1
|
Chen Y, Touboul R, Chen Y, Chang CL. Strategic delivery of omega-3 fatty acids for modulating inflammatory neurodegenerative diseases. Front Aging Neurosci 2025; 17:1535094. [PMID: 40166615 PMCID: PMC11955621 DOI: 10.3389/fnagi.2025.1535094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives Early-life inflammatory events like infections and injuries may predispose the brain to Alzheimer's disease (AD) by disrupting neurodevelopment and raising vulnerability. The association between early neuroinflammation and subsequent neurodegeneration leading to dementia remains unclear. We hypothesize that omega-3 (n-3) fatty acids (FA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), positively regulate neuro-immune cells, preserving their cell membrane structure and metabolic homeostasis. Our study examined whether strategic delivery of n-3 FA via injectable n-3 triglycerides (TG) can influence microglial lipid metabolism to prevent or delay AD progression. Methods and results We characterized n-3 treatment effects on modulating lipid and metabolic homeostasis in microglia during the critical window of brain development. Our preliminary studies on determining the effects of early n-3 treatment on brain cell homeostasis indicate that perinatal bolus n-3 TG injections suppressed activation of gliosis-associated markers in young mice predisposed to AD (5xFAD) and yielded sustained regulatory effects on the expression of inflammatory molecules, such as interleukin-6 (Il6) and tumor necrosis factor-alpha (Tnfα), in adult brains. A significant increase in high-frequency ultrasonic vocalizations (USV) was observed in P6 5xFAD mice that received perinatal n-3 compared to vehicle control, implicating enhanced active communication patterns. Improvement in behavior deficits was observed in n-3-treated adult AD mice. Perinatal n-3 TG treatment modified brain lipid composition in young offspring, increasing key membrane lipid species, such as phospholipids (PL) and lysophospholipids (lysoPL). Pro-inflammatory sphingolipids associated with neurodegeneration, including lactosylceramide, were significantly lower in mice treated with n-3 than those in saline-treated AD mice. Conclusion Our study establishes a proof of principle for targeting brain immune cell metabolism with injectable n-3 TG to mitigate neuroinflammation in AD pathogenesis, paving the way for future research into early treatments for related central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Yixin Chen
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Roni Touboul
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yao Chen
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Chuchun L. Chang
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
2
|
Lee C, Dartt DA. Sex-dependent differential increase of specialized pro-resolving mediators in extracellular vesicles secreted by human primary conjunctival goblet cells during allergic inflammation. Life Sci 2024; 357:123058. [PMID: 39277134 PMCID: PMC11486558 DOI: 10.1016/j.lfs.2024.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
AIMS Conjunctival epithelium lines the inside of the eyelids and covers the sclera, thus providing stability to the eye surface. Goblet cells in conjunctival epithelium (CjGCs) are well known for their mucin-secretion function, which wet and protect the ocular surface, but other aspects are still not well understood. To expand our understanding beyond their mucin-secreting function, we investigated CjGC-secreted extracellular vesicles (EVs) and lipid mediators therein. MATERIALS AND METHODS Using histamine-mediated allergic inflammation in human primary CjGCs (HCjGCs) as a disease model, we quantified using ELISA a proinflammatory mediator PGE2 and two specialized pro-resolving mediators (SPMs) LXA4 and RvD1 in EVs secreted during allergic inflammation. KEY FINDINGS At 18 h post histamine stimulation, the amount of LXA4 and RvD1 in EVs was notably higher compared to those in unstimulated. Interestingly, this increase was only observed in female EVs but not in males. The mean fold increase of LXA4 and RvD1 in female EVs was 3.9 and 3.4, respectively, but it was only 0.9 and 1.0 in male EVs. Supplying docosahexaenoic acid (DHA, the source of RvD1 and other SPMs) to the culture medium during the allergic inflammation resulted in even higher mean fold increase of 5.3 and 6.9 for LXA4 and RvD1 in female EVs, respectively, but it was only 0.5 and 0.8 in male EVs. SIGNIFICANCE We conclude that HCjGCs show a clear sex difference in allergic response. Our results may also provide a new insight into the male predisposition to severe forms of allergic conjunctivitis and potential improvement in disease care in the clinic.
Collapse
Affiliation(s)
- Changrim Lee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford, Boston, MA 02114, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Li D, Hodges R, AukrustNaqvi M, Bair J, Bispo PJM, Gilmore MS, Gregory-Ksander M, Dartt DA. Staphylococcus aureus activates NRLP3-dependent IL-1β secretion from human conjunctival goblet cells using α toxin and toll-like receptors 2 and 1. Front Cell Infect Microbiol 2023; 13:1265471. [PMID: 38089811 PMCID: PMC10711068 DOI: 10.3389/fcimb.2023.1265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
We used cultured human conjunctival goblet cells to determine (i) whether the toxigenic S. aureus- induced activation of the epithelial goblet cells requires two signals to activate the NLRP3 inflammasome, (ii) if one signal is mediated by TLR1, TLR2, or TLR6, and (iii) if the S. aureus toxin α toxin is another signal for the activation of the inflammasome and secretion of mature IL-1β. Cultured cells were incubated with siRNA to knock down the different TLRs. After stimulation with toxigenic S. aureus RN6390, pro-IL-1β synthesis, caspase-1 activity, and mature IL-1β secretion were measured. In a separate set of experiments, the cells were incubated with toxigenic S. aureus RN6390 or mutant S. aureus ALC837 that does not express α toxin with or without exogenous α toxin. A gentamicin protection assay was used to determine if intracellular bacteria were active. We conclude that α toxin from toxigenic S. aureus triggers two separate mechanisms required for the activation of the NLRP3 inflammasome and secretion of mature IL-1β. In the first mechanism, α toxin secreted from internalized S. aureus produces a pore, allowing the internalized bacteria and associated pathogen-associated molecular patterns to interact with intracellular TLR2 and, to a lesser extent, TLR1. In the second mechanism, α toxin forms a pore in the plasma membrane, leading to an efflux of cytosolic K+ and influx of Ca2+. We conclude that α toxin by these two different mechanisms triggers the synthesis of pro-IL-1β and NLRP3 components, activation of capase-1, and secretion of mature IL-1β to defend against bacterial infection.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Robin Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Maria AukrustNaqvi
- Department of Life Sciences and Health Faculty of Health Sciences Oslo Metropolitan University, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
| | - Paulo J. M. Bispo
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Michael S. Gilmore
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Lyngstadaas AV, Olsen MV, Bair J, Yang M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Anti-Inflammatory and Pro-Resolving Actions of the N-Terminal Peptides Ac2-26, Ac2-12, and Ac9-25 of Annexin A1 on Conjunctival Goblet Cell Function. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1817-1832. [PMID: 37423551 PMCID: PMC10616711 DOI: 10.1016/j.ajpath.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Annexin A1 (AnxA1) is the primary mediator of the anti-inflammatory actions of glucocorticoids. AnxA1 functions as a pro-resolving mediator in cultured rat conjunctival goblet cells to ensure tissue homeostasis through stimulation of intracellular [Ca2+] ([Ca2+]i) and mucin secretion. AnxA1 has several N-terminal peptides with anti-inflammatory properties of their own, including Ac2-26, Ac2-12, and Ac9-25. The increase in [Ca2+]i caused by AnxA1 and its N-terminal peptides in goblet cells was measured to determine the formyl peptide receptors used by the compounds and the action of the peptides on histamine stimulation. Changes in [Ca2+]i were determined by using a fluorescent Ca2+ indicator. AnxA1 and its peptides each activated formyl peptide receptors in goblet cells. AnxA1 and Ac2-26 at 10-12 mol/L and Ac2-12 at 10-9 mol/L inhibited the histamine-stimulated increase in [Ca2+]i, as did resolvin D1 and lipoxin A4 at 10-12 mol/L, whereas Ac9-25 did not. AnxA1 and Ac2-26 counter-regulated the H1 receptor through the p42/p44 mitogen-activated protein kinase/extracellular regulated kinase 1/2, β-adrenergic receptor kinase, and protein kinase C pathways, whereas Ac2-12 counter-regulated only through β-adrenergic receptor kinase. In conclusion, current data show that the N-terminal peptides Ac2-26 and Ac2-12, but not Ac9-25, share multiple functions with the full-length AnxA1 in goblet cells, including inhibition of histamine-stimulated increase in [Ca2+]i and counter-regulation of the H1 receptor. These actions suggest a potential pharmaceutical application of the AnxA1 N-terminal peptides Ac2-26 and Ac2-12 in homeostasis and ocular inflammatory diseases.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Menglu Yang
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
6
|
Lv H, Wang Y, Gao Z, Liu P, Qin D, Hua Q, Xu Y. Knowledge mapping of the links between the microbiota and allergic diseases: A bibliometric analysis (2002-2021). Front Immunol 2022; 13:1045795. [PMID: 36389800 PMCID: PMC9650552 DOI: 10.3389/fimmu.2022.1045795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 08/17/2023] Open
Abstract
Background In recent decades, dramatic changes in modern environmental exposures and lifestyles have resulted in a steep rise in the prevalence of allergic diseases such as asthma, allergic rhinitis, atopic dermatitis and food allergies. Evidence is mounting that the microbiota plays a crucial role in allergic disorder development and evolution. Therefore, a better understanding of allergic diseases within the context of the microbiota is urgently needed. This work aimed to comprehensively outline general characteristics, research hotspots, evolution routes, and emerging trends in this area. Methods Relevant publications from January 2002 to December 2021 were obtained from the Web of Science Core Collection on 5 August 2022. Bibliometric and visual analyses were performed using CiteSpace; VOSviewer; an online bibliometric platform; and Microsoft Excel 2019. Results In total, 2535 documents met the requirements. The annual number of publications has shown rapid growth in the last two decades. The USA, University of California System, and Isolauri E of the University of Turku were the most productive and influential country, institution, and author, respectively. The Journal of Allergy and Clinical Immunology was the most prolific and most cocited journal. High-frequency keywords included "gut microbiota", "asthma", "atopic dermatitis", "children", and "probiotics". Recent studies have focused on "atopic dermatitis", "skin", "asthma", and "probiotics", according to the cocitation analysis of references. Burst detection analysis of keywords showed that "community", "skin microbiome", "microbiome", "Staphylococcus aureus", and "chain fatty acid" were emerging research frontiers, which currently have ongoing bursts. Conclusion In the last 20 years, studies of the microbiota in allergic diseases have been flourishing, and the themes have been increasing in depth. These findings provide valuable references on the current research hotspots and gaps and development trends in the link between the microbiota and allergic diseases.
