1
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
2
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
3
|
Oryani MA, Tavasoli A, Ghalavand MA, Ashtiani RZ, Rezaee A, Mahmoudi R, Golvari H, Owrangi S, Soleymani-Goloujeh M. Epigenetics and its therapeutic potential in colorectal cancer. Epigenomics 2022; 14:683-697. [PMID: 35473313 DOI: 10.2217/epi-2022-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It is estimated that colorectal cancer (CRC) is the leading cause of cancer-related death around the globe. 'Epigenetics' refers to changes in the chromosome rather than the DNA sequence, which may be transmitted down to daughter cells. Epigenetics is an essential part of controlling the development and variation of a single cell. ncRNAs have a role in epigenetic regulation in CRC, which will be discussed in this review in the context of DNA methylation and histone modifications. A greater survival rate for CRC patients might be achieved by addressing epigenetic mediators, as the authors show. In this review, they aim to thoroughly examine the role of epigenetics in the prognosis, diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alisam Rezaee
- Faculty of Medical Sciences & Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hossein Golvari
- School of Nursing & Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soroor Owrangi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Fang H, Huang Y, Luo Y, Tang J, Yu M, Zhang Y, Zhong M. SIRT1 induces the accumulation of TAMs at colorectal cancer tumor sites via the CXCR4/CXCL12 axis. Cell Immunol 2021; 371:104458. [PMID: 34847407 DOI: 10.1016/j.cellimm.2021.104458] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Our previous work suggested that high SIRT1 expression by cancer cells predicted a poor colorectal cancer (CRC) prognosis, but its role in the tumor microenvironment was unclear. Here, we examined tumor-infiltrating lymphocytes (TILs) in CRC expressing different levels of SIRT1. We also established a co-culture system with monocytes, CD8+ T cells and patient-derived tumor organoids (PDOs) to study the relationships between immune cells and cancer cells. The percentage of CD8+ T cells was decreased and the percentage of macrophages was increased in SIRT1-high (SIRT1-hi) CRC. Co-culture results showed that tumor-associated macrophages (TAMs) from SIRT1-hi CRC inhibited the proliferation and anti-tumor activity of CD8+ T cells. Importantly, SIRT1-hi CRC were shown to modulate the migration and the activity of TAMs. RNA sequencing revealed that CD14+ monocytes in SIRT1-hi patients expressed higher levels of CXCR4. Mechanistically, SIRT1 expression was shown to promote CXCL12 expression by inhibiting the acetylation of p53. Our findings indicate that SIRT1 in CRC induces TAM migration through the CXCR4/CXCL12 pathway, and inhibits the proliferation and activity of CD8+ T cells, resulting in promotion of CRC progression.
Collapse
Affiliation(s)
- Hongsheng Fang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
5
|
Lee GJ, Jung YH, Kim TJ, Chong Y, Jeong SW, Lee IK, Woo IS. Surtuin 1 as a potential prognostic biomarker in very elderly patients with colorectal cancer. Korean J Intern Med 2021; 36:S235-S244. [PMID: 32605336 PMCID: PMC8009171 DOI: 10.3904/kjim.2019.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/01/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS Colorectal cancer (CRC) rate increases with aging. Aging-related proteins, such as sirtuins (SIRTs) may be a potential therapeutic target in the elderly patients with CRC. The clinical implications of SIRT1 and SIRT2 have not been reported for elderly patients with cancer. The aim of this study was to evaluate the impact of expression of SIRT1 and SIRT2 on clinical outcome in two extreme age groups of patients with CRC. METHODS The expression of SIRT1 and SIRT2 were evaluated in CRC tissues of 101 patients aged ≥ 80 years and 29 patients aged ≤ 40 years by immunohistochemistry. We defined the patients aged ≥ 80 years as the very elderly and patients aged ≤ 40 years as the young patients. Correlations between the expression of these proteins and clinicopathological features were analyzed. RESULTS The prognosis for the very elderly patients with high expressions of SIRT1 was significantly worse than that for patients showing low expression (median survival, 24.9 months vs. 38.6 months, p = 0.027) whereas high expression of SIRT2 better prognosis (median survival, 37.9 months vs. 17.3 months, p = 0.006). However, the young patients did not show any difference in prognosis according to expression of SIRT1 and SIRT2. In multivariate analysis, high SIRT1 expression retained statistical significance as a poor prognostic factor in the very elderly patients with CRC. CONCLUSION The results suggest that high SIRT1 expression could be predictive of a poor outcome for very elderly patients with CRC.
Collapse
Affiliation(s)
- Guk Jin Lee
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Yun Hwa Jung
- Division of Medical Oncology, Department of Internal Medicine, Daejeon Sun Medical Center, Daejeon, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yosep Chong
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo-Won Jeong
- Institute of Clinical Medical Research, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Kyu Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to In Sook Woo, M.D. Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea Tel: +82-2-3779-1574 Fax: +82-2-780-3132 E-mail:
| |
Collapse
|
6
|
Ghazavi H, Shirzad S, Forouzanfar F, Sahab Negah S, Riyahi Rad M, Vafaee F. The role of resveratrol as a natural modulator in glia activation in experimental models of stroke. AVICENNA JOURNAL OF PHYTOMEDICINE 2020; 10:557-573. [PMID: 33299813 PMCID: PMC7711292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Stroke is one of the most important causes of death and disability in modern and developing societies. In a stroke, both the glial cells and neurons develop apoptosis due to decreased cellular access to glucose and oxygen. Resveratrol (3, 5, 4'-trihydroxy-trans-stilbene) as a herbal compound shows neuroprotective and glioprotective effects. This article reviews how resveratrol can alleviate symptoms after stroke to help neurons to survive by modulating some signaling pathways in glia. MATERIALS AND METHODS Various databases such as ISI Web of Knowledge, Scopus, Medline, PubMed, and Google Scholar, were searched from 2000 to February 2020 to gather the required articles using appropriate keywords. RESULTS Resveratrol enhances anti-inflammatory and decreases inflammatory cytokines by affecting the signaling pathways in microglia such as AMP-activated protein kinase (5' adenosine monophosphate-activated protein kinase, AMPK), SIRT1 (sirtuin 1) and SOCS1 (suppressor of cytokine signaling 1). Furthermore, through miR-155 overexpressing in microglia, resveratrol promotes M2 phenotype polarization. Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces reactive oxygen species (ROS). Besides, resveratrol increases oligodendrocyte survival, which can lead to maintaining post-stroke brain homeostasis. CONCLUSION These results suggest that resveratrol can be considered a novel therapeutic agent for the reduction of stroke symptoms that can not only affect neuronal function but also play an important role in reducing neurotoxicity by altering glial activity and signaling.
Collapse
Affiliation(s)
- Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam-Alanbia Hospital, Tehran, Iran
| | - Mona Riyahi Rad
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Cai L, Sun Y, Wang K, Guan W, Yue J, Li J, Wang R, Wang L. The Better Survival of MSI Subtype Is Associated With the Oxidative Stress Related Pathways in Gastric Cancer. Front Oncol 2020; 10:1269. [PMID: 32850385 PMCID: PMC7399340 DOI: 10.3389/fonc.2020.01269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Gastric cancer (GC) is the third leading fatal cancer in the world and its incidence ranked second among all malignant tumors in China. The molecular classification of GC, proposed by the The Cancer Genome Atlas (TCGA), was added to the updated edition (2019) of WHO classification for digestive system tumor. Although MSI and EBV subtypes appeared as ever-increasingly significant roles in immune checkpoint inhibitor therapy, the underlying mechanisms are still unclear. Methods: We systematically summarized the relationship between EBV, d-MMR/MSI-H subtypes and clinicopathological parameters in 271 GC cases. Furthermore, GSE62254/ACRG and TCGA-STAD datasets, originated from Gene Expression Omnibus (GEO) and TCGA respectively, were analyzed to figure out the prognosis related molecular characteristics by bioinformatics methods. Results: Patients with MSI subtype had better prognosis than the MSS subtype (P = 0.013) and considered as an independent biomarker by the univariate analysis (P = 0.017) and multivariate analysis (P = 0.050). While there was no significant difference between EBV positive and negative tissues (P = 0.533). The positive prognostic value conferred by MSI in different cohorts was revalidated via the clinical analysis of GSE62254/ACRG and TCGA-STAD datasets regardless of race. Then key gene module that tightly associated with better status and longer OS time for MSI cases was obtained from weighted gene co-expression network analysis(WGCNA). NUBP2 and ENDOG were screened from the gene cluster and oxidative phosphorylation, reactive oxygen species(ROS) and glutathione metabolism were analyzed to be the differential pathways in their highly expressed groups. Conclusions: Our results manifested the significant prognostic value of MSI in Chinese GC cohort and comparisons with other populations. More opportunities to induce apoptosis of cancer cells, led by the unbalance between antioxidant system and ROS accumulation, lay foundations for unveiling the better prognosis in MSI phenotype through the bioinformatics analysis.
Collapse
Affiliation(s)
- Lei Cai
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yeqi Sun
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kezhou Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juanqing Yue
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junlei Li
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruifen Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Hrzic R, Simons CCJM, Schouten LJ, van Engeland M, Brandt PVD, Weijenberg MP. Investigation of sirtuin 1 polymorphisms in relation to the risk of colorectal cancer by molecular subtype. Sci Rep 2020; 10:3359. [PMID: 32098999 PMCID: PMC7042277 DOI: 10.1038/s41598-020-60300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Sirtuin 1 (SIRT1), a histone deacetylase, is involved in maintenance of genetic stability, inflammation, immune response, metabolism (energy-sensing molecule) and colorectal tumorigenesis. We investigated SIRT1's specific role in colorectal tumorigenesis by studying SIRT1 polymorphisms in relation to colorectal cancer (CRC) risk by microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) status. The Netherlands Cohort study (NLCS) was initiated in 1986 and includes 120,852 participants in a case-cohort design. CRC tumour samples were available for incident cases between 1989 and 1993. Toenail deoxyribonucleic acid (DNA) was used for genotyping of two SIRT1 tagging variants (rs10997870 and rs12778366). Excluding the first 2.3 years of follow-up, subcohort members and CRC cases with no toenail DNA available and those with low sample call rates, and CRC cases with no tumour DNA available left 3478 subcohort members and 533 CRC cases. Cox regression was utilised to estimate hazard ratios (HRs) for MSI and CIMP positive and negative tumours by SIRT1 genotypes. The results were that the rs12778366 TC/CC versus TT genotype was inversely associated with MSI CRC (HR = 0.41, 95% confidence interval: 0.20, 0.88), while no association was found with the risk of an MSS tumour (TC/CC versus TT carriers: HR = 1.13, 95% CI: 0.89, 1.44). No significant associations were found between other SIRT1 genotypes and CRC subtypes. In conclusion, the results suggest a role for SIRT1 polymorphisms in colorectal tumorigenesis, particularly MSI CRC.
Collapse
Affiliation(s)
- Rok Hrzic
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of International Health, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Piet van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Chen CY, Chen CC, Chuang WY, Leu YL, Ueng SH, Hsueh C, Yeh CT, Wang TH. Hydroxygenkwanin Inhibits Class I HDAC Expression and Synergistically Enhances the Antitumor Activity of Sorafenib in Liver Cancer Cells. Front Oncol 2020; 10:216. [PMID: 32158695 PMCID: PMC7052045 DOI: 10.3389/fonc.2020.00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal histone deacetylase (HDAC) expression is closely related to cancer development and progression. Many HDAC inhibitors have been widely used in cancer treatment; however, severe side effects often limit their clinical application. In this study, we attempted to identify natural compounds with HDAC inhibitory activity and low physiological toxicity and explored their feasibility and mechanisms of action in liver cancer treatment. A yeast screening system was used to identify natural compounds with HDAC inhibitory activity. Further, western blotting was used to verify inhibitory effects on HDAC in human liver cancer cell lines. Cell functional analysis was used to explore the effects and mechanisms and the in vitro results were verified in BALB/c nude mice. We found that hydroxygenkwanin (HGK), an extract from Daphne genkwa, inhibited class I HDAC expression, and thereby induced expression of tumor suppressor p21 and promoted acetylation and activation of p53 and p65. This resulted in the inhibition of growth, migration, and invasion of liver cancer cells and promoted cell apoptosis. Animal models revealed that HGK inhibited tumor growth in a synergistic manner with sorafenib. HGK inhibited class I HDAC expression and had low physiological toxicity. It has great potential as an adjuvant for liver cancer treatment and may be used in combination with anticancer drugs like sorafenib to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
10
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
11
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
13
|
Brandl L, Kirstein N, Neumann J, Sendelhofert A, Vieth M, Kirchner T, Menssen A. The c-MYC/NAMPT/SIRT1 feedback loop is activated in early classical and serrated route colorectal cancer and represents a therapeutic target. Med Oncol 2018; 36:5. [PMID: 30460421 DOI: 10.1007/s12032-018-1225-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
We have recently identified a positive feedback loop in which c-MYC increases silent information regulator 1 (SIRT1) protein level and activity through transcriptional activation of nicotinamide phosphoribosyltransferase (NAMPT) and NAD+ increase. Here, we determined the relevance of the c-MYC-NAMPT-SIRT1 feedback loop, including the SIRT1 inhibitor deleted in breast cancer 1 (DBC1), for the development of conventional and serrated colorectal adenomas. Immunohistochemical analyses of 104 conventional adenomas with low- and high-grade dysplasia and of 157 serrated lesions revealed that elevated expression of c-MYC, NAMPT, and SIRT1 characterized all conventional and serrated adenomas, whereas DBC1 was not differentially regulated. Analyzing publicly available pharmacogenomic databases from 43 colorectal cancer cell lines demonstrated that responsiveness towards a NAMPT inhibitor was significantly associated with alterations in PTEN and TGFBR2, while features such as BRAF or RNF43 alterations, or microsatellite instability typical for serrated route colorectal cancer, showed increased sensitivities for inhibition of NAMPT and SIRT1. Our findings suggest an activation of the c-MYC-NAMPT-SIRT1 feedback loop that may crucially contribute to initiation and development of both routes to colorectal cancer. Targeting of NAMPT or SIRT1 may represent novel therapeutic strategies with putative higher sensitivity of the serrated route colorectal cancer subtype.
Collapse
Affiliation(s)
- Lydia Brandl
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Nina Kirstein
- Research group "Signaling pathways in colorectal cancer", Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Jens Neumann
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Andrea Sendelhofert
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
| | - Michael Vieth
- Department of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Thomas Kirchner
- Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), DKTK site Munich, DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Antje Menssen
- Research group "Signaling pathways in colorectal cancer", Department of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337, Munich, Germany.
| |
Collapse
|
14
|
Anticancer activities of a benzimidazole compound through sirtuin inhibition in colorectal cancer. Future Med Chem 2018; 10:2039-2057. [DOI: 10.4155/fmc-2018-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: This study aims to investigate the mode of action of a novel sirtuin inhibitor (BZD9L1) and its associated molecular pathways in colorectal cancer (CRC) cells. Materials & methods: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways. Results & conclusion: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.
Collapse
|
15
|
Hong WG, Pyo JS. The clinicopathological significance of SIRT1 expression in colon cancer: An immunohistochemical study and meta-analysis. Pathol Res Pract 2018; 214:1550-1555. [PMID: 30082156 DOI: 10.1016/j.prp.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The aim of this study was to determine the clinicopathological significance and potential prognostic role of SIRT1 expression in colorectal cancer (CRC) using immunohistochemistry and meta-analysis. METHODS Immunohistochemistry was performed on 265 archival paraffin-embedded human CRC specimens to investigate the correlation between SIRT1 expression and clinicopathological characteristics, including patient survival. To elucidate the potential prognostic value of SIRT1 expression, a meta-analysis was performed using data on 2132 patients from eight eligible studies. RESULTS SIRT1 was highly expressed in 24.5% of the 265 CRC specimens analyzed. High SIRT1 expression correlated with vascular invasion (P = 0.041). High SIRT1 expression also significantly correlated with expression of SNAI (P = 0.001), but not E-cadherin (P = 0.958). However, there was no significant correlation between SIRT1 expression and other clinicopathological parameters. High SIRT1 expression in the CRC specimens significantly correlated with a worse overall survival rate, independent of SNAI expression. However, based on the meta-analysis, high SIRT1 expression was not significantly correlated with overall survival rates [hazard ratio (HR) 1.111, 95% confidential interval (CI) 0.799-1.544]. CONCLUSION In our retrospective study, high SIRT1 expression significantly correlated with vascular invasion and a worse prognosis. However, because the results from the meta-analysis differed the retrospective arm of our study, additional cumulative studies are needed to determine the prognostic value of SIRT1 in CRC.
Collapse
Affiliation(s)
- Won Gi Hong
- Eulji University School of Medicine, Daejeon 34824, Republic of Korea
| | - Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea.
| |
Collapse
|
16
|
Gu Y, Zhang CWH, Wang L, Zhao Y, Wang H, Ye Q, Gao S. Association Analysis between Body Mass Index and Genomic DNA Methylation across 15 Major Cancer Types. J Cancer 2018; 9:2532-2542. [PMID: 30026852 PMCID: PMC6036895 DOI: 10.7150/jca.23535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 05/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer incidence and mortality increase with increasing body mass index (BMI), but BMI-associated epigenetic alterations in cancer remain elusive. We hypothesized that BMI would be associated with DNA methylation alterations in cancers. To test this hypothesis, here, we estimated the associations between DNA methylation and BMI through two different methods across 15 cancer types, at approximately 485,000 CpG sites and 2415 samples using data from The Cancer Genome Atlas. After comparing the DNA methylation levels in control BMI and high BMI individuals, we found differentially methylated CpG sites (DMSs) in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC) (False Discovery Rate < 0.05). The DMSs of COAD or UCEC were enriched in several obesity-induced and cancer-related pathways. Next, when BMI was used as a continuous variable, we identified BMI-associated methylated CpG sites (BMS) (P (Bonferroni) < 0.05) in CHOL (BMS = 1), COAD (BMS = 1), and UCEC (BMS = 4) using multivariable linear regression. In UCEC, three of the BMSs can predict the clinical outcomes and survival of patients with the tumors. Overall, we observed associations between DNA methylation and high BMI in CHOL, COAD, and UCEC. Furthermore, three BMI-associated CpGs were identified as potential biomarkers for UCEC prognosis.
Collapse
Affiliation(s)
- Yinmin Gu
- University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | | | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Medical College, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Han F, Zhang S, Liang J, Qiu W. Clinicopathological and predictive significance of SIRT1 and peroxisome proliferator-activated receptor gamma in esophageal squamous cell carcinoma: The correlation with EGFR and Survivin. Pathol Res Pract 2018; 214:686-690. [DOI: 10.1016/j.prp.2018.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
|
18
|
Porcellini E, Laprovitera N, Riefolo M, Ravaioli M, Garajova I, Ferracin M. Epigenetic and epitranscriptomic changes in colorectal cancer: Diagnostic, prognostic, and treatment implications. Cancer Lett 2018; 419:84-95. [PMID: 29360561 DOI: 10.1016/j.canlet.2018.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
A cancer cell is the final product of a complex mixture of genetic, epigenetic and epitranscriptomic alterations, whose final interplay contribute to cancer onset and progression. This is specifically true for colorectal cancer, a tumor with a strong epigenetic component, which acts earlier than any other genetic alteration in promoting cancer cell malignant transformation. The pattern of progressive, and usually subtype-specific, DNA and histone modifications that occur in colorectal cancer has been extensively studied in the last decade, providing plenty of data to explore. For this tumor, it became recently evident that also RNA modifications play a relevant role in the activation of oncogenes or repression of tumor suppressor genes. In this review we provide a brief overview of all epigenetic and epitranscriptomic changes that have been found associated to colorectal cancer till now. We explore the impact of these alterations in cancer prognosis and response to treatment and discuss their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Ingrid Garajova
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
19
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
20
|
Wu S, Jiang J, Liu J, Wang X, Gan Y, Tang Y. Meta-analysis of SIRT1 expression as a prognostic marker for overall survival in gastrointestinal cancer. Oncotarget 2017; 8:62589-62599. [PMID: 28977971 PMCID: PMC5617531 DOI: 10.18632/oncotarget.19880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/12/2017] [Indexed: 01/20/2023] Open
Abstract
Sirtuin 1 (SIRT1), a well-characterized NAD+-dependent histone deacetylase, is generally up-regulated in gastrointestinal cancers. However, the prognostic value of SIRT1 in gastrointestinal cancer remains inconclusive. Therefore, we report a meta-analysis of the association of SIRT1 expression with overall survival (OS) in gastrointestinal cancer. PubMed was systematically searched for studies evaluating the expression of SIRT1 and OS in patients with gastrointestinal cancer. Fifteen studies (six evaluating colorectal cancer, three evaluating hepatocellular carcinoma, three evaluating gastric cancer, and one each evaluating pancreatic cancer, esophageal squamous cell carcinoma, and gastroesophageal junction cancer) with 3,024 patients were finally included. The median percentage of gastrointestinal cancers with high SIRT1 expression was 52.5%. Overall analysis showed an association between high SIRT1 expression and worse OS [summary hazard ratio (sHR) 1.54, 95% confidence intervals (CI) 1.21-1.96] in gastrointestinal cancer. However, heterogeneity was observed across studies, which was mainly attributed to cancer type. Subgroup analysis revealed that SIRT1 was significantly associated with worse OS in non-colorectal gastrointestinal cancer (sHR 1.82, 95% CI 1.50-2.21), in particular in gastric cancer (sHR 3.19, 95% CI 1.97-5.16) and hepatocellular carcinoma (sHR 1.53, 95% CI 1.16-2.01), with no evidence of heterogeneity or bias. However, no association was observed in colorectal cancer (sHR 1.15, 95% CI 0.81-1.62). In conclusion, high SIRT1 expression is a potential marker for poor survival in non-colorectal gastrointestinal cancer, but not in colorectal cancer.
Collapse
Affiliation(s)
- Shuangjie Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinghui Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jun Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinhai Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yifan Tang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
21
|
Nishihara R, Glass K, Mima K, Hamada T, Nowak JA, Qian ZR, Kraft P, Giovannucci EL, Fuchs CS, Chan AT, Quackenbush J, Ogino S, Onnela JP. Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC Bioinformatics 2017. [PMID: 28623901 PMCID: PMC5474023 DOI: 10.1186/s12859-017-1718-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal carcinoma evolves through a multitude of molecular events including somatic mutations, epigenetic alterations, and aberrant protein expression, influenced by host immune reactions. One way to interrogate the complex carcinogenic process and interactions between aberrant events is to model a biomarker correlation network. Such a network analysis integrates multidimensional tumor biomarker data to identify key molecular events and pathways that are central to an underlying biological process. Due to embryological, physiological, and microbial differences, proximal and distal colorectal cancers have distinct sets of molecular pathological signatures. Given these differences, we hypothesized that a biomarker correlation network might vary by tumor location. Results We performed network analyses of 54 biomarkers, including major mutational events, microsatellite instability (MSI), epigenetic features, protein expression status, and immune reactions using data from 1380 colorectal cancer cases: 690 cases with proximal colon cancer and 690 cases with distal colorectal cancer matched by age and sex. Edges were defined by statistically significant correlations between biomarkers using Spearman correlation analyses. We found that the proximal colon cancer network formed a denser network (total number of edges, n = 173) than the distal colorectal cancer network (n = 95) (P < 0.0001 in permutation tests). The value of the average clustering coefficient was 0.50 in the proximal colon cancer network and 0.30 in the distal colorectal cancer network, indicating the greater clustering tendency of the proximal colon cancer network. In particular, MSI was a key hub, highly connected with other biomarkers in proximal colon cancer, but not in distal colorectal cancer. Among patients with non-MSI-high cancer, BRAF mutation status emerged as a distinct marker with higher connectivity in the network of proximal colon cancer, but not in distal colorectal cancer. Conclusion In proximal colon cancer, tumor biomarkers tended to be correlated with each other, and MSI and BRAF mutation functioned as key molecular characteristics during the carcinogenesis. Our findings highlight the importance of considering multiple correlated pathways for therapeutic targets especially in proximal colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1718-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiko Nishihara
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
22
|
Shaker OG, Wadie MS, Ali RMM, Yosry A. SIRT1 gene polymorphisms and its protein level in colorectal cancer. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Frazzi R, Zanetti E, Pistoni M, Tamagnini I, Valli R, Braglia L, Merli F. Methylation changes of SIRT1, KLF4, DAPK1 and SPG20 in B-lymphocytes derived from follicular and diffuse large B-cell lymphoma. Leuk Res 2017; 57:89-96. [PMID: 28324774 DOI: 10.1016/j.leukres.2017.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/26/2017] [Indexed: 12/24/2022]
Abstract
Diffuse large-B cell lymphomas (DLBCL) and follicular lymphomas (FL) are the most represented subtypes among mature B-cell neoplasms and originate from malignant B lymphocytes. Methylation represents one of the major epigenetic mechanisms of gene regulation. Silent information regulator 1 (SIRT1) is a class III lysine-deacetylase playing several functions and considered to be a context-dependent tumor promoter. We present the quantitative methylation, gene expression and tissue distribution of SIRT1 and some key mediators related to lymphoma pathogenesis in B lymphocytes purified from biopsies of follicular hyperplasias, FL and DLBCL. SIRT1 mRNA levels are higher in FL than follicular hyperplasias and DLBCL. B cell lymphoma 6 (BCL6) positively correlates with SIRT1. SIRT1 promoter shows a methylation decrease in the order: follicular hyperplasia - FL - DLBCL. Kruppel-like factor 4 (KLF4), Death-associated protein kinase 1 (DAPK1) and Spastic Paraplegia 20 (SPG20) methylation increase significantly in FL and DLBCL compared to follicular hyperplasias. Gene expression of DAPK1 and SPG20 inversely correlates with their degree of methylation. Our findings evidence a positive correlation between SIRT1 and BCL6 expression increase in FL. SIRT1 methylation decreases in FL and DLBCL accordingly and this parallels the increase of KLF4, DAPK1 and SPG20 methylation.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Eleonora Zanetti
- Laboratory of Translational Research, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Ione Tamagnini
- Pathology Division, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Riccardo Valli
- Pathology Division, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| | - Luca Braglia
- Scientific Direction, Arcispedale S. Maria Nuova IRCCS, Viale Umberto I, 42123 Reggio Emilia, Italy.
| | - Francesco Merli
- Hematology Division, Arcispedale S. Maria Nuova IRCCS, Viale Risorgimento 80, 42124 Reggio Emilia, Italy.
| |
Collapse
|
24
|
Zhang S, Gao L, Liu X, Lu T, Xie C, Jia J. Resveratrol Attenuates Microglial Activation via SIRT1-SOCS1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8791832. [PMID: 28781601 PMCID: PMC5525071 DOI: 10.1155/2017/8791832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023]
Abstract
Microglial activation is involved in a variety of neurological disorders, and overactivated microglial cells can secrete large amount of proinflammatory factors and induce neuron death. Therefore, reducing microglial activation is believed to be useful in treating the disorders. In this study, we used 10 ng/ml lipopolysaccharide plus 10 U/ml interferon γ (LPS/IFNγ) to induce N9 microglial activation and explored resveratrol- (RSV-) induced effects on microglial activation and the underlying mechanism. We found that LPS/IFNγ exposure for 24 h increased inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) p65 subunit expressions in the cells and enhanced tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) releases from the cells. RSV of 25 μM reduced the iNOS and NF-κB p65 subunit expressions and the proinflammatory factors' releases; the knockdown of silent information regulator factor 2-related enzyme 1 (SIRT1) or suppressor of cytokine signaling 1 (SOCS1) by using the small interfering RNA, however, significantly abolished the RSV-induced effects on iNOS and NF-κB p65 subunit expressions and the proinflammatory factors' releases. These findings showed that microglial SIRT1-SOCS1 pathway may mediate the RSV-induced inhibition of microglial activation in the LPS/IFNγ-treated N9 microglia.
Collapse
Affiliation(s)
- Shuping Zhang
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Lu Gao
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xiuying Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510045, China
| | - Tao Lu
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Chuangbo Xie
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Ji Jia
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
- *Ji Jia:
| |
Collapse
|
25
|
Park EY, Woo Y, Kim SJ, Kim DH, Lee EK, De U, Kim KS, Lee J, Jung JH, Ha KT, Choi WS, Kim IS, Lee BM, Yoon S, Moon HR, Kim HS. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding. Int J Biol Sci 2016; 12:1555-1567. [PMID: 27994519 PMCID: PMC5166496 DOI: 10.7150/ijbs.13833] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
The sirtuins (SIRTs), a family of NAD+-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Eun Young Park
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Youngwoo Woo
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Seong Jin Kim
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Do Hyun Kim
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Eui Kyung Lee
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Umasankar De
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| |
Collapse
|
26
|
Pruitt K. Molecular and Cellular Changes During Cancer Progression Resulting From Genetic and Epigenetic Alterations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:3-47. [PMID: 27865461 DOI: 10.1016/bs.pmbts.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumorigenesis is a complex process that involves a persistent dismantling of cellular safeguards and checkpoints. These molecular and cellular changes that accumulate over months or decades lead to a change in the fundamental identity of a cell as it transitions from normal to malignant. In this chapter, we will examine some of the molecular changes in the evolving relationship between the genome and epigenome and highlight some of the key changes that occur as normal cells progress to tumor cells. For many years tumorigenesis was almost exclusively attributed to mutations in protein-coding genes. This notion that mutations in protein-coding genes were a fundamental driver of tumorigenesis enabled the development of several novel therapeutics that targeted the mutant protein or overactive pathway responsible for driving a significant portion of the tumor growth. However, because many therapeutic challenges remained in the face of these advances, it was clear that other pieces to the puzzle had yet to be discovered. Advances in molecular and genomics techniques continued and the study of epigenetics began to expand and helped reshape the view that drivers of tumorigenesis extended beyond mutations in protein-coding genes. Studies in the field of epigenetics began to identify aberrant epigenetic marks which created altered chromatin structures and enabled protein expression in tissues that defied rules governing tissue-specificity. Not only were epigenetic alterations found to enable overexpression of proto-oncogenes, they also led to the silencing of tumor suppressor genes. With these discoveries, it became clear that tumor growth could be stimulated by much more than mutations in protein-coding genes. In fact, it became increasingly clear that much of the human genome, while transcribed, did not lead to proteins. This discovery further led to studies that began to uncover the role of noncoding RNAs in regulating chromatin structure, gene transcription, and tumor biology. In this chapter, some of the key alterations in the genome and epigenome will be explored, and some of the cancer therapies that were developed as a result of these discoveries will be discussed.
Collapse
Affiliation(s)
- K Pruitt
- Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
27
|
Lutz L, Fitzner IC, Ahrens T, Geißler AL, Makowiec F, Hopt UT, Bogatyreva L, Hauschke D, Werner M, Lassmann S. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro. Am J Cancer Res 2016; 6:664-676. [PMID: 27152243 PMCID: PMC4851845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023] Open
Abstract
Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action. Together, this implies further exploitation of histone alterations in CRC for molecular classification and/or novel treatment options.
Collapse
Affiliation(s)
- Lisa Lutz
- Department of Pathology, All University Medical CenterFreiburg, Germany
| | - Ingrid Coutiño Fitzner
- Department of Pathology, All University Medical CenterFreiburg, Germany
- Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Theresa Ahrens
- Department of Pathology, All University Medical CenterFreiburg, Germany
- Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Anna-Lena Geißler
- Department of Pathology, All University Medical CenterFreiburg, Germany
- Faculty of Biology, University of FreiburgFreiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Frank Makowiec
- Department of Surgery, All University Medical CenterFreiburg, Germany
| | - Ulrich T Hopt
- Department of Surgery, All University Medical CenterFreiburg, Germany
| | - Lioudmila Bogatyreva
- Institute of Medical Biometry and Medical Informatics, All University Medical CenterFreiburg, Germany
| | - Dieter Hauschke
- Institute of Medical Biometry and Medical Informatics, All University Medical CenterFreiburg, Germany
| | - Martin Werner
- Department of Pathology, All University Medical CenterFreiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)Heidelberg, Germany
- Comprehensive Cancer Center Freiburg, All University Medical CenterFreiburg, Germany
| | - Silke Lassmann
- Department of Pathology, All University Medical CenterFreiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)Heidelberg, Germany
- Comprehensive Cancer Center Freiburg, All University Medical CenterFreiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of FreiburgGermany
| |
Collapse
|
28
|
Korkmaz G, Horozoglu C, Arıkan S, Gural Z, Sağlam EK, Turan S, Özkan NE, Kahraman OT, Yenilmez EN, Düzköylü Y, Doğan MB, Zeybek U, Ergen A, Yaylım İ. LGALS3 and AXIN1 gene variants playing role in the Wnt/ β-catenin signaling pathway are associated with mucinous component and tumor size in colorectal cancer. Bosn J Basic Med Sci 2016; 16:108-13. [PMID: 26894286 PMCID: PMC4852991 DOI: 10.17305/bjbms.2016.721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/17/2015] [Accepted: 10/18/2015] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway alterations have been identified in colorectal and many other cancer types. It has been reported that galectin-3 (which is encoded by the LGALS3 gene) alters the signaling mechanism in the Wnt/ β-catenin pathway by binding to β-catenin in colon and other cancers. AXIN1 is mainly responsible for the assembly of the β-catenin destruction complex in the Wnt pathway. This study investigated the relationship of rs4644 and rs4652 variants of the LGALS3 gene and rs214250 variants of the AXIN1 gene to histopathological and clinical properties. Our study included a total of 236 patients, of whom 119 had colorectal cancer (42 women, 77 men) and 117 were healthy controls. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and allele-specific oligonucleotide (ASO) PCR methods were used. In addition, the serum galectin-3 level was studied with the enzyme-linked immunosorbent assay (ELISA) method. For the rs4644 variant of the LGALS3 gene, the CC genotype a mucinous component was significantly more common than those without a mucinous component (p=0.026). C allele frequency of the rs214250 variant of the AXIN1 gene was significantly correlated to tumor size in the advanced tumor stage (p=0.022). The CCAACT haplotype was more common in colorectal cancer patients (p=0.022). Serum galectin-3 level was higher in the patient group compared to the control group (5.9± 0.69 ng/ml vs. 0.79±0.01 ng/ml; p<0.001). In conclusion, variants of LGALS3 and AXIN1 genes affect tumor sizes and the mucinous component via Wnt/ β-catenin pathway in the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Gurbet Korkmaz
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey..
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clinicopathological significance of SIRT1 expression in colorectal cancer: A systematic review and meta analysis. Int J Surg 2016; 26:32-7. [DOI: 10.1016/j.ijsu.2016.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/13/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022]
|
30
|
Qiu G, Li X, Che X, Wei C, He S, Lu J, Jia Z, Pang K, Fan L. SIRT1 is a regulator of autophagy: Implications in gastric cancer progression and treatment. FEBS Lett 2015; 589:2034-42. [PMID: 26049033 DOI: 10.1016/j.febslet.2015.05.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
Abstract
Silent mating type information regulation 1 (SIRT1) is implicated in tumorigenesis through its effect on autophagy. In gastric cancer (GC), SIRT1 is a marker for prognosis and is involved in cell invasion, proliferation, epithelial-mesenchymal transition (EMT) and drug resistance. Autophagy can function as a cell-survival mechanism or lead to cell death during the genesis and treatment of GC. This functionality is determined by factors including the stage of the tumor, cellular context and stress levels. Interestingly, SIRT1 can regulate autophagy through the deacetylation of autophagy-related genes (ATGs) and mediators of autophagy. Taken together, these findings support the need for continued research efforts to understand the mechanisms mediating the development of gastric cancer and unveil new strategies to eradicate this disease.
Collapse
Affiliation(s)
- Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Chao Wei
- Xi'an Health School, Xi'an 710054, Shaanxi Province, China
| | - Shicai He
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jing Lu
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zongliang Jia
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Ke Pang
- Shaanxi Friendship Hospital, Xi'an 710068, Shaanxi Province, China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
31
|
Yu XD, Guo ZS. Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomol Concepts 2015; 1:239-51. [PMID: 25962000 DOI: 10.1515/bmc.2010.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review provides a brief overview of the basic principles of epigenetic gene regulation and then focuses on recent development of epigenetic drugs for cancer treatment and prevention with an emphasis on the molecular mechanisms of action. The approved epigenetic drugs are either inhibitors of DNA methyltransferases or histone deacetylases (HDACs). Future epigenetic drugs could include inhibitors for histone methyltransferases and histone demethylases and other epigenetic enzymes. Epigenetic drugs often function in two separate yet interrelated ways. First, as epigenetic drugs per se, they modulate the epigenomes of premalignant and malignant cells to reverse deregulated epigenetic mechanisms, leading to an effective therapeutic strategy (epigenetic therapy). Second, HDACs and other epigenetic enzymes also target non-histone proteins that have regulatory roles in cell proliferation, migration and cell death. Through these processes, these drugs induce cancer cell growth arrest, cell differentiation, inhibition of tumor angiogenesis, or cell death via apoptosis, necrosis, autophagy or mitotic catastrophe (chemotherapy). As they modulate genes which lead to enhanced chemosensitivity, immunogenicity or dampened innate antiviral response of cancer cells, epigenetic drugs often show better efficacy when combined with chemotherapy, immunotherapy or oncolytic virotherapy. In chemoprevention, dietary phytochemicals such as epigallocatechin-3-gallate and sulforaphane act as epigenetic agents and show efficacy by targeting both cancer cells and the tumor microenvironment. Further understanding of how epigenetic mechanisms function in carcinogenesis and cancer progression as well as in normal physiology will enable us to establish a new paradigm for intelligent drug design in the treatment and prevention of cancer.
Collapse
|
32
|
Kikuchi K, Noguchi A, Kasajima R, Miyagi Y, Hoshino D, Koshikawa N, Kubota A, Yokose T, Takano Y. Association of SIRT1 and tumor suppressor gene TAp63 expression in head and neck squamous cell carcinoma. Tumour Biol 2015; 36:7865-72. [DOI: 10.1007/s13277-015-3515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
|
33
|
Abstract
Colorectal cancer (CRC) is one of most common malignancies and a leading cause of cancer related deaths worldwide. Epigenetic change is an important mechanism of colorectal carcinogenesis. Accumulation of epigenetic changes was found in colorectal cancer and other tumors. Aberrant changes in DNA methylation, histone modification, imprinting, and noncoding RNAs were frequently found in human colorectal cancer. Epigenetic changes may serve as a diagnostic, prognostic, and chemo-sensitive marker. It also becomes a cancer preventive or therapeutic target in some circumstances.
Collapse
Affiliation(s)
- Wenji Yan
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China
| | | |
Collapse
|
34
|
Abstract
Colorectal cancer (CRC) results from a stepwise accumulation of genetic and epigenetic alterations that transform the normal colonic epithelium into cancer. DNA methylation represents one of the most studied epigenetic marks in CRC, and three common epigenotypes have been identified characterized by high, intermediate and low methylation profiles, respectively. Combining DNA methylation data with gene mutations and cytogenetic alterations occurring in CRC is nowadays allowing the characterization of different CRC subtypes, but the crosstalk between DNA methylation and other epigenetic mechanisms, such as histone tail modifications and the deregulated expression of non-coding RNAs is not yet clearly defined. Epigenetic biomarkers are increasingly recognized as promising diagnostic and prognostic tools in CRC, and the potential of therapeutic applications aimed at targeting the epigenome is under investigation.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
35
|
Ueno T, Endo S, Saito R, Hirose M, Hirai S, Suzuki H, Yamato K, Hyodo I. The sirtuin inhibitor tenovin-6 upregulates death receptor 5 and enhances cytotoxic effects of 5-fluorouracil and oxaliplatin in colon cancer cells. Oncol Res 2014; 21:155-64. [PMID: 24512730 DOI: 10.3727/096504013x13854886566598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It has been reported that upregulated SIRT1 (NAD(+)-dependent class III histone deacetylase) deacetylates the p53 protein, represses its function, and allows for tumor cell growth in various cancers. Here we investigated antitumor effects of tenovin-6, a small-molecule inhibitor of SIRT1 and SIRT2, in various colon cancer cell lines. Tenovin-6 induced apoptosis in all five colon cancer cell lines investigated (two cell lines with wild-type p53 and three with mutant p53) regardless of the p53 mutation status. This effect was accompanied by accumulation of death receptor 5 (DR5) in most cell lines. DR5 silencing in HCT116 cells strongly attenuated tenovin-6-induced apoptosis. We investigated the effect of combining tenovin-6 with conventional anticancer agents 5-fluorouracil (5-FU), SN-38 (an active metabolite of irinotecan), and oxaliplatin. Synergistic antitumor effects of tenovin-6 were observed in combination with either 5-FU or oxaliplatin in vitro. The combination of tenovin-6 and oxaliplatin exhibited potent growth inhibition of HCT116 xenograft tumors in vivo. In conclusion, tenovin-6 induced apoptosis in human colon cancer cells through the activation of the DR5 signaling pathway and enhanced the antitumor properties of 5-FU and oxaliplatin. These results may help develop a novel treatment option for colorectal cancer using a SIRT inhibitor.
Collapse
Affiliation(s)
- Takunori Ueno
- Department of Gastroenterology, University of Tsukuba Graduate School, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fong Y, Lin YC, Wu CY, Wang HMD, Lin LL, Chou HL, Teng YN, Yuan SS, Chiu CC. The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. ScientificWorldJournal 2014; 2014:937051. [PMID: 25184156 PMCID: PMC4144300 DOI: 10.1155/2014/937051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Sirtuins, NAD(+)-dependent deacetylases, could target both histones and nonhistone proteins in mammalian cells. Sirt1 is the major sirtuin and has been shown to involve various cellular processes, including antiapoptosis, cellular senescence. Sirt1 was reported to be overexpressed in many cancers, including lung cancer. Sirtinol, a specific inhibitor of Sirt1, has been shown to induce apoptosis of cancer cells by elevating endogenous level of reactive oxygen species. In the study, we investigated the effect of sirtinol on the proliferation and apoptosis of nonsmall cell lung cancer (NSCLC) H1299 cells. The results of proliferation assay and colony formation assay showed the antigrowth effect of sirtinol. The annexin-V staining further confirmed the apoptosis induction by sirtinol treatment. Interestingly, the levels of phosphorylated Akt and β-catenin were significantly downregulated with treating the apoptotic inducing doses. On the contrary, sirtinol treatment causes the significantly increased level of FoxO3a, a proapoptotic transcription factor targeted by Sirt1. These above results suggested that sirtinol may inhibit cell proliferation of H1299 cells by regulating the axis of Akt-β-catenin-FoxO3a. Overall, this study demonstrates that sirtinol attenuates the proliferation and induces apoptosis of NSCLC cells, indicating the potential treatment against NSCLC cells by inhibiting Sirt1 in future applications.
Collapse
Affiliation(s)
- Yao Fong
- Department of Thoracic Surgery, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yin-Chieh Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Li Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Shyng-Shiou Yuan
- Translational Research Center, Cancer Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
- Translational Research Center, Cancer Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
37
|
Mariani F, Sena P, Roncucci L. Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol 2014; 20:9716-9731. [PMID: 25110410 PMCID: PMC4123361 DOI: 10.3748/wjg.v20.i29.9716] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/05/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a major cause of cancer-related death in many countries. Colorectal carcinogenesis is a stepwise process which, from normal mucosa leads to malignancy. Many factors have been shown to influence this process, however, at present, several points remain obscure. In recent years some hypotheses have been considered on the mechanisms involved in cancer development, expecially in its early stages. Tissue injury resulting from infectious, mechanical, or chemical agents may elicit a chronic immune response resulting in cellular proliferation and regeneration. Chronic inflammation of the large bowel (as in inflammatory bowel diseases), has been associated with the subsequent development of colorectal cancer. In this review we examine the inflammatory pathways involved in the early steps of carcinogenesis, with particular emphasis on colorectal. Firstly, we describe cells and proteins recently suggested as central in the mechanism leading to tumor development. Macrophages and neutrophils are among the cells mostly involved in these processes and proteins, as cyclooxygenases and resolvins, are crucial in these inflammatory pathways. Indeed, the activation of these pathways establishes an oxidative and anaerobic microenvironment with DNA damage to epithelial cells, and shifting from an aerobic to an anaerobic metabolism. Many cellular mechanisms, such as proliferation, apoptosis, and autophagy are altered causing failure to control normal mucosa repair and renewal.
Collapse
|
38
|
Hirai S, Endo S, Saito R, Hirose M, Ueno T, Suzuki H, Yamato K, Abei M, Hyodo I. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation. PLoS One 2014; 9:e102831. [PMID: 25033286 PMCID: PMC4102575 DOI: 10.1371/journal.pone.0102831] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
Up-regulated sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53). Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5). In the KatoIII cell line (TP53-null), DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.
Collapse
Affiliation(s)
- Sachiko Hirai
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinji Endo
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Rie Saito
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuaki Hirose
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takunori Ueno
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Yamato
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masato Abei
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Simmons GE, Pandey S, Nedeljkovic-Kurepa A, Saxena M, Wang A, Pruitt K. Frizzled 7 expression is positively regulated by SIRT1 and β-catenin in breast cancer cells. PLoS One 2014; 9:e98861. [PMID: 24897117 PMCID: PMC4045932 DOI: 10.1371/journal.pone.0098861] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/07/2014] [Indexed: 12/30/2022] Open
Abstract
The Wnt signaling pathway is often chronically activated in diverse human tumors, and the Frizzled (FZD) family of receptors for Wnt ligands, are central to propagating oncogenic signals in a β-catenin-dependent and independent manner. SIRT1 is a class III histone deacetylase (HDAC) that deacetylates histone and non-histone proteins to regulate gene transcription and protein function. We previously demonstrated that SIRT1 loss of function led to a significant decrease in the levels of Dishevelled (Dvl) proteins. To further explore this connection between the sirtuins and components of the Wnt pathway, we analyzed sirtuin-mediated regulation of FZD proteins. Here we explore the contribution of sirtuin deacetylases in promoting constitutive Wnt pathway activation in breast cancer cells. We demonstrate that the use of small molecule inhibitors of SIRT1 and SIRT2, and siRNA specific to SIRT1, all reduce the levels of FZD7 mRNA. We further demonstrate that pharmacologic inhibition of SIRT1/2 causes a marked reduction in FZD7 protein levels. Additionally, we show that β-catenin and c-Jun occupy the 7 kb region upstream of the transcription start site of the FZD7 gene, and SIRT1 inhibition leads to a reduction in the occupancy of both β-catenin and c-Jun at points along this region. This work uncovers a new mechanism for the regulation of FZD7 and provides a critical new link between the sirtuins and FZD7, one of the earliest nodal points from which oncogenic Wnt signaling emanates. This study shows that inhibition of specific sirtuins may provide a unique strategy for inhibiting the constitutively active Wnt pathway at the level of the receptor.
Collapse
Affiliation(s)
- Glenn E Simmons
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America
| | - Somnath Pandey
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America
| | - Ana Nedeljkovic-Kurepa
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America
| | - Madhurima Saxena
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America
| | - Allison Wang
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America
| | - Kevin Pruitt
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America; The Feist-Weiller Cancer Center, LSU Health Sciences Center School of Medicine in Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
40
|
Abstract
The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as "the guardian of the genome", because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2-MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, Louisiana, LA, 70112, USA
| | | | | |
Collapse
|
41
|
Cho M, Choi E, Kim JH, Kim H, Kim HM, Lee JI, Hwang KC, Kim HJ, Han G. Lactam-Based HDAC Inhibitors for Anticancer Chemotherapy: Restoration of RUNX3 by Posttranslational Modification and Epigenetic Control. ChemMedChem 2013; 9:649-56. [DOI: 10.1002/cmdc.201300393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Indexed: 01/20/2023]
|
42
|
Yuan H, Su L, Chen WY. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 2013; 6:1399-416. [PMID: 24133372 PMCID: PMC3797239 DOI: 10.2147/ott.s37750] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD(+))-dependent protein lysine modifying enzymes with deacetylase, adenosine diphosphateribosyltransferase and other deacylase activities. Mammals have seven sirtuins, namely SIRT1-7. They are key regulators for a wide variety of cellular and physiological processes such as cell proliferation, differentiation, DNA damage and stress response, genome stability, cell survival, metabolism, energy homeostasis, organ development, aging, and cancer. Here we present an extensive literature review of the roles of mammalian sirtuins, particularly SIRT1 as that is the most studied sirtuin, in human epithelial, neuronal, hematopoietic, and mesenchymal malignancies, covering breast, prostate, lung, thyroid, liver, colon, gastric, pancreatic, ovarian, and cervical cancers, tumors of the central nervous system, leukemia and lymphoma, and soft tissue sarcomas. Collective evidence suggests sirtuins are involved in both promoting and suppressing tumorigenesis depending on cellular and molecular contexts. We discuss the potential use of sirtuin modulators, especially sirtuin inhibitors, in cancer treatment.
Collapse
Affiliation(s)
- Hongfeng Yuan
- Department of Cancer Biology, Beckman Research institute, City of Hope, Duarte, CA, USA
| | | | | |
Collapse
|
43
|
Abstract
Innate resistance to various therapeutic interventions is a hallmark of cancer. In recent years, acquired resistance has emerged as a daunting challenge to targeted cancer therapy, which abolishes the efficacy of otherwise successful targeting drugs. Cancer cells gain the resistance property through a variety of mechanisms in primary and metastatic cancers, involving cellular intrinsic and extrinsic factors. Increasing evidence suggests that the mammalian stress response gene sirtuin 1 (SIRT1) plays a critical role in multiple aspects of cancer drug resistance. SIRT1 decreases drug penetration, confers proliferation and antiapoptotic survival advantages to cancer cells, facilitates acquired resistance through genetic mutations, promotes the survival of cancer stem cells, and changes the tumor microenvironment for resistance in cell-autonomous and -nonautonomous manners. This article provides an overview of research advances in the roles of SIRT1 in cancer drug resistance and highlights the prospect of targeting SIRT1 as a new strategy to overcome cancer drug resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
44
|
Jung W, Hong KD, Jung WY, Lee E, Shin BK, Kim HK, Kim A, Kim BH. SIRT1 Expression Is Associated with Good Prognosis in Colorectal Cancer. KOREAN JOURNAL OF PATHOLOGY 2013; 47:332-9. [PMID: 24009628 PMCID: PMC3759632 DOI: 10.4132/koreanjpathol.2013.47.4.332] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
Abstract
Background Silent mating type information regulation 2 homolog 1 (SIRT1), an NAD+-dependent deacetylase, might act as a tumor promoter by inhibiting p53, but may also as a tumor suppressor by inhibiting several oncogenes such as β-catenin and survivin. Deleted in breast cancer 1 (DBC1) is known as a negative regulator of SIRT1. Methods Immunohistochemical expressions of SIRT1, DBC1, β-catenin, surviving, and p53 were evaluated using 2 mm tumor cores from 349 colorectal cancer patients for tissue microarray. Results Overexpression of SIRT1, DBC1, survivin, and p53 was seen in 235 (67%), 183 (52%), 193 (55%), and 190 (54%) patients, respectively. Altered expression of β-catenin was identified in 246 (70%) patients. On univariate analysis, overexpression of SIRT1 (p=0.029) and altered expression of β-catenin (p=0.008) were significantly associated with longer overall survival. Expression of SIRT1 was significantly related to DBC1 (p=0.001), β-catenin (p=0.001), and survivin (p=0.002), but not with p53. On multivariate analysis, age, tumor stage, differentiation, and expression of SIRT1 were independent prognostic factors significantly associated with overall survival. Conclusions SIRT1 overexpression is a good prognostic factor for colorectal cancer, and SIRT1 may interact with β-catenin and survivin rather than p53.
Collapse
Affiliation(s)
- Wonkyung Jung
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lengyel Z, Battyáni Z, Szekeres G, Csernus V, Nagy AD. Circadian clocks and tumor biology: what is to learn from human skin biopsies? Gen Comp Endocrinol 2013; 188:67-74. [PMID: 23608545 DOI: 10.1016/j.ygcen.2013.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 01/27/2023]
Abstract
Some of the components of the circadian molecular clock have been shown to link directly to tumor suppression. Most studies on human tumorous biopsies with consistently down-regulated clock gene expression suggested a protective role for these genes against cancer formation. To highlight some limitations of this hypothesis we review these data in light of recent evidences from animal research, epidemiologic studies, and clinical data on skin tumors. We emphasize the role of circadian rhythmic orchestration in cellular metabolism with a potential in cancer development.
Collapse
Affiliation(s)
- Zsuzsanna Lengyel
- Department of Dermatology, Medical School, University of Pécs, H-7624 Pécs, Kodály Z.u. 20, Hungary.
| | | | | | | | | |
Collapse
|
46
|
Leko V, Park GJ, Lao U, Simon JA, Bedalov A. Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model. PLoS One 2013; 8:e66283. [PMID: 23799088 PMCID: PMC3682947 DOI: 10.1371/journal.pone.0066283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/08/2013] [Indexed: 01/15/2023] Open
Abstract
SIRT1 is a mammalian NAD(+)-dependent histone deacetylase implicated in metabolism, development, aging and tumorigenesis. Prior studies that examined the effect of enterocyte-specific overexpression and global deletion of SIRT1 on polyp formation in the intestines of APC(+/min) mice, a commonly used model for intestinal tumorigenesis, yielded conflicting results, supporting either tumor-suppressive or tumor-promoting roles for SIRT1, respectively. In order to resolve the controversy emerging from these prior in vivo studies, in the present report we examined the effect of SIRT1 deficiency confined to the intestines, avoiding the systemic perturbations such as growth retardation seen with global SIRT1 deletion. We crossed APC(+/min) mice with mice bearing enterocyte-specific inactivation of SIRT1 and examined polyp development in the progeny. We found that SIRT1-inactivation reduced total polyp surface (9.3 mm(2) vs. 23.3 mm(2), p = 0.01), average polyp size (0.24 mm(2) vs. 0.51 mm(2), p = 0.005) and the number of polyps >0.5 mm in diameter (14 vs. 23, p = 0.04), indicating that SIRT1 affects both the number and size of tumors. Additionally, tumors in SIRT1-deficient mice exhibited markedly increased numbers of cells undergoing apoptosis, suggesting that SIRT1 contributes to tumor growth by enabling survival of tumor cells. Our results indicate that SIRT1 acts as a tumor promoter in the APC(+/min) mouse model of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Vid Leko
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gemma J. Park
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Uyen Lao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julian A. Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Departments of Medicine and Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
47
|
Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel) 2013; 5:676-713. [PMID: 24216997 PMCID: PMC3730326 DOI: 10.3390/cancers5020676] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.
Collapse
Affiliation(s)
- Kankana Bardhan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912, USA.
| | | |
Collapse
|
48
|
Przybilla J, Buske P, Binder H, Galle J. Histone modifications control DNA methylation profiles during ageing and tumour expansion. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.854279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Sorting out functions of sirtuins in cancer. Oncogene 2013; 33:1609-20. [PMID: 23604120 DOI: 10.1038/onc.2013.120] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 12/21/2022]
Abstract
The sirtuins (SIRT 1-7) comprise a family of NAD⁺-dependent protein-modifying enzymes with activities in lysine deacetylation, adenosinediphospho(ADP)-ribosylation, and/or deacylation. These enzymes are involved in the cell's stress response systems and in regulating gene expression, DNA damage repair, metabolism and survival. Sirtuins have complex roles in both promoting and/or suppressing tumorigenesis. This review presents recent research progress concerning sirtuins and cancer. On one hand, functional loss of sirtuin genes, particularly SIRT1, involved in maintaining genome integrity and DNA repair will promote tumorigenesis because of genomic instability upon their loss. On the other hand, cancer cells tend to require sirtuins for these same processes to allow them to survive, proliferate, repair the otherwise catastrophic genomic events and evolve. The bifurcated roles of SIRT1, and perhaps several other sirtuins, in cancer may be in part a result of the nature of the genes that are involved in the cell's genome maintenance systems. The in-depth understanding of sirtuin functions may have significant implication in designing precise modulation of selective sirtuin members to aid cancer prevention or treatment under defined conditions.
Collapse
|
50
|
Qi W, Fitchev PS, Cornwell ML, Greenberg J, Cabe M, Weber CR, Roy HK, Crawford SE, Savkovic SD. FOXO3 growth inhibition of colonic cells is dependent on intraepithelial lipid droplet density. J Biol Chem 2013; 288:16274-16281. [PMID: 23603907 DOI: 10.1074/jbc.m113.470617] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forkhead transcription factor FOXO3 plays a critical role in suppressing tumor growth, in part, by increasing the cell cycle inhibitor p27kip1, and Foxo3 deficiency in mice results in marked colonic epithelial proliferation. Here, we show in Foxo3-deficient colonic epithelial cells a striking increase in intracytoplasmic lipid droplets (LDs), a dynamic organelle recently observed in human tumor tissue. Although the regulation and function of LDs in non-adipocytes is unclear, we hypothesize that the anti-proliferative effect of FOXO3 was dependent on lowering LD density, thus decreasing fuel energy in both normal and colon cancer cells. In mouse colonic tumors, we found an increased expression of LD coat protein PLIN2 compared with normal colonic epithelial cells. Stimulation of LD density in human colon cancer cells led to a PI3K-dependent loss of FOXO3 and a decrease in the negative regulator of lipid metabolism in Sirtuin6 (SIRT6). Foxo3 deficiency also led to a decrease in SIRT6, revealing the existence of LD and FOXO3 feedback regulation in colonic cells. In parallel, LD-dependent loss of FOXO3 led to its dissociation from the promoter and decreased expression of the cell cycle inhibitor p27kip1. Stimulation of LD density promoted proliferation in colon cancer cells, whereas silencing PLIN2 or overexpression of FOXO3 inhibited proliferation. Taken together, FOXO3 and LDs might serve as new targets for therapeutic intervention of colon cancer.
Collapse
Affiliation(s)
- Wentao Qi
- Department of Medicine, Division of Gastroenterology, Northshore University HealthSystem Research Institute, Evanston, Illinois 60201
| | - Philip S Fitchev
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Mona L Cornwell
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Jordan Greenberg
- Department of Medicine, Division of Gastroenterology, Northshore University HealthSystem Research Institute, Evanston, Illinois 60201
| | - Maleen Cabe
- Department of Medicine, Division of Gastroenterology, Northshore University HealthSystem Research Institute, Evanston, Illinois 60201
| | | | - Hemant K Roy
- Department of Medicine, Division of Gastroenterology, Northshore University HealthSystem Research Institute, Evanston, Illinois 60201
| | - Susan E Crawford
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Suzana D Savkovic
- Department of Medicine, Division of Gastroenterology, Northshore University HealthSystem Research Institute, Evanston, Illinois 60201.
| |
Collapse
|