprinting to incorporate these structures in engineered skin tissues. Spheroids, induced by printing dermal papilla cells (DPCs) and human umbilical vein cells (HUVECs), were precisely printed within a pregelled dermal layer containing fibroblasts. The resulting tissue developed hair follicle-like structures upon maturation, supported by migration of keratinocytes and melanocytes, and their morphology and composition grossly mimicked that of the native skin tissue. Reconstructed skin models with increased complexity that better mimic native adnexal structures can have a substantial impact on regenerative medicine as grafts and efficacy models to test the safety of chemical compounds.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Grupo Boticário, Curitiba, Paraná, Brazil
| | | | - Lexi Dechiario
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
11
|
Park S, Han N, Lee JM, Lee JH, Bae S. Effects of Allium hookeri Extracts on Hair-Inductive and Anti-Oxidative Properties in Human Dermal Papilla Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091919. [PMID: 37176977 PMCID: PMC10181221 DOI: 10.3390/plants12091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and cellular senescence in dermal papilla cells (DPCs) are major etiological factors causing hair loss. In this study, the effect of the Allium hookeri extract (AHE) on hair-inductive and anti-oxidative properties was investigated in human DPCs. As a result, it was found that a non-cytotoxic concentration of the extracts increased the viability and size of the human DPC spheroid, which was associated with the increased expression of hair-growth-related genes in cells. To determine whether or not these effects could be attributed to intracellular anti-oxidative effects, liquid chromatography-mass spectrometry alongside various biochemical analyses are conducted herein. An ingredient called alliin was identified as one of the main components. Furthermore, AHE treatment induced a significant decrease in H2O2-mediated cytotoxicities, cell death, and cellular senescence in human DPCs. Upon analyzing these results with a molecular mechanism approach, it was shown that AHE treatment increased β-Catenin and NRF2 translocation into the nucleus while inhibiting the translocation of NF-κB (p50) through p38 and PKA-mediated phosphorylations of GSK3β, an upstream regulator of those proteins. These results overall indicate the possibility that AHE can regulate GSK3β-mediated β-Catenin, NRF2, and NF-κB signaling to enhance hair-inductive properties and ultimately protect against oxidative stress-induced cellular damage in human DPCs.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nayeon Han
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jung-Min Lee
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jae-Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
13
|
Andl T, Zhou L, Zhang Y. The dermal papilla dilemma and potential breakthroughs in bioengineering hair follicles. Cell Tissue Res 2023; 391:221-233. [PMID: 36562864 PMCID: PMC9898212 DOI: 10.1007/s00441-022-03730-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The generation and growing of de novo hair follicles is the most daring hair replacement approach to treat alopecia. This approach has been explored at least since the 1960s without major success. Latest in the 1980s, the realization that the mesenchymal compartment of hair follicles, the dermal papilla (DP), is the crucial signaling center and element required for fulfilling this vision of hair follicle engineering, propelled research into the fibroblasts that occupy the DP. However, working with DP fibroblasts has been stubbornly frustrating. Decades of work in understanding the nature of DP fibroblasts in vitro and in vivo have led to the appreciation that hair follicle biology is complex, and the dermal papilla is an enigma. Functional DP fibroblasts tend to aggregate in 2D culture, while impaired DP cells do not. This fact has stimulated recent approaches to overcome the hurdles to DP cell culture by mimicking their natural habitat, such as growing DP fibroblasts in three dimensions (3D) by their self-aggregation, adopting 3D matrix scaffold, or bioprinting 3D microstructures. Furthermore, including keratinocytes in the mix to form hair follicle-like composite structures has been explored but remains a far cry from a useful and affordable method to generate human hair follicles in sufficient quantity and quality in a practical time frame for patients. This suggests that the current strategies may have reached their limitations in achieving successful hair follicle bioengineering for clinical applications. Novel approaches are required to overcome these barriers, such as focusing on embryonic cell types and processes in combination with emerging techniques.
Collapse
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Linli Zhou
- Division of Pharmaceutical Science, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Science, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
14
|
Wang S, Hu T, He M, Gu Y, Cao X, Yuan Z, Lv X, Getachew T, Quan K, Sun W. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties. Front Vet Sci 2023; 10:1127501. [PMID: 36923053 PMCID: PMC10009177 DOI: 10.3389/fvets.2023.1127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/β-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/β-catenin agonist and antagonist, we demonstrated that Wnt/β-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China.,"Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
15
|
Xu K, Yu E, Wu M, Wei P, Yin J. Cells, growth factors and biomaterials used in tissue engineering for hair follicles regeneration. Regen Ther 2022; 21:596-610. [DOI: 10.1016/j.reth.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
|
16
|
Zhang Y, Yin P, Huang J, Yang L, Liu Z, Fu D, Hu Z, Huang W, Miao Y. Scalable and high-throughput production of an injectable platelet-rich plasma (PRP)/cell-laden microcarrier/hydrogel composite system for hair follicle tissue engineering. J Nanobiotechnology 2022; 20:465. [PMID: 36329527 PMCID: PMC9632161 DOI: 10.1186/s12951-022-01671-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Tissue engineering of hair follicles (HFs) has enormous potential for hair loss treatment. However, certain challenges remain, including weakening of the dermal papilla cell (DPC) viability, proliferation, and HF inducibility, as well as the associated inefficient and tedious preparation process required to generate extracellular matrix (ECM)-mimicking substrates for biomolecules or cells. Herein, we utilized gelatin methacryloyl (GelMA) and chitosan hydrogels to prepare scalable, monodispersed, and diameter-controllable interpenetrating network GelMA/chitosan-microcarriers (IGMs) loaded with platelet-rich plasma (PRP) and seeded with DPCs, on a high-throughput microfluidic chip. RESULTS The ECM-mimicking hydrogels used for IGMs exhibited surface nano-topography and high porosity. Mass production of IGMs with distinct and precise diameters was achieved by adjusting the oil and aqueous phase flow rate ratio. Moreover, IGMs exhibited appropriate swelling and sustained growth factor release to facilitate a relatively long hair growth phase. DPCs seeded on PRP-loaded IGMs exhibited good viability (> 90%), adhesion, spreading, and proliferative properties (1.2-fold greater than control group). Importantly, PRP-loaded IGMs presented a higher hair inducibility of DPCs in vitro compared to the control and IGMs group (p < 0.05). Furthermore, DPC/PRP-laden IGMs were effectively mixed with epidermal cell (EPC)-laden GelMA to form a PRP-loaded DPC/EPC co-cultured hydrogel system (DECHS), which was subcutaneously injected into the hypodermis of nude mice. The PRP-loaded DECHS generated significantly more HFs (~ 35 per site) and novel vessels (~ 12 per site) than the other groups (p < 0.05 for each). CONCLUSION Taken together, these results illustrate that, based on high-throughput microfluidics, we obtained scalable and controllable production of ECM-mimicking IGMs and DECHS, which simulate an effective micro- and macro-environment to promote DPC bioactivity and hair regeneration, thus representing a potential new strategy for HF tissue engineering.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Panjing Yin
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China.
