1
|
Mdluli T, Wollen-Roberts S, Merbah M, Beckman B, Li Y, Alrubayyi A, Curtis DJ, Shubin Z, Barrera MD, Boeckelman J, Duncan S, Thapa P, Kim D, Costanzo MC, Bai H, Dearlove BL, Hooper JW, Kwilas SA, Paquin-Proulx D, Eller MA, Eller LA, Kibuuka H, Mwesigwa B, Kosgei J, Sawe F, Oyieko J, Ntinginya N, Mwakisisile J, Jani I, Viegas E, Iroezindu M, Akintunde A, Paolino K, Robb ML, Ward L, McLean C, Luhn K, Robinson C, Ake JA, Rolland M. Ebola virus vaccination elicits Ebola virus-specific immune responses without substantial cross-reactivity to other filoviruses. Sci Transl Med 2025; 17:eadq2496. [PMID: 40173257 DOI: 10.1126/scitranslmed.adq2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/30/2024] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
The Janssen Ebola virus (EBOV) vaccine consists of the adenovirus type 26 vector encoding the EBOV glycoprotein (GP) (Ad26.ZEBOV) and the modified vaccinia Ankara (MVA) vector encoding GP from EBOV, Sudan virus, and Marburg virus and nucleoprotein from Tai Forest virus (MVA-BN-Filo) administered 8 weeks later. We conducted a systems immunology analysis of antibody-mediated and cellular immune responses induced after two immunizations with either vaccine used first. The response to vaccination was EBOV GP specific and defined by high antibody binding, Fc effector, and neutralizing responses with CD4 T cell responses also contributing. The vaccine-induced antibody profile did not distinguish people living with or without HIV-1. Samples from 48 survivors and 121 contacts from the 2007 Ugandan Bundibugyo virus epidemic also showed minimal cross-reactivity to other filovirus proteins after infection and exposure. The lack of cross-reactivity suggests that different multivalent vaccine candidates are required to provide broad protection across filoviruses.
Collapse
Affiliation(s)
- Thembi Mdluli
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Suzanne Wollen-Roberts
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Mélanie Merbah
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Bradley Beckman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Yifan Li
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Aljawharah Alrubayyi
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Daniel J Curtis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Zhanna Shubin
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Michael D Barrera
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jacob Boeckelman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Shayla Duncan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Pallavi Thapa
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Margaret C Costanzo
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jay W Hooper
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Steven A Kwilas
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Betty Mwesigwa
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Josphat Kosgei
- Henry M. Jackson Foundation Medical Research International, Nairobi, Kenya
- Kenya Medical Research Institute, US Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Fredrick Sawe
- Henry M. Jackson Foundation Medical Research International, Nairobi, Kenya
- Kenya Medical Research Institute, US Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Janet Oyieko
- Henry M. Jackson Foundation Medical Research International, Nairobi, Kenya
- Kenya Medical Research Institute, US Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Nyanda Ntinginya
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Joel Mwakisisile
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Ilesh Jani
- Polana Caniço Health Research and Training Center, Maputo, Mozambique
| | - Edna Viegas
- Polana Caniço Health Research and Training Center, Maputo, Mozambique
| | - Michael Iroezindu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation Medical Research International, Abuja, Nigeria
| | - Akindiran Akintunde
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- Henry M. Jackson Foundation Medical Research International, Abuja, Nigeria
- US Army Medical Research Directorate-Africa, Abuja, Nigeria
| | - Kristopher Paolino
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Institute of Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Lucy Ward
- US Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | - Julie A Ake
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
2
|
Lucia-Sanz A, Peng S, Leung CY(J, Gupta A, Meyer JR, Weitz JS. Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics. Virus Evol 2024; 10:veae104. [PMID: 39720789 PMCID: PMC11666707 DOI: 10.1093/ve/veae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
The enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary-and largely uncharacterized-genetics of adsorption, injection, cell take-over, and lysis. Here we present a machine learning approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions among 51 Escherichia coli strains and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple inference strategies and without a priori knowledge of driver mutations, this framework predicts both who infects whom and the quantitative levels of infections across a suite of 2,295 potential interactions. We found that the most effective approach inferred interaction phenotypes from independent contributions from phage and bacteria mutations, accurately predicting 86% of interactions while reducing the relative error in the estimated strength of the infection phenotype by 40%. Feature selection revealed key phage λ and Escherchia coli mutations that have a significant influence on the outcome of phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as well as identifying mutations in genes of unknown function not previously shown to influence bacterial resistance. The method's success in recapitulating strain-level infection outcomes arising during coevolutionary dynamics may also help inform generalized approaches for imputing genetic drivers of interaction phenotypes in complex communities of phage and bacteria.
Collapse
Affiliation(s)
- Adriana Lucia-Sanz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Animesh Gupta
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin R Meyer
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Health Computing, North Bethesda, MD 20852, USA
| |
Collapse
|
3
|
Lucia-Sanz A, Peng S, Leung CY(J, Gupta A, Meyer JR, Weitz JS. Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574707. [PMID: 38260415 PMCID: PMC10802490 DOI: 10.1101/2024.01.08.574707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary - and largely uncharacterized - genetics of adsorption, injection, cell take-over and lysis. Here we present a machine learning approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions amongst 51 Escherichia coli strains and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple inference strategies and without a priori knowledge of driver mutations, this framework predicts both who infects whom and the quantitative levels of infections across a suite of 2,295 potential interactions. We found that the most effective approach inferred interaction phenotypes from independent contributions from phage and bacteria mutations, accurately predicting 86 % of interactions while reducing the relative error in the estimated strength of the infection phenotype by 40 % . Feature selection revealed key phage λ and E. coli mutations that have a significant influence on the outcome of phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as well as identifying mutations in genes of unknown function not previously shown to influence bacterial resistance. The method's success in recapitulating strain-level infection outcomes arising during coevolutionary dynamics may also help inform generalized approaches for imputing genetic drivers of interaction phenotypes in complex communities of phage and bacteria.
