1
|
Zhan P, Zhang Y, Shi W, Liu X, Qiao Z, Wang Z, Wang X, Wu J, Tang W, Sun Y, Zhang Y, Zhen J, Shang J, Liu M, Yi F. Myeloid-derived Growth Factor Deficiency Exacerbates Mitotic Catastrophe of Podocytes in Glomerular Disease. Kidney Int 2022; 102:546-559. [PMID: 35623505 DOI: 10.1016/j.kint.2022.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells, which are restricted in a post-mitotic state with limited ability to repair or regenerate. Re-entering mitotic phase causes podocyte mitotic catastrophe, thereby leading to podocyte death and glomerular injury. Myeloid-derived growth factor (MYDGF) is a novel secreted protein and plays an important role on the regulation of cardiovascular function. However, whether MYDGF is expressed in kidney parenchymal cells and whether it has biological functions in the kidney remain unknown. Here, we found that MYDGF was expressed in kidney parenchymal cells and was significantly reduced in podocytes from mice with models of focal segmental glomerulosclerosis and diabetic kidney disease. Podocyte-specific deletion of MYDGF in mice exacerbated podocyte injury and proteinuria in both disease models. Functionally, MYDGF protected podocytes against mitotic catastrophe by reducing accumulation of podocytes in S phase, a portion of the cell cycle in which DNA is replicated. Mechanistically, MYDGF regulates the expression of the transcription factor RUNX2 which mediates part of MYDGF effects. Importantly, a significant reduction of MYDGF was found in glomeruli from patients with glomerular disease due to focal segmental glomerulosclerosis and diabetic kidney disease and the level of MYDGF was correlated with glomerular filtration rate, serum creatinine and podocyte loss. Thus, our studies indicate that MYDGF may be an attractive therapeutic target for glomerular disease.
Collapse
Affiliation(s)
- Ping Zhan
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yang Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Weichen Shi
- Department of General Surgery, First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaohan Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhe Qiao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ziying Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jichao Wu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yu Sun
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jin Shang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Sako K, Furuichi K, Makiishi S, Yamamura Y, Okumura T, Le T, Kitajima S, Toyama T, Hara A, Iwata Y, Sakai N, Shimizu M, Niimura F, Matsusaka T, Kaneko S, Wada T. Cyclin-dependent kinase 4-related tubular epithelial cell proliferation is regulated by Paired box gene 2 in kidney ischemia-reperfusion injury. Kidney Int 2022; 102:45-57. [PMID: 35483529 DOI: 10.1016/j.kint.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Paired box 2 (Pax2) is a transcription factor essential for kidney development and is reactivated in proximal tubular epithelial cells (PTECs) during recovery from kidney injury. However, the role of Pax2 in this process is still unknown. Here the role of Pax2 reactivation during injury was examined in the proliferation of PTECs using an ischemia-reperfusion injury (IRI) mouse model. Kidney proximal tubule-specific Pax2 conditional knockout mice were generated by mating kidney androgen-regulated protein-Cre and Pax2 flox mice. The degree of cell proliferation and fibrosis was assessed and a Pax2 inhibitor (EG1) was used to evaluate the role of Pax2 in the hypoxic condition of cultured PTECs (O2 5%, 24 hours). The number of Pax2-positive cells and Pax2 mRNA increased after IRI. Sirius red staining indicated that the area of interstitial fibrosis was significantly larger in knockout mice 14 days after IRI. The number of Ki-67-positive cells (an index of proliferation) was significantly lower in knockout than in wild-type mice after IRI, whereas the number of TUNEL-positive cells (an index of apoptotic cells) was significantly higher in knockout mice four days after IRI. Expression analyses of cell cycle-related genes showed that cyclin-dependent kinase 4 (CDK4) was significantly less expressed in the Pax2 knockout mice. In vitro data showed that the increase in CDK4 mRNA and protein expression induced by hypoxia was attenuated by EG1. Thus, Pax2 reactivation may be involved in PTEC proliferation by activating CDK4, thereby limiting kidney fibrosis.
Collapse
Affiliation(s)
- Keisuke Sako
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shohei Makiishi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshiya Okumura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Thu Le
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Fumio Niimura
- Department of Pediatrics, School of Medicine, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, School of Medicine, Tokai University, Isehara, Japan; Institute of Medical Science, Tokai University, Isehara, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
3
|
Cytotoxic activity of cholesterol oxidase produced by Streptomyces sp. AKHSS against cancerous cell lines: mechanism of action in HeLa cells. World J Microbiol Biotechnol 2021; 37:141. [PMID: 34287712 DOI: 10.1007/s11274-021-03076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Re-occurrence of cancer is the major drawback for the currently available anticancer therapies. Therefore, study of an efficient enzyme, cholesterol oxidase produced by various kinds of microbes especially obtained from unexplored marine actinobacterial species against human cancer cell lines and understanding its mechanism of action helps to identify an irreversible and potent anticancer agent. The cytotoxic potential of cholesterol oxidase produced by a marine Streptomyces sp. AKHSS against four different human cancer cell lines was demonstrated through MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Fluorescent confocal microscopy and flow cytometry based experiments were performed to understand the efficiency of the enzymatic action on HeLa cells. Further, the apoptotic related proteins were detected through western blotting. Interestingly, the enzyme exhibited potent cytotoxicity at very low concentrations (0.093-0.327 µM) against all the cells tested. Fluorescent confocal microscopy revealed the morphological variations induced by the enzyme on cancer cell lines such as the formation of lipid droplets and condensation of nuclei. The enzyme treated cell-free extracts of HeLa cells analyzed through gas chromatography mass spectrometry showed the depletion of membrane cholesterol and the presence of substituted enzyme oxidized product, cholest-4-ene-3-one. The enzyme had induced significant inhibitory effects on the cell viability such as cell cycle arrest (G1 phase), apoptosis and rise of reactive oxygen species as evident through flow cytometry. Besides, hyperpolarization of mitochondrial membrane, reduced rates of phosphorylation of pAkt and the expression of apoptotic death markers like Fas, Fas L, caspases (8 and 3) and PARP-1 were recorded in the enzyme treated HeLa cells. Thus, cholesterol oxidase purified from a marine Streptomyces sp. AKHSS exhibits potent cytotoxicity at very low concentrations against human cancer cell lines. All the ex vivo experiments portrayed the substantial inhibitory effect of the enzyme on HeLa cells suggesting that cholesterol oxidase of Streptomyces sp. AKHSS could be a prominent cancer chemotherapeutic agent.
Collapse
|
4
|
Lee K, Gusella GL, He JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney Int 2021; 100:67-78. [PMID: 33831367 PMCID: PMC8855879 DOI: 10.1016/j.kint.2021.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Various cellular insults and injury to renal epithelial cells stimulate repair mechanisms to adapt and restore the organ homeostasis. Renal tubular epithelial cells are endowed with regenerative capacity, which allows for a restoration of nephron function after acute kidney injury. However, recent evidence indicates that the repair is often incomplete, leading to maladaptive responses that promote the progression to chronic kidney disease. The dysregulated cell cycle and proliferation is also a key feature of renal tubular epithelial cells in polycystic kidney disease and HIV-associated nephropathy. Therefore, in this review, we provide an overview of cell cycle regulation and the consequences of dysregulated cell proliferation in acute kidney injury, polycystic kidney disease, and HIV-associated nephropathy. An increased understanding of these processes may help define better targets for kidney repair and combat chronic kidney disease progression.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - G Luca Gusella
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
5
|
Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing. Lab Anim Res 2018; 34:264-269. [PMID: 30671114 PMCID: PMC6333600 DOI: 10.5625/lar.2018.34.4.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors p16Ink4a (Cdkn2a, cyclin-dependent kinase inhibitor 2a), p19Arf (an alternative reading frame product of Cdkn2a,), and p27Kip1 (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The p16Ink4a and p19Arf knockout mice were generated via transcription activator-like effector nucleases (TALENs), and p27Kip1 knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA.
Collapse
|
6
|
Schanz M, Hoferer A, Shi J, Alscher MD, Kimmel M. Urinary TIMP2⋅IGFBP7 for the prediction of platinum-induced acute renal injury. Int J Nephrol Renovasc Dis 2017; 10:175-181. [PMID: 28721084 PMCID: PMC5500542 DOI: 10.2147/ijnrd.s135271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction Platinum-based chemotherapy (PBC) is a potent antineoplastic treatment, but cisplatin nephrotoxicity is often the limiting factor. Identifying the patients who are at risk for developing platinum-induced renal injury is an important issue. We tested urinary TIMP2·IGFBP7, a new US Food and Drug Administration (FDA)-cleared test to assess the risk of acute kidney injury (AKI), in a cohort of patients with malignant neoplastic disease receiving PBC. Patients and methods A total of 58 patients with malignant neoplastic disease were enrolled in this study, of whom 32 patients had both urine samples and subsequent serum creatinine values available for detecting AKI within 72 hours. Urine samples were collected within 6 hours prior to PBC application and within 12 hours after the end of chemotherapy administration. We examined the predictive ability of TIMP2·IGFBP7 for the development of AKI as defined by KDIGO (Kidney Disease: Improving Global Outcomes) criteria within 72 hours after the administration of chemotherapy. Operating characteristics were determined for the previously validated TIMP2·IGFBP7 cutoff of 0.3 (ng/mL)2/1000. Results Four (12.5%) patients developed AKI within 72 hours. Primary disease was lymphoma in 13 patients (40.6%) and solid tumors in 19 patients (59.4%). Eight patients (25.0%) received carboplatin and 24 (75.0%) cisplatin. TIMP2·IGFBP7 after PBC administration discriminated for the risk of AKI with an area under the receiver operating characteristic curve (AUC; 95% confidence interval) of 0.92 (0.80–1.00). At the cutoff of 0.3 for TIMP2·IGFBP7, sensitivity was 50%, specificity was 87%, negative predictive value was 95% and positive predictive value was 25% for the prediction of AKI within 72 hours. Conclusion Urinary TIMP2·IGFBP7 measured in specimens gathered after PBC may be a useful tool to early identify patients who are at risk for developing platinum-induced AKI.