Collapse
Affiliation(s)
- Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Botten N, Hodges RR, Bair J, Utheim TP, Serhan CN, Yang M, Dartt DA. Resolvin D2 uses multiple Ca 2+ -dependent signaling pathways to stimulate mucin secretion in rat and human conjunctival goblet cells. J Cell Physiol 2022; 237:3816-3833. [PMID: 36066128 PMCID: PMC9560994 DOI: 10.1002/jcp.30854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
The mucin layer of the tear film is produced by goblet cells in the conjunctiva to protect the ocular surface and maintain homeostasis. The pro-resolving lipid mediator resolvin D2 (RvD2) biosynthesized from an omega 3 fatty acid actively terminates inflammation and regulates mucin secretion from conjunctival goblet cells. Our objective was to determine which Ca2+ -dependent signaling pathways RvD2 uses to stimulate conjunctival goblet cell function (CGC). We hypothesize that RvD2 activates multiple intracellular Ca2+ signaling pathways to stimulate CGC secretion. Rat and human CGCs were cultured from conjunctival explants. The amount of RvD2 receptor GPR18/DRV2 message and protein were determined. The intracellular concentration of Ca2+ ([Ca2+ ]i ) was measured in CGCs using a fluorescent Ca2+ dye and mucin secretion was determined by measuring protein secretion enzymatically with a lectin. Goblet cells were incubated with signaling pathway inhibitors before stimulation with RvD2 and [Ca2+ ]i or secretion was measured. In rat and human CGCs RvD2 receptor and in rat CGCs IP3 (a molecule that releases Ca2+ from intracellular organelles) receptors 1-3 were detected. In both species of CGC RvD2 increased [Ca2+ ]i similarly to RvD1. In rat CGCs, the increase in [Ca2+ ]i and secretion stimulated by RvD2 was significantly blocked by inhibitors to phospholipase (PL-) C and IP3 -receptor, but not protein kinase C. Increase in [Ca2+ ]i was blocked by the PLD inhibitor, but not the PLA2 inhibitor. Secretion was blocked by PLA2 inhibitor, but not the PLD inhibitor. An inhibitor of the epidermal growth factor receptor blocked the increase in [Ca2+ ]i by RvD2 in both species of CGCs. In CGCs RvD2 activates multiple intracellular signaling pathways that are Ca2+ -dependent, along with one Ca2+ -independent and one cAMP/protein kinase A-dependent pathway. Activation of these pathways stimulate mucin secretion from rat and human CGCs into the tear film contributing to ocular surface homeostasis and health.
Collapse
Affiliation(s)
- Nora Botten
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robin R. Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor P. Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Sex-based differences in conjunctival goblet cell responses to pro-inflammatory and pro-resolving mediators. Sci Rep 2022; 12:16305. [PMID: 36175572 PMCID: PMC9522727 DOI: 10.1038/s41598-022-20177-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Many conjunctival inflammatory diseases differ between the sexes and altered conjunctival goblet cells (CGCs) response is often involved. Inflammation is initiated by the release of pro-inflammatory mediators and terminated by the biosynthesis of specialized pro-resolution mediators (SPMs). Herein, we determined the sex-based difference in the responses of CGCs to inflammatory stimuli or pro-resolving lipid SPMs and their interaction with sex hormones. GCs were cultured from pieces of human conjunctiva in RPMI media. CGCs were transferred 24 h before the start of experiments to phenol red-free and FBS-free media to minimize exogenous hormones. RT-PCR, immunofluorescence microscopy (IF), and Western Blot (WB) were performed to determine the presence of sex hormone receptors. Cellular response to pro-inflammatory stimuli or SPMs was studied by measuring the increase in intracellular [Ca2+] ([Ca2+]i) using fura 2/AM microscopy. Use of RT-PCR demonstrated estrogen receptor (ER) α in 4/5 males and 3/3 females; ERβ in 2/4 males and 2/3 females; and androgen receptors (AR) in 3/3 male and 3/3 female CGCs. Positive immunoreactivity by IF and protein expression by WB was detected using antibodies for the ERα and ERβ in 3/3 males and 3/3 females, while AR were only present in males. Significantly different Ca2+ responses between sexes were found with carbachol only at 10–3 M, but not with histamine or leukotriene (LT) B4 at any concentration used. Incubation with dihydrotestosterone (DHT), estrone (E1), or estradiol (E2) at 10–7 M for 30 min significantly inhibited the LTB4-stimulated [Ca2+]i increase in male and female CGCs. Incubation with DHT, E1, and E2 overnight significantly inhibited the LTB4 response in females, while DHT and E2 significantly inhibited the LTB4 response in males. The SPM lipoxin A4 (LXA4) (10–9–10−8 M), but not the resolvins D1 or D2, induced an [Ca2+]i increase that was significantly higher in males compared to females. We conclude that male and female CGCs showed differences in the expression of sex hormone receptors. Treatment with sex hormones altered pro-inflammatory mediator LTB4-induced response. Males compared to females have a higher response to the ω-6-fatty acid derived SPM LXA4, indicating males may terminate inflammation in conjunctival goblet cells faster than females.
Collapse
|
9
|
Pyo HJ, An X, Cho H. The role of free fatty acid receptor pathways in a selective regulation of TRPA1 and TRPV1 by resolvins in primary sensory neurons. J Cell Physiol 2022; 237:3651-3660. [PMID: 35802479 PMCID: PMC9544928 DOI: 10.1002/jcp.30826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and TRPV1, respectively) channels contribute to inflammatory and neuropathic pain, indicating that their pharmacological inhibition could be a novel strategy for treating painful diseases. However, the mechanisms of TRPA1/V1 channel modulation have been mostly characterized to be upregulation and sensitization via variety of exogenous stimuli, endogenous inflammatory mediators, and metabolites of oxidative stress. Here we used calcium imaging of dorsal root ganglion neurons to identify an inhibitor signaling pathway for TRPA1 and TRPV1 regulated by resolvins (RvD1 and RvE1), which are endogenous anti‐inflammatory lipid mediators. TRPA1 and TRPV1 channel activations were evoked by the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. Our results show that RvD1‐induced selective inhibition of TRPA1 activity was mediated by free fatty acid receptor 4 (FFAR4)‐protein kinase C (PKC) signaling. Experiments assessing RvE1‐induced TRPV1 inhibition showed that RvE1 actions required both FFAR1 and FFAR4. Combined stimulation of FFAR1/FFAR4 or FFAR1/PKC mimicked TRPV1 inhibition by RvE1, and these effects were blocked by a protein kinase D (PKD) inhibitor, implying that PKD is an effector of the FFAR/PKC signaling axis in RvE1‐induced TRPV1 inhibition. Despite selective inhibition of TRPV1 in the nanomolar range of RvE1, higher concentrations of RvE1 also inhibited TRPA1, possibly through PKC. Collectively, our findings reveal FFAR1 and FFAR4 as key signaling pathways mediating the selective targeting of resolvins to regulate TRPA1 and TRPV1, elucidating endogenous analgesic mechanisms that could be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Hyun-Jeong Pyo
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Xue An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
10
|
Olsen MV, Lyngstadaas AV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Signaling Pathways Used by the Specialized Pro-Resolving Mediator Maresin 2 Regulate Goblet Cell Function: Comparison with Maresin 1. Int J Mol Sci 2022; 23:6233. [PMID: 35682912 PMCID: PMC9181304 DOI: 10.3390/ijms23116233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Specialized pro-resolving mediators (SPMs), including Maresins (MaR)-1 and 2, contribute to tear film homeostasis and resolve conjunctival inflammation. We investigated MaR2's signaling pathways in goblet cells (GC) from rat conjunctiva. Agonist-induced [Ca2+]i and high-molecular weight glycoconjugate secretion were measured. MaR2 increased [Ca2+]i and stimulated secretion. MaR2 and MaR1 stimulate conjunctival goblet cell function, especially secretion, by activating different but overlapping GPCR and signaling pathways, and furthermore counter-regulate histamine stimulated increase in [Ca2+]i. Thus, MaR2 and MaR1 play a role in maintaining the ocular surface and tear film homeostasis in health and disease. As MaR2 and MaR1 modulate conjunctival goblet cell function, they each may have potential as novel, but differing, options for the treatment of ocular surface inflammatory diseases including allergic conjunctivitis and dry eye disease. We conclude that in conjunctival GC MaR2 and MaR1, both increase the [Ca2+]i and stimulate secretion to maintain homeostasis by using one set of different, but overlapping, signaling pathways to increase [Ca2+]i and another set to stimulate secretion. MaR2 also resolves ocular allergy.
Collapse
Affiliation(s)
- Markus V. Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Anne V. Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Jeffrey A. Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
| | - Robin R. Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
| | - Tor P. Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (M.V.O.); (A.V.L.); (J.A.B.); (R.R.H.); (T.P.U.)
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
11
|
Bhure TS, Das P, Jukanti A, Mishra DK, Sahu SK, Basu S, Shukla S. Mesenchymal stem cell therapy for alleviating ocular surface inflammation in allergic conjunctivitis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wang P, Zhu C, Liu M, Yuan Y, Ke B. The inhibiting effect of Aspirin Triggered-Resolvin D1 in non-canonical pyroptosis in rats with acute keratitis. Exp Eye Res 2022; 218:108938. [PMID: 35120872 DOI: 10.1016/j.exer.2022.108938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the effect of Aspirin Triggered-Resolvin D1 (AT-RvD1) as an anti-pyroptosis and anti-inflammatory agent on lipopolysaccharide (LPS) induced acute keratitis in Wistar rats. METHODS Acute keratitis in rats were induced by LPS stromal injection. Inflammatory reaction was measured by clinical score and histological observations. The non-canonical pyroptosis, the role of AT-RvD1 and Docosahexaenoic Acid (DHA) on non-canonical pyroptosis, were verified by quantification real-time PCR (qRT-PCR) and Western-blot. Besides, Human corneal epithelial cells (HCECs) primed with LPS, were stimulated with Nigericin, AT-RvD1 and necrosulfonamide (NSA), a Gasdermin-D (GSDMD) inhibitor separately. CCK-8 tests and flow cytometry were conducted to evaluate the cell viability and death ratio. And the marker of non-canonical pyroptosis were verified by Western blot. RESULTS AT-RvD1 and DHA both alleviated the inflammation of rat cornea through inhibiting the expression of Caspase-11 and p30 which was triggered by LPS. Meanwhile, the activation of Caspase-4 and p30 were also significantly suppressed by AT-RvD1 in vitro, which is consistent with the results in rats. CONCLUSIONS The non-canonical pyroptosis signaling pathways played an important role in rats with acute keratitis. In addition, AT-RvD1 can exert as an anti-inflammatory activity by inhibiting the non-canonical pyroptosis. Hence, it may be a promising and safe agent in treating acute keratitis.