Collapse
Affiliation(s)
- Adriana Lucia-Sanz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | - Animesh Gupta
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, USA
| | - Joshua S. Weitz
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
- University of Maryland Institute for Health Computing, North Bethesda, MD, USA
| |
Collapse
|
4
|
Qian H, Tian L, Liu W, Liu L, Li M, Zhao Z, Lei X, Zheng W, Zhao Z, Zheng X. Adenovirus type 5-expressing Gn induces better protective immunity than Gc against SFTSV infection in mice. NPJ Vaccines 2024; 9:194. [PMID: 39426985 PMCID: PMC11490641 DOI: 10.1038/s41541-024-00993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is caused by the SFTS virus (SFTSV) with high morbidity and mortality. The major immunodominant region of SFTSV surface glycoprotein (G) remains unclear. In this study, we constructed adenovirus type 5 (Ad5) vectored vaccine candidates expressing different regions of SFTSV G (Gn, Gc and Gn-Gc) and evaluated their immunogenicity and protective efficacy in mice. In wild-type mice, compared with Ad5-Gc or Ad5-Gn-Gc, Ad5-Gn recruited/activated more dendritic cells and B cells in lymph nodes or peripheral blood, causing Th1-/Th2-mediated responses in splenocytes and triggered a greater level of SFTSV-neutralizing antibodies. In IFNAR Ab-treated mice, immunization of Ad5-Gn exhibited better protection against SFTSV challenge than Ad5-Gc or Ad5-Gn-Gc. Furthermore, passive immunization revealed complete protective immunity of Gn-specific serum rather than Gc. Collectively, our data demonstrated that Gn is the immunodominant fragment of SFTSV G and could be a potential candidate for SFTSV vaccine development.
Collapse
Affiliation(s)
- Hua Qian
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Tian
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongxin Zhao
- Department of Laboratory Medicine, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoying Lei
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xuexing Zheng
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Wang X. The Potential of mRNA Vaccines to Fight Against Viruses. Viral Immunol 2024; 37:383-391. [PMID: 39418074 DOI: 10.1089/vim.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Vaccines have always been a critical tool in preventing infectious diseases. However, the development of traditional vaccines often takes a long time and may struggle to address the challenge of rapidly mutating viruses. The emergence of mRNA technology has brought revolutionary changes to vaccine development, particularly in rapidly responding to the threat of emerging viruses. The global promotion of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 has demonstrated the importance of mRNA technology. Also, mRNA vaccines targeting viruses such as influenza, respiratory syncytial virus, and Ebola are under development. These vaccines have shown promising preventive effects and safety profiles in clinical trials, although the duration of immune protection is still under evaluation. However, the development of mRNA vaccines also faces many challenges, such as stability, efficacy, and individual differences in immune response. Researchers adopt various strategies to address these challenges. Anyway, mRNA vaccines have shown enormous potential in combating viral diseases. With further development and technological maturity, mRNA vaccines are expected to have a profound impact on public health and vaccine equity. This review discussed the potential of mRNA vaccines to fight against viruses, current progress in clinical trials, challenges faced, and future prospects, providing a comprehensive scientific basis and reference for future research.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Clinical Laboratory, National Clinical Research Center for Child Health Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Lyu Y, Li W, Guo Q, Wu H. Mapping knowledge landscapes and emerging trends of Marburg virus: A text-mining study. Heliyon 2024; 10:e29691. [PMID: 38655363 PMCID: PMC11036101 DOI: 10.1016/j.heliyon.2024.e29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Background Marburg virus (MARV), a close relative of Ebola virus, could induce hemorrhagic fevers in humans with high mortality rate. In recent years, increasing attention has been paid to this highly lethal virus due to sporadic outbreaks observed in various African nations. This bibliometric analysis endeavors to elucidate the trends, dynamics, and focal points of knowledge that have delineated the landscape of research concerning MARV. Methods Relevant literature on MARV from 1968 to 2023 was extracted from the Web of Science Core Collection database. Following this, the data underwent bibliometric analysis and visualization procedures utilizing online analysis platform, CiteSpace 6.2R6, and VOSviewer 1.6.20. Three different types of bibliometric indicators including quantitative indicator, qualitative indicators, and structural indicators were used to gauge a researcher's productivity, assess the quality of their work, and analyze publication relationships, respectively. Results MARV is mainly prevalent in Africa. And approximately 643 confirmed cases have been described in the literature to date, and mortality observed was 81.2 % in overall patients. A total of 1014 papers comprising 869 articles and 145 reviews were included. The annual publications showed an increasing growth pattern from 1968 to 2023 (R2 = 0.8838). The United States stands at the forefront of this discipline, having dedicated substantial financial and human resources to scientific inquiry. However, co-authorship analysis showed the international research collaboration needs to be further strengthened. Based on reference and keywords analysis, contemporary MARV research encompasses pivotal areas: primarily, prioritizing the creation of prophylactic vaccines to impede viral spread, and secondarily, exploring targeted antiviral strategies, including small-molecule antivirals or MARV-specific monoclonal antibodies. Additionally, a comprehensive grasp of viral transmission, transcription, and replication mechanisms remains a central focus in ongoing investigations. And future MARV studies are expected to focus on evaluating clinical trial safety and efficacy, developing inhibitors to contain viral spread, exploring vaccine immunogenicity, virus-host association studies, and elucidating the role of neutralizing antibodies in MARV treatment. Conclusion The present study offered comprehensive insights into the contemporary status and trajectories of MARV over the past decades. This enables researchers to discern novel collaborative prospects, institutional partnerships, emerging topics, and research forefronts within this domain.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Wanqing Li