Collapse
Affiliation(s)
- Moritz Schanz
- Division of General Internal Medicine and Nephrology, Department of Internal Medicine
| | - Anette Hoferer
- Division of Oncology, Department of Internal Medicine, Robert-Bosch Hospital, Stuttgart, Germany
| | - Jing Shi
- Walker Bioscience, Carlsbad, CA, USA
| | - Mark Dominik Alscher
- Division of General Internal Medicine and Nephrology, Department of Internal Medicine
| | - Martin Kimmel
- Division of General Internal Medicine and Nephrology, Department of Internal Medicine
| |
Collapse
|
7
|
Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proc Natl Acad Sci U S A 2015; 112:5231-6. [PMID: 25848011 DOI: 10.1073/pnas.1424313112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.
Collapse
|
8
|
DiRocco DP, Bisi J, Roberts P, Strum J, Wong KK, Sharpless N, Humphreys BD. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am J Physiol Renal Physiol 2013; 306:F379-88. [PMID: 24338822 DOI: 10.1152/ajprenal.00475.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is common and urgently requires new preventative therapies. Expression of a cyclin-dependent kinase (CDK) inhibitor transgene protects against AKI, suggesting that manipulating the tubular epithelial cell cycle may be a viable therapeutic strategy. Broad spectrum small molecule CDK inhibitors are protective in some kidney injury models, but these have toxicities and epithelial proliferation is eventually required for renal repair. Here, we tested a well-tolerated, novel and specific small molecule inhibitor of CDK4 and CDK6, PD 0332991, to investigate the effects of transient cell cycle inhibition on epithelial survival in vitro and kidney injury in vivo. We report that CDK4/6 inhibition induced G0/G1 cycle arrest in cultured human renal proximal tubule cells (hRPTC) at baseline and after injury. Induction of transient G0/G1 cycle arrest through CDK4/6 inhibition protected hRPTC from DNA damage and caspase 3/7 activation following exposure to the nephrotoxins cisplatin, etoposide, and antimycin A. In vivo, mice treated with PD 0332991 before ischemia-reperfusion injury (IRI) exhibited dramatically reduced epithelial progression through S phase 24 h after IRI. Despite reduced epithelial proliferation, PD 0332991 ameliorated kidney injury as reflected by improved serum creatinine and blood urea nitrogen levels 24 h after injury. Inflammatory markers and macrophage infiltration were significantly decreased in injured kidneys 3 days following IRI. These results indicate that induction of proximal tubule cell cycle arrest with specific CDK4/6 inhibitors, or "pharmacological quiescence," represents a novel strategy to prevent AKI.
Collapse
Affiliation(s)
- Derek P DiRocco
- Brigham and Women's Hospital, Harvard Institutes of Medicine, Rm. 550, 4 Blackfan Circle, Boston, MA 02115.
| | | | | | | | | | | | | |
Collapse
|
9
|
Qufeng Tongluo Prescription () inhibits mesangial cell proliferation and promotes apoptosis through regulating cell cycle progression. Chin J Integr Med 2013; 19:927-34. [PMID: 24307313 DOI: 10.1007/s11655-013-1655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To study the effects and possible underlying mechanism of Qufeng Tongluo Prescription (, QFTL) on the regulation of mesangial cells (MCs) proliferation and apoptosis. METHODS The MCs used in this experiment have undergone five passages induced by lipopolysaccharide (LPS). Changes in the proliferation, apoptosis, cell cycle regulatory proteins and mRNA expression levels of the MCs after administration of Benazepril or QFTL were measured by methyl thiazolyl tetrazolium (MTT) reduction assay, flow cytometry, Western blot and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. RESULTS The addition of Benazepril or QFTL serum inhibited LPS-induced MC proliferation after treatment for 24, 48 and 72 h, respectively (P<0.05 or P<0.01). Moreover, the inhibitory effect is more significant in the QFTL group at 48 h (P<0.05). Compared with the control group, LPS-induced cell proliferation decreased the number of cells in G1 phase versus cells in S and G2/M phases, while the addition of QFTL and Benazepril serum increased the ratio of cells at G1 phase (P<0.05 or P<0.01) to cells at S phase (P<0.01), implicating the cell cycle inhibition effect exerted by QFTL. LPS decreased the level of MC apoptosis, compared with the control group (P<0.05), while QFTL and Benazepril serum increased the level of MC apoptosis (P<0.01). Moreover, the difference between the QFTL group and the Benazepril group was statistically significant (P<0.01). Compared with the control group, the protein and mRNA expression levels of cylinD1, cyclin dependent kinase 2 (CDK2) and p21 were significantly increased (P<0.05 or P<0.01), p27 was decreased but with no statistical significance (P>0.05); After being treated with QFTL and Benazepril serum, the protein and mRNA expression levels of cylinD1, CDK2, p21 were decreased and p27 increased significantly (P<0.05 or P<0.01); Compared with the Benazepril group, QFTL show better effects on protein and mRNA expression levels of cylinD1, CDK2 (P<0.05 or P<0.01) and p21 protein expression (P<0.05). CONCLUSION QFTL inhibits MCs proliferation, promotes MCs apoptosis through an underlying mechanism of down-regulating the protein and mRNA expression levels of cylinD1, CDK2, p21 and up-regulation of the expression level of p27.
Collapse
|
10
|
An overview of molecular mechanism of nephrotic syndrome. Int J Nephrol 2012; 2012:937623. [PMID: 22844593 PMCID: PMC3401527 DOI: 10.1155/2012/937623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
Podocytopathies (minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS)) together with membranous nephropathy are the main causes of nephrotic syndrome. Some changes on the expression of nephrin, podocin, TGF-β, and slit diaphragm components as well as transcription factors and transmembrane proteins have been demonstrated in podocytopathies. Considering the pathogenesis of proteinuria, some elucidations have been directed towards the involvement of epithelial-mesenchymal transition. Moreover, the usefulness of some markers such as TGF-β1, nephrin, synaptopodin, dystroglycans, and malondialdehyde have been determined in the differentiation between MCD and FSGS. Experimental models and human samples indicated an essential role of autoantibodies in membranous glomerulonephritis, kidney damage, and proteinuria events. Megalin and phospholipase-A2-receptor have been described as antigens responsible for the formation of the subepithelial immune complexes and renal disease occurrence. In addition, the complement system seems to play a key role in basal membrane damage and in the development of proteinuria in membranous nephropathy. This paper focuses on the common molecular changes involved in the development of nephrotic proteinuria.
Collapse
|
11
|
ZOU LIPING, WANG WENJUAN, XU ZUDE, ZHANG NONG, JIANG TAO. Aldose reductase regulates platelet-derived growth factor-induced proliferation through mediating cell cycle progression in rat mesangial cells. Int J Mol Med 2012; 30:409-16. [DOI: 10.3892/ijmm.2012.997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 04/02/2012] [Indexed: 11/06/2022] Open
|
12
|
Xue Y, Tie CR, Li J, Tian T, Li QX. Ligustrazine inhibits lipopolysaccharide-induced proliferation by affecting P27, Bcl-2 expression in rat mesangial cells. Eur J Pharmacol 2011; 665:8-12. [PMID: 21586279 DOI: 10.1016/j.ejphar.2011.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 11/26/2022]
Abstract
Ligustrazine has a renoprotective effect against nephritis. In the present study, we investigated the roles of ligustrazine on lipopolysaccharide-induced changes of proliferation, cell cycle in cultured rat mesangial cells. 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that rat mesangial cells treated with lipopolysaccharide (10mg/l) underwent significant proliferation compared with control group. This effect was significantly inhibited by ligustrazine (400 to 2500 mg/l). Flow cytometric analysis revealed that cells treated with lipopolysaccharide showed significant reduction in the ratio of G0/G1 phase and significant elevation in the ratio of S+G2/M phase. The changes of cell cycle induced by lipopolysaccharide were reversed by ligustrazine. In addition, lipopolysaccharide suppressed P27 protein expression was significantly increased by ligustrazine (100, 500, 2500 mg/l). Moreover, rat mesangial cells treated with lipopolysaccharide showed scanty apoptosis with up-regulation of Bcl-2expression, while Bax protein expression was not changed. Ligustrazine (100, 500, 2500 mg/l) significantly reversed lipopolysaccharide-induced up-regulation of Bcl-2 protein and increased apoptotic cell death. In summary, ligustrazine displayed a significant inhibiting effect on lipopolysaccharide-induced proliferation through increasing P27 and decreasing Bcl-2 protein expression in rat mesangial cells.
Collapse
Affiliation(s)
- Ying Xue
- Department of Otorhinolaryngology, Zhongnan Hospital, Wuhan University, China
| | | | | | | | | |
Collapse
|
13
|
Jia H, Qi X, Fang S, Jin Y, Han X, Wang Y, Wang A, Zhou H. Carnosine inhibits high glucose-induced mesangial cell proliferation through mediating cell cycle progression. ACTA ACUST UNITED AC 2009; 154:69-76. [DOI: 10.1016/j.regpep.2008.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/12/2008] [Accepted: 12/15/2008] [Indexed: 11/29/2022]
|
14
|
Sinuani I, Weissgarten J, Beberashvili I, Rapoport MJ, Sandbank J, Feldman L, Albeck M, Averbukh Z, Sredni B. The cyclin kinase inhibitor p57kip2 regulates TGF-beta-induced compensatory tubular hypertrophy: effect of the immunomodulator AS101. Nephrol Dial Transplant 2009; 24:2328-38. [PMID: 19321762 DOI: 10.1093/ndt/gfn742] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Compensatory tubular cell hypertrophy following unilateral nephrectomy is a cell cycle-dependent process. Our previous study showed that treatment of unilaterally nephrectomized rats with the immunomodulator AS101 partially inhibits compensatory hypertrophy of the remaining kidneys through the inhibition of IL-10-induced TGF-beta secretion by mesangial cells. The present study is focused on understanding the intracellular mechanism(s) of this phenomenon. METHODS A total of 120 male Sprague-Dawley rats were unilaterally nephrectomized or sham-operated and treated with AS101 or PBS. Kidney weight and protein/DNA ratio were assessed for each experimental animal. The expression of TGF-beta, PCNA, CDK 2, pRb, ppRb, p21(Waf1), p27(kip1) and p57(kip2) proteins in renal tissues was determined by western blot analysis and immunohistochemistry, and the immunoprecipitation of cyclin E complexes was performed. RESULTS Compensatory renal growth is initiated by proliferation of resident renal cells that precedes hypertrophy. Changes in TGF-beta expression were positively correlated with the amounts of p57(kip2), but not with p21(Waf1) and p27(kip1) expression in the remaining kidneys. Moreover, there was a marked abundance of p57(kip2) but not p21(Waf1) and p27(kip1) binding to the cyclin E complex in PBS-treated unilaterally nephrectomized rats compared to sham-operated animals. Treatment of uninephrectomized rats with AS101 reduced kidney weight and protein/DNA ratio, inhibited TGF-beta and p57(kip2) expression in the remaining kidneys, and decreased the level of p57(kip2) binding to cyclin E complexes. CONCLUSION These results demonstrate that TGF-beta-induced compensatory tubular cell hypertrophy is regulated in vivo by p57(kip2) but not by the p21(Waf1) and p27(kip1) cyclin kinase inhibitor proteins.