Collapse
Affiliation(s)
- Peng Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Chengcheng Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mingming Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Ying Yuan
- National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China.
| |
Collapse
|
13
|
Resolvin D2 and Resolvin D1 Differentially Activate Protein Kinases to Counter-Regulate Histamine-Induced [Ca2+]i Increase and Mucin Secretion in Conjunctival Goblet Cells. Int J Mol Sci 2021; 23:ijms23010141. [PMID: 35008563 PMCID: PMC8745650 DOI: 10.3390/ijms23010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Resolvin (Rv) D2 and RvD1 are biosynthesized from docosahexaenoic acid (DHA) and promote resolution of inflammation in multiple organs and tissues, including the conjunctiva. Histamine is a mediator produced by mast cells in the conjunctiva during the allergic response. We determined the interaction of RvD2 with histamine and its receptor subtypes in cultured conjunctival goblet cells and compared them with RvD1 by measuring intracellular [Ca2+] and mucous secretion. Treatment with RvD2 significantly blocked the histamine-induced [Ca2+]i increase as well as secretion. RvD2 and RvD1 counter-regulate different histamine receptor subtypes. RvD2 inhibited the increase in [Ca2+]i induced by the activation of H1, H3, or H4 receptors, whereas RvD1 inhibited H1 and H3 receptors. RvD2 and RvD1 also activate distinct receptor-specific protein kinases to counter-regulate the histamine receptors, probably by phosphorylation. Thus, our data suggest that the counter-regulation of H receptor subtypes by RvD2 and RvD1 to inhibit mucin secretion are separately regulated.
Collapse
|
14
|
He M, Qin W, Wu Y, Wang X, Wang Y, Wang X. H1-Receptor Antagonist Olopatadine Inhibits MUC5AC Secretion by Conjunctival Goblet Cells. Bull Exp Biol Med 2021; 171:750-754. [PMID: 34709518 DOI: 10.1007/s10517-021-05309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 11/29/2022]
Abstract
The study examined the effect of H1-receptor antagonist olopatadine on the secretory function of cultured rat conjunctival goblet cells (CGC) assessed by enzyme-linked lectin assay employing UEA-I lectin. The level of mRNA for membrane-bound protein MUC16 in histaminestimulated CGC was assayed by reverse transcription PCR in the control and after preliminary application of olopatadine. The intracellular calcium concentration [Ca2+]i was measured by the calcium colorimetric method using GENMED kits. The effects of histamine and olopatadine on p-ERK level were assessed by Western blotting. Histamine up-regulated secretion of mucin MUC5AC and expression of membrane-bound protein MUC16 in CGC. In addition, it increased both [Ca2+]i and the level of phosphorylated ERK. These effects were diminished by preliminary application of olopatadine that probably acted via the ERK signaling pathway. Thus, olopatadine reduced [Ca2+]i and down-regulated ERK phosphorylation by binding to H1-receptors, thereby inhibiting secretion of mucin from histamine-stimulated CGC.
Collapse
Affiliation(s)
- M He
- Department of Ophthalmology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China.
| | - W Qin
- Department of Ophthalmology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Y Wu
- Department of Ophthalmology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - X Wang
- Department of Ophthalmology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Y Wang
- Bayi Children's Hospital Affiliated to PLA Army General Hospital, Beijing, China
| | - X Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Kang MS, Lee J, Park SH, Yu HS, Lee JE. Development of allergic conjunctivitis induced by Acanthamoeba excretory-secretory protein and the effect of resolvin D1 on treatment. Curr Eye Res 2021; 46:1792-1799. [PMID: 34029500 DOI: 10.1080/02713683.2021.1934878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate whether allergic conjunctivitis (AC) could be induced by Acanthamoeba excretory-secretory protein (ESP) and analyze the therapeutic effect of resolvin (Rv) D1 and antiallergic agents. METHODS Human conjunctival epithelial cells (HCVCs) were treated with 10 µg/well of ESP, and Th2 cytokines were measured using real-time PCR. C57BL/6 mice were treated with 10 µg/5 µL of ESP after sensitization, and conjunctivas isolated from the mice were stained with hematoxylin and eosin (H&E) for the analysis of eosinophils and periodic acid-Schiff (PAS) for the analysis of goblet cells. Cytokine levels in the eye-draining lymph nodes (dLNs) and spleens were measured using the enzyme-linked immunosorbent assay (ELISA). Then, the treatment effects of RvD1 and the antiallergic agents (olopatadine, bepotastine, and alcaftadine) on the HCVCs, mouse conjunctivas, dLNs, and spleens were assessed. RESULTS Th2 cytokines were increased in the ESP-treated conjunctival cells. Mouse conjunctivas treated with ESP showed significant infiltration of eosinophils and goblet cells, and the dLN and spleen exhibited increased IL-4, IL-5 and IL-13 levels. All findings were significantly decreased upon treatment with RvD1 and the antiallergic agents. CONCLUSIONS Acanthamoeba could be used to establish an animal model of AC, which could be effectively treated with RvD1 or topical antiallergic agents.
Collapse
Affiliation(s)
- Min Seung Kang
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jongsoo Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, South Korea.,Medical Research Center, Pusan National University Hospital, Pusan, South Korea
| | - Sung Hee Park
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Ji-Eun Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea.,Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
16
|
Salas-Hernández A, Ruz-Cortés F, Bruggendieck F, Espinoza-Perez C, Espitia-Corredor J, Varela NM, Quiñones LA, Sánchez-Ferrer C, Peiró C, Díaz-Araya G. Resolvin D1 reduces expression and secretion of cytokines and monocyte adhesion triggered by Angiotensin II, in rat cardiac fibroblasts. Biomed Pharmacother 2021; 141:111947. [PMID: 34328122 DOI: 10.1016/j.biopha.2021.111947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibroblasts (CF) play an important role in the healing process and in pathological remodeling of cardiac tissue. As sentinel cells in the heart, they respond to inflammatory stimuli, expressing cytokines and cell adhesion proteins, which ultimately lead to increased recruitment of monocytes and enhancement of the inflammatory response. Angiotensin II (Ang II) triggers an inflammatory response, leading to cardiac tissue remodeling. On the other hand, RvD1 has been shown to contribute to the resolution of inflammation; however, its role in Ang II-treated CF has not been addressed until now. The present research aimed to study the effect of RvD1 on cytokine levels, cell adhesion proteins expression in a model of Ang II-triggered inflammatory response. CF from adult Sprague Dawley rats were used to study mRNA and protein levels of MCP-1, IL-6, TNF-a, IL-10, ICAM-1 and VCAM-1; and adhesion of spleen mononuclear cells to CF after Ang II stimulation. Our results show that Ang II increased IL-6, MCP-1 and TNF-a mRNA levels, but only increased IL-6 and MCP-1 protein levels. These effects were blocked by Losartan, but not by PD123369. Moreover, RvD1 was able to prevent all Ang II effects in CF. Additionally, RvD1 reduced the intracellular Ca2+ increase triggered by Ang II, indicating that RvD1 acts in an early manner to block Ang II signaling. Conclusion: our findings confirm the pro-resolutive effects of inflammation by RvD1, which at the cardiovascular level, could contribute to repair damaged cardiac tissue.
Collapse
Affiliation(s)
- Aimeé Salas-Hernández
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Department of Pharmacology, Toxicology and Drug Dependence, Faculty of Pharmacy, University of Costa Rica, Costa Rica
| | - Felipe Ruz-Cortés
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisca Bruggendieck
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Claudio Espinoza-Perez
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jenaro Espitia-Corredor
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nelson M Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department de Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile; Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department de Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmaceutical Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carlos Sánchez-Ferrer
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias IdiPAZ, Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias IdiPAZ, Madrid, Spain
| | - Guillermo Díaz-Araya
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
18
|
Lyngstadaas AV, Olsen MV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Pro-Resolving Mediator Annexin A1 Regulates Intracellular Ca 2+ and Mucin Secretion in Cultured Goblet Cells Suggesting a New Use in Inflammatory Conjunctival Diseases. Front Immunol 2021; 12:618653. [PMID: 33968020 PMCID: PMC8100605 DOI: 10.3389/fimmu.2021.618653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
The amount of mucin secreted by conjunctival goblet cells is regulated to ensure the optimal level for protection of the ocular surface. Under physiological conditions lipid specialized pro-resolving mediators (SPM) are essential for maintaining tissue homeostasis including the conjunctiva. The protein Annexin A1 (AnxA1) can act as an SPM. We used cultured rat conjunctival goblet cells to determine if AnxA1 stimulates an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion and to identify the signaling pathways. The increase in [Ca2+]i was determined using fura2/AM and mucin secretion was measured using an enzyme-linked lectin assay. AnxA1 stimulated an increase in [Ca2+]i and mucin secretion that was blocked by the cell-permeant Ca2+ chelator BAPTA/AM and the ALX/FPR2 receptor inhibitor BOC2. AnxA1 increased [Ca2+]i to a similar extent as the SPMs lipoxin A4 and Resolvin (Rv) D1 and histamine. The AnxA1 increase in [Ca2+]i and mucin secretion were inhibited by blocking the phospholipase C (PLC) pathway including PLC, the IP3 receptor, the Ca2+/ATPase that causes the intracellular Ca2+ stores to empty, and blockade of Ca2+ influx. Inhibition of protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase also decreased the AnxA1-stimulated increase in [Ca2+]i and mucin secretion. In contrast inhibitors of ERK 1/2, phospholipase A2 (PLA2), and phospholipase D (PLD) did not alter AnxA1-stimulated increase in [Ca2+]i, but did inhibit mucin secretion. Activation of protein kinase A did not decrease either the AnxA1-stimulated rise in [Ca2+]i or secretion. We conclude that in health, AnxA1 contributes to the mucin layer of the tear film and ocular surface homeostasis by activating the PLC signaling pathway to increase [Ca2+]i and stimulate mucin secretion and ERK1/2, PLA2, and PLD to stimulate mucin secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey A Bair
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Robin R Hodges
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tor P Utheim
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Darlene A Dartt
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Elmasry MF, Hassan E, Rashed LA, Abdel Halim DM. Role of resolvin D1 in psoriasis before and after narrowband ultraviolet B phototherapy: A case-control study. Dermatol Ther 2021; 34:e14879. [PMID: 33586174 DOI: 10.1111/dth.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 02/13/2021] [Indexed: 01/01/2023]
Abstract
Resolvin D1 (RvD1) is an endogenous lipid mediator that originated from docosahexaenoic acid that stimulates a bimodal mechanism in the anti-inflammatory activity in addition to regulation of the inflammatory reaction. The study aimed at assessing the tissue level of RvD1 in psoriasis to study its role in the etiopathogenesis of psoriasis, studying the action of NB-UVB on the level of resolvin D1 in psoriasis, and raising the possibility of using resolvin D1 as a new therapy for psoriasis in the future. This case-control study included 20 psoriasis patients and 20 healthy controls. Patients took narrowband ultraviolet B (NB-UVB) for 36 sessions. Skin biopsies were taken before and after treatment from patients and from controls to assess the expression of RvD1 by a quantitative real-time polymerase chain reaction. Our findings revealed a statistically significant difference (P < .001) between psoriasis patients (either before or after treatment) and controls with lower levels of RvD1 in psoriasis patients. On comparing the RvD1 levels in psoriasis patients before and after treatment, a statistically significant increase was detected after treatment (P < .001). Tissue RvD1 levels in psoriasis patients were lower than healthy controls and increased after NB-UVB treatment in psoriasis patients. Thus, it is suggested that RvD1 might have a role in the etiopathogenesis of psoriasis. Moreover, the significantly up-regulated tissue levels of RvD1 in patients after treatment with NB-UVB highlighted a novel mechanism of phototherapy-mediated response in psoriasis by up-regulating RvD1 level.