- Department of Operating Room, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Orthopaedics, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Kwon T. Utilizing non-human primate models to combat recent COVID-19/SARS-CoV-2 and viral infectious disease outbreaks. J Med Primatol 2024; 53:e12689. [PMID: 38084001 DOI: 10.1111/jmp.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
In recent times, global viral outbreaks and diseases, such as COVID-19 (SARS-CoV-2), Zika (ZIKV), monkeypox (MPOX), Ebola (EBOV), and Marburg (MARV), have been extensively documented. Swiftly deciphering the mechanisms underlying disease pathogenesis and devising vaccines or therapeutic interventions to curtail these outbreaks stand as paramount imperatives. Amidst these endeavors, animal models emerge as pivotal tools. Among these models, non-human primates (NHPs) hold a position of particular importance. Their proximity in evolutionary lineage and physiological resemblances to humans render them a primary model for comprehending human viral infections. This review encapsulates the pivotal role of various NHP species-such as rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), african green monkeys (Chlorocebus sabaeus/aethiops), pigtailed macaques (Macaca nemestrina/Macaca leonina), baboons (Papio hamadryas/Papio anubis), and common marmosets (Callithrix jacchus)-in investigations pertaining to the abovementioned viral outbreaks. These NHP models play a pivotal role in illuminating key aspects of disease dynamics, facilitating the development of effective countermeasures, and contributing significantly to our overall understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
10
|
Stein SR, Platt AP, Teague HL, Anthony SM, Reeder RJ, Cooper K, Byrum R, Drawbaugh DJ, Liu DX, Burdette TL, Hadley K, Barr B, Warner S, Rodriguez-Hernandez F, Johnson C, Stanek P, Hischak J, Kendall H, Huzella LM, Strich JR, Herbert R, St. Claire M, Vannella KM, Holbrook MR, Chertow DS. Clinical and Immunologic Correlates of Vasodilatory Shock Among Ebola Virus-Infected Nonhuman Primates in a Critical Care Model. J Infect Dis 2023; 228:S635-S647. [PMID: 37652048 PMCID: PMC10651209 DOI: 10.1093/infdis/jiad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations. METHODS Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3. High-dimensional spectral cytometry was used to phenotype neutrophils and peripheral blood mononuclear cells daily. RESULTS We observed progressive vasodilatory shock with preserved cardiac function following viremia onset on day 5. Multiorgan dysfunction began on day 6 coincident with the nadir of circulating neutrophils. Consumptive coagulopathy and anemia occurred on days 7 to 8 along with irreversible shock, followed by death. The monocyte repertoire began shifting on day 4 with a decline in classical and expansion of double-negative monocytes. A selective loss of CXCR3-positive B and T cells, expansion of naive B cells, and activation of natural killer cells followed viremia onset. CONCLUSIONS Our model allows for high-fidelity characterization of the pathophysiology of acute Ebola virus infection with host innate and adaptive immune responses, which may advance host-targeted therapy design and evaluation for use after the onset of multiorgan failure.
Collapse
Affiliation(s)
- Sydney R Stein
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Andrew P Platt
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Scott M Anthony
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Rebecca J Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Russell Byrum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - David J Drawbaugh
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - David X Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Tracey L Burdette
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kyra Hadley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Bobbi Barr
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Seth Warner
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Francisco Rodriguez-Hernandez
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Cristal Johnson
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Phil Stanek
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Joseph Hischak
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Heather Kendall
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Louis M Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Marisa St. Claire
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kevin M Vannella
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Daniel S Chertow
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| |
Collapse
|
11
|
Dupuy LC, Spiropoulou CF, Towner JS, Spengler JR, Sullivan NJ, Montgomery JM. Filoviruses: Scientific Gaps and Prototype Pathogen Recommendation. J Infect Dis 2023; 228:S446-S459. [PMID: 37849404 PMCID: PMC11009505 DOI: 10.1093/infdis/jiad362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Zhang HQ, Zhang QY, Yuan ZM, Zhang B. The potential epidemic threat of Ebola virus and the development of a preventive vaccine. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:67-78. [DOI: 10.1016/j.jobb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
13
|
Cross RW, Prasad AN, Woolsey CB, Agans KN, Borisevich V, Dobias NS, Comer JE, Deer DJ, Geisbert JB, Rasmussen AL, Lipkin WI, Fenton KA, Geisbert TW. Natural history of nonhuman primates after conjunctival exposure to Ebola virus. Sci Rep 2023; 13:4175. [PMID: 36914721 PMCID: PMC10011569 DOI: 10.1038/s41598-023-31027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Transmission of Ebola virus (EBOV) primarily occurs via contact exposure of mucosal surfaces with infected body fluids. Historically, nonhuman primate (NHP) challenge studies have employed intramuscular (i.m.) or small particle aerosol exposure, which are largely lethal routes of infection, but mimic worst-case scenarios such as a needlestick or intentional release, respectively. When exposed by more likely routes of natural infection, limited NHP studies have shown delayed onset of disease and reduced mortality. Here, we performed a series of systematic natural history studies in cynomolgus macaques with a range of conjunctival exposure doses. Challenge with 10,000 plaque forming units (PFU) of EBOV was uniformly lethal, whereas 5/6 subjects survived lower dose challenges (100 or 500 PFU). Conjunctival challenge resulted in a protracted time-to death compared to i.m. Asymptomatic infection was observed in survivors with limited detection of EBOV replication. Inconsistent seropositivity in survivors may suggest physical or natural immunological barriers are sufficient to prevent widespread viral dissemination.