Collapse
Affiliation(s)
- Inna Sinuani
- Nephrology Division, Assaf Harofeh Medical Center, Zerifin, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Luo P, Tan Z, Zhang Z, Li H, Mo Z. Inhibitory Effects of Salvianolic Acid B on the High Glucose-Induced Mesangial Proliferation via NF-.KAPPA.B-Dependent Pathway. Biol Pharm Bull 2008; 31:1381-6. [PMID: 18591779 DOI: 10.1248/bpb.31.1381] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Pei Luo
- West China School of Pharmacy, Sichuan University
| | | | | | - Honghao Li
- West China School of Pharmacy, Sichuan University
| | - Zhengji Mo
- West China School of Pharmacy, Sichuan University
| |
Collapse
|
16
|
Yin DK, Yao WB, Gao XD. Chemically modified heparin inhibits mesangial cell proliferation induced by high glucose through interfering with the cell cycle. Biol Pharm Bull 2007; 30:2274-8. [PMID: 18057711 DOI: 10.1248/bpb.30.2274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to investigate whether chemically modified non-anticoagulation heparin derivate (Periodate-Oxidized/Borohydride-Reduced modified heparin (OR-heparin)) can inhibit high glucose-induced human mesangial cell proliferation and its influence on the cell cycle. OR-heparin with low anticoagulation activity inhibited high glucose-induced early proliferation in a dose-dependent manner. OR-heparin released high glucose-arrested mesangial cells at G(1) phase, and dose-dependently increased S phase. OR-heparin also inhibited high glucose-activated ERK1/2 phosphorylation, induced p27(Kip1) expression, and suppressed reactive oxygen species (ROS) accumulation in a dose-dependent manner. Our results suggest that OR-heparin releases high glucose-arrested cells on G(1) phase and inhibits high glucose-induced mesangial cell proliferation through blocking ERK1/2 phosphorylation and delaying S phase progression, which may be in correlation with OR-heparin suppressing ROS accumulation.
Collapse
Affiliation(s)
- Deng-Ke Yin
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjia Road, Nanjing City 210009, China
| | | | | |
Collapse
|
17
|
Zhang Y, Shi Y, Liu Y, Dong H, Liu M, Li Y, Duan H. Growth pattern switch of renal cells and expression of cell cycle related proteins at the early stage of diabetic nephropathy. Biochem Biophys Res Commun 2007; 363:159-64. [PMID: 17825795 DOI: 10.1016/j.bbrc.2007.08.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/26/2022]
Abstract
Renal hypertrophy, partly due to cell proliferation and hypertrophy, has been found correlated to renal function deterioration in diabetes mellitus. We screened the up-regulated cell cycle related genes to investigate cell growth and the expression of cell cycle regulating proteins at the early stage of diabetic nephropathy using STZ-induced diabetic rats. Cyclin E, CDK(2) and P(27) were found significantly up-regulated in diabetic kidney. Increased cell proliferation in the kidney was seen at day 3, peaked at day 5, and returned to normal level at day 30. Cyclin E and CDK(2) expression also peeked at day 5 and P(27) activity peaked at day 14. These findings indicate that a hyperplastic growth period of renal cells is followed by a hypertrophic growth period at the early stage of diabetes. The growth pattern switch may be regulated by cell cycle regulating proteins, Cyclin E, CDK(2), and P(27).
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Dentelli P, Rosso A, Zeoli A, Gambino R, Pegoraro L, Pagano G, Falcioni R, Brizzi MF. Oxidative stress-mediated mesangial cell proliferation requires RAC-1/reactive oxygen species production and beta4 integrin expression. J Biol Chem 2007; 282:26101-10. [PMID: 17604276 DOI: 10.1074/jbc.m703132200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid abnormalities and oxidative stress, by stimulating mesangial cell (MC) proliferation, can contribute to the development of diabetes-associated renal disease. In this study we investigated the molecular events elicited by oxidized low density lipoproteins (ox-LDL) in MC. We demonstrate that in MC cultured in the presence of ox-LDL, survival and mitogenic signals on Akt and Erk1/2 MAPK pathways are induced, respectively. Moreover, as shown by the expression of the dominant negative Rac-1 construct, we first report that ox-LDL-mediated cell survival and cell cycle progression depend on Rac-1 GTPase-mediated reactive oxygen species production and on epidermal growth factor receptor transactivation. By silencing Akt and blocking Erk1/2 MAPK pathways, we also demonstrate that these signals are downstream to Rac-1/reactive oxygen species production and epidermal growth factor receptor activation. Finally, by endogenous depletion of beta4 integrin, expressed in MC, we provide evidence that the expression of this adhesion molecule is essential for ox-LDL-mediated MC dysfunction. Our data identify a novel signaling pathway involved in oxidative stress-induced diabetes-associated renal disease and provide the rationale for therapeutically targeting beta4 integrin.
Collapse
Affiliation(s)
- Patrizia Dentelli
- Department of Internal Medicine, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Srivastava T, Garola RE, Singh HK. Cell-cycle regulatory proteins in the podocyte in collapsing glomerulopathy in children. Kidney Int 2006; 70:529-35. [PMID: 16775597 DOI: 10.1038/sj.ki.5001577] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Podocyte is a terminally committed cell in G1 arrest of cell cycle, and is unable to overcome G1/S transition phase in children with minimal change disease (MCD) and classic focal segmental glomerulosclerosis (FSGS), in contrast to dysregulated proliferative phenotype of idiopathic collapsing glomerulopathy (CGN) in adults. Forty-two kidney biopsies, MCD (14), FSGS (12), CGN (4), and normal (CON) (12), were evaluated by immunohistochemistry using dual staining for expression of p27, p21, and p57, and cyclins D and A, in podocytes of children with CGN. On light microscopy, all podocytes expressed p27, whereas p21 and p57 expression was seen in a portion of podocytes in normal kidney biopsies. Cyclin D was expressed in a small percentage of podocytes. Cyclin A expression was absent in normal biopsies. The staining for p27 decreased significantly, in order, from normal (100%) to MCD (45.8%) to CGN (24.2%) to FSGS (16.6%). p21 staining was significantly decreased from normal (69.8%) to CGN (15.5%) to MCD (2.2%) to FSGS (0.6%), and the difference between CGN and MCD and FSGS was also significant. There was no significant difference in staining of p57. Cyclin D staining was significantly increased in CGN (26.8%) compared to normal (7.2%), MCD (1.6%), and FSGS (0.0%), and the difference between CGN and MCD and FSGS was also significant. De novo cyclin A staining was only observed in children with CGN. Thus, p27 and p21 but not p57 was decreased in CGN, as in FSGS when compared to normal. Both cyclins D and A staining were increased in CGN. The staining pattern in CGN would suggest that podocyte is able to overcome G1/S transition phase, and has a proliferative phenotype. We propose, based on the significant contrast observed in podocytes injury response between CGN (proliferative) and classic FSGS (non-proliferative), that CGN not be considered as a morphological variant of FSGS.
Collapse
Affiliation(s)
- T Srivastava
- Section of Nephrology, The Children's Mercy Hospital and Clinics, University of Missouri at Kansas City, Kansas City, Missouri 64108, USA.
| | | | | |
Collapse
|
20
|
Nelson PJ, Shankland SJ. Therapeutics in renal disease: the road ahead for antiproliferative targets. Nephron Clin Pract 2005; 103:e6-15. [PMID: 16340240 PMCID: PMC1440889 DOI: 10.1159/000090138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Discovery into the molecular basis of renal disease is occurring at an unprecedented rate. With the advent of the NIH Roadmap, there is a greater expectation of translating this knowledge into new treatments. Here, we review the therapeutic strategy to preserve renal function in proliferative renal diseases by directly inhibiting the mitogenic pathways within renal parenchymal cells that promote G0 to G1/S cell-cycle phase progression. Reductionist methodologies have identified several antiproliferative molecular targets, and promising preclinical testing of leading small-molecule drugs to modulate these targets has now led to landmark clinical trials. Yet, this advancement into targeted therapy highlights important differences between the therapeutic goals of molecular nephrology versus molecular oncology and, by extension, the poorly understood role of alternative target activity in drug efficacy. Systems research to clarify these issues should accelerate the development of this promising therapeutic strategy.
Collapse
Affiliation(s)
- Peter J Nelson
- Division of Nephrology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
21
|
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Active and passive Heymann nephritis (HN) in rats are valuable experimental models because their features so closely resemble human MN. In HN, subepithelial immune deposits form in situ as a result of circulating antibodies. Complement activation leads to assembly of C5b-9 on glomerular epithelial cell (GEC) plasma membranes and is essential for sublethal GEC injury and the onset of proteinuria. This review revisits HN and focuses on areas of substantial progress in recent years. The response of the GEC to sublethal C5b-9 attack is not simply due to disruption of the plasma membrane but is due to the activation of specific signaling pathways. These include activation of protein kinases, phospholipases, cyclooxygenases, transcription factors, growth factors, NADPH oxidase, stress proteins, proteinases, and others. Ultimately, these signals impact on cell metabolic pathways and the structure/function of lipids and key proteins in the cytoskeleton and slit-diaphragm. Some signals affect GEC adversely. Thus C5b-9 induces partial dissolution of the actin cytoskeleton. There is a decline in nephrin expression, reduction in F-actin-bound nephrin, and loss of slit-diaphragm integrity. Other signals, such as endoplasmic reticulum stress, may limit complement-induced injury, or promote recovery. The extent of complement activation and GEC injury is dependent, in part, on complement-regulatory proteins, which act at early or late steps within the complement cascade. Identification of key steps in complement activation, the cellular signaling pathways, and the targets will facilitate therapeutic intervention in reversing GEC injury in human MN.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Renal Section, EBRC 504, Boston Univ. Medical Ctr., 650 Albany St., Boston, MA 02118, USA
| | | | | |
Collapse
|
22
|
Abstract
The development of irreversible renal changes in diabetes mellitus, such as glomerulosclerosis and tubulointerstitial fibrosis, are always preceded by the early hypertrophic processes in the glomerular and tubular compartment. However, the role of hypertrophy of podocyte in the diabetic nephropathy have not been fully elucidated yet. Observation came from a cross sectional study in diabetic Pima Indians suggests that subjects with clinical nephropathy had fewer podocytes per glomerulus than those without nephropathy. Since podocytes are thought to be incapable of replication, this observation suggests that podocyte loss, or perhaps a low podocyte number per glomerulus, contributes to the development and progression of diabetic glomerulosclerosis. Podocyte hypertrophy caused by high glucose concentration leads to podocyte loss and is a new insight of pathogenesis of diabetic nephropathy; and it also provides us with new therapeutic strategies in diabetic nephropathy.