Collapse
Affiliation(s)
- Maha Fathy Elmasry
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Hassan
- Kobry ElKobba Military Hospital, Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
20
|
Flitter BA, Fang X, Matthay MA, Gronert K. The potential of lipid mediator networks as ocular surface therapeutics and biomarkers. Ocul Surf 2021; 19:104-114. [PMID: 32360792 PMCID: PMC7606340 DOI: 10.1016/j.jtos.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/03/2023]
Abstract
In the last twenty years an impressive body of evidence in diverse inflammatory animal disease models and human tissues, has established polyunsaturated fatty acids (PUFA) derived specialized-pro-resolving mediators (SPM), as essential mediators for controlling acute inflammation, immune responses, wound healing and for resolving acute inflammation in many non-ocular tissues. SPM pathways and receptors are highly expressed in the ocular surface where they regulate wound healing, nerve regeneration, innate immunity and sex-specific regulation of auto-immune responses. Recent evidence indicates that in the eye these resident SPM networks are important for maintaining ocular surface health and immune homeostasis. Here, we will review and discuss evidence for SPMs and other PUFA-derived mediators as important endogenous regulators, biomarkers for ocular surface health and disease and their therapeutic potential.
Collapse
Affiliation(s)
- Becca A Flitter
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Xiaohui Fang
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Karsten Gronert
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA; Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA; Infectious Diseases and Immunity Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
21
|
García-Posadas L, Diebold Y. Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye. Pharmaceutics 2020; 12:E1215. [PMID: 33333869 PMCID: PMC7765302 DOI: 10.3390/pharmaceutics12121215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, the establishment of complex three-dimensional (3D) models of tissues has allowed researchers to perform high-quality studies and to not only advance knowledge of the physiology of these tissues but also mimic pathological conditions to test novel therapeutic strategies. The main advantage of 3D models is that they recapitulate the spatial architecture of tissues and thereby provide more physiologically relevant information. The eye is an extremely complex organ that comprises a large variety of highly heterogeneous tissues that are divided into two asymmetrical portions: the anterior and posterior segments. The anterior segment consists of the cornea, conjunctiva, iris, ciliary body, sclera, aqueous humor, and the lens. Different diseases in these tissues can have devastating effects. To study these pathologies and develop new treatments, the use of cell culture models is instrumental, and the better the model, the more relevant the results. Thus, the development of sophisticated 3D models of ocular tissues is a significant challenge with enormous potential. In this review, we present a comprehensive overview of the latest advances in the development of 3D in vitro models of the anterior segment of the eye, with a special focus on those that use human primary cells.
Collapse
Affiliation(s)
- Laura García-Posadas
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Yolanda Diebold
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Petrillo F, Trotta MC, Bucolo C, Hermenean A, Petrillo A, Maisto R, Pieretti G, Pietropaolo M, Ferraraccio F, Gagliano C, Galdiero M, D'Amico M. Resolvin D1 attenuates the inflammatory process in mouse model of LPS-induced keratitis. J Cell Mol Med 2020; 24:12298-12307. [PMID: 33058526 PMCID: PMC7686975 DOI: 10.1111/jcmm.15633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to investigate the effects of the lipid mediator Resolvin D1 in experimental keratitis. C57BL/6J mice were injected with lipopolysaccharide (2 µg/eye), and after 24 hours, the corneal damage was assessed. Clinical score was quantified, and corneal inflammatory biomarkers were detected by immunohistochemistry. A robust accumulation of sub‐epithelial macrophages and polymorphonuclear leucocytes, chemokine (C‐X‐C motif) ligand 1 (also known as keratinocyte‐derived chemokine), interleukin‐10 and promoters of apoptosis was also observed in lipopolysaccharide‐treated mice. Formyl peptide receptor 2 corneal expression was also assessed. The corneal stroma treated with lipopolysaccharide was characterized by presence of macrophages of M1‐like subtype and immature fibroblastic cells, marked with Ki67, not fully differentiated in fibroblasts. Indeed, the staining of the cornea with anti‐vimentin antibodies, a marker of differentiated myofibroblasts, was very faint. Resolvin D1 attenuated all the inflammatory parameters assessed in the present study, except for IL‐10. In conclusion, the data presented here seem to be consistent with the hypothesis that Resolvin D1 protected the cornea from the lipopolysaccharide‐induced keratitis by acting on several inflammatory components of this damage, pivoted by Formyl peptide receptor 2 (FPR2) activation and macrophages‐leucocytes activity.
Collapse
Affiliation(s)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania 'L.Vanvitelli', Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Anca Hermenean
- Institute of Life Science, Vasile Goldis Western University, Arad, Romania
| | - Arianna Petrillo
- Department of Experimental Medicine, University of Campania 'L.Vanvitelli', Naples, Italy
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania 'L.Vanvitelli', Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania'L. Vanvitelli', Naples, Italy
| | - Michela Pietropaolo
- General Directorate of the University Polyclinic 'L. Vanvitelli', Naples, Italy
| | - Franca Ferraraccio
- Department of Clinical, Public and Preventive Medicine, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Caterina Gagliano
- Eye Clinic, University of Catania and Santa Marta Hospital, Catania, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania 'L.Vanvitelli', Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania 'L.Vanvitelli', Naples, Italy
| |
Collapse
|
23
|
Swift W, Bair JA, Chen W, Li M, Lie S, Li D, Yang M, Shatos MA, Hodges RR, Kolko M, Utheim TP, Scott W, Dartt DA. Povidone iodine treatment is deleterious to human ocular surface conjunctival cells in culture. BMJ Open Ophthalmol 2020; 5:e000545. [PMID: 32995498 PMCID: PMC7497553 DOI: 10.1136/bmjophth-2020-000545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Objective To determine the effect of povidone iodine (PI), an antiseptic commonly used prior to ocular surgery, on viability of mixed populations of conjunctival stratified squamous and goblet cells, purified conjunctival goblet cells and purified conjunctival stromal fibroblasts in primary culture. Methods and analysis Mixed population of epithelial cells (stratified squamous and goblet cells), goblet cells and fibroblasts were grown in culture from pieces of human conjunctiva using either supplemented DMEM/F12 or RPMI. Cell type was evaluated by immunofluorescence microscopy. Cells were treated for 5 min with phosphate-buffered saline (PBS); 0.25%, 2.5%, 5% or 10% PI in PBS; or a positive control of 30% H2O2. Cell viability was determined using Alamar Blue fluorescence and a live/dead kit using calcein/AM and ethidium homodimer-1 (EH-1). Results Mixed populations of epithelial cells, goblet cells and fibroblasts were characterised by immunofluorescence microscopy. As determined with Alamar Blue fluorescence, all concentrations of PI significantly decreased the number of cells from all three preparation types compared with PBS. As determined by calcein/EH-1 viability test, mixed populations of cells and fibroblasts were less sensitive to PI treatment than goblet cells. All concentrations of PI, except for 0.25% used with goblet cells, substantially increased the number of dead cells for all cell populations. The H2O2 control also significantly decreased the number and viability of all three types of cells in both tests. Conclusion We conclude that PI, which is commonly used prior to ocular surgeries, is detrimental to human conjunctival stratified squamous cells, goblet cells and fibroblasts in culture.
Collapse
Affiliation(s)
- William Swift
- Schepens Eye Research Institute, Boston, Massachusetts, USA
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Wanxue Chen
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Michael Li
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Sole Lie
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Dayu Li
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Marie A Shatos
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Robin R Hodges
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ophthalmology, Harvard Medical School, Boston, MA, United States
| | | | - Tor P Utheim
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Oslo University Hospital, Oslo, Norway
| | | | - Darlene A Dartt
- Schepens Eye Research Institute, Boston, Massachusetts, USA.,Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
25
|
Liu GJ, Tao T, Wang H, Zhou Y, Gao X, Gao YY, Hang CH, Li W. Functions of resolvin D1-ALX/FPR2 receptor interaction in the hemoglobin-induced microglial inflammatory response and neuronal injury. J Neuroinflammation 2020; 17:239. [PMID: 32795323 PMCID: PMC7429751 DOI: 10.1186/s12974-020-01918-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/09/2023] Open
Abstract
Background Early brain injury (EBI) has been thought to be a key factor affecting the prognosis of subarachnoid hemorrhage (SAH). Many pathologies are involved in EBI, with inflammation and neuronal death being crucial to this process. Resolvin D1 (RvD1) has shown superior anti-inflammatory properties by interacting with lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) in various diseases. However, it remains not well described about its role in the central nervous system (CNS). Thus, the goal of the present study was to elucidate the potential functions of the RvD1-ALX/FPR2 interaction in the brain after SAH. Methods We used an in vivo model of endovascular perforation and an in vitro model of hemoglobin (Hb) exposure as SAH models in the current study. RvD1 was used at a concentration of 25 nM in our experiments. Western blotting, quantitative polymerase chain reaction (qPCR), immunofluorescence, and other chemical-based assays were performed to assess the cellular localizations and time course fluctuations in ALX/FPR2 expression, evaluate the effects of RvD1 on Hb-induced primary microglial activation and neuronal damage, and confirm the role of ALX/FPR2 in the function of RvD1. Results ALX/FPR2 was expressed on both microglia and neurons, but not astrocytes. RvD1 exerted a good inhibitory effect in the microglial pro-inflammatory response induced by Hb, possibly by regulating the IRAK1/TRAF6/NF-κB or MAPK signaling pathways. RvD1 could also potentially attenuate Hb-induced neuronal oxidative damage and apoptosis. Finally, the mRNA expression of IRAK1/TRAF6 in microglia and GPx1/bcl-xL in neurons was reversed by the ALX/FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4), indicating that ALX/FPR2 could mediate the neuroprotective effects of RvD1. Conclusions The results of the present study indicated that the RvD1-ALX/FPR2 interaction could potentially play dual roles in the CNS, as inhibiting Hb promoted microglial pro-inflammatory polarization and ameliorating Hb induced neuronal oxidant damage and death. These results shed light on a good therapeutic target (ALX/FPR2) and a potential effective drug (RvD1) for the treatment of SAH and other inflammation-associated brain diseases.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
26
|
Yang M, Bair JA, Hodges RR, Serhan CN, Dartt DA. Resolvin E1 Reduces Leukotriene B4-Induced Intracellular Calcium Increase and Mucin Secretion in Rat Conjunctival Goblet Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1823-1832. [PMID: 32561135 DOI: 10.1016/j.ajpath.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/25/2023]
Abstract
Leukotriene B4 (LTB4) is a major proinflammatory mediator important in host defense, whereas resolvins (Rvs) are produced during the resolution phase of inflammation. The authors determined the actions of both RvE1 and RvD1 on LTB4-induced responses of goblet cells cultured from rat conjunctiva. The responses measured were an increase in the intracellular [Ca2+] ([Ca2+]i) and high-molecular-weight glycoprotein secretion. Treatment with RvE1 or RvD1 for 30 minutes significantly blocked the LTB4-induced [Ca2+]i increase. The actions of RvE1 on LTB4-induced [Ca2+]i increase were reversed by siRNA for the RvE1 receptor, and the actions of RvD1 were reversed by an RvD1 receptor inhibitor. The RvE1 and RvD1 block of LTB4-stimulated increase in [Ca2+]i was also reversed by an inhibitory peptide to β-adrenergic receptor kinase. LTB4 and block of the LTB4-stimulated increase in [Ca2+]i by RvE1 and RvD1 were partially mediated by the depletion of intracellular Ca2+ stores. RvE1, but not RvD1, counterregulated the LTB4-induced high-molecular-weight glycoprotein secretion. Thus, both RvE1 and RvD1 receptors directly inhibit LTB4 by phosphorylating the LTB4 receptor using β adrenergic receptor kinase. RvE1 receptor counterregulates the LTB4-induced increase in [Ca2+]i and secretion, whereas RvD1 receptor only counterregulates LTB4-induced [Ca2+]i increase.