Collapse
Affiliation(s)
- Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Courtney B Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY, 10032, USA
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Walter Ian Lipkin
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA.
| |
Collapse
|
14
|
Krähling V, Erbar S, Kupke A, Nogueira SS, Walzer KC, Berger H, Dietzel E, Halwe S, Rohde C, Sauerhering L, Aragão-Santiago L, Moreno Herrero J, Witzel S, Haas H, Becker S, Sahin U. Self-amplifying RNA vaccine protects mice against lethal Ebola virus infection. Mol Ther 2023; 31:374-386. [PMID: 36303436 PMCID: PMC9931551 DOI: 10.1016/j.ymthe.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.
Collapse
Affiliation(s)
- Verena Krähling
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | - Alexandra Kupke
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | | | | | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | | | - Sonja Witzel
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131 Mainz, Germany
| | - Heinrich Haas
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany.
| | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| |
Collapse
|
15
|
Hamer MJ, Houser KV, Hofstetter AR, Ortega-Villa AM, Lee C, Preston A, Augustine B, Andrews C, Yamshchikov GV, Hickman S, Schech S, Hutter JN, Scott PT, Waterman PE, Amare MF, Kioko V, Storme C, Modjarrad K, McCauley MD, Robb ML, Gaudinski MR, Gordon IJ, Holman LA, Widge AT, Strom L, Happe M, Cox JH, Vazquez S, Stanley DA, Murray T, Dulan CNM, Hunegnaw R, Narpala SR, Swanson PA, Basappa M, Thillainathan J, Padilla M, Flach B, O'Connell S, Trofymenko O, Morgan P, Coates EE, Gall JG, McDermott AB, Koup RA, Mascola JR, Ploquin A, Sullivan NJ, Ake JA, Ledgerwood JE. Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: a first-in-human, phase 1, open-label, dose-escalation trial. Lancet 2023; 401:294-302. [PMID: 36709074 PMCID: PMC10127441 DOI: 10.1016/s0140-6736(22)02400-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Melinda J Hamer
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Katherine V Houser
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Amelia R Hofstetter
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana M Ortega-Villa
- Biostatistics Research Branch, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine Lee
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anne Preston
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Charla Andrews
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina V Yamshchikov
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Somia Hickman
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Schech
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jack N Hutter
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul T Scott
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Mihret F Amare
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria Kioko
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Casey Storme
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Melanie D McCauley
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Martin R Gaudinski
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingelise J Gordon
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - LaSonji A Holman
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alicia T Widge
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Larisa Strom
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Myra Happe
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josephine H Cox
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Vazquez
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daphne A Stanley
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamar Murray
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caitlyn N M Dulan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Hunegnaw
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep R Narpala
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Phillip A Swanson
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manjula Basappa
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jagada Thillainathan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marcelino Padilla
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah O'Connell
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga Trofymenko
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Morgan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason G Gall
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aurélie Ploquin
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie A Ake
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Hunegnaw R, Honko AN, Wang L, Carr D, Murray T, Shi W, Nguyen L, Storm N, Dulan CNM, Foulds KE, Agans KN, Cross RW, Geisbert JB, Cheng C, Ploquin A, Stanley DA, Geisbert TW, Nabel GJ, Sullivan NJ. A single-shot ChAd3-MARV vaccine confers rapid and durable protection against Marburg virus in nonhuman primates. Sci Transl Med 2022; 14:eabq6364. [PMID: 36516269 DOI: 10.1126/scitranslmed.abq6364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna N Honko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Derick Carr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tamar Murray
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadia Storm
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Caitlyn N M Dulan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Coughlan L, Kremer EJ, Shayakhmetov DM. Adenovirus-based vaccines-a platform for pandemic preparedness against emerging viral pathogens. Mol Ther 2022; 30:1822-1849. [PMID: 35092844 PMCID: PMC8801892 DOI: 10.1016/j.ymthe.2022.01.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Zoonotic viruses continually pose a pandemic threat. Infection of humans with viruses for which we typically have little or no prior immunity can result in epidemics with high morbidity and mortality. These epidemics can have public health and economic impact and can exacerbate civil unrest or political instability. Changes in human behavior in the past few decades-increased global travel, farming intensification, the exotic animal trade, and the impact of global warming on animal migratory patterns, habitats, and ecosystems-contribute to the increased frequency of cross-species transmission events. Investing in the pre-clinical advancement of vaccine candidates against diverse emerging viral threats is crucial for pandemic preparedness. Replication-defective adenoviral (Ad) vectors have demonstrated their utility as an outbreak-responsive vaccine platform during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Ad vectors are easy to engineer; are amenable to rapid, inexpensive manufacturing; are relatively safe and immunogenic in humans; and, importantly, do not require specialized cold-chain storage, making them an ideal platform for equitable global distribution or stockpiling. In this review, we discuss the progress in applying Ad-based vaccines against emerging viruses and summarize their global safety profile, as reflected by their widespread geographic use during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS 5535, Montpellier, France.