Collapse
Affiliation(s)
- Nam Ho Kim
- Division of Nephrology, Department of Internal Medicine, Chonnam National University Medical School, Hakdong, Gwangju, South Korea.
| |
Collapse
|
23
|
Milovanceva-Popovska M, Kunter U, Ostendorf T, Petermann A, Rong S, Eitner F, Kerjaschki D, Barnett A, Floege J. R-roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury. Kidney Int 2005; 67:1362-70. [PMID: 15780088 DOI: 10.1111/j.1523-1755.2005.00213.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) inhibition is a new therapeutic approach to proliferative glomerulonephritides. CDK2 is required for G(1)/S transition and DNA synthesis and is inhibited by CYC202 (R-roscovitine). Since podocytes express CDK2 in nephritis and since loss of podocytes contributes to glomerulosclerosis, the rationale of the present study was to test whether CDK2 inhibition is safe in instances of podocyte injury. METHODS Rats with passive Heymann nephritis, a model of membranous glomerulonephritis, were treated (day 3 to 30) with vehicle, low (25 mg/kg/day), or high (50 mg/kg/day) doses of CYC202. RESULTS On day 27, blood pressure was normal in nephritic controls and was dose-dependently reduced by CYC202. Urinary albumin excretion did not differ between the groups on days 9, 16, 23, and 30. To investigate podocyte injury, we assessed the glomerular de novo expression of desmin, which was markedly up-regulated in almost all passive Heymann nephritis glomeruli but was not significantly different between the three groups. No tubulointerstitial de novo expression of desmin or alpha-smooth muscle actin (alpha-SMA), or tubulointerstitial monocyte/macrophage infiltration was noted in any group. Biologic activity of CYC202 was evident in the form of a dose-dependent decrease in the number of glomerular and tubulointerstitial mitotic figures as compared to vehicle alone. Glomerular immunostaining for cyclin D1, a marker for G(0) to G(1) transition, was significantly decreased in CYC202 treated groups at day 9. CONCLUSION Whereas inhibition of CDKs by CYC202 reduced intrarenal cell proliferation in passive Heymann nephritis it did not aggravate podocyte damage, suggesting that this novel therapeutic approach is safe in renal diseases characterized by podocyte injury.
Collapse
|
24
|
Tanaka H, Terada Y, Okado T, Inoshita S, Kuwahara M, Sasaki S. Role of the E2F1-p19-p53 pathway in ischemic acute renal failure. Nephron Clin Pract 2005; 101:p27-34. [PMID: 15990448 DOI: 10.1159/000086642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 03/22/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cell cycle progression and arrest of renal tubular cells after acute injury is a reactive process of renal regeneration. The p16(INK4a)/p19(ARF) (alternative reading frame) locus encodes two proteins involved in cell cycle regulation. We investigated the transcriptional regulation and tissue distribution of p19(ARF) in ischemic acute renal failure (ARF). METHODS We examined the time course and immunohistochemistry of p19(ARF) in rat kidneys following the induction of ischemic ARF. We also examined the effect of p19(ARF) overexpression on p53 levels and cell cycle progression in MDCK cells. RESULTS The protein expression of p19(ARF) strongly increased 72 h after the ischemia. Immunohistochemical studies showed that the renal tubular cells in the outer medulla expressed p19(ARF) protein 72 h after ischemic injury. The time course of E2F1 induction was observed at 6-24 h, and it was found to precede p19(ARF) expression. In MDCK cells, the overexpression of E2F1 increased promoter activity and the protein level of p19(ARF) and induced apoptosis. Transfection of the p19(ARF) expression vector caused an increase in p53 protein, cell cycle arrest and apoptosis. CONCLUSIONS These data support the hypothesis that the E2F1-p19(ARF)-p53 pathway forms a negative feedback loop to regulate the cell cycle of renal tubular cells in the ischemic ARF.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Muckova K, Duffield JS, Held KD, Bonventre JV, Sheridan AM. cPLA2-interacting protein, PLIP, causes apoptosis and decreases G1 phase in mesangial cells. Am J Physiol Renal Physiol 2005; 290:F70-9. [PMID: 15985650 DOI: 10.1152/ajprenal.00358.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The balance between proliferation and apoptosis of mesangial cells is a critical component of proliferative glomerulonephritis. The regulation of cell proliferation and apoptosis is linked at the level of the cell cycle (Shankland SJ. Kidney Int 52: 294-308, 199). cPLA2-interacting protein (PLIP), the Tip60 splice variant, interacts with cPLA2 and enhances the susceptibility of renal mesangial cells to serum deprivation-induced apoptosis (Sheridan AM, Force T, Yoon HJ, O'Leary E, Choukroun G, Taheri MR, and Bonventre JV. Mol Cell Biol 21: 4470-4481, 2001). We report that adenoviral-driven PLIP expression results in enhanced apoptosis of non-serum-deprived mesangial cells associated with a marked decrease in G0/G1 phase cells. The effect of PLIP on the cell cycle may be independent of its interaction with cPLA2 because a mutation of PLIP that does not interact with cPLA2 also causes a decrease in G0/G1 cells. Endogenous PLIP and Tip60 protein levels are increased in cells exposed to injurious stimuli including X-irradiation and H2O2, but the intracellular localization of the splice variants may differ. Whereas PLIP localizes in the nucleus of all mesangial cells, Tip60 localizes in the cytosol of untreated mesangial cells and of cells exposed to low concentrations (50-200 microM) of H2O2. Tip60 is targeted to the nucleus of cells exposed to high concentrations (1-2 mM) of H2O2. We conclude that PLIP may cause cells to exit from the cell cycle after the S phase and may function as part of a G2/M checkpoint mechanism. Tip60 splice variants may function in both cytosolic and nuclear signaling pathways in mesangial cells.
Collapse
Affiliation(s)
- Katarina Muckova
- Renal Div., Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
26
|
Terada Y, Kobayashi T, Kuwana H, Tanaka H, Inoshita S, Kuwahara M, Sasaki S. Aldosterone Stimulates Proliferation of Mesangial Cells by Activating Mitogen-Activated Protein Kinase 1/2, Cyclin D1, and Cyclin A. J Am Soc Nephrol 2005; 16:2296-305. [PMID: 15975997 DOI: 10.1681/asn.2005020129] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently, attention has been focused on the role of aldosterone in the pathophysiology of hypertension and cardiovascular disease. Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. However, the molecular mechanisms of the effects of aldosterone in signal transduction and the cell-cycle progression of mesangial cells are not well known. For determining the signaling pathway of aldosterone in cultured mesangial cells, the effects of aldosterone on the mitogen-activated protein kinase 1/2 (MAPK1/2) pathway and the promoter activities of cyclin D1, cyclin A, and cyclin E were investigated. First, it was shown that the mineralocorticoid receptor (MR) was expressed in rat mesangial cells and glomeruli and that aldosterone stimulated the proliferation of mesangial cells via the MR and MAPK1/2 pathway. Next, it was demonstrated that aldosterone stimulated Ki-RasA, c-Raf kinase, MEK1/2, and MAPK1/2 in rat mesangial cells. Aldosterone induced cyclin D1 and cyclin A promoter activities and protein expressions, as well as the increments of CDK2 and CDK4 kinase activities. The presence of CYP11B2 and 11beta-HSD2 mRNA in rat mesangial cells also was shown. In conclusion, aldosterone seems to exert mainly MR-induced effects that stimulate c-Raf, MEK1/2, MAPK1/2, the activities of CDK2 and CDK4, and the cell-cycle progression in mesangial cells. MR antagonists may serve as a potential therapeutic approach to mesangial proliferative disease.
Collapse
Affiliation(s)
- Yoshio Terada
- Department of Nephrology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chiara M, Menegatti E, Di Simone D, Davit A, Bellis D, Sferch D, De Rosa G, Giachino O, Sena LM, Roccatello D. Mycophenolate mofetil and roscovitine decrease cyclin expression and increase p27(kip1) expression in anti Thy1 mesangial proliferative nephritis. Clin Exp Immunol 2005; 139:225-35. [PMID: 15654821 PMCID: PMC1809292 DOI: 10.1111/j.1365-2249.2004.02684.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2004] [Indexed: 11/29/2022] Open
Abstract
The response of mesangial cells to a phlogistic challenge includes cell proliferation and mesangial matrix expansion. Cell proliferation is a highly regulated process which includes enhancing factors such as cyclins, cyclin dependent kinases, and inhibitory proteins, such as p27(kip1). The aim of the study was to evaluate the effects of Mycophenolate mofetil (MMF), and roscovitine (R), on the cell cycle regulatory system when administered in the florid phase of the experimental model of mesangial proliferative nephritis induced by the anti Thy-1 antigen monoclonal antibody. Three days after nephritis induction, different groups were given MMF and R. Rats treated with MMF or R showed a slight decrease in mesangial proliferation and matrix expansion. Samples of cortical tissue were tested by 'real time' RT-PCR in order to study gene expression of cyclins B, D1, D2, D3, E, and the cyclin inhibitor p27(kip1). Localization of mRNA was evaluated by in situ hybridization. Real time RT-PCR analysis showed a significant decrease in cyclins B, D1, D2, and D3 in rats treated with either MMF or R as compared to controls. Both MMF and R treatment induced a significant increase in p27(kip1) mRNA expression. In situ hybridization showed a mesangial-endothelial expression pattern in glomeruli. The number of labelled cells per glomerulus, the number of positive glomeruli in each examined slide as well as cyclin D2 and D3 signal intensity was significantly lower in rats treated with MMF or R as compared to controls, whereas MMF or R treatment up-regulated p27(kip1) mRNA expression. Immunohistochemical evaluation of p27(kip1) aimed to examine the influence of MMF or R on protein expression confirmed up-regulation.