Collapse
Affiliation(s)
- Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Department of Anaesthesia, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Olsen MV, Lyngstadaas AV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Maresin 1, a specialized proresolving mediator, stimulates intracellular [Ca 2+ ] and secretion in conjunctival goblet cells. J Cell Physiol 2020; 236:340-353. [PMID: 32510663 DOI: 10.1002/jcp.29846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Mucin secretion from conjunctival goblet cells forms the tear film mucin layer and requires regulation to function properly. Maresin 1 (MaR1) is a specialized proresolving mediator produced during the resolution of inflammation. We determined if MaR1 stimulates mucin secretion and signaling pathways used. Cultured rat conjunctival goblet cells were used to measure the increase in intracellular Ca2+ ([Ca2 + ]i ) concentration and mucin secretion. MaR1-increased [Ca2+ ]i and secretion were blocked by inhibitors of phospholipase C, protein kinase C, Ca2+ /calmodulin-dependent protein kinase II, and extracellular-regulated kinase 1/2. MaR1 added before addition of histamine counterregulated histamine-stimulated increase in [Ca2+ ]i and secretion. We conclude that MaR1 likely has two actions in conjunctival goblet cells: first, maintaining optimal tear film mucin levels by increasing [Ca2+ ]i and stimulating mucin secretion in health and, second, attenuating the increase in [Ca2+ ]i and overproduction of mucin secretion by counterregulating the effect of histamine as occurs in ocular allergy.
Collapse
Affiliation(s)
- Markus V Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne V Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jeffrey A Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
RvE1 uses the LTB 4 receptor BLT1 to increase [Ca 2+] i and stimulate mucin secretion in cultured rat and human conjunctival goblet cells. Ocul Surf 2020; 18:470-482. [PMID: 32361084 DOI: 10.1016/j.jtos.2020.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Specialized pro-resolving lipid mediator resolvin (Rv) E1 stimulates secretion including mucins from conjunctival goblet cells. RvE1 can use both its ChemR23 receptor and the LTB4 receptor BLT1 to increase [Ca2+]i. The purpose of this study was to determine the expression of ChemR23 and BLT1 and receptors on conjunctival goblet cells and the respective roles these two receptors play in goblet cell responses to RvE1. METHODS Goblet cells were cultured from male rat or human conjunctiva from both sexes. Western blotting analysis, reverse transcription PCR and immunofluorescence microscopy were used to demonstrate the expression of ChemR23 and BLT1 in conjunctival goblet cells. High molecular weight glycoprotein secretion was determined using an enzyme-linked lectin assay. Signaling pathways were studied by measuring the increase in [Ca2+]i using fura 2/AM. RESULTS ChemR23 and BLT1 and receptors were present on both rat and human conjunctival goblet cells. The BLT1 inhibitors LY293111 and U75302 significantly blocked RvE1-and LTB4-stimulated [Ca2+]i increase. RvE1-and LTB4-stimulated [Ca2+]i and secretion increases were blocked by BLT1-targeted siRNA. RvE1-stimulated [Ca2+]i and secretion increases were also blocked by ChemR23-targeted siRNA. Addition of RvE1 2 min before or simultaneously with LTB4 desensitized the LTB4 [Ca2+]i response. Addition of RvE1 and LTB4 simultaneously caused secretion that was decreased compared to either response alone. CONCLUSION RvE1, in addition to the ChemR23 receptor, uses the BLT1 receptor to increase [Ca2+]i and stimulate secretion in both rat and human cultured conjunctival goblet cells.
Collapse
|
29
|
Abstract
Purpose Dupilumab, a monoclonal antibody directed against the interleukin-4 receptor subunit α (IL-4Rα) of IL-4 and IL-13, is increasingly being used to control atopic disease. Dupilumab use has been associated with a poorly understood conjunctivitis. In this study, we sought to investigate the hypothesis that dupilumab use and the associated IL-13 blockade causes a relative ocular mucin deficiency. Methods Tear levels of mucin 5ac (Muc5AC) and total tear protein levels were evaluated from 28 eyes of 14 patients. Bilateral tear samples were acquired from seven patients on dupilumab and seven patients with no exposure to dupilumab. Study subjects were age and gender matched. In addition to tear samples, photographic documentation of ocular surface findings and a questionnaire of ocular surface symptoms were obtained. Between-group mean differences were calculated. Results Compared with control, ocular Muc5AC levels normalized to total tear protein was statistically significantly lower. The average Muc5AC levels for persons on dupilumab was 1.54 ± 0.58 ng/mg and that of controls was 7.99 ± 1.16 ng/ mg. Persons on dupilumab reported a statistically increased occurrence of ocular fatigue/eye strain, uncomfortable sensation, pain, red eye, and itching. Conclusions This study demonstrates for the first time, a relative deficiency of Muc5AC in patients on dupilumab. Translational Relevance The results of this study support the previously reported role of IL-13 in increasing goblet cell density and associated Muc5AC production. Further efforts are underway to better understand the relative contribution of Muc5AC deficiency in the overall presentation of conjunctivitis associated with dupilumab use.
Collapse
Affiliation(s)
- Brad P Barnett
- Duke University Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Natalie A Afshari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Dietary Omega-3 Fatty Acid Dampens Allergic Rhinitis via Eosinophilic Production of the Anti-Allergic Lipid Mediator 15-Hydroxyeicosapentaenoic Acid in Mice. Nutrients 2019; 11:nu11122868. [PMID: 31766714 PMCID: PMC6950470 DOI: 10.3390/nu11122868] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The metabolism and generation of bioactive lipid mediators are key events in the exertion of the beneficial effects of dietary omega-3 fatty acids in the regulation of allergic inflammation. Here, we found that dietary linseed oil, which contains high amounts of alpha-linolenic acid (ALA) dampened allergic rhinitis through eosinophilic production of 15-hydroxyeicosapentaenoic acid (15-HEPE), a metabolite of eicosapentaenoic acid (EPA). Lipidomic analysis revealed that 15-HEPE was particularly accumulated in the nasal passage of linseed oil-fed mice after the development of allergic rhinitis with the increasing number of eosinophils. Indeed, the conversion of EPA to 15-HEPE was mediated by the 15-lipoxygenase activity of eosinophils. Intranasal injection of 15-HEPE dampened allergic symptoms by inhibiting mast cell degranulation, which was mediated by the action of peroxisome proliferator-activated receptor gamma. These findings identify 15-HEPE as a novel EPA-derived, and eosinophil-dependent anti-allergic metabolite, and provide a preventive and therapeutic strategy against allergic rhinitis.
Collapse
|
31
|
The roles of omega-3 fatty acids and resolvins in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2019; 19:517-525. [PMID: 31465315 DOI: 10.1097/aci.0000000000000561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Lipids are one of the most important constituents in our body. Advances of lipidomics are elucidating the new roles of various lipid molecules in allergic diseases. For example, some reports showed anti-inflammatory effects of omega-3 fatty acids (FAs), such as docosahexaenoic acid, eicosapentaenoic acid, and their metabolites, on allergic diseases. Here, we introduce the role of lipid mediators in allergic conjunctivitis mouse model. RECENT FINDINGS Lipidomics using liquid chromatography-tandem mass spectrometry can profile numerous lipid molecules from small tissue samples such as conjunctival specimens. Lipidomics analysis showed that various inflammatory lipid mediators are produced in the conjunctival tissue of allergic conjunctivitis mouse model. Dietary omega-3 FAs reduced these inflammatory lipid mediators in the conjunctiva and alleviated allergic conjunctivitis symptoms in mouse models. In addition, the roles of specialized proresolving lipid mediators (SPMs) have been reported for allergic inflammation. SUMMARY Lipid mediators have important roles for the pathophysiology of the allergic diseases including allergic conjunctivitis. Omega-3 FAs and SPMs are expected as new treatment tools for allergic conjunctivitis.
Collapse
|
32
|
Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2019; 27:5078-5091. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
The ocular surface structure and extraocular accessory organs constitute the ocular surface system, which includes the cornea, conjunctiva, eyelids, lacrimal organs, and lacrimal passages. This system is composed of, and stabilized by, the corneal epithelium, conjunctival cells, conjunctival goblet cells, lacrimal acinar cells and Tenon's fibroblasts, all of which maintain the healthy eyeball surface system. Ocular surface diseases are commonly referred to corneal and conjunctival disease and external ocular disease, resulting from damage to the ocular surface structure. A growing body of evidence has indicated that abnormal activation of the KCa3.1 channel and Ca2+/ calmodulin-dependent kinase initiates ocular injury. Signaling pathways downstream of the irregular Ca2+ influx induce cell progression and migration, and impair tight junctions, epithelial transport and secretory function. In this overview, we summarize the current knowledge regarding ocular surface disease in terms of physical and pathological alteration of the ocular system. We dissect in-depth, the mechanisms underlying disease progression, and we describe the current calcium transport therapeutics and the obstacles that remain to be solved. Finally, we summarize how to integrate the research results into clinical practice in the future.
Collapse
Affiliation(s)
- Chen-Chen Chu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| |
Collapse
|
33
|
Botten N, Hodges RR, Li D, Bair JA, Shatos MA, Utheim TP, Serhan CN, Dartt DA. Resolvin D2 elevates cAMP to increase intracellular [Ca 2+] and stimulate secretion from conjunctival goblet cells. FASEB J 2019; 33:8468-8478. [PMID: 31013438 DOI: 10.1096/fj.201802467r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Under physiologic conditions, conjunctival goblet cells (CGCs) secrete mucins into the tear film to preserve ocular surface homeostasis. Specialized proresolving mediators (SPMs), like resolvins (Rvs), regulate secretion from CGCs and actively terminate inflammation. The purpose of this study was to determine if RvD2 stimulated mucin secretion and to investigate the cellular signaling components. Goblet cells were cultured from rat conjunctiva. Secretion was measured by an enzyme-linked lectin assay, change in intracellular [Ca2+] ([Ca2+]i) using Fura-2, and cellular cAMP levels by ELISA. RvD2 (10-11-10-8 M) stimulated secretion, increased cellular cAMP levels and the [Ca2+]i. RvD2-stimulated increase in [Ca2+]i and secretion was blocked by Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis and the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride but not by the cAMP exchange protein inhibitor α-[2-(3-chlorophenyl)hydrazinylidene]-5-(1,1-dimethylethyl)-b-oxo-3-isoxazolepropanenitrile. Forskolin, 3-isobutyl-1-methylxanthine, and 8-bromo-cAMP (8-Br-cAMP) increased [Ca2+]i. Increasing cAMP with 8-Br-cAMP inhibited the increase in [Ca2+]i stimulated by the cAMP-independent agonist cholinergic agonist carbachol. In conclusion, RvD2 uses both cellular cAMP and [Ca2+]i to stimulate glycoconjugate secretion from CGCs, but the interaction of cAMP and [Ca2+]i is context dependent. Thus RvD2 likely assists in the maintenance of the mucous layer of the tear film to sustain ocular surface homeostasis and has potential as a novel treatment for dry eye disease.-Botten, N., Hodges, R. R., Li, D., Bair, J. A., Shatos, M. A., Utheim, T. P., Serhan, C. N., Dartt, D. A. Resolvin D2 elevates cAMP to increase intracellular [Ca2+] and stimulate secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Nora Botten
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Shatos
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Medical School, Boston, Massachusetts, USA.,Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear-Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Dartt DA, Hodges RR, Serhan CN. Immunoresolvent Resolvin D1 Maintains the Health of the Ocular Surface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:13-25. [PMID: 31562618 PMCID: PMC6859005 DOI: 10.1007/978-3-030-21735-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review focuses on the role of one of the D-series resolvins (Rv) RvD1 in the regulation of conjunctival goblet cell secretion and its role in ocular surface health. RvD1 is the most thoroughly studied of the specialized proresolution mediators in the goblet cells. The anterior surface of the eye consists of the cornea (the transparent central area) and the conjunctiva (opaque tissue that surrounds the cornea and lines the eyelids). The secretory mucin MUC5AC produced by the conjunctival goblet cells is protective of the ocular surface and especially helps to maintain clear vision through the cornea. In health, a complex neural reflex stimulates goblet cell secretion to maintain an optimum amount of mucin in the tear film. The specialized pro-resolution mediator, D-series resolvin (RvD1) is present in human tears and induces goblet cell mucin secretion. RvD1 interacts with its receptors ALX/FPR2 and GPR32, activates phospholipases C, D, and A2, as well as the EGFR. This stimulation increases the intracellular [Ca2+] and activates extracellular regulated kinase (ERK) 1/2 to cause mucin secretion into the tear film. This mucin secretion protects the ocular surface from the challenges in the external milieu thus maintaining a healthy interface between the eye and the environment. RvD1 forms a second important mechanism along with activation of a neural reflex pathway to regulate goblet cell mucin secretion and protect the ocular surface in health.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Saban DR, Hodges RR, Mathew R, Reyes NJ, Yu C, Kaye R, Swift W, Botten N, Serhan CN, Dartt DA. Resolvin D1 treatment on goblet cell mucin and immune responses in the chronic allergic eye disease (AED) model. Mucosal Immunol 2019; 12:145-153. [PMID: 30279513 PMCID: PMC6301119 DOI: 10.1038/s41385-018-0089-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 02/04/2023]
Abstract
Severe, chronic eye allergy is an understudied, vision-threatening condition. Treatments remain limited. We used a mouse model of severe allergic eye disease (AED) to determine whether topical application of the pro-resolution mediator Resolvin D1 (RvD1) terminates the response. AED was induced by injection of ovalbumin (OVA) followed by topical challenge of OVA daily. RvD1 was applied topically prior to OVA. Clinical symptoms were scored. Eye washes were assayed for MUC5AC. After 7 days, eyes were removed and the number of goblet cells, T helper cell responses and presence of immune cells in draining lymph nodes and conjunctiva determined. Topical RvD1 treatment significantly reduced symptoms of AED. RvD1 did not alter the systemic type 2 immune response in the lymph nodes. AED increased the total amount of goblet cell mucin secretion, but not the number of goblet cells. RvD1 prevented this increase, but did not alter goblet cell number. Absolute numbers of CD4 + T cells, total CD11b + myeloid cells, eosinophils, neutrophils, and monocytes, but not macrophages increased in AED versus RvD1-treated mice. We conclude that topical application of RvD1 reduced the ocular allergic response by local actions in conjunctival immune response and a decrease in goblet cell mucin secretion.
Collapse
Affiliation(s)
- Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,Department of Immunology, Duke University School of Medicine, Durham, NC
| | - Robin R. Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC
| | - Nancy J. Reyes
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC
| | - Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC
| | - Rebecca Kaye
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - William Swift
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Nora Botten
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA,Faculty of Medicine, University of Oslo, Oslo, Norway,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA,Corresponding author: Darlene Dartt, 20 Staniford Street, Boston, MA 02114, 617-912-0272,
| |
Collapse
|
36
|
de Gaetano M, McEvoy C, Andrews D, Cacace A, Hunter J, Brennan E, Godson C. Specialized Pro-resolving Lipid Mediators: Modulation of Diabetes-Associated Cardio-, Reno-, and Retino-Vascular Complications. Front Pharmacol 2018; 9:1488. [PMID: 30618774 PMCID: PMC6305798 DOI: 10.3389/fphar.2018.01488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes and its associated chronic complications present a healthcare challenge on a global scale. Despite improvements in the management of chronic complications of the micro-/macro-vasculature, their growing prevalence and incidence highlights the scale of the problem. It is currently estimated that diabetes affects 425 million people globally and it is anticipated that this figure will rise by 2025 to 700 million people. The vascular complications of diabetes including diabetes-associated atherosclerosis and kidney disease present a particular challenge. Diabetes is the leading cause of end stage renal disease, reflecting fibrosis leading to organ failure. Moreover, diabetes associated states of inflammation, neo-vascularization, apoptosis and hypercoagulability contribute to also exacerbate atherosclerosis, from the metabolic syndrome to advanced disease, plaque rupture and coronary thrombosis. Current therapeutic interventions focus on regulating blood glucose, glomerular and peripheral hypertension and can at best slow the progression of diabetes complications. Recently advanced knowledge of the pathogenesis underlying diabetes and associated complications revealed common mechanisms, including the inflammatory response, insulin resistance and hyperglycemia. The major role that inflammation plays in many chronic diseases has led to the development of new strategies aiming to promote the restoration of homeostasis through the "resolution of inflammation." These strategies aim to mimic the spontaneous activities of the 'specialized pro-resolving mediators' (SPMs), including endogenous molecules and their synthetic mimetics. This review aims to discuss the effect of SPMs [with particular attention to lipoxins (LXs) and resolvins (Rvs)] on inflammatory responses in a series of experimental models, as well as evidence from human studies, in the context of cardio- and reno-vascular diabetic complications, with a brief mention to diabetic retinopathy (DR). These data collectively support the hypothesis that endogenously generated SPMs or synthetic mimetics of their activities may represent lead molecules in a new discipline, namely the 'resolution pharmacology,' offering hope for new therapeutic strategies to prevent and treat, specifically, diabetes-associated atherosclerosis, nephropathy and retinopathy.
Collapse
Affiliation(s)
- Monica de Gaetano
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Caitriona McEvoy
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
- Renal Transplant Program, University Health Network, Toronto, ON, Canada
| | - Darrell Andrews
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jonathan Hunter
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Chiang N, Barnaeva E, Hu X, Marugan J, Southall N, Ferrer M, Serhan CN. Identification of Chemotype Agonists for Human Resolvin D1 Receptor DRV1 with Pro-Resolving Functions. Cell Chem Biol 2018; 26:244-254.e4. [PMID: 30554914 DOI: 10.1016/j.chembiol.2018.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Resolution of acute inflammation is governed, in part, by specialized pro-resolving mediators, including lipoxins, resolvins, protectins, and maresins. Among them, resolvin D1 (RvD1) exhibits potent pro-resolving functions via activating human resolvin D1 receptor (DRV1/GPR32). RvD1 is a complex molecule that requires challenging organic synthesis, diminishing its potential as a therapeutic. Therefore, we implemented a high-throughput screening of small-molecule libraries and identified several chemotypes that activated recombinant DRV1, represented by NCGC00120943 (C1A), NCGC00135472 (C2A), pMPPF, and pMPPI. These chemotypes also elicited rapid impedance changes in cells overexpressing recombinant DRV1. With human macrophages, they each stimulated phagocytosis of serum-treated zymosan at concentrations comparable with that of RvD1, the endogenous DRV1 ligand. In addition, macrophage phagocytosis of live E. coli was significantly increased by these chemotypes in DRV1-transfected macrophages, compared with mock-transfected cells. Taken together, these chemotypes identified by unbiased screens act as RvD1 mimetics, exhibiting pro-resolving functions via interacting with human DRV1.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Kaye R, Botten N, Lippestad M, Li D, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Resolvin D1, but not resolvin E1, transactivates the epidermal growth factor receptor to increase intracellular calcium and glycoconjugate secretion in rat and human conjunctival goblet cells. Exp Eye Res 2018; 180:53-62. [PMID: 30513286 DOI: 10.1016/j.exer.2018.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE To identify interactions of the epidermal growth factor receptor (EGFR) with the pro-resolving mediator receptors for RvD1 and RvE1 to stimulate an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion from cultured human and rat conjunctival goblet cells. METHODS Goblet cells from human and rat conjunctiva were grown in culture using RPMI media. Cultured goblet cells were pre-incubated with inhibitors, and then stimulated with RvD1, RvE1, EGF or the cholinergic agonist carbachol (Cch). Increase in [Ca2+]i was measured using fura-2/AM. Goblet cell secretion was measured using an enzyme-linked lectin assay with UEA-1. Western blot analysis was performed with antibodies against AKT and ERK 1/2. RESULTS In cultured human conjunctival goblet cells RvE1 -stimulated an increase in [Ca2+]i. RvD1-, but not the RvE1-, stimulated increase in [Ca2+]i and mucin secretion was blocked by the EGFR inhibitor AG1478 and siRNA for the EGFR. RvD1-, but not RvE1-stimulated an increase in [Ca2+]i that was also inhibited by TAPI-1, an inhibitor of the matrix metalloprotease ADAM 17. Inhibition of the EGFR also blocked RvD1-stimulated increase in AKT activity and both RvD1-and RvE1-stimulated increase in ERK 1/2 activity. Pretreatment with either RvD1 or RvE1 did not block the EGFR-stimulated increase in [Ca2+]i. CONCLUSIONS We conclude that in cultured rat and human conjunctival goblet cells, RvD1 activates the EGFR, increases [Ca2+]i, activates AKT and ERK1/2 to stimulate mucin secretion. RvE1 does not transactivate the EGFR to increase [Ca2+]I and stimulate mucin secretion, but does interact with the receptor to increase ERK 1/2 activity.
Collapse
Affiliation(s)
- Rebecca Kaye
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nora Botten
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Marit Lippestad
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Saito P, Melo CPB, Martinez RM, Fattori V, Cezar TLC, Pinto IC, Bussmann AJC, Vignoli JA, Georgetti SR, Baracat MM, Verri WA, Casagrande R. The Lipid Mediator Resolvin D1 Reduces the Skin Inflammation and Oxidative Stress Induced by UV Irradiation in Hairless Mice. Front Pharmacol 2018; 9:1242. [PMID: 30429790 PMCID: PMC6220064 DOI: 10.3389/fphar.2018.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
UV irradiation-induced oxidative stress and inflammation contribute to the development of skin diseases. Therefore, targeting oxidative stress and inflammation might contribute to reduce skin diseases. Resolvin D1 (RvD1) is a bioactive metabolite generated during inflammation to actively orchestrate the resolution of inflammation. However, the therapeutic potential of RvD1 in UVB skin inflammation remains undetermined, which was, therefore, the aim of the present study. The intraperitoneal treatment with RvD1 (3-100 ng/mouse) reduced UVB irradiation-induced skin edema, myeloperoxidase activity, matrix metalloproteinase 9 activity, and reduced glutathione depletion with consistent effects observed with the dose of 30 ng/mouse, which was selected to the following experiments. RvD1 inhibited UVB reduction of catalase activity, and hydroperoxide formation, superoxide anion production, and gp91phox mRNA expression. RvD1 also increased the Nrf2 and its downstream targets NQO1 and HO-1 mRNA expression. Regarding cytokines, RvD1 inhibited UVB-induced production of IL-1β, IL-6, IL-33, TNF-α, TGF-β, and IL-10. These immuno-biochemical alterations by RvD1 treatment had as consequence the reduction of UVB-induced epidermal thickness, sunburn and mast cell counts, and collagen degradation. Therefore, RvD1 inhibited UVB-induced skin oxidative stress and inflammation, rendering this resolving lipid mediator as a promising therapeutic agent.
Collapse
Affiliation(s)
- Priscila Saito
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Cristina P. B. Melo
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Renata M. Martinez
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Talita L. C. Cezar
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Ingrid C. Pinto
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Allan J. C. Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Sandra R. Georgetti
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Marcela M. Baracat
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|
41
|
Zhang Y, Igwe OJ. Role of Toll-like receptor 4/oxidant-coupled activation in regulating the biosynthesis of omega-3 polyunsaturated fatty acid derivative resolvin D1 in primary murine peritoneal macrophage. Biochem Pharmacol 2018; 158:73-83. [PMID: 30287282 DOI: 10.1016/j.bcp.2018.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
We have previously shown that reactive oxygen species (ROS) as prooxidants can activate Toll-like receptor 4 (TLR4) with the potential to initiate, propagate and maintain "sterile" inflammation of innate immunity, which plays a mediatory role in a host of human disease states. We now present new evidence that ROS can also activate TLR4 to counter the inflammatory phenotype by increasing the production of resolvin D1 (RvD1), which is a specialized anti-inflammatory and pro-resolving lipid mediator. We used primary murine peritoneal macrophages (pM) derived from both TLR4-WT and TLR4-KO mice as a cellular model. We used potassium peroxychromate (PPC) as a direct in vitro source of exogenous ROS. PPC treatment increased intracellular ROS levels, which decreased intracellular total antioxidant capacity, thus suggesting an enhanced cellular oxidative stress. PPC and LPS-EK (a TLR4-specific agonist) increased pro-inflammatory TNFα production with noeffect on IL-10, an anti-inflammatory cytokine. Treatment with the prooxidant increased the expression of 12 lipoxygenase (12-LOX) and 5-lipoxygenase (5-LOX) only in pM derived from TLR4 WT but not in pM from TLR4-KO mice. 5-LOX and 12-LOX are the key enzymes in the RvD1 biosynthetic pathway. In addition, PPC increased the expression of RvD1 receptor, a member of G-protein-coupled receptor only in pM from TLR4-WT mice. Our data support the involvement of TLR4-mediated oxidant-induced pro-inflammatory phenotypes that are in opposition to the production of anti-inflammatory/pro-resolution phenotypes in macrophages. Now, we show that through TLR4 activation, exogenous oxidants can play a role both in producing proinflammatory phenotypes at the same time that it enhances resolution of inflammation to maintain a state of cellular homeostasis and prevent tissue damage/disease.
Collapse
Affiliation(s)
- Yan Zhang
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| | - Orisa J Igwe
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
42
|
García-Posadas L, Hodges RR, Diebold Y, Dartt DA. Context-Dependent Regulation of Conjunctival Goblet Cell Function by Allergic Mediators. Sci Rep 2018; 8:12162. [PMID: 30111832 PMCID: PMC6093861 DOI: 10.1038/s41598-018-30002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
In the eye, goblet cells responsible for secreting mucins are found in the conjunctiva. When mucin production is not tightly regulated several ocular surface disorders may occur. In this study, the effect of the T helper (Th) 2-type cytokines IL4, IL5, and IL13 on conjunctival goblet cell function was explored. Goblet cells from rat conjunctiva were cultured and characterized. The presence of cytokine receptors was confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Changes in intracellular [Ca2+], high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with Th2 cytokines with or without the allergic mediator histamine. We found that IL4 and IL13 enhance cell proliferation and, along with histamine, stimulate goblet cell secretion. We conclude that the high levels of IL4, IL5, and IL13 that characterize allergic conjunctivitis could be the reason for higher numbers of goblet cells and mucin overproduction found in this condition.
Collapse
Affiliation(s)
- Laura García-Posadas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Yolanda Diebold
- Ocular Surface Group, Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
43
|
Lippestad M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Signaling pathways activated by resolvin E1 to stimulate mucin secretion and increase intracellular Ca 2+ in cultured rat conjunctival goblet cells. Exp Eye Res 2018; 173:64-72. [PMID: 29702100 PMCID: PMC6488018 DOI: 10.1016/j.exer.2018.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Glycoconjugate mucin secretion from conjunctival goblet cells is tightly regulated by nerves and specialized pro-resolving mediators (SPMs) to maintain ocular surface health. Here we investigated the actions of the SPM resolvin E1 (RvE1) on cultured rat conjunctival goblet cell glycoconjugate secretion and intracellular [Ca2+] ([Ca2+]i) and the signaling pathways used by RvE1. Goblet cells were cultured from rat conjunctiva in RPMI medium. The amount of RvE1-stimulated glycoconjugate mucin secretion was determined using an enzyme-linked lectin assay with Ulex Europaeus Agglutinin 1 lectin. Cultured goblet cells were also incubated with the Ca2+ indicator dye fura 2/AM and [Ca2+]i was measured. Cultured goblet cells were incubated with inhibitors to phospholipase (PL-) C, D, and A2 signaling pathways. RvE1 stimulated glycoconjugate secretion in a concentration dependent manner and was inhibited with the Ca2+ chelator BAPTA. The Ca2+i response was also increased in a concentration manner when stimulated by RvE1. Inhibition of PLC, PLD, and PLA2, but not Ca2+/calmodulin-dependent kinase blocked RvE1-stimulated increase in [Ca2+]i and glycoconjugate secretion. We conclude that under normal, physiological conditions RvE1 stimulates multiple pathways to increase glycoconjugate secretion and [Ca2+]i. RvE1 could be an important regulator of goblet cell glycoconjugate mucin secretion to maintain ocular surface health.
Collapse
Affiliation(s)
- Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway.
| |
Collapse
|
44
|
He M, Lippestad M, Li D, Hodges RR, Utheim TP, Dartt DA. Activation of the EGF Receptor by Histamine Receptor Subtypes Stimulates Mucin Secretion in Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci 2018; 59:3543-3553. [PMID: 30025103 PMCID: PMC6049985 DOI: 10.1167/iovs.18-2476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/18/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose The purpose of this study was to determine if histamine receptors interact with the epidermal growth factor receptor (EGFR) in cultured rat conjunctival goblet cells. Methods Goblet cells from rat conjunctiva were grown in organ culture. First-passage goblet cells were used in all experiments. Phosphorylated (active) and total EGFR, AKT, and extracellular signal-regulated kinase (ERK)1/2 were measured by Western blot analysis. Cells were preincubated with the EGFR antagonist AG1478 for 30 minutes or small interfering RNA specific to the EGFR for 3 days prior to stimulation with histamine or agonists specific for histamine receptor subtypes for 2 hours. Goblet cell secretion was measured using an enzyme-linked lectin assay. Goblet cells were incubated for 1 hour with the calcium indicator molecule fura-2/AM, and intracellular [Ca2+] ([Ca2+]i) was determined. Data were collected in real time and presented as the actual [Ca2+]i with time and as the change in peak [Ca2+]i. Results Histamine increased the phosphorylation of the EGFR. Mucin secretion and increase in [Ca2+]i stimulated by histamine, and agonists specific for each histamine receptor subtype were blocked by inhibition of the EGFR. Increase in [Ca2+]i stimulated by histamine and specific agonists for each histamine receptor was also inhibited by TAPI-1, a matrix metalloproteinase (MMP) inhibitor. The histamine-stimulated increase in activation of AKT, but not ERK1/2, was blocked by AG1478. Conclusions In conjunctival goblet cells, histamine, using all four receptor subtypes, transactivates the EGFR via an MMP. This in turn phosphorylates AKT to increase [Ca2+]i and stimulate mucin secretion.
Collapse
Affiliation(s)
- Min He
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Robin R. Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P. Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
45
|
Jannaway M, Torrens C, Warner JA, Sampson AP. Resolvin E1, resolvin D1 and resolvin D2 inhibit constriction of rat thoracic aorta and human pulmonary artery induced by the thromboxane mimetic U46619. Br J Pharmacol 2018; 175:1100-1108. [PMID: 29352769 DOI: 10.1111/bph.14151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The ω-6 fatty acid-derived lipid mediators such as prostanoids, thromboxane and leukotrienes have well-established roles in regulating both inflammation and smooth muscle contractility. Resolvins are derived from ω-3 fatty acids and have important roles in promoting the resolution of inflammation, but their activity on smooth muscle contractility is unknown. We investigated whether resolvin E1 (RvE1), resolvin D1 (RvD1) and resolvin D2 (RvD2) can modulate contractions of isolated segments of rat thoracic aorta (RTA) or human pulmonary artery (HPA) induced by the α1 -adrenoceptor agonist phenylephrine or the stable thromboxane A2 mimetic U46619. EXPERIMENTAL APPROACH Contractile responses in RTA and HPA were measured using wire myography. Receptor expression was investigated by immunohistochemistry. KEY RESULTS Constriction of RTA segments by U46619, but not by phenylephrine, was significantly inhibited by pretreatment for 1 or 24 h with 10-100 nM RvE1, RvD1 or RvD2. The inhibitory effect of RvE1 was partially blocked by a chemerin receptor antagonist (CCX832). RvE1 at only 1-10 nM also significantly inhibited U46619-induced constriction of HPA segments, and the chemerin receptor, GPR32 and FPR2/ALX were identified in HPA smooth muscle. CONCLUSION AND IMPLICATIONS These data suggest that resolvins or their mimetics may prove useful novel therapeutics in diseases such as pulmonary arterial hypertension, which are characterized by increased thromboxane contractile activity.
Collapse
Affiliation(s)
- Melanie Jannaway
- Academic Units of Clinical and Experimental Sciences (MJ, JAW, APS) and Human Development and Health (CT), Faculty of Medicine, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, UK
| | - Christopher Torrens
- Academic Units of Clinical and Experimental Sciences (MJ, JAW, APS) and Human Development and Health (CT), Faculty of Medicine, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, UK
| | - Jane A Warner
- Academic Units of Clinical and Experimental Sciences (MJ, JAW, APS) and Human Development and Health (CT), Faculty of Medicine, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, UK
| | - Anthony P Sampson
- Academic Units of Clinical and Experimental Sciences (MJ, JAW, APS) and Human Development and Health (CT), Faculty of Medicine, University of Southampton Faculty of Medicine, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
46
|
Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 2017; 58:114-129. [PMID: 28336292 PMCID: PMC5623601 DOI: 10.1016/j.mam.2017.03.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
The acute inflammatory response is host-protective to contain foreign invaders. Many of today's pharmacopeia that block pro-inflammatory chemical mediators can cause serious unwanted side effects such as immune suppression. Uncontrolled inflammation is now considered a pathophysiologic basis associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity and asthma, as well as the classic inflammatory diseases, e.g. arthritis, periodontal diseases. The inflammatory response is designated to be a self-limited process that produces a superfamily of chemical mediators that stimulate resolution of inflammatory responses. Specialized proresolving mediators (SPM) uncovered in recent years are endogenous mediators that include omega-3-derived families resolvins, protectins and maresins, as well as arachidonic acid-derived (n-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via novel mechanisms. Here, we review recent evidence from human and preclinical animal studies, together with the structural and functional elucidation of SPM indicating the SPM as physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. These results suggest that it is time to develop immunoresolvents as agonists for testing resolution pharmacology in nutrition and health as well as in human diseases and during surgery.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
47
|
Serhan CN. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Aspects Med 2017; 58:1-11. [PMID: 28263773 PMCID: PMC5582020 DOI: 10.1016/j.mam.2017.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
It is with great pleasure that I write this foreword and introduction to this Special Issue dedicated to the protective actions of the pro-resolving mediators and edited by my colleague Dr. Jesmond Dalli. Many of my collaborators and colleagues that helped to uncover the actions and clinical potential of the resolvins and other specialized proresolving mediators (SPM), namely, the superfamily of pro-resolving mediators that includes the resolvin (E-series, D-series and DPA-derived), protectin and maresin families, as well as the arachidonic acid-derived lipoxins, join me in this special issue. They have given contributions that present exciting new results on the remarkable actions and potency of these unique molecules, the SPM moving forward the importance of their mediators and pathways in human biology. Each contribution to this issue is presented by world authorities in their respective fields covering discoveries that demonstrate the importance and impact of resolution mediators in biology, medicine and surgery. While some of the authors were students and/or fellows with me and others, they are today the founding "resolutionists" of a new era of appreciation of autacoid biosynthesis and metabolomics in human health and disease with their rigorous attention to experimental detail and discovery. The chapters of this issue are filled with exciting new discoveries demonstrating the dynamics and potential of resolution mediators.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Li D, Hodges RR, Bispo P, Gilmore MS, Gregory-Ksander M, Dartt DA. Neither non-toxigenic Staphylococcus aureus nor commensal S. epidermidi activates NLRP3 inflammasomes in human conjunctival goblet cells. BMJ Open Ophthalmol 2017; 2:e000101. [PMID: 29354725 PMCID: PMC5751869 DOI: 10.1136/bmjophth-2017-000101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose The conjunctiva is a wet mucosal surface surrounding the cornea that is continuously exposed to pathogens. Nevertheless, persistent inflammation is not observed. We examined if the NOD-like receptor pyrin domain 3 (NLRP3) inflammasome functions as a sensor that distinguishes commensal and non-pathogenic bacteria from pathogenic bacteria in human conjunctival goblet cells. Methods Goblet cells were grown from human conjunctiva and co-cultured with commensal Staphylococcus epidermidis, isogenic non-toxigenic S. aureus ACL135 and as a control toxigenic S. aureus RN6390. Activation of the NLRP3 inflammasome was determined by measuring changes in NF-κB activity, expression of pro-interleukin (IL)-1β and NLRP3, activation of caspase-1 and secretion of mature IL-1β. Goblet cell mucin secretion was measured in parallel. Results While all three strains of bacteria were able to bind to goblet cells, neither commensal S. epidermidis nor isogenic non-toxigenic S. aureus ACL135 was able to stimulate an increase in (1) NF-κB activity, (2) pro-IL-1β and NLRP3 expression, (3) caspase-1 activation, (4) mature IL-1β and (5) mucin secretion. Toxigenic S. aureus, the positive control, increased these values: knockdown of NLRP3 with small interfering RNA (siRNA) completely abolished the toxigenic S. aureus-induced expression of pro-IL-1β and secretion of mature IL-1β. Conclusions We conclude that NLRP3 serves as a sensor capable of discriminating commensal and non-pathogenic bacteria from pathogenic bacteria in conjunctival goblet cells, and that activation of the NLRP3 inflammasome induced by pathogenic bacteria mediates secretion of both mature IL-1β and large secretory mucins from these cells.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo Bispo
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Lippestad M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Resolvin D1 Increases Mucin Secretion in Cultured Rat Conjunctival Goblet Cells via Multiple Signaling Pathways. Invest Ophthalmol Vis Sci 2017; 58:4530-4544. [PMID: 28892824 PMCID: PMC5595227 DOI: 10.1167/iovs.17-21914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Goblet cells in the conjunctiva secrete mucin into the tear film protecting the ocular surface. The proresolution mediator resolvin D1 (RvD1) regulates mucin secretion to maintain homeostasis during physiological conditions and in addition, actively terminates inflammation. We determined the signaling mechanisms used by RvD1 in cultured rat conjunctival goblet cells to increase intracellular [Ca2+] ([Ca2+]i) and induce glycoconjugate secretion. Methods Increase in [Ca2+]i were measured using fura 2/AM and glycoconjugate secretion determined using an enzyme-linked lectin assay with the lectin Ulex Europaeus Agglutinin 1. Signaling pathways activated by RvD1 were studied after goblet cells were pretreated with signaling pathway inhibitors before stimulation with RvD1. The results were compared with results when goblet cells were stimulated with RvD1 alone and percent inhibition calculated. Results The increase in [Ca2+]i stimulated by RvD1 was blocked by inhibitors to phospholipases (PL-) -D, -C, -A2, protein kinase C (PKC), extracellular signal-regulated kinases (ERK)1/2 and Ca2+/calmodulin-dependent kinase (Ca2+/CamK). Glycoconjugate secretion was significantly inhibited by PLD, -C, -A2, ERK1/2 and Ca2+/CamK, but not PKC. Conclusions We conclude that RvD1 increases glycoconjugate secretion from goblet cells via multiple signaling pathways including PLC, PLD, and PLA2, as well as their signaling components ERK1/2 and Ca2+/CamK to preserve the mucous layer and maintain homeostasis by protecting the eye from desiccating stress, allergens, and pathogens.
Collapse
Affiliation(s)
- Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Fonseca FC, Orlando RM, Turchetti-Maia RM, de Francischi JN. Comparative effects of the ω3 polyunsaturated fatty acid derivatives resolvins E1 and D1 and protectin DX in models of inflammation and pain. J Inflamm Res 2017; 10:119-133. [PMID: 28919798 PMCID: PMC5587166 DOI: 10.2147/jir.s142424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Specialized pro-resolving lipid mediators (SPMs), also known as lipoxins, resolvins (Rvs), protectins and maresins, have been implicated in the resolution of the inflammatory process. However, a systematic comparison of their activity in the relief of inflammation and pain models is still lacking. Materials and methods The effects of Rvs E1 and D1 and protectin DX (PDX) were assessed in rat paws inflamed by the standard proinflammatory stimulus carrageenan or by histamine, 5-hydroxytryptamine, substance P or prostaglandin E2. The experimental outcomes were the mechanical nociceptive threshold and increase in paw volume as a measure of pain and edema formation, respectively. The analgesic and anti-inflammatory activities of the indicated SPMs were also compared with nonsteroidal (indomethacin and celecoxib) and steroidal (dexamethasone) anti-inflammatory drugs. Results Only RvE1 and RvD1 presented analgesic and anti-inflammatory activities in the carrageenan model, and RvE1 was twice as potent as RvD1. Both substances tended to be better analgesics than anti-inflammatory agents, with a modeling profile similar to steroidal anti-inflammatory drugs. However, proinflammatory effects (edema formation) were also detected when the mediators histamine, 5-hydroxytryptamine or substance P replaced carrageenan as the proinflammatory stimuli. The analgesic and anti-inflammatory effects of resolvins were specifically prevented by an antagonist of the leukotriene B4 receptor 1 (BLT1). Conclusion Rvs, as analgesic agents, may be better therapeutic agents than nonsteroidal anti-inflammatory drugs, the current choice in the relief of pain of an inflammatory origin. However, the possibility of developing adverse effects cannot be overlooked.
Collapse
Affiliation(s)
- Flávia Cs Fonseca
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo M Orlando
- Department of Chemistry, Exact Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Regina Mm Turchetti-Maia
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janetti Nogueira de Francischi
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|