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Kupke A, Volz A, Dietzel E, Freudenstein A, Schmidt J, Shams-Eldin H, Jany S, Sauerhering L, Krähling V, Gellhorn Serra M, Herden C, Eickmann M, Becker S, Sutter G. Protective CD8+ T Cell Response Induced by Modified Vaccinia Virus Ankara Delivering Ebola Virus Nucleoprotein. Vaccines (Basel) 2022; 10:vaccines10040533. [PMID: 35455282 PMCID: PMC9027530 DOI: 10.3390/vaccines10040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014–2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.
Collapse
Affiliation(s)
- Alexandra Kupke
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Astrid Freudenstein
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Jörg Schmidt
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Hosam Shams-Eldin
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Sylvia Jany
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michelle Gellhorn Serra
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Markus Eickmann
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
- Correspondence:
| | - Gerd Sutter
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| |
Collapse
|
19
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
20
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
21
|
Zhang Y, Wu Y, Wu Y, Chang Y, Liu M. CRISPR-Cas systems: From gene scissors to programmable biosensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116210] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Longet S, Mellors J, Carroll MW, Tipton T. Ebolavirus: Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection. Front Immunol 2021; 11:599568. [PMID: 33679690 PMCID: PMC7935512 DOI: 10.3389/fimmu.2020.599568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/29/2020] [Indexed: 01/21/2023] Open
Abstract
Ebola viruses are enveloped, single-stranded RNA viruses belonging to the Filoviridae family and can cause Ebola virus disease (EVD), a serious haemorrhagic illness with up to 90% mortality. The disease was first detected in Zaire (currently the Democratic Republic of Congo) in 1976. Since its discovery, Ebola virus has caused sporadic outbreaks in Africa and was responsible for the largest 2013-2016 EVD epidemic in West Africa, which resulted in more than 28,600 cases and over 11,300 deaths. This epidemic strengthened international scientific efforts to contain the virus and develop therapeutics and vaccines. Immunology studies in animal models and survivors, as well as clinical trials have been crucial to understand Ebola virus pathogenesis and host immune responses, which has supported vaccine development. This review discusses the major findings that have emerged from animal models, studies in survivors and vaccine clinical trials and explains how these investigations have helped in the search for a correlate of protection.
Collapse
Affiliation(s)
- Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles W. Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
23
|
Mitchell J, Dean K, Haas C. Ebola Virus Dose Response Model for Aerosolized Exposures: Insights from Primate Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:2390-2398. [PMID: 32638435 DOI: 10.1111/risa.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
This study develops dose-response models for Ebolavirus using previously published data sets from the open literature. Two such articles were identified in which three different species of nonhuman primates were challenged by aerosolized Ebolavirus in order to study pathology and clinical disease progression. Dose groups were combined and pooled across each study in order to facilitate modeling. The endpoint of each experiment was death. The exponential and exact beta-Poisson models were fit to the data using maximum likelihood estimation. The exact beta-Poisson was deemed the recommended model because it more closely approximated the probability of response at low doses though both models provided a good fit. Although transmission is generally considered to be dominated by person-to-person contact, aerosolization is a possible route of exposure. If possible, this route of exposure could be particularly concerning for persons in occupational roles managing contaminated liquid wastes from patients being treated for Ebola infection and the wastewater community responsible for disinfection. Therefore, this study produces a necessary mathematical relationship between exposure dose and risk of death for the inhalation route of exposure that can support quantitative microbial risk assessment aimed at informing risk mitigation strategies including personal protection policies against occupational exposures.
Collapse
Affiliation(s)
- Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| | - Kara Dean
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| | - Charles Haas
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Schilling MA, Estes AB, Eblate E, Martin A, Rentsch D, Katani R, Joseph A, Kindoro F, Lyimo B, Radzio-Basu J, Cattadori IM, Hudson PJ, Kapur V, Buza JJ, Gwakisa PS. Molecular species identification of bushmeat recovered from the Serengeti ecosystem in Tanzania. PLoS One 2020; 15:e0237590. [PMID: 32925949 PMCID: PMC7489505 DOI: 10.1371/journal.pone.0237590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Bushmeat harvesting and consumption represents a potential risk for the spillover of endemic zoonotic pathogens, yet remains a common practice in many parts of the world. Given that the harvesting and selling of bushmeat is illegal in Tanzania and other parts of Africa, the supply chain is informal and may include hunters, whole-sellers, retailers, and individual resellers who typically sell bushmeat in small pieces. These pieces are often further processed, obscuring species-identifying morphological characteristics, contributing to incomplete or mistaken knowledge of species of origin and potentially confounding assessments of pathogen spillover risk and bushmeat offtake. The current investigation sought to identify the species of origin and assess the concordance between seller-reported and laboratory-confirmed species of origin of bushmeat harvested from in and around the Serengeti National Park in Tanzania. After obtaining necessary permits, the species of origin of a total of 151 bushmeat samples purchased from known intermediaries from 2016 to 2018 were characterized by PCR and sequence analysis of the cytochrome B (CytB) gene. Based on these sequence analyses, 30%, 95% Confidence Interval (CI: 24.4-38.6) of bushmeat samples were misidentified by sellers. Misreporting amongst the top five source species (wildebeest, buffalo, impala, zebra, and giraffe) ranged from 20% (CI: 11.4-33.2) for samples reported as wildebeest to 47% (CI: 22.2-72.7) for samples reported as zebra although there was no systematic bias in reporting. Our findings suggest that while misreporting errors are unlikely to confound wildlife offtake estimates for bushmeat consumption within the Serengeti ecosystem, the role of misreporting bias on the risk of spillover events of endemic zoonotic infections from bushmeat requires further investigation.