Collapse
Affiliation(s)
- M Chiara
- Cattedre e Scuola di Specializzazione di Patologia Clinica, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sanden SK, Wiggins JE, Goyal M, Riggs LK, Wiggins RC. Evaluation of a thick and thin section method for estimation of podocyte number, glomerular volume, and glomerular volume per podocyte in rat kidney with Wilms' tumor-1 protein used as a podocyte nuclear marker. J Am Soc Nephrol 2004; 14:2484-93. [PMID: 14514726 DOI: 10.1097/01.asn.0000089829.45296.7c] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Podocyte loss and glomerular hypertrophy are associated with development of glomerulosclerosis, suggesting that there may be a maximal area for each podocyte in terms of its capacity to support and maintain the glomerular filter. This study hypothesized that exceeding this maximal threshold will result in mesangial expansion and glomerulosclerosis. It may therefore be useful to measure podocyte number, glomerular volume, and glomerular volume per podocyte in clinical biopsy samples. An approach that uses thick and thin histologic sections cut from paraffin-embedded tissue to measure Wilms' tumor-1 protein-positive podocyte nuclear number and glomerular tuft area was studied. A rat model of aging has been used to track changes in glomerular podocyte number, glomerular volume per podocyte, and glomerular volume. Implications for clinical use of these variables are discussed.
Collapse
Affiliation(s)
- Silja K Sanden
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
29
|
Schiffer M, Mundel P, Shaw AS, Böttinger EP. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem 2004; 279:37004-12. [PMID: 15213232 DOI: 10.1074/jbc.m403534200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CD2-associated protein (CD2AP) is an adaptor molecule involved in T cell receptor signaling and podocyte homeostasis. CD2AP-deficient mice develop nephrotic syndrome and renal failure caused by glomerulosclerosis. Here we report that increased transforming growth factor-beta1 (TGF-beta1) expression and apoptosis were present in podocytes at the onset of albuminuria and were followed by depletion of podocytes associated with progressive focal-segmental glomerulosclerosis in CD2AP-/- mice. Conditionally immortalized podocytes derived from CD2AP-/- mice were more susceptible to TGF-beta-induced apoptosis compared with CD2AP+/+ podocytes. Reconstitution of CD2AP rescued CD2AP-/- podocytes from TGF-beta-induced apoptosis. CD2AP was required for early activation of anti-apoptotic phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase 1/2 by TGF-beta. In contrast, activation of pro-apoptotic p38 MAPK by TGF-beta was accelerated and enhanced in the absence of CD2AP. CD2AP was not required for PI3K/AKT activation by insulin and epidermal growth factor, indicating that CD2AP is a selective mediator of anti-apoptotic TGF-beta signaling. In summary, we identified CD2AP as a novel mediator for selective activation of survival pathways and repression of apoptosis signaling by TGF-beta in podocytes. Together, our in vitro and in vivo findings suggest that TGF-beta-induced podocyte apoptosis is an early pathomechanism in mice developing focal-segmental glomerulosclerosis associated with functional impairment of CD2AP.
Collapse
Affiliation(s)
- Mario Schiffer
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10461, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) have been reported in recent epidemiologic studies and randomized clinical trials in a variety of cardiovascular and autoimmune diseases. Fish and marine oils are the most abundant and convenient sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the two major n-3 fatty acids that serve as substrates for cyclooxygenase and lipoxygenase pathways leading to less potent inflammatory mediators than those produced through the n-6 PUFA substrate, arachidonic acid. N-3 PUFA can also suppress inflammatory and/or immunologic responses through eicosanoid-independent mechanisms. Although the pathophysiology of IgA nephropathy is incompletely understood, it is likely that n-3 PUFA prevents renal disease progression by interfering with a number of effector pathways triggered by mesangial immune-complex deposition. In addition, potential targets of n-3 PUFA relevant to renal disease progression could be similar to those involved in preventing the development and progression of cardiovascular disease by lowering blood pressure, reducing serum lipid levels, decreasing vascular resistance, or preventing thrombosis. In IgA nephropathy, efficacy of n-3 PUFA contained in fish oil supplements has been tested with varying results. The largest randomized clinical trial performed by our collaborative group provided strong evidence that treatment for 2 years with a daily dose of 1.8 g of EPA and 1.2 g of DHA slowed the progression of renal disease in high-risk patients. These benefits persisted after 6.4 years of follow up. With safety, composition, and dosing convenience in mind, we can recommend two products that are available as pharmaceutical-grade fish-oil concentrates, Omacor (Pronova Biocare, Oslo, Norway) and Coromega (European Reference Botanical Laboratories, Carlsbad, CA).
Collapse
Affiliation(s)
- James V Donadio
- Division of Nephrology, the Department of Medicine, and the Department of Laboratory Medicine and Pathology, Mayo Clinic & Mayo Foundation, Rochester, MN, USA.
| | | |
Collapse
|
31
|
Abstract
Angiotensin II has emerged as an important growth factor for vascular, cardiac, and renal cells. Depending on the specific cell type and presence of other growth factors, angiotensin II induces proliferation (replication of DNA with subsequent successful division of cells), hypertrophy (increase in cell size, cell protein, and mRNA content without DNA replication), apoptosis (programmed cell death), or differentiation. Such angiotensin II-mediated modulation of growth process may underlie various pathophysiological processes such as atherosclerosis, vascular and cardiac remodeling, and progression of chronic renal disease. Clearly, angiotensin II-induced proliferation requires complete cell progression through the various steps of the cell cycle. In contrast, cells undergoing angiotensin II-mediated hypertrophy are arrested in the G1-phase. Upregulation of cell cycle-dependent kinase inhibitors (eg, p27Kip1) plays an important role in this process. Although accumulating evidence suggests that apoptosis is cell cycle-dependent, only few data are currently available concerning the interaction of angiotensin II with the cell cycle machinery in apoptosis. We review the various angiotensin II-mediated growth processes and their relationship to events governing cell cycle regulation.
Collapse
Affiliation(s)
- Gunter Wolf
- Department of Medicine, Division of Nephrology and Osteology, University of Hamburg, University Hospital, Germany.
| | | |
Collapse
|
32
|
Mitchell D, Rodgers K, Hanly J, McMahon B, Brady HR, Martin F, Godson C. Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:937-46. [PMID: 14982847 PMCID: PMC1614708 DOI: 10.1016/s0002-9440(10)63181-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipoxins (LX) are endogenously produced eicosanoids with a spectrum of bioactions that suggest anti-inflammatory, pro-resolution roles for these agents. Mesangial cell (MC) proliferation plays a pivotal role in the pathophysiology of glomerular inflammation and is coupled to sclerosis and tubulointerstitial fibrosis. We have previously reported that LXA4 acts through a specific G-protein-coupled-receptor (GPCR) to modulate MC proliferation in response to the proinflammatory mediators LTD4 and platelet-derived growth factor (PDGF). Further investigations revealed that these effects were mediated by modulation of receptor tyrosine kinase activity. Here we have explored the underlying mechanisms and report inhibition of growth factor (PDGF; epithelial growth factor) activation of Akt/PKB by LXA4. LXA4 (10 nmol/L) modulates PDGF-induced (10 ng/ml, 24 hours) decrements in the levels of cyclin kinase inhibitors p21Cip1 and p27Kip1. PDGF-induced increases in CDK2-cyclin E complex formation are also inhibited by LXA4. The potential of LXA4 as an anti-inflammatory therapeutic is compromised by its degradation; this has been circumvented by synthesis of stable analogs. We report that 15-(R/S)-methyl-LXA4 and 16-phenoxy-LXA4 mimic the native compound with respect to modulation of cell proliferation and PDGF-induced changes in cell cycle proteins. In vivo, MC proliferation in response to PDGF is associated with TGFbeta1 production and the subsequent development of renal fibrosis. Here we demonstrate that prolonged (24 to 48 hours) exposure to PDGF is associated with autocrine TGFbeta1 production, which is significantly reduced by LXA4. In aggregate these data demonstrate that LX inhibit PDGF stimulated proliferation via modulation of the PI-3-kinase pathway preventing mitogen-elicited G1-S phase progression and suggest the therapeutic potential of LX as anti-fibrotic agents.
Collapse
Affiliation(s)
- Derick Mitchell
- Center for Molecular Inflammation and Vascular Research, Department of Medicine and Therapeutics, Mater Misericordiae Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
33
|
Kanemoto K, Usui J, Tomari S, Yokoi H, Mukoyama M, Aten J, Weening JJ, Nagata M. Connective tissue growth factor participates in scar formation of crescentic glomerulonephritis. J Transl Med 2003; 83:1615-25. [PMID: 14615415 DOI: 10.1097/01.lab.0000096711.58115.46] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Glomerular crescents are a major determinant of progression in various renal diseases. Some types of growth factors are known to be involved in the evolution of crescents and the subsequent scar formation. Although glomerular parietal epithelial cells (PECs) are the major component of cellular crescents, the influence of growth factors on PECs is unknown. We performed immunohistochemical studies and in situ hybridization to examine alterations in connective tissue growth factor (CTGF) expression and to identify CTGF-synthesizing cells in crescents in the crescentic glomerulonephritis model of Wistar Kyoto rats. In addition, we examined the roles of fibroblast growth factor (FGF)-2, platelet-derived growth factor (PDGF)-BB, transforming growth factor (TGF)-beta, and CTGF in cell proliferation and matrix synthesis in an established rat PEC cell line (PEC line). In an acute phase of rat crescentic glomerulonephritis, a major component of the crescents were macrophages, which did not express CTGF mRNA. However, in the advanced phase, crescents strongly expressed CTGF mRNA and the epithelial marker pan-cadherin but did not express the macrophage marker ED1, suggesting that PECs synthesized the CTGF. In the PEC line, FGF-2 predominantly promoted [(3)H]thymidine incorporation compared with PDGF-BB. Both TGF-beta and PDGF-BB strongly stimulated extracellular matrix synthesis in association with up-regulation of endogenous CTGF, but TGF-beta showed a predominant role. FGF-2 had a minor effect on it. In addition, blockade of endogenous CTGF using an antisense oligodeoxynucleotide significantly attenuated both TGF-beta- and PDGF-BB-induced extracellular matrix synthesis. These results suggest that several growth factors promote cell proliferation and matrix production in PECs. CTGF-mediated matrix production via the TGF-beta or PDGF-BB pathway in PECs may, in part, play a role in the progression of scar formation in crescents.
Collapse
Affiliation(s)
- Katsuyoshi Kanemoto
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yusufi ANK, Cheng J, Thompson MA, Walker HJ, Gray CE, Warner GM, Grande JP. Differential effects of low-dose docosahexaenoic acid and eicosapentaenoic acid on the regulation of mitogenic signaling pathways in mesangial cells. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2003; 141:318-29. [PMID: 12761475 DOI: 10.1016/s0022-2143(03)00005-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although dietary fish oil supplementation has been used to prevent the progression of kidney disease in patients with IgA nephropathy, relatively few studies provide a mechanistic rationale for its use. Using an antithymocyte (ATS) model of mesangial proliferative glomerulonephritis, we recently demonstrated that fish oil inhibits mesangial cell (MC) activation and proliferation, reduces proteinuria, and decreases histologic evidence of glomerular damage. We therefore sought to define potential mechanisms underlying the antiproliferative effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the predominant omega-3 polyunsaturated fatty acids found in fish oil, in cultured MC. DHA and EPA were administered to MC as bovine serum albumin fatty-acid complexes. Low-dose (10-50 micromol/L) DHA, but not EPA, inhibited basal and epidermal growth factor (EGF)-stimulated [(3)H]-thymidine incorporation in MCs. At higher doses (100 micromol/L), EPA and DHA were equally effective in suppressing basal and EGF-stimulated MC mitogenesis. Low-dose DHA, but not EPA, decreased ERK activation by 30% (P <.01), as assessed with Western-blot analysis using phosphospecific antibodies. JNK activity was increased by low-dose DHA but not by EPA. p38 activity was not significantly altered by DHA or EPA. Cyclin E activity, as assessed with a histone H1 kinase assay, was inhibited by low-dose DHA but not by EPA. DHA increased expression of the cell cycle inhibitor p21 but not p27; EPA had no effect on p21 or p27. We propose that the differential effect of low-dose DHA vs EPA in suppressing MC mitogenesis is related to down-regulation of ERK and cyclin E activity and to induction of p21.
Collapse
Affiliation(s)
- Ahad N K Yusufi
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Srivastava T, Garola RE, Whiting JM, Alon US. Cell-cycle regulatory proteins in podocyte cell in idiopathic nephrotic syndrome of childhood. Kidney Int 2003; 63:1374-81. [PMID: 12631353 DOI: 10.1046/j.1523-1755.2003.00877.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The podocyte cell is believed to play an important role in idiopathic nephrotic syndrome (INS) of childhood. In adults with cellular and collapsing focal segmental glomerulosclerosis (FSGS), the expression of cell-cycle regulatory proteins such as p27, p57, and cyclin D is decreased and expression of cyclin A, Ki-67, and p21 is observed in podocyte cells suggestive of a dysregulated podocyte phenotype. We investigated for alterations in the expression of cyclin kinase inhibitors, p27, p57, p21, and cyclins D and A in the podocyte cell of children with INS. METHODS Forty-two kidney biopsies were investigated; 14 with minimal-change disease (MCD), seven with diffuse mesangial hypercellularity (DMH), 12 with FSGS, four with Alport syndrome (AS), and five normal biopsies. The sections were examined by immunohistochemistry using dual staining method. Podocyte cells were first identified by Wilm's tumor-1 staining after which expressions of cell-cycle regulatory proteins were analyzed. A quantitative analysis was performed for the proportion of podocyte cells that expressed each cell cycle regulatory protein. RESULTS On light microscopy, all podocyte cells expressed p27, while p57 and p21 expression was seen in a portion of podocyte cells in normal kidney biopsies. Cyclin D was expressed in a small percent of podocyte cells though the expression was more marked in mesangial and endothelial cells. Cyclin A expression was not seen in normal biopsies. The mean expression of p27 decreased significantly in order from normal (100%), MCD (45.9%), DMH (22.4%), and FSGS (16.7%), and the difference between MCD and FSGS was significant. p21 was significantly and equally reduced in MCD (2.3%), DMH (0%), and FSGS (0.7%) compared to normal (66.6%). There was no significant difference in expression of p57, cyclin D and cyclin A in the podocyte cells between normal and children with INS. Children with AS showed a significant decrease in p27 and p21 expression, while the expression of p57, cyclin D and cyclin A were unchanged from normal, thus demonstrating a pattern similar to INS. CONCLUSION The podocyte cell in children with INS down-regulates expression of cyclin kinase inhibitors such as p21 and p27, but not p57, but does not up-regulate cyclin D and cyclin A that are needed to overcome the G1/S transition and move the cell forward in the cell cycle process. Thus, the podocyte cell remains trapped in the G1 arrest phase. In children with INS or AS, the dysregulated podocyte phenotype is different than the one described in adults with cellular or collapsing FSGS.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology and Department of Pathology, The Children's Mercy Hospital, University of Missouri at Kansas City, 64108, USA.
| | | | | | | |
Collapse
|
36
|
Brantley JG, Sharma M, Alcalay NI, Heuvel GBV. Cux-1 transgenic mice develop glomerulosclerosis and interstitial fibrosis. Kidney Int 2003; 63:1240-8. [PMID: 12631340 DOI: 10.1046/j.1523-1755.2003.00889.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cux-1 is a murine homeobox gene that is highly expressed in the nephrogenic zone of the developing kidney. Transgenic mice ectopically expressing Cux-1 develop renal hyperplasia associated with down-regulation of the cyclin kinase inhibitor p27. Because the reduction of p27 has been associated with mesangial cell proliferation and glomerular disease, we evaluated glomerular changes in Cux-1 transgenic mice. METHODS Adult kidneys from Cux-1 transgenic mice were analyzed morphologically for changes in glomerular cell number and for changes in mesangial and interstitial extracellular matrix deposition. Mesangial matrix expansion was identified by light microscopy. Glomerular cell number was performed following immunohistochemistry. Type IV collagen deposition was analyzed by immunofluoresence and Western blotting. Renal function was evaluated by serum protein, blood urea nitrogen (BUN), creatinine, and electrolyte analysis, and by urine protein and creatinine analysis. RESULTS In adult transgenic glomeruli, Cux-1 was ectopically expressed in mesangial cells, and this was associated with an increase in mesangial cell number, resulting from an increase in proliferation. There was a marked increase in mesangial matrix area in transgenic mice compared to non-transgenic littermates, related to an increase in type IV collagen. Podocyte foot process effacement was observed in transgenic mice, and this was related to an increase in urinary albumin. Interstitial fibrosis was also observed in transgenic kidneys. CONCLUSION These observations indicate that increased expression of Cux-1 in mesangial cells results in cell proliferation and mesangial expansion. In addition, these changes are potentially related to disruption of podocyte architecture leading to loss of filtration. These results suggest that expression of Cux-1 is sufficient to induce the early events of mesangioproliferative glomerulonephritis.
Collapse
MESH Headings
- Animals
- Cell Division
- Disease Models, Animal
- Female
- Fibrosis
- Glomerulonephritis, Membranoproliferative/genetics
- Glomerulonephritis, Membranoproliferative/pathology
- Glomerulonephritis, Membranoproliferative/physiopathology
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/physiopathology
- Homeodomain Proteins
- Kidney Glomerulus/pathology
- Kidney Glomerulus/physiopathology
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Proteins/genetics
- Proteinuria/genetics
- Proteinuria/pathology
- Proteinuria/physiopathology
- Repressor Proteins/genetics
Collapse
Affiliation(s)
- Jennifer G Brantley
- Department of Anatomy and Cell Biology and University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Alpers CE, Hudkins KL, Segerer S, Sage EH, Pichler R, Couser WG, Johnson RJ, Bassuk JA. Localization of SPARC in developing, mature, and chronically injured human allograft kidneys. Kidney Int 2002; 62:2073-86. [PMID: 12427131 DOI: 10.1046/j.1523-1755.2002.00680.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The matricellular protein SPARC (secreted protein acidic and rich in cysteine) is expressed during development, tissue remodeling and repair. It functions as an endogenous inhibitor of cell proliferation, regulates angiogenesis, regulates cell adhesion to extracellular matrix, binds cytokines such as platelet derived growth factor and stimulates transforming growth factor-beta (TGF-beta) production. This study describes the expression of SPARC during human renal development, in normal kidneys and during renal allograft rejection. METHODS A total of 60 renal specimens, including normal areas from tumor nephrectomies (N = 24), fetal kidneys (N = 27) and explanted renal allografts (N = 9), were included in the study. SPARC protein was localized by immunohistochemistry using two different antibodies. On consecutive sections SPARC mRNA was detected by in situ hybridization. RESULTS In the normal adult kidney SPARC protein was expressed by visceral and parietal epithelial cells, collecting duct epithelium (CD), urothelium, smooth muscle cells of muscular arteries and focally in interstitial cells. During renal development immature glomeruli demonstrated a polarized SPARC expression in visceral epithelial cells at their surface abutting the capillary basement membranes. In the fully differentiated glomeruli the expression pattern mirrored that of the adult kidney. Furthermore, SPARC was abundantly expressed by derivatives of the ureteric bud, and smooth muscle cells of arterial walls. During chronic allograft rejection SPARC is expressed in neointimal arterial smooth muscle cells, infiltrating inflammatory cells as well as by interstitial myofibroblasts in areas of interstitial fibrosis. SPARC mRNA synthesis detected by in situ hybridization mirrored these protein expression patterns. CONCLUSION These studies co-localize SPARC to several sites of renal injury previously shown to be sites of PDGF B-chain expression and/or activity. We speculate that SPARC could function as an accessory molecule in chronic PDGF-mediated sclerosing interstitial and vascular injury. SPARC localization to glomerular epithelial cells corresponds to similar findings in rodents, and may reflect its role in cell adhesion and /or regulation of cell shape.
Collapse
Affiliation(s)
- Charles E Alpers
- Department of Pathology, University of Washington School of Medicine, Seattle Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Interstitial fibrosis has a major role in the progression of renal diseases. Several animal models are available for the study of renal fibrosis. The models of aminonucleoside-induced nephrotic syndrome, cyclosporin nephrotoxicity, and passive Heyman nephritis are characterized by molecular and cellular events similar to those that occur in obstructive nephropathy. Additionally, inhibition of angiotensin-converting enzyme exerts salutary effects on the progression of renal fibrosis in obstructive nephropathy. Unilateral ureteral obstruction (UUO) has emerged as an important model for the study of the mechanisms of renal fibrosis and also for the evaluation of the impact of potential therapeutic approaches to ameliorate renal disease. Many quantifiable pathophysiological events occur over the span of 1 wk of UUO, making this an attractive model for study. This paper reviews some of the ongoing studies that utilized a rodent model of UUO. Some of the findings of the animal model have been compared with observations made in patients with obstructive nephropathy. Most of the evidence suggests that the rodent model of UUO is reflective of human renal disease processes.
Collapse
Affiliation(s)
- Saulo Klahr
- Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110-1092, USA.
| | | |
Collapse
|
40
|
Schiffer M, Schiffer LE, Gupta A, Shaw AS, Roberts ISD, Mundel P, Böttinger EP. Inhibitory smads and tgf-Beta signaling in glomerular cells. J Am Soc Nephrol 2002; 13:2657-66. [PMID: 12397035 DOI: 10.1097/01.asn.0000033276.06451.50] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Smad6 and Smad7 are inhibitory SMADs with putative functional roles at the intersection of major intracellular signaling networks, including TGF-beta, receptor tyrosine kinase (RTK), JAK/STAT, and NF-kappaB pathways. This study reports differential functional roles and regulation of Smad6 and Smad7 in TGF-beta signaling in renal cells, in murine models of renal disease and in human glomerular diseases. Smad7 is upregulated in podocytes in all examined glomerular diseases (focal segmental glomerulosclerosis [FSGS], minimal-change disease [MCD], membranous nephropathy [MNP], lupus nephritis [LN], and diabetic nephropathy [DN]) with a statistically significant upregulation in "classical" podocyte-diseases such as FSGS and MCD. TGF-beta induces Smad7 synthesis in cultured podocytes and Smad6 synthesis in cultured mesangial cells. Although Smad7 expression inhibited both Smad2- and Smad3-mediated TGF-beta signaling in podocytes, it inhibited only Smad3 but not Smad2 signaling in mesangial cells. In contrast, Smad6 had no effect on TGF-beta/Smad signaling in podocytes and enhanced Smad3 signaling in mesangial cells. These data suggest that Smad7 is activated in injured podocytes in vitro and in human glomerular disease and participates in negative control of TGF-beta/Smad signaling in addition to its pro-apoptotic activity, whereas Smad6 has no role in TGF-beta response and injury in podocytes. In contrast, Smad6 is upregulated in the mesangium in human glomerular diseases and may be involved in functions independent of TGF-beta/Smad signaling. These data indicate an important role for Smad6 and Smad7 in glomerular cells in vivo that could be important for the cell homeostasis in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Mario Schiffer
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Since discovery over a decade ago of a role for the cytokine TGF-beta as key mediator of glomerular and tubulointerstitial pathobiology in chronic kidney diseases, studies of TGF-beta signaling in the kidney have focused on the molecular biology of fibrogenesis. In recent years, glomerular and tubular epithelial cell apoptosis and cellular transdifferentiation have been proposed as putative primary pathomechanisms that may underlie progression of renal disease. This review describes evidence in support of nonlinear models and functional roles of TGF-beta signaling in mediating apoptosis and epithelial-to-mesenchymal transdifferentiation (EMT) in chronic progressive renal disease. Emphasis is placed on cell context-dependent models of TGF-beta signaling providing a conceptual framework to consolidate seemingly distinct pathomechanisms of progression of glomerular and tubulointerstitial disease.
Collapse
Affiliation(s)
- Erwin P Böttinger
- Unified Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine Bronx, New York 10461, USA.
| | | |
Collapse
|
42
|
Abdel-Wahab N, Weston BS, Roberts T, Mason RM. Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J Am Soc Nephrol 2002; 13:2437-45. [PMID: 12239232 DOI: 10.1097/01.asn.0000031828.58276.02] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Connective tissue growth factor (CTGF) is now considered to be one of the important driver molecules for the pathogenesis of diabetic nephropathy (DN) and possibly many other fibrotic disorders. However, the molecular mechanisms by which CTGF functions remain to be established. In an attempt to define these mechanisms, this study was designed to investigate whether CTGF has any effect on the cell cycle of human mesangial cells (HMC), which are known to undergo hypertrophy in DN. This report provides the first evidence that CTGF is a hypertrophic factor for HMC. CTGF stimulates HMC to actively enter the G(1) phase from G(0), but they do not then progress further through the cell cycle. The molecular mechanisms underlying this G(1) phase arrest appear to be due to the induction of the cyclin-dependent kinase inhibitors (CDKI) p15(INK4), p21(Cip1), and p27(Kip1), which are known to bind and inactivate cyclinD/CDK4/6 and the cyclin E/CDK2 kinase complexes. This could account for the maintenance of pRb protein in a non- or very low-phosphorylated state, preventing cell cycle progression. Using CTGF antisense oligonucleotides, the results also indicate that the previously identified transforming growth factor-beta (TGF-beta)-induced hypertrophy in mesangial cells is CTGF-dependent. Mesangial cell hypertrophy is one of the earliest abnormalities of diabetic nephropathy; therefore, therapeutic strategies targeting CTGF may be beneficial in controlling DN.
Collapse
Affiliation(s)
- Nadia Abdel-Wahab
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, South Kensington, London, United Kingdom
| | | | | | | |
Collapse
|
43
|
Nagata M, Shu Y, Tomari S. Role of cell cycle molecules in the pathophysiology of glomerular epithelial cells. Microsc Res Tech 2002; 57:203-7. [PMID: 12012384 DOI: 10.1002/jemt.10074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The postmitotic characteristics of podocytes are the basis for the structural assembly and central function (filtration) of the glomeruli. Persistent cell cycle quiescence is required for stability in these cells. In cells of the podocyte lineage, transdifferentiation from the metanephric mesenchyme to mature podocytes is closely associated with tight regulation of the expression of cell cycle molecules. This cell cycle control in podocytes acts as a safeguard for the glomeruli; however, deregulation of this system might result in structural deterioration. This article focuses on the expression of cell cycle molecules in podocyte differentiation and pathology.
Collapse
Affiliation(s)
- Michio Nagata
- Department of Pathology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
44
|
Grande JP, Warner GM, Walker HJ, Yusufi ANK, Cheng J, Gray CE, Kopp JB, Nath KA. TGF-beta1 is an autocrine mediator of renal tubular epithelial cell growth and collagen IV production. Exp Biol Med (Maywood) 2002; 227:171-81. [PMID: 11856815 DOI: 10.1177/153537020222700304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent studies in cultured cells have provided evidence that a variety of pathobiologic stimuli, including high glucose, angiotensin II, and thromboxane A(2), trigger a signaling pathway leading to autocrine induction of TGF-beta1. TGF-beta1 production through this pathway may profoundly affect cell growth, matrix synthesis, and response to injury. This study examines the role of autocrine versus exogenously added TGF-beta1 in cellular proliferation and collagen IV production, critical targets of TGF-beta1 signaling, using renal cells derived from TGF-beta1 knockout (KO) animals or wild-type (WT) controls. Growth of WT and KO cells was assessed by cell counting and [(3)H]thymidine uptake. Basal and TGF-beta1-stimulated collagen production was assessed by Northern and Western blotting; transcriptional activity of the alpha1(IV) collagen gene was assessed by transient transfection analysis. KO cells grew at a faster rate than WT cells carefully matched for plating density and passage number. This increased growth rate was paralleled by increases in [(3)H]thymidine uptake. KO cells expressed lower levels of the cell cycle inhibitors p21 and p27 than WT cells. KO cells failed to express TGF-beta1, as expected. Basal TGF-beta3 mRNA levels were higher in KO cells than in WT cells. WT cells expressed higher basal levels of TGF-beta2 mRNA than KO cells. Basal alpha1(IV) and alpha2(IV) collagen mRNA and protein expression were significantly lower in KO cells than WT cells. Administration of exogenous TGF-beta1 induced collagen IV production in both KO and WT cells. Although basal transcriptional activity of an alpha1(IV) collagen-CAT construct was lower in KO cells than WT cells, administration of exogenous TGF-beta1 was associated with significant increases in transcriptional activity of this construct in both KO and WT cells. These studies provide evidence that autocrine production of TGF-beta1 may play a critical role in regulation of growth and basal collagen IV production by renal tubular epithelial cells.
Collapse
Affiliation(s)
- Joseph P Grande
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, and Division of Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gerth JH, Kriegsmann J, Trinh TT, Stahl RAK, Wendt T, Sommer M, Stein G, Wolf G. Induction of p27KIP1 after unilateral ureteral obstruction is independent of angiotensin II. Kidney Int 2002; 61:68-79. [PMID: 11786086 DOI: 10.1046/j.1523-1755.2002.00111.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Unilateral ureteral obstruction (UUO) is characterized by proliferation of tubular and interstitial cells, and infiltration of the renal parenchyma with macrophages/monocytes. These alterations lead ultimately to tubulointerstitial fibrosis and tubular atrophy. Some of these changes are caused by an activated renin-angiotensin system (RAS). We have previously demonstrated that angiotensin II induces the expression of the cell cycle inhibitor p27KIP1 in cultured tubular cells. The current study tested the hypothesis that interference with the RAS may modulate renal expression of p27KIP1 after UUO. METHODS The ureter of the left kidney of Sprague-Dawley rats was ligated. Sham-operated animals served as controls. Rats were randomized in four groups and received one of the following: no therapy, enalapril, losartan, or triple therapy (hydralazine, reserpine, hydrochlorothiazide). Kidneys were removed and cortical protein lysates were prepared for the detection of p27KIP1 by Western blotting. Immunohistochemistry was performed for p27KIP1, PCNA, ED-1, and alpha-smooth muscle actin. Apoptosis was quantified by TUNEL-staining. RESULTS p27KIP1 expression as detected by Western blotting reached a maximum 10 days after UUO. Tubular and interstitial cells contributed to this increase in p27KIP1 expression whereas the number of glomerular p27KIP1 positive cell did not change. p27KIP1-positive cells were macrophages/monocytes (positive ED-1 staining) or had the characteristics of myofibroblasts (positive alpha-smooth muscle actin staining). Tubular and interstitial proliferation [proliferating cell nuclear antigen (PCNA)-positive staining] and apoptosis [terminal deoxy transferase uridine triphosphate nick end labeling (TUNEL) staining] also was increased after UUO. However, individual cells stained either positive for p27KIP1 or PCNA, but not both. Although enalapril and losartan reduced the number of macrophages/monocytes and attenuated the degree of tubular and interstitial apoptosis, these drugs did not influence p27KIP1 expression. There was no change in the number of p27KIP1-positive cells in the contralateral kidney undergoing hypertrophy. CONCLUSION Induction of p27KIP1 in this model represents an endogenous response to likely limit proliferation that is independent of angiotensin II. Since there was no close correlation between apoptosis and p27KIP1 expression, it may be that the overall number of p27KIP1 expressing cells sets a general restriction point for apoptosis rather than defines an individual level of cell fate.
Collapse
Affiliation(s)
- Jens H Gerth
- Klinik für Innere Medizin IV der Universität Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sakharova OV, Taal MW, Brenner BM. Pathogenesis of diabetic nephropathy: focus on transforming growth factor-beta and connective tissue growth factor. Curr Opin Nephrol Hypertens 2001; 10:727-38. [PMID: 11706299 DOI: 10.1097/00041552-200111000-00001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although considerable improvement in the prognosis of diabetic nephropathy has been achieved in recent years due to intensive insulin and angiotensin-converting enzyme inhibitor treatment, these approaches do not provide complete protection against progression of diabetic nephropathy. An urgent need for additional novel therapies to prevent or further slow the progression of diabetic nephropathy motivated us to provide an up-to-date review with particular emphasis on the potential role of two growth factors--transforming growth factor-beta and connective tissue growth factor--in the pathogenesis of diabetic nephropathy. The most intensively studied to date, transforming growth factor-beta appears to play a central role in the pathogenesis of diabetic nephropathy. Recently, attention has focused on connective tissue growth factor, which mimics the biological activity of transforming growth factor-beta in profibrotic tissue formation. Thus, acting as a downstream mediator of the profibrotic activity of transforming growth factor-beta, connective tissue growth factor may constitute a more specific target for future antifibrotic therapies.
Collapse
Affiliation(s)
- O V Sakharova
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
47
|
Wolf G, Schroeder R, Zahner G, Stahl RA, Shankland SJ. High glucose-induced hypertrophy of mesangial cells requires p27(Kip1), an inhibitor of cyclin-dependent kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1091-100. [PMID: 11238057 PMCID: PMC1850372 DOI: 10.1016/s0002-9440(10)64056-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hypertrophy of mesangial cells is one of the earliest morphological alterations in the kidney after the onset of diabetes mellitus. We have previously shown that cultured mesangial cells exposed to high ambient glucose arrest in the G1 phase of the cell cycle and that this is associated with an increased expression of inhibitors of the cyclin-dependent kinase (CDK)-inhibitors p21(Cip) and p27(Kip1). To further investigate a potential role of p27Kip1 in the development of glucose-induced hypertrophy, mesangial cells from p27Kip1 wild-type (+/+) and knockout (-/-) mice were established. High glucose medium (450 mg/dl) increased p21(Cip1) protein in p27Kip1+/+ and -/- mesangial cells, and increased p27Kip1 protein levels in p27Kip1+/+ cells. In contrast to high glucose increasing de novo protein synthesis in p27Kip1+/+ cells, high glucose did not increase protein synthesis in p27Kip1-/- cells. High glucose also reduced DNA synthesis and caused cell cycle arrest in p27Kip1+/+ cells. In contrast, despite an increase in transforming growth factor (TGF)-beta mRNA and protein expression, DNA synthesis and cell cycle progression were increased by high glucose in p27Kip1-/- cells. Exogenous TGF-beta comparably induced fibronectin mRNA in p27Kip1+/+ and -/- cells suggesting intact TGF-beta receptor transduction. In addition, high glucose failed to increase the total protein/cell number ratio in p27Kip1-/- cells. However, in the presence of high glucose, reconstituting p27Kip1 expression by transient or stable transfection in p27Kip1-/- cells, using an inducible expression system, increased the de novo protein synthesis and restored G1-phase arrest. These results show that p27Kip1 is required for glucose-induced mesangial cell hypertrophy and cell cycle arrest.
Collapse
Affiliation(s)
- G Wolf
- University of Hamburg, University Hospital Eppendorf, Department of Medicine, Division of Nephrology and Osteology, Pavilion 61, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Ding G, Franki N, Kapasi AA, Reddy K, Gibbons N, Singhal PC. Tubular cell senescence and expression of TGF-beta1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp Mol Pathol 2001; 70:43-53. [PMID: 11170790 DOI: 10.1006/exmp.2000.2346] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kidney aging has been recognized as a chronic process of compromised renal function and structural changes in the tubulointerstitium and glomerulus. Cell senescence is associated with alterations in cell structure and function, including expression of cytokines and structural and regulatory components of extracellular matrix proteins. In this investigation, we tested the hypothesis that senescent renal cells may accumulate in vivo with advancing age. We also evaluated the expression of transforming growth factor (TGF)-beta1 and p21WAF1/CIP1 in aging kidneys. Sprague-Dawley rats at the ages of 3, 12, and 24 months were used for this study. Renal tissues were processed for morphometric and senescence analysis. Expression of TGF-beta1 and p21WAF1/CIP1 was evaluated by Northern or Western blot analysis and immunohistochemistry. Substantial tubulointerstitial injury occurred at the age of 12 months, but significant glomerular structure alteration was observed at the age of 24 months. Tubular cells developed senescence, which was detected by beta-galactosidase staining. This staining increased in frequency and intensity with age. Renal cortices showed a significant increase in the mRNA expression for TGF-beta1 and protein level for p21WAF1/CIP1. The enhanced expression of TGF-beta1 and p21WAF1/CIP1 was localized in the tubulointersititial cells. These data suggest that tubular cells undergo senescence and express increased TGF-beta1 and p21WAF1/CIP1 with advancing age. These age-related cellular and molecular alterations may play an important role in the initiation and/or progression of tubulointerstitial fibrosis and glomerulosclerosis in aging.
Collapse
Affiliation(s)
- G Ding
- Section of Molecular Biology and Experimental Pathology, Long Island Jewish Medical Center, New Hyde Park, New York 11040, USA
| | | | | | | | | | | |
Collapse
|
49
|
Mauro M, Kim J, Costello C, Laurence J. Role of transforming growth factor beta1 in microvascular endothelial cell apoptosis associated with thrombotic thrombocytopenic purpura and hemolytic-uremic syndrome. Am J Hematol 2001; 66:12-22. [PMID: 11426486 DOI: 10.1002/1096-8652(200101)66:1<12::aid-ajh1001>3.0.co;2-i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary human microvascular endothelial cells (MVEC) of restricted lineage undergo apoptosis when exposed to plasma from patients with thrombotic thrombocytopenic purpura (TTP) and sporadic hemolytic-uremic syndrome (HUS). This reflects the pathology and tissue distribution of lesions in vivo. As extracellular matrix (ECM) is critical to MVEC survival, and cytokines which regulate ECM, such as transforming growth factor (TGF)-beta1, have been reported anecdotally to be altered in TTP/HUS, we examined the role of TGF-beta1 and two ECM proteins, fibronectin and thrombospondin (TSP), in these disorders. Levels of active TGF-beta1 were elevated in acute but not convalescent phases of TTP/sporadic HUS, as well as TTP associated with human immunodeficiency virus infection and use of the anti-platelet drug ticlopidine. MVEC from tissues susceptible to TTP-mediated apoptosis showed little active TGF-beta1 production when exposed to TTP plasmas. In contrast, pulmonary MVEC and large-vessel EC, which are resistant to TTP-linked pathology, showed marked induction of TGF-beta1 following TTP plasma exposure. Exogenous TGF-beta1 suppressed TTP plasma-mediated apoptosis in susceptible MVEC in association with blockade of cell entry into S phase. Soluble TSP, devoid of detectable bound TGF-beta1, had a similar effect, which paralleled its ability to induce TGF-beta1 production in MVEC. In vivo, TSP deposition was diminished markedly in involved tissues of TTP patients. These data highlight the role of TGF-beta1 and ECM in TTP and suggest that differential production of TGF-beta1 by MVEC may play a role in their sensitivity or resistance to TTP/sporadic HUS-mediated apoptosis in vitro and in vivo.
Collapse
Affiliation(s)
- M Mauro
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Cell cycle regulation in diabetic nephropathy. Renal hypertrophy is one of the earliest abnormalities of diabetic nephropathy. Although selected cell populations. such as tubulointerstitial fibroblasts, may undergo sustained proliferation in the diabetic environment, most renal cells such as mesangial cells are arrested in the G1-phase of the cell cycle after actively leaving G0-phase and some self-limited early proliferation. High glucose, transforming growth factor-beta (TGF-beta), angiotensin II, and probably other factors induce inhibitors of cyclin-dependent kinases (CDK) including p21Cip1 and p27KiP1. These CDK-inhibitors bind to and inactivate G1-phase cyclin/CDK complexes. The consequence is a lack in kinase activity, underphosphorylation of the retinoblastoma gene protein, and a failure to initiate the G1-S-phase transit. The half-life of CDK-inhibitors may also be increased by serine phosphorylation mediated through activated MAP kinases. Treatment of diabetic rats with angiotensin-converting enzyme inhibitors attenuates glomerular hypertrophy and abolishes the glomerular expression of the CDK-inhibitors p16INK4 and p27KiP1, thus indicating that the cell cycle arrest can be therapeutically influenced. Cell cycle proteins may also be involved in these molecular events, leading to a limited degree of tubular apoptosis, which is a feature of diabetic nephropathy. Although not definitively proven, accumulating evidence suggests that early hypertrophy of renal cells may act as pacemaker for subsequent irreversible structural changes, such as glomerulosclerosis and tubulointerstitial fibrosis. Therefore, a better understanding of altered processes of cell cycle regulation is necessary to develop novel therapeutic strategies to prevent diabetic nephropathy. The recent observation that glomerular hypertrophy and proteinuria do not develop in diabetic p21CiP1 knockout mice indicates that this approach is feasible.
Collapse
Affiliation(s)
- G Wolf
- Department of Medicine, University of Hamburg, Germany.
| |
Collapse
|