| | - Wenhua Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, PR China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China.
| |
Collapse
|
17
|
Joo HW, Kim MK, Bak SS, Sung YK. Bioengineering of Hair Follicle-like Structure for Validation of Hair Growth Promoting Compounds. Bioengineering (Basel) 2022; 9:645. [PMID: 36354556 PMCID: PMC9687544 DOI: 10.3390/bioengineering9110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/30/2023] Open
Abstract
We aimed to establish screening and efficacy test techniques for use in the development of hair-promoting agents. To this end, we used the dermal papilla cell (DPc)-derived immortalized cell line (SV40T-hTERT DPc) and neonatal foreskin-derived keratinocyte cell line (Ker-CT) to form an immortalized cell-based hair follicle-like structure. The SV40T-hTERT DPc spheroids exhibited a higher cell ratio in the spheroids than primary DPc spheroids, and SV40T-hTERT DPc aggregated with spheroids larger in diameter than primary DPc when the same cell number was seeded into the low-adhesion plate. Microscopic imaging and fluorescence staining results indicated that both primary and immortalized cell combinations form a hair follicle-like structure with a long-stretched keratinocyte layer under the condition that the spheroids have the same diameter as that of in vivo dermal papillary tissue in the hair follicle. The hair follicle-like structure elongation was increased upon treatment with three known hair follicle growth-promoting compounds (minoxidil, tofacitinib, and ascorbic acid) compared with that in the control group. Therefore, using immortalized cells to generate a coherent follicle-like structure, we have developed models for screening and evaluating hair-care materials commonly used in the industry.
Collapse
Affiliation(s)
- Hyun Woo Joo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
18
|
Bae S, Yoon YG, Kim JY, Park IC, An S, Lee JH, Bae S. Melatonin increases growth properties in human dermal papilla spheroids by activating AKT/GSK3β/β-Catenin signaling pathway. PeerJ 2022; 10:e13461. [PMID: 35607451 PMCID: PMC9123888 DOI: 10.7717/peerj.13461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Melatonin, a neurohormone, maybe involved in physiological processes, such as antioxidation, anti-inflammation, and hair growth. In the present study, we investigated the effects of melatonin on proliferation and intracellular signaling in DP cells using a three-dimensional (3D) spheroid culture system that mimics the in vivo hair follicle system. Methods DP cells were incubated in monolayer (2D) and 3D spheroid culture systems. The expression levels of melatonin receptors in DP cells were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The effect of melatonin on the hair-inductive property of DP cells was analyzed using a WST-1-based proliferation assay, determination of DP spheroid size, expression analysis of DP signature genes, and determination of β-catenin stabilization in DP cells. The AKT/GSK3β/β-catenin signaling pathway associated with melatonin-induced β-catenin stabilization in DP cells was investigated by analyzing changes in upstream regulator proteins, including AKT, GSK3β, and their phosphorylated forms. Results The expression levels of the melatonin receptors were higher in human DP cells than in human epidermal keratinocytes and human dermal fibroblast cells. Comparing the expression level according to the human DP cell culture condition, melatonin receptor expression was upregulated in the 3D culture system compared to the traditional two-dimensional monolayer culture system. Cell viability analysis showed that melatonin concentrations up to 1 mM did not affect cell viability. Moreover, melatonin increased the diameter of DP cell 3D spheroids in a dose-dependent manner. Immunoblotting and qRT-PCR analysis revealed that melatonin upregulated the expression of hair growth-related genes, including alkaline phosphatase, bone morphogenetic protein 2, versican, and wingless-int 5A, in a melatonin receptor-dependent manner. Cell fractionation analysis showed that melatonin increased the nuclear localization of β-catenin. This result correlated with the increased transcriptional activation of T-cell factor/lymphoid enhancer factor-responsive luciferase induced by melatonin treatment. Interestingly, melatonin induced the phosphorylation of protein kinase B/AKT at serine 473 residue and GSK-3β at serine 9 residue. To determine whether AKT phosphorylation at serine 473 induced β-catenin nuclear translocation through GSK3β phosphorylation at serine 9, the PI3K/AKT inhibitor LY294002 was cotreated with melatonin. Immunoblotting showed that LY294002 inhibited melatonin-induced phosphorylation of GSK3β at serine 9 residue and β-catenin activation. Conclusion Collectively, this report suggests that melatonin promotes growth properties by activating the AKT/GSK3β/β-catenin signaling pathway through melatonin receptors.
Collapse
Affiliation(s)
- Sowon Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yoo Gyeong Yoon
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea,R&D Planning Dept., Dermalab Co., Ltd, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Ji Yea Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jae Ho Lee
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
19
|
TERT/BMI1-transgenic human dermal papilla cells enhance murine hair follicle formation in vivo. J Dermatol Sci 2022; 106:78-85. [DOI: 10.1016/j.jdermsci.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
|
20
|
Abreu CM, Marques AP. Recreation of a hair follicle regenerative microenvironment: Successes and pitfalls. Bioeng Transl Med 2022; 7:e10235. [PMID: 35079623 PMCID: PMC8780054 DOI: 10.1002/btm2.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle (HF) is an exquisite skin appendage endowed with cyclical regenerative capacity; however, de novo follicle formation does not naturally occur. Consequently, patients suffering from extensive skin damage or hair loss are deprived of the HF critical physiological and/or aesthetic functions, severally compromising skin function and the individual's psychosocial well-being. Translation of regenerative strategies has been prevented by the loss of trichogenic capacity that relevant cell populations undergo in culture and by the lack of suitable human-based in vitro testing platforms. Here, we provide a comprehensive overview of the major difficulties associated with HF regeneration and the approaches used to overcome these drawbacks. We describe key cellular requirements and discuss the importance of the HF extracellular matrix and associated signaling for HF regeneration. Finally, we summarize the strategies proposed so far to bioengineer human HF or hair-bearing skin models and disclose future trends for the field.
Collapse
Affiliation(s)
- Carla M. Abreu
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| |
Collapse
|
21
|
Fukuyama M, Tsukashima A, Kimishima M, Yamazaki Y, Okano H, Ohyama M. Human iPS Cell-Derived Cell Aggregates Exhibited Dermal Papilla Cell Properties in in vitro Three-Dimensional Assemblage Mimicking Hair Follicle Structures. Front Cell Dev Biol 2021; 9:590333. [PMID: 34409023 PMCID: PMC8365839 DOI: 10.3389/fcell.2021.590333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Current approaches for human hair follicle (HF) regeneration mostly adopt cell-autonomous tissue reassembly in a permissive murine intracorporeal environment. This, together with the limitation in human-derived trichogenic starting materials, potentially hinders the bioengineering of human HF structures, especially for the drug discovery and treatment of hair loss disorders. In this study, we attempted to reproduce the anatomical relationship between an epithelial main body and the dermal papilla (DP) within HF in vitro by three-dimensionally assembling columnarly molded human keratinocytes (KCs) and the aggregates of DP cells and evaluated how HF characteristics were reproduced in the constructs. The replaceability of human-induced pluripotent stem cell (hiPSC)-derived DP substitutes was assessed using the aforementioned reconstruction assay. Human DP cell aggregates were embedded into Matrigel as a cluster. Subsequently, highly condensed human KCs were cylindrically injected onto DP spheroids. After 2-week culture, the structures visually mimicking HFs were obtained. KC-DP constructs partially reproduced HF microanatomy and demonstrated differential keratin (KRT) expression pattern in HFs: KRT14 in the outermost part and KRT13, KRT17, and KRT40, respectively, in the inner portion of the main body. KC-DP constructs tended to upregulate HF-related genes, KRT25, KRT33A, KRT82, WNT5A, and LEF1. Next, DP substitutes were prepared by exposing hiPSC-derived mesenchymal cells to retinoic acid and subsequently to WNT, BMP, and FGF signal activators, followed by cell aggregation. The resultant hiPSC-derived DP substitutes (iDPs) were combined with KCs in the invented assay. KC-iDP constructs morphologically resemble KC-DP constructs and analogously mimicked KRT expression pattern in HF. iDP in the constructs expressed DP-related markers, such as vimentin and versican. Intriguingly, KC-iDP constructs more intensely expressed KRT33A, KRT82, and LEF1, which were stepwisely upregulated by the addition of WNT ligand and the mixture of WNT, SHH, and EDA signaling activators, supporting the idea that iDP exhibited biological properties analogous to DP cell aggregates in the constructs in vitro. These preliminary findings suggested the possibility of regenerating DP equivalents with in vitro hair-inductive capacity using hiPSC-derived cell composites, which potentially reduce the necessity of human tissue-derived trichogenic cell subset and eventually allow xeno-free bioengineering of human HFs.
Collapse
Affiliation(s)
- Masahiro Fukuyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Aki Tsukashima
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Momoko Kimishima
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Yoshimi Yamazaki
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Ebner-Peking P, Krisch L, Wolf M, Hochmann S, Hoog A, Vári B, Muigg K, Poupardin R, Scharler C, Schmidhuber S, Russe E, Stachelscheid H, Schneeberger A, Schallmoser K, Strunk D. Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics 2021; 11:8430-8447. [PMID: 34373751 PMCID: PMC8344006 DOI: 10.7150/thno.59661] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.
Collapse
Affiliation(s)
- Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Anna Hoog
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Balázs Vári
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Muigg
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Cornelia Scharler
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | | | - Elisabeth Russe
- Department of Plastic, Aesthetic and Reconstructive Surgery, Hospital Barmherzige Brueder, Salzburg, Austria
| | | | | | - Katharina Schallmoser
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
23
|
Detecting the Mechanism behind the Transition from Fixed Two-Dimensional Patterned Sika Deer ( Cervus nippon) Dermal Papilla Cells to Three-Dimensional Pattern. Int J Mol Sci 2021; 22:ijms22094715. [PMID: 33946876 PMCID: PMC8124381 DOI: 10.3390/ijms22094715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle dermal papilla is critical for hair generation and de novo regeneration. When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable growth patterns under the conventional culture condition: a self-aggregative three dimensional spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected. Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal papilla cells and proved it was the culture condition that determined the dermal papilla growth pattern. The two growth patterns could transit mutually as the culture condition was exchanged. The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when the culture condition was changed. In addition, the global gene expressions during the transition from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways involved in the recovery of 3D pattern and hair inducing capability.
Collapse
|
24
|
Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 2021; 6:66. [PMID: 33594043 PMCID: PMC7886855 DOI: 10.1038/s41392-020-00441-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
The hair follicle (HF) is a highly conserved sensory organ associated with the immune response against pathogens, thermoregulation, sebum production, angiogenesis, neurogenesis and wound healing. Although recent advances in lineage-tracing techniques and the ability to profile gene expression in small populations of cells have increased the understanding of how stem cells operate during hair growth and regeneration, the construction of functional follicles with cycling activity is still a great challenge for the hair research field and for translational and clinical applications. Given that hair formation and cycling rely on tightly coordinated epithelial-mesenchymal interactions, we thus review potential cell sources with HF-inducive capacities and summarize current bioengineering strategies for HF regeneration with functional restoration.
Collapse
Affiliation(s)
- Shuaifei Ji
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Ziying Zhu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaoyan Sun
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaobing Fu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| |
Collapse
|
25
|
Jang S, Ohn J, Kang BM, Park M, Kim KH, Kwon O. "Two-Cell Assemblage" Assay: A Simple in vitro Method for Screening Hair Growth-Promoting Compounds. Front Cell Dev Biol 2020; 8:581528. [PMID: 33330459 PMCID: PMC7732514 DOI: 10.3389/fcell.2020.581528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Alopecia arises due to inadequate hair follicle (HF) stem cell activation or proliferation, resulting in prolongation of the telogen phase of the hair cycle. Increasing therapeutic and cosmetic demand for alleviating alopecia has driven research toward the discovery or synthesis of novel compounds that can promote hair growth by inducing HF stem cell activation or proliferation and initiating the anagen phase. Although several methods for evaluating the hair growth-promoting effects of candidate compounds are being used, most of these methods are difficult to use for large scale simultaneous screening of various compounds. Herein, we introduce a simple and reliable in vitro assay for the simultaneous screening of the hair growth-promoting effects of candidate compounds on a large scale. In this study, we first established a 3D co-culture system of human dermal papilla (hDP) cells and human outer root sheath (hORS) cells in an ultra-low attachment 96-well plate, where the two cell types constituted a polar elongated structure, named "two-cell assemblage (TCA)." We observed that the long axis length of the TCA gradually increased for 5 days, maintaining biological functional integrity as reflected by the increased expression levels of hair growth-associated genes after treatment with hair growth-promoting molecules. Interestingly, the elongation of the TCA was more prominent following treatment with the hair growth-promoting molecules (which occurred in a dose-dependent manner), compared to the control group (p < 0.05). Accordingly, we set the long axis length of the TCA as an endpoint of this assay, using a micro confocal high-content imaging system to measure the length, which can provide reproducible and reliable results in an adequate timescale. The advantages of this assay are: (i) it is physiologically and practically advantageous as it uses 3D cultured two-type human cells which are easily available; (ii) it is simple as it uses length as the only endpoint; and (iii) it is a high throughput system, which screens various compounds simultaneously. In conclusion, the "TCA" assay could serve as an easy and reliable method to validate the hair growth-promoting effect of a large volume of library molecules.
Collapse
Affiliation(s)
- Sunhyae Jang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jungyoon Ohn
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Mi Kang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Park
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyu Han Kim
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ohsang Kwon
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Advanced Medical Therapies in the Management of Non-Scarring Alopecia: Areata and Androgenic Alopecia. Int J Mol Sci 2020; 21:ijms21218390. [PMID: 33182308 PMCID: PMC7664905 DOI: 10.3390/ijms21218390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alopecia is a challenging condition for both physicians and patients. Several topical, intralesional, oral, and surgical treatments have been developed in recent decades, but some of those therapies only provide partial improvement. Advanced medical therapies are medical products based on genes, cells, and/or tissue engineering products that have properties in regenerating, repairing, or replacing human tissue. In recent years, numerous applications have been described for advanced medical therapies. With this background, those therapies may have a role in the treatment of various types of alopecia such as alopecia areata and androgenic alopecia. The aim of this review is to provide dermatologists an overview of the different advanced medical therapies that have been applied in the treatment of alopecia, by reviewing clinical and basic research studies as well as ongoing clinical trials.
Collapse
|
27
|
Bak SS, Park JM, Oh JW, Kim JC, Kim MK, Sung YK. Knockdown of FOXA2 Impairs Hair-Inductive Activity of Cultured Human Follicular Keratinocytes. Front Cell Dev Biol 2020; 8:575382. [PMID: 33117803 PMCID: PMC7578224 DOI: 10.3389/fcell.2020.575382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
Reciprocal interactions between hair-inductive dermal cells and epidermal cells are essential for de novo genesis of hair follicles. Recent studies have shown that outer root sheath (ORS) follicular keratinocytes can be expanded in vitro, but the cultured cells often lose receptivity to hair-inducing dermal signals. In this study, we first investigated whether the hair-inductive activity (trichogenicity) of cultured human ORS follicular keratinocytes was correlated with the cultivation period. ORS follicular keratinocytes from the scalp were cultured for 3, 4, 5, or 6 weeks and were then implanted into nude mice along with freshly isolated neonatal mouse dermal cells. We observed that the trichogenicity of the implanted ORS cells was inversely correlated with their cultivation period. These initial findings prompted us to investigate the differentially expressed genes between the short-term (20 days) and long-term (42 days) cultured ORS cells, trichogenic and non-trichogenic, respectively, by microarray analysis. We found that forkhead box protein A2 (FOXA2) was the most up-regulated transcription factor in the trichogenic ORS cells. Thus, we investigated whether the trichogenicity of the cells was affected by FOXA2 expression. We found a significant decrease in the number of induced hair follicles when the ORS cells were transfected with a FOXA2 small interfering RNA versus control small interfering RNA. Taken together, our data strongly suggest that FOXA2 significantly influences the trichogenicity of human ORS cells.
Collapse
Affiliation(s)
- Soon-Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Min Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, South Korea.,Clinical Omics Institute, Kyungpook National University, Daegu, South Korea
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, South Korea.,Clinical Omics Institute, Kyungpook National University, Daegu, South Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
28
|
Woappi Y, Altomare D, Creek KE, Pirisi L. Self-assembling 3D spheroid cultures of human neonatal keratinocytes have enhanced regenerative properties. Stem Cell Res 2020; 49:102048. [PMID: 33128954 PMCID: PMC7805020 DOI: 10.1016/j.scr.2020.102048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Relative to conventional two-dimensional (2-D) culture, three-dimensional (3-D) suspension culture of epithelial cells more closely mimics the in vivo cell microenvironment regarding cell architecture, cell to matrix interaction, and osmosis exchange. However, primary normal human keratinocytes (NHKc) rapidly undergo terminal differentiation and detachment-induced cell death (anoikis) upon disconnection from the basement membrane, thus greatly constraining their use in 3-D suspension culture models. Here, we examined the 3-D anchorage-free growth potential of NHKc isolated from neonatal skin explants of 59 different individuals. We found that 40% of all isolates naturally self-assembled into multicellular spheroids within 24 h in anchorage-free culture, while 60% did not. Placing a single spheroid back into 2-D monolayer culture yielded proliferating cells that expressed elevated levels of nuclear P63 and basal cytokeratin 14. These cells also displayed prolonged keratinocyte renewal and a gene expression profile corresponding to cellular heterogeneity, quiescence, and de-differentiation. Notably, spheroid-derived (SD) NHKc were enriched for a P63/K14 double-positive population that formed holoclonal colonies and reassembled into multicellular spheroids during 3-D suspension subculture. This study reveals marked phenotypic differences in neonatal keratinocyte suspension cultures isolated from different individuals and present a model system that can be readily employed to study epithelial cell behavior, along with a variety of dermatological diseases.
Collapse
Affiliation(s)
- Yvon Woappi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
29
|
Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacol Physiol 2020; 33:280-292. [PMID: 33053562 DOI: 10.1159/000510152] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022]
Abstract
The dermal papilla comprises mesenchymal cells in hair follicles, which play the main role in regulating hair growth. Maintaining the potential hair inductivity of dermal papilla cells (DPCs) and dermal sheath cells during cell culture is the main factor in in vitro morphogenesis and regeneration of hair follicles. Using common methods for the cultivation of human dermal papilla reduces the maintenance requirements of the inductive capacity of the dermal papilla and the expression of specific dermal papilla biomarkers. Optimizing culture conditions is therefore crucial for DPCs. Moreover, exosomes appear to play a key role in regulating the hair follicle growth through a paracrine mechanism and provide a functional method for treating hair loss. The present review investigated the biology of DPCs, the molecular and cell signaling mechanisms contributing to hair follicle growth in humans, the properties of the dermal papilla, and the effective techniques in maintaining hair inductivity in DPC cultures in humans as well as hair follicle bioengineering.
Collapse
Affiliation(s)
- Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasser Aghdami
- Department of Regenerative medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
30
|
Kim MK, Kwack MH, Kim MK, Kim JC, Sung YK. Expression level of leucine-rich repeat containing 15 regulates characteristics of dermal papilla cells of human hair follicle. J Dermatol Sci 2020; 101:134-137. [PMID: 33323297 DOI: 10.1016/j.jdermsci.2020.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
31
|
Kanayama K, Takada H, Saito N, Kato H, Kinoshita K, Shirado T, Mashiko T, Asahi R, Mori M, Tashiro K, Sunaga A, Kurisaki A, Yoshizato K, Yoshimura K. Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen. Tissue Eng Part A 2020; 26:1147-1157. [PMID: 32408803 DOI: 10.1089/ten.tea.2019.0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O2), physiological/normoxic (6% O2), or hypoxic (1% O2) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4, LEF1, SOX2, and VCAN. In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY, NR0B1, MSX2, IFITM1, and DAZL, compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications. Impact statement Dermal sheath cells (DSCs) and dermal papilla cells (DPCs) are useful cell sources for cell-based regenerative therapy. This is the first report to describe that low-oxygen conditions are better for DSCs. Normoxic and hypoxic culture of DSCs is beneficial for expanding these hair follicular cells and advancing development of cell-based therapy for both wound healing and hair regeneration. The current study supports that optimized oxygen tension can be applied to use expanded human DPCs and DSCs for skin engineering and clinical applications.
Collapse
Affiliation(s)
- Koji Kanayama
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Hitomi Takada
- Laboratory of Stem Cell Technology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma City, Japan
| | - Natsumi Saito
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Harunosuke Kato
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kahori Kinoshita
- Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takako Shirado
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Takanobu Mashiko
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Rintaro Asahi
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Masanori Mori
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kensuke Tashiro
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Akira Kurisaki
- Laboratory of Stem Cell Technology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma City, Japan
| | - Katsutoshi Yoshizato
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Synthetic Biology Laboratory, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| |
Collapse
|
32
|
Zhang K, Bai X, Yuan Z, Cao X, Jiao X, Qin Y, Wen Y, Zhang X. Cellular Nanofiber Structure with Secretory Activity-Promoting Characteristics for Multicellular Spheroid Formation and Hair Follicle Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7931-7941. [PMID: 32003218 DOI: 10.1021/acsami.9b21125] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicellular spheroids can mimic the in vivo microenvironment and maintain the unique functions of tissues, which has attracted great attention in tissue engineering. However, the traditional culture microenvironment with structural deficiencies complicates the culture and collection process and tends to lose the function of multicellular spheroids with the increase of cell passage. In order to construct efficient and functional multicellular spheroids, in this study, a chitosan/polyvinyl alcohol nanofiber sponge which has an open-cell cellular structure is obtained. The hair follicle (HF) regeneration model was employed to evaluate HF-inducing ability of dermal papilla (DP) multicellular spheroids which formed on the cellular structure nanofiber sponge. Through structural fine-tuning, the nanofiber sponge has appropriate elasticity for the creation of a three-dimensional dynamic microenvironment to regulate cellular behavior. The cellular structure nanofiber sponge tilts the balance of cell-substratum and cell-cell interactions to a state which is more conducive to the formation of controllable multicellular spheroids in a short time. More importantly, it improves the secretory activity of high-passaged dermal papilla cells and restores their intrinsic properties. Experiments using BALB/c nude mice show that cultured DP multicellular spheroids could effectively enhance HF-inducing ability. This novel system provides a simple and efficient strategy for multicellular spheroid formation and HF regeneration.
Collapse
Affiliation(s)
- Kexin Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Zhipeng Yuan
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| |
Collapse
|
33
|
Platelet-derived growth factor-AA-inducible epiregulin promotes elongation of human hair shafts by enhancing proliferation and differentiation of follicular keratinocytes. J Dermatol Sci 2020; 97:168-170. [PMID: 31964549 DOI: 10.1016/j.jdermsci.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
|
34
|
Chen Y, Huang J, Chen R, Yang L, Wang J, Liu B, Du L, Yi Y, Jia J, Xu Y, Chen Q, Ngondi DG, Miao Y, Hu Z. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Am J Cancer Res 2020; 10:1454-1478. [PMID: 31938074 PMCID: PMC6956798 DOI: 10.7150/thno.39566] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration. However, the instability of EVs in vivo and their low long-term retention after transplantation hinder their use in clinical applications. Methods: Human DP-EVs were encapsulated in partially oxidized sodium alginate (OSA) hydrogels, yielding OSA-encapsulated EVs (OSA-EVs), which act as a sustained-release system to increase the potential therapeutic effect of DP-EVs. The ability of the OSA-EVs to protect protein was assessed. The hair regeneration capacity of OSA-EVs, as well as the underlying mechanism, was explored in hair organ culture and a mouse model of depilation. Results: The OSA-EVs were approximately 100 μm in diameter, and as the hydrogel degraded, DP-EVs were gradually released. In addition, the hydrogel markedly increased the stability of vesicular proteins and increased the retention of EVs in vitro and in vivo. The OSA-EVs significantly facilitated proliferation of hair matrix cells, prolonged anagen phase in cultured human hairs, and accelerated the regrowth of back hair in mice after depilation. These effects may be due to upregulation of hair growth-promoting signaling molecules such as Wnt3a and β-catenin, and downregulation of inhibitory molecule BMP2. Conclusion: This study demonstrated that OSA hydrogels promote the therapeutic effects of DP-EVs, and indicate that our novel OSA-EVs could be used to treat alopecia.
Collapse
|
35
|
Castro AR, Logarinho E. Tissue engineering strategies for human hair follicle regeneration: How far from a hairy goal? Stem Cells Transl Med 2019; 9:342-350. [PMID: 31876379 PMCID: PMC7031632 DOI: 10.1002/sctm.19-0301] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The demand for an efficient therapy for alopecia disease has fueled the hair research field in recent decades. However, despite significant improvements in the knowledge of key processes of hair follicle biology such as genesis and cycling, translation into hair follicle replacement therapies has not occurred. Great expectation has been recently put on hair follicle bioengineering, which is based on the development of fully functional hair follicles with cycling activity from an expanded population of hair‐inductive (trichogenic) cells. Most bioengineering approaches focus on in vitro reconstruction of folliculogenesis by manipulating key regulatory molecular/physical features of hair follicle growth/cycling in vivo. Despite their great potential, no cell‐based product is clinically available for hair regeneration therapy to date. This is mainly due to demanding issues that still hinder the functionality of cultured human hair cells. The present review comprehensively compares emergent strategies using different cell sources and tissue engineering approaches, aiming to successfully achieve a clinical cure for hair loss. The hurdles of these strategies are discussed, as well as the future directions to overcome the obstacles and fulfill the promise of a “hairy” feat.
Collapse
Affiliation(s)
- Ana Rita Castro
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Engenharia Biomédica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,Saúde Viável - Clínica de Microtransplante Capilar, Porto, Portugal
| | - Elsa Logarinho
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Saúde Viável - Clínica de Microtransplante Capilar, Porto, Portugal
| |
Collapse
|
36
|
Zhang X, Xiao S, Liu B, Miao Y, Hu Z. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells. Regen Med 2019; 14:741-751. [PMID: 31368409 DOI: 10.2217/rme-2018-0112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore the feasibility of human placenta extracellular matrix (HPECM) hydrogel in restoring the hair-inductive capacity of high-passaged (P8) dermal papilla cells (DPCs) for hair follicle regeneration. Materials & methods: HPECM hydrogel was prepared following decellularization and enzymatic solubilization treatment. DPCs isolated from human scalp were cultured in 2D and 3D environments. The hair-inductive ability of DPCs was assessed by quantitative RT-PCR, immunofluorescence staining, immunoblotting and patch assay. Results: DPCs (P8) formed spheres when cultured on the HPECM hydrogel. The expression levels of Versican, ALP, and β-catenin were restored in the DP spheres. HPECM hydrogel-cultured DP spheres co-grafted with newborn mouse epidermal cells regenerated new hair follicle. Conclusion: HPECM hydrogel successfully restores the hair-inductive capacity of high-passaged DPCs.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Plastic, Cosmetic & Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, ShanXi, PR China.,Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shune Xiao
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Bingcheng Liu
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yong Miao
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhiqi Hu
- Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
37
|
Kwack MH, Jang YJ, Won GH, Kim MK, Kim JC, Sung YK. Overexpression of alkaline phosphatase improves the hair-inductive capacity of cultured human dermal papilla spheres. J Dermatol Sci 2019; 95:126-129. [PMID: 31378661 DOI: 10.1016/j.jdermsci.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yae Ji Jang
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Gong Hee Won
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
38
|
Zhao Q, Li N, Zhang H, Lei X, Cao Y, Xia G, Duan E, Liu S. Chemically induced transformation of human dermal fibroblasts to hair‐inducing dermal papilla‐like cells. Cell Prolif 2019. [DOI: doi.org/10.1111/cpr.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
| | - Na Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Huishan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Shuang Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
39
|
Kwack MH, Seo CH, Gangadaran P, Ahn BC, Kim MK, Kim JC, Sung YK. Exosomes derived from human dermal papilla cells promote hair growth in cultured human hair follicles and augment the hair-inductive capacity of cultured dermal papilla spheres. Exp Dermatol 2019; 28:854-857. [PMID: 30924959 DOI: 10.1111/exd.13927] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Dermal papillae (DP) play key roles in hair growth and regeneration by regulating follicular cell activity. Owing to the established roles of exosomes (Exos) in the regulation of cell functions, we investigated whether DP-derived Exos, especially those from three-dimensional (3D)-cultured DP cells, affect hair growth, cycling and regeneration. Exos derived from 3D DP (3D DP-Exos) promoted the proliferation of DP cells and outer root sheath (ORS) cells and increased the expression of growth factors (IGF-1, KGF and HGF) in DP cells. 3D DP-Exo treatment also increased hair shaft elongation in cultured human hair follicles. In addition, local injections of 3D DP-Exos induced anagen from telogen and also prolonged anagen in mice. Moreover, Exo treatment in human DP spheres augmented hair follicle neogenesis when the DP spheres were implanted with mouse epidermal cells. Similar results were obtained using Exos derived from 2D-cultured DP cells (2D DP-Exo). Collectively, our data strongly suggest that Exos derived from DP cells promote hair growth and hair regeneration by regulating the activity of follicular dermal and epidermal cells; accordingly, these findings have implications for the development of therapeutic strategies for hair loss.
Collapse
Affiliation(s)
- Mi H Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang H Seo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Moon K Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jung C Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Young K Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
40
|
Zhao Q, Li N, Zhang H, Lei X, Cao Y, Xia G, Duan E, Liu S. Chemically induced transformation of human dermal fibroblasts to hair-inducing dermal papilla-like cells. Cell Prolif 2019; 52:e12652. [PMID: 31264301 PMCID: PMC6797507 DOI: 10.1111/cpr.12652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huishan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Gentile P, Garcovich S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019; 8:466. [PMID: 31100937 PMCID: PMC6562814 DOI: 10.3390/cells8050466] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation).
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
42
|
Seo CH, Kwack MH, Kim MK, Kim JC, Sung YK. Impairment of Hair-Inducing Capacity of Three-Dimensionally Cultured Human Dermal Papilla Cells by the Ablation of STAT5. Ann Dermatol 2019; 31:228-231. [PMID: 33911577 PMCID: PMC7992674 DOI: 10.5021/ad.2019.31.2.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chang Hoon Seo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
43
|
Ohyama M. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm Regen 2019; 39:4. [PMID: 30834027 PMCID: PMC6388497 DOI: 10.1186/s41232-019-0093-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background The hair follicle (HF) is a unique miniorgan, which self-renews for a lifetime. Stem cell populations of multiple lineages reside within human HF and enable its regeneration. In addition to resident HF stem/progenitor cells (HFSPCs), the cells with similar biological properties can be induced from human-induced pluripotent stem cells (hiPSCs). As approaches to regenerate HF by combining HF-derived cells have been established in rodents and a huge demand exists to treat hair loss diseases, attempts have been made to bioengineer human HF using HFSPCs or hiPSCs. Main body of the abstract The aim of this review is to comprehensively summarize the strategies to regenerate human HF using HFSPCs or hiPSCs. HF morphogenesis and regeneration are enabled by well-orchestrated epithelial-mesenchymal interactions (EMIs). In rodents, various combinations of keratinocytes with mesenchymal (dermal) cells with trichogenic capacity, which were transplanted into in vivo environment, have successfully generated HF structures. The regeneration efficiency was higher, when epithelial or dermal HFSPCs were adopted. The success in HF formation most likely depended on high receptivity to trichogenic dermal signals and/or potent hair inductive capacity of HFSPCs. In theory, the use of epithelial HFSPCs in the bulge area and dermal papilla cells, their precursor cells in the dermal sheath, or trichogenic neonatal dermal cells should elicit intense EMI sufficient for HF formation. However, technical hurdles, represented by the limitation in starting materials and the loss of intrinsic properties during in vitro expansion, hamper the stable reconstitution of human HFs with this approach. Several strategies, including the amelioration of culture condition or compartmentalization of cells to strengthen EMI, can be conceived to overcome this obstacle. Obviously, use of hiPSCs can resolve the shortage of the materials once reliable protocols to induce wanted HFSPC subsets have been developed, which is in progress. Taking advantage of their pluripotency, hiPSCs may facilitate previously unthinkable approaches to regenerate human HFs, for instance, via bioengineering of 3D integumentary organ system, which can also be applied for the treatment of other diseases. Short conclusion Further development of methodologies to reproduce bona fide EMI in HF formation is indispensable. However, human HFSPCs and hiPSCs hold promise as materials for human HF regeneration.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611 Japan
| |
Collapse
|
44
|
Nilforoushzadeh MA, Zare M, Zarrintaj P, Alizadeh E, Taghiabadi E, Heidari-Kharaji M, Amirkhani MA, Saeb MR, Mozafari M. Engineering the niche for hair regeneration - A critical review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:70-85. [PMID: 30201489 DOI: 10.1016/j.nano.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Recent progress in hair follicle regeneration and alopecia treatment necessitates revisiting the concepts and approaches. In this sense, there is a need for shedding light on the clinical and surgical therapies benefitting from nanobiomedicine. From this perspective, this review attempts to recognize requirements upon which new hair therapies are grounded; to underline shortcomings and opportunities associated with recent advanced strategies for hair regeneration; and most critically to look over hair regeneration from nanomaterials and pluripotent stem cell standpoint. It is noteworthy that nanotechnology is able to illuminate a novel path for reprogramming cells and controlled differentiation to achieve the desired performance. Undoubtedly, this strategy needs further advancement and a lot of critical questions have yet to be answered. Herein, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints to engineer stem cell niches for hair follicle regeneration.
Collapse
Affiliation(s)
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Bak SS, Kwack MH, Shin HS, Kim JC, Kim MK, Sung YK. Restoration of hair-inductive activity of cultured human follicular keratinocytes by co-culturing with dermal papilla cells. Biochem Biophys Res Commun 2018; 505:360-364. [PMID: 30253942 DOI: 10.1016/j.bbrc.2018.09.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Hair follicle outer root sheath (ORS) cells can be expanded in vitro, but often lose receptivity to hair-inducing dermal signals. Recent studies have shown hair-inductive activity (trichogenicity) can be restored in rat ORS cells expanded with a fibroblast feeder by co-culturing with rat vibrissae dermal papilla (DP) cells. In this study, we investigated whether the trichogenicity of human ORS cells can be restored by co-culturing with human DP cells. ORS cells from human scalp hair follicles were cultured independently or with DP cells for 5 days and implanted into nude mice alongside freshly isolated neonatal mouse dermal cells. Although there was no hair induction when monocultured ORS cells were implanted, it was observed in co-cultured ORS cells. We also observed differential regulation of a number of genes in ORS cells co-cultured with DP cells compared to monocultured ORS cells as examined by microarray. Taken together, our data strongly suggest that human DP cells restore the trichogenicity of co-cultured ORS cells by influencing ORS gene expression through paracrine factors.
Collapse
Affiliation(s)
- Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Su Shin
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
46
|
Bak DH, Choi MJ, Kim SR, Lee BC, Kim JM, Jeon ES, Oh W, Lim ES, Park BC, Kim MJ, Na J, Kim BJ. Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:555-566. [PMID: 30181702 PMCID: PMC6115345 DOI: 10.4196/kjpp.2018.22.5.555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/04/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and β-catenin; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.
Collapse
Affiliation(s)
- Dong Ho Bak
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| | - Soon Re Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Jae Min Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| | - Eun Su Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam 13494, Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam 13494, Korea
| | - Ee Seok Lim
- Thema Dermatologic Clinic, Seoul 06524, Korea
| | - Byung Cheol Park
- Department of Dermatology, Dankook Medical College, Cheonan 31116, Korea
| | | | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06973, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Korea
| |
Collapse
|
47
|
Choi N, Choi J, Kim JH, Jang Y, Yeo JH, Kang J, Song SY, Lee J, Sung JH. Generation of trichogenic adipose-derived stem cells by expression of three factors. J Dermatol Sci 2018; 92:18-29. [PMID: 30146106 DOI: 10.1016/j.jdermsci.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies demonstrated that adipose-derived stem cells (ASCs) can promote hair growth, but unmet needs exist for enhancing ASC hair inductivity. OBJECTIVE Therefore, we introduced three trichogenic factors platelet-derived growth factor-A, SOX2, and β-catenin to ASCs (tfASCs) and evaluated whether tfASCs have similar characteristics as dermal papilla (DP) cells. METHOD Global gene expression was examined using NGS analysis. Telogen-to-anagen induction, vibrissae hair follicle organ culture and patch assay were used. RESULTS tfASC cell size is smaller than that of ASCs, and they exhibit short doubling time. tfASCs also resist aging and can be expanded until passage 12. Cell proportion in S and G2/M increases in tfASCs, and tfASCs express high mRNA levels of cell cycle related genes. The mRNA expression of DP markers was notably higher in tfASCs. Moreover, NGS analysis revealed that the global gene expression of tfASCs is similar to that of DP cells. The injection of tfASCs accelerated the telogen-to-anagen transition and conditioned medium of tfASCs increased the anagen phase of vibrissal hair follicles. Finally, we found that the injection of 3D-cultured tfASCs at p 9 generated new hair follicles in nude mice. CONCLUSION Collectively, these results indicate that 1) tfASCs have similar characteristics as DP cells, 2) tfASCs have enhanced hair-regenerative potential compared with ASCs, and 3) tfASCs even at late passage can make new hair follicles in a hair reconstitution assay. Because DP cells are difficult to isolate/expand and ASCs have low hair inductivity, tfASCs and tfASC-CM are clinically good candidates for hair regeneration.
Collapse
Affiliation(s)
- Nahyun Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; STEMORE Co. Ltd., Incheon, South Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | | | | | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Juwon Kang
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; STEMORE Co. Ltd., Incheon, South Korea.
| |
Collapse
|
48
|
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, Banasiak Ł, Placek W, Maksymowicz W, Wojtkiewicz J. Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells Int 2018; 2018:1049641. [PMID: 30154860 PMCID: PMC6098866 DOI: 10.1155/2018/1049641] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/24/2018] [Accepted: 07/22/2018] [Indexed: 02/08/2023] Open
Abstract
Alopecia is caused by a variety of factors which affect the hair cycle and decrease stem cell activity and hair follicle regeneration capability. This process causes lower self-acceptance, which may result in depression and anxiety. However, an early onset of androgenic alopecia is associated with an increased incidence of the metabolic syndrome and an increased risk of the cardiac ischaemic disease. The ubiquity of alopecia provides an encouragement to seek new, more effective therapies aimed at hair follicle regeneration and neoregeneration. We know that stem cells can be used to regenerate hair in several therapeutic strategies: reversing the pathological mechanisms which contribute to hair loss, regeneration of complete hair follicles from their parts, and neogenesis of hair follicles from a stem cell culture with isolated cells or tissue engineering. Hair transplant has become a conventional treatment technique in androgenic alopecia (micrografts). Although an autologous transplant is regarded as the gold standard, its usability is limited, because of both a limited amount of material and a reduced viability of cells obtained in this way. The new therapeutic options are adipose-derived stem cells and stem cells from Wharton's jelly. They seem an ideal cell population for use in regenerative medicine because of the absence of immunogenic properties and their ease of obtainment, multipotential character, ease of differentiating into various cell lines, and considerable potential for angiogenesis. In this article, we presented advantages and limitations of using these types of cells in alopecia treatment.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Anna Kruszewska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Banasiak
- Department of Plastic, Reconstructive and Aesthetic Surgery, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Foundation for Nerve Cell Regeneration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
49
|
Kim YE, Choi HC, Nam G, Choi BY. Costunolide promotes the proliferation of human hair follicle dermal papilla cells and induces hair growth in C57BL/6 mice. J Cosmet Dermatol 2018; 18:414-421. [PMID: 29808617 PMCID: PMC7379667 DOI: 10.1111/jocd.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Costunolide (COS), a naturally occurring sesquiterpene lactone, is known to exert anti-inflammatory, antioxidant, and anticancer effects. This study was undertaken to investigate the effects of costunolide on the promotion of hair growth. METHODS Real-time cell analyzer (RTCA), measurement of 5α-reductase activity, mRNA expression, and Western blotting were adopted to address whether COS can stimulate the proliferation of human hair follicle dermal papilla cells (hHFDPCs). The effect of COS on in vivo hair growth was examined by reconstitution assay and shaven dorsal skin in C57BL/6 mice. RESULTS Costunolide significantly promoted the proliferation of hHFDPCs, which is comparable to that of tofacitinib. COS also inhibited the 5α-reductase activity in hHFDPCs. While COS increased the level of β-catenin and Gli1 mRNA and proteins, it suppressed transforming growth factor (TGF)-β1-induced phosphorylation of Smad-1/5 in hHFDPCs. COS increased the number of cultured hHFDPCs to induce hair follicles from mouse epidermal cells in Spheres formation of reconstitution assay. Topical application of COS on the shaven back of C57BL/6 mice significantly improved the hair growth. CONCLUSIONS Our results illustrate that COS promotes hair growth in vitro and in vivo by regulating the amount of growth factors and/or the activity of cellular responses through coordination of the WNT-β-catenin, hedgehog-Gli, and TGF-β1-Smad pathways.
Collapse
Affiliation(s)
- Young Eun Kim
- Cosmecutical R&D Center, HP&C, Cheongju, South Korea
| | | | - Gaewon Nam
- Department of Cosmetics, Seowon University, Cheongju, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, South Korea
| |
Collapse
|
50
|
Topouzi H, Logan NJ, Williams G, Higgins CA. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp Dermatol 2018; 26:491-496. [PMID: 28418608 PMCID: PMC5519926 DOI: 10.1111/exd.13368] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/18/2022]
Abstract
The dermal papilla is a cluster of mesenchymal cells located at the base of the hair follicle which have a number of important roles in the regulation of hair growth. As a consequence, in vitro models of these cells are widely used to study the molecular mechanisms which underlie hair follicle induction, growth and maintenance. While dermal papilla from rodent hair follicles can be digested prior to cell isolation, the unique extracellular matrix composition found in human dermal papilla renders enzymes such as trypsin and collagenase insufficient for digestion of the dermal papilla into a single cell suspension. As such, to grow human dermal papilla cells in vitro, the papilla has to first be isolated via a micro-dissection approach from the follicle. In this article we describe the micro-dissection and culture methods, which we use within our laboratory, for the study of human dermal papilla cells.
Collapse
Affiliation(s)
- Helena Topouzi
- Department of Bioengineering, Imperial College London, London, UK
| | - Niall J Logan
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|