Collapse
Affiliation(s)
- Megan A. Schilling
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anna B. Estes
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Ernest Eblate
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Andimile Martin
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Dennis Rentsch
- Lincoln Park Zoo, Conservation and Science Department, Chicago, Illinois, United States of America
| | - Robab Katani
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | | | - Beatus Lyimo
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jessica Radzio-Basu
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Isabella M. Cattadori
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Peter J. Hudson
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vivek Kapur
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joram J. Buza
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Paul S. Gwakisa
- The School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
25
|
Development of coumarine derivatives as potent anti-filovirus entry inhibitors targeting viral glycoprotein. Eur J Med Chem 2020; 204:112595. [PMID: 32707357 DOI: 10.1016/j.ejmech.2020.112595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Filoviruses, including Ebolavirus (EBOV), Marburgvirus (MARV) and Cuevavirus, cause hemorrhagic fevers in humans with up to 90% mortality rates. In the 2014-2016 West Africa Ebola epidemic, there are 15,261 laboratory confirmed cases and 11,325 total deaths. The lack of effective vaccines and medicines for the prevention and treatment of filovirus infection in humans stresses the urgency to develop antiviral therapeutics against filovirus-associated diseases. Our previous study identified a histamine receptor antagonist compound CP19 as an entry inhibitor against both EBOV and MARV. The preliminary structure-activity relationship (SAR) studies of CP19 showed that its piperidine, coumarin and linker were related with its antiviral activities. In this study, we performed detailed SAR studies on these groups with synthesized CP19 derivatives. We discovered that 1) the piperidine group could be optimized with heterocycles, 2) the substitution groups of C3 and C4 of coumarin should be relatively large hydrophobic groups and 3) the linker part should be least substituted. Based on the SAR analysis, we synthesized compound 32 as a potent entry inhibitor of EBOV and MARV (IC50 = 0.5 μM for EBOV and 1.5 μM for MARV). The mutation studies of Ebola glycoprotein and molecular docking studies showed that the coumarin and its substituted groups of compound 32 bind to the pocket of Ebola glycoprotein in a similar way to the published entry inhibitor compound 118a. However, the carboxamide group of compound 32 does not have strong interaction with N61 as compound 118a does. The coumarin skeleton structure and the binding model of compound 32 elucidated by this study could be utilized to guide further design and optimization of entry inhibitors targeting the filovirus glycoproteins.
Collapse
|
26
|
Abstract
Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
27
|
Yan L, Zhao Z, Xue X, Zheng W, Xu T, Liu L, Tian L, Wang X, He H, Zheng X. A Bivalent Human Adenovirus Type 5 Vaccine Expressing the Rabies Virus Glycoprotein and Canine Distemper Virus Hemagglutinin Protein Confers Protective Immunity in Mice and Foxes. Front Microbiol 2020; 11:1070. [PMID: 32612580 PMCID: PMC7309451 DOI: 10.3389/fmicb.2020.01070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The development of a safe and efficient multivalent vaccine has great prospects for application. Both rabies virus (RABV) and canine distemper virus (CDV) are highly infectious antigens, causing lethal diseases in domestic dogs and other carnivores worldwide. In this study, a replication-deficient human adenovirus 5 (Ad5)-vectored vaccine, rAd5-G-H, expressing RABV glycoprotein (G) and CDV hemagglutinin (H) protein was constructed. The RABV G and CDV H protein of rAd5-G-H were expressed and confirmed in infected HEK-293 cells by indirect immunofluorescence assay. The rAd5-G-H retained a homogeneous icosahedral morphology similar to rAd5-GFP under an electron microscope. A single dose of 108 GFU of rAd5-G-H administered to mice by intramuscular injection elicited rapid and robust neutralizing antibodies against RABV and CDV. Flow cytometry assays indicated that the dendritic cells and B cells in inguinal lymph nodes were significantly recruited in rAd5-G-H-immunized mice in comparison with the mock and rAd5-GFP groups. rAd5-G-H also activated the Th1- and Th2-mediated cell immune responses against RABV and CDV in mice, which contributed to 100% survival of a lethal-dose RABV challenge without any clinical signs. In foxes, a single dose of 109 GFU of rAd5-G-H could elicit high levels of neutralizing antibodies against both RABV and CDV in comparison with the mock and rAd5-GFP groups. All foxes in the rAd5-GFP and mock groups died, while the foxes inoculated with rAd5-G-H all survived and showed no clinical signs of disease after being challenged with a lethal wild-type CDV strain. These results suggested that rAd5-G-H has great potential as a bivalent vaccine against rabies and canine distemper in highly susceptible dogs and wildlife animals.
Collapse
Affiliation(s)
- Lina Yan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxin Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Xu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianwei Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: a randomised, observer-blind, placebo-controlled, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:707-718. [DOI: 10.1016/s1473-3099(20)30016-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
|
29
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|
30
|
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Hum Vaccin Immunother 2019; 15:2359-2377. [PMID: 31589088 DOI: 10.1080/21645515.2019.1651140] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
31
|
Cagigi A, Misasi J, Ploquin A, Stanley DA, Ambrozak D, Tsybovsky Y, Mason RD, Roederer M, Sullivan NJ. Vaccine Generation of Protective Ebola Antibodies and Identification of Conserved B-Cell Signatures. J Infect Dis 2019; 218:S528-S536. [PMID: 30010811 DOI: 10.1093/infdis/jiy333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently identified a single potently neutralizing monoclonal antibody (mAb), mAb114, isolated from a human survivor of natural Zaire ebolavirus (EBOV) infection, which fully protects nonhuman primates (NHPs) against lethal EBOV challenge. To evaluate the ability of vaccination to generate mAbs such as mAb114, we cloned antibodies from NHPs vaccinated with vectors encoding the EBOV glycoprotein (GP). We identified 14 unique mAbs with potent binding to GP, 4 of which were neutralized and had the functional characteristics of mAb114. These vaccine-induced macaque mAbs share many sequence similarities with mAb114 and use the same mAb114 VH gene (ie, IGHV3-13) when classified using the macaque IMGT database. The antigen-specific VH-gene repertoire present after each immunization indicated that IGHV3-13 mAbs populate an EBOV-specific B-cell repertoire that appears to become more prominent with subsequent boosting. These findings will support structure-based vaccine design aimed at enhanced induction of antibodies such as mAb114.
Collapse
Affiliation(s)
- Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Infectious Diseases, Boston Children's Hospital, Massachusetts
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Warfield KL, Howell KA, Vu H, Geisbert J, Wong G, Shulenin S, Sproule S, Holtsberg FW, Leung DW, Amarasinghe GK, Swenson DL, Bavari S, Kobinger GP, Geisbert TW, Aman MJ. Role of Antibodies in Protection Against Ebola Virus in Nonhuman Primates Immunized With Three Vaccine Platforms. J Infect Dis 2018; 218:S553-S564. [PMID: 29939318 PMCID: PMC6249597 DOI: 10.1093/infdis/jiy316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.
Collapse
Affiliation(s)
| | | | - Hong Vu
- Integrated BioTherapeutics Inc., Rockville, Maryland
| | | | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | | | | | - Daisy W Leung
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gaya K Amarasinghe
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dana L Swenson
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Gary P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | - M Javad Aman
- Integrated BioTherapeutics Inc., Rockville, Maryland
| |
Collapse
|
33
|
Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus. Viruses 2018; 10:v10110642. [PMID: 30453499 PMCID: PMC6267154 DOI: 10.3390/v10110642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023] Open
Abstract
The filoviruses Ebola virus (EBOV) and Sudan virus (SUDV) can cause severe diseases, and there are currently no licensed countermeasures available for use against them. Transmission occurs frequently via contact with bodily fluids from infected individuals. However, it can be difficult to determine when or how someone became infected, or the quantity of infectious virus to which they were exposed. Evidence suggests the infectious dose is low, but the majority of published studies use high exposure doses. This study characterized the outcome of exposure to a low dose of EBOV or SUDV, using a Macaca fascicularis model. Further, because the effect of virus passage in cell culture may be more pronounced when lower exposure doses are used, viruses that possessed either the characteristics of wild type viruses (possessing predominantly 7-uridine (7U) genotype and a high particle-to-plaque forming unit (PFU) ratio) or cell culture-passaged viruses (predominantly 8-uridine (8U) genotype, a lower particle-to-PFU ratio) were used. The time to death after a low dose exposure was delayed in comparison to higher exposure doses. These data demonstrated that an extremely low dose of EBOV or SUDV is sufficient to cause lethal disease. A low dose exposure model can help inform studies on pathogenesis, transmission, and optimization of prevention strategies.
Collapse
|
34
|
Maity A, Sui X, Jin B, Pu H, Bottum KJ, Huang X, Chang J, Zhou G, Lu G, Chen J. Resonance-Frequency Modulation for Rapid, Point-of-Care Ebola-Glycoprotein Diagnosis with a Graphene-Based Field-Effect Biotransistor. Anal Chem 2018; 90:14230-14238. [DOI: 10.1021/acs.analchem.8b03226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arnab Maity
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaoyu Sui
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Bing Jin
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Haihui Pu
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Kai J. Bottum
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xingkang Huang
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Jingbo Chang
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Guihua Zhou
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Ganhua Lu
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Junhong Chen
- Department of Mechanical Engineering, University of Wisconsin—Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
35
|
Identification of novel HLA-A11-restricted T-cell epitopes in the Ebola virus nucleoprotein. Microbes Infect 2018; 21:56-62. [PMID: 29775667 DOI: 10.1016/j.micinf.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022]
Abstract
The Ebola virus (EBOV) is a very contagious virus that is highly fatal in humans and animals. The largest epidemic was in West Africa in 2014, in which over 11,000 people died. However, to date, there are no licensed vaccines against it. Studies show that CD4+ and CD8+ T-cell responses, especially cytotoxic T-lymphocyte (CTL) responses, play key roles in protecting individuals from EBOV infection. Since HLA-restricted epitope vaccines are likely to be effective and safe immunization strategies for infectious diseases, the present study screened for CTL epitopes in the EBOV-nucleoprotein that are restricted by HLA-A11 (a common allele in Chinese people). Predictive computer analysis of the amino-acid sequence of EBOV-nucleoprotein identified ten putative HLA-A11-restricted epitopes. ELISPOT assay of immunized HLA-A11/DR1 transgenic mice showed that five (GR-9, VR-9, EK-9, PK-9, and RK-9) induced effective CTL responses. Additional epitope analyses will aid the design of epitope vaccines against EBOV.
Collapse
|
36
|
Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018; 9:1963. [PMID: 30283434 PMCID: PMC6156540 DOI: 10.3389/fimmu.2018.01963] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.
Collapse
|
37
|
Abstract
The West African Ebola virus (EBOV) epidemic has fast-tracked countermeasures for this rare, emerging zoonotic pathogen. Until 2013-2014, most EBOV vaccine candidates were stalled between the preclinical and clinical milestones on the path to licensure, because of funding problems, lack of interest from pharmaceutical companies, and competing priorities in public health. The unprecedented and devastating epidemic propelled vaccine candidates toward clinical trials that were initiated near the end of the active response to the outbreak. Those trials did not have a major impact on the epidemic but provided invaluable data on vaccine safety, immunogenicity, and, to a limited degree, even efficacy in humans. There are plenty of lessons to learn from these trials, some of which are addressed in this review. Better preparation is essential to executing an effective response to EBOV in the future; yet, the first indications of waning interest are already noticeable.
Collapse
Affiliation(s)
- Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba 93E 0J9, Canada
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
38
|
Gross L, Lhomme E, Pasin C, Richert L, Thiebaut R. Ebola vaccine development: Systematic review of pre-clinical and clinical studies, and meta-analysis of determinants of antibody response variability after vaccination. Int J Infect Dis 2018; 74:83-96. [PMID: 29981944 DOI: 10.1016/j.ijid.2018.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES For Ebola vaccine development, antibody response is a major endpoint although its determinants are not well known. We aimed to review Ebola vaccine studies and to assess factors associated with antibody response variability in humans. METHODS We searched PubMed and Scopus for preventive Ebola vaccine studies in humans or non-human primates (NHP), published up to February 2018. For each vaccination group with Ebola Zaire antibody titre measurements after vaccination, data about antibody response and its potential determinants were extracted. A random-effects meta-regression was conducted including human groups with at least 8 individuals. RESULTS We reviewed 49 studies (202 vaccination groups including 74 human groups) with various vaccine platforms and antigen inserts. Mean antibody titre was slightly higher in NHP (3.10, 95% confidence interval [293; 327]) than in humans (2.75 [257; 293]). Vaccine platform (p<0·001) and viral strain used for antibody detection (p<0·001) were associated with antibody response in humans, but adjusted heterogeneity remained at 95%. CONCLUSIONS Various platforms have been evaluated in humans, including Ad26, Ad5, ChimpAd3, DNA, MVA, and VSV. In addition to platforms, viral strain used for antibody detection influences antibody response. However, variability remained mostly unexplained. Therefore, comparison of vaccine immunogenicity needs randomised controlled trials.
Collapse
Affiliation(s)
- Lise Gross
- SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France
| | - Edouard Lhomme
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Chloé Pasin
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France
| | - Laura Richert
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Rodolphe Thiebaut
- INSERM, Bordeaux Population Health Research Centre, UMR 1219, Univ. Bordeaux, ISPED, F-33000, Bordeaux, France; SISTM Team (Statistics in System Biology and Translational Medicine), INRIA Research Centre, Bordeaux, F-33000, France; Vaccine Research Institute (VRI), Créteil, F-94000, France; Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, F-33000, France.
| |
Collapse
|
39
|
IL-1β as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses. Mucosal Immunol 2018; 11:1265-1278. [PMID: 29545648 DOI: 10.1038/s41385-018-0017-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023]
Abstract
A universal influenza vaccine must provide protection against antigenically divergent influenza viruses either through broadly neutralizing antibodies or cross-reactive T cells. Here, intranasal immunizations with recombinant adenoviral vectors (rAd) encoding hemagglutinin (HA) and nucleoprotein (NP) in combination with rAd-Interleukin-(IL)-1β or rAd-IL-18 were evaluated for their efficacy in BALB/c mice. Mucosal delivery of rAd-IL-1β enhanced HA-specific antibody responses including strain-specific neutralizing antibodies. Nevertheless, the beneficial effects on the local T cell responses were much more impressive reflected by increased numbers of CD103+CD69+ tissue-resident memory T cells (TRM). This increased immunogenicity translated into superior protection against infections with homologous and heterologous strains including H1N1, pH1N1, H3N2, and H7N7. Inhibition of the egress of circulating T cells out of the lymph nodes during the heterologous infection had no impact on the degree of protection underscoring the unique potential of TRM for the local containment of mucosal infections. The local co-expression of IL-1β and antigen lead to the activation of critical checkpoints in the formation of TRM including activation of epithelial cells, expression of chemokines and adhesion molecules, recruitment of lung-derived CD103+ DCs, and finally local TRM imprinting. Given the importance of TRM-mediated protection at mucosal barriers, this study has major implications for vaccine development.
Collapse
|
40
|
Feng Y, Li C, Hu P, Wang Q, Zheng X, Zhao Y, Shi Y, Yang S, Yi C, Feng Y, Wu C, Qu L, Xu W, Li Y, Sun C, Gao FG, Xia X, Feng L, Chen L. An adenovirus serotype 2-vectored ebolavirus vaccine generates robust antibody and cell-mediated immune responses in mice and rhesus macaques. Emerg Microbes Infect 2018; 7:101. [PMID: 29872043 PMCID: PMC5988821 DOI: 10.1038/s41426-018-0102-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/21/2023]
Abstract
Ebolavirus vaccines based on several adenoviral vectors have been investigated in preclinical studies and clinical trials. The use of adenovirus serotype 2 as a vector for ebolavirus vaccine has not been reported. Herein, we generated rAd2-ZGP, a recombinant replication-incompetent adenovirus serotype 2 expressing codon-optimized Zaire ebolavirus glycoprotein, and evaluated its immunogenicity in mice and rhesus macaques. rAd2-ZGP induced significant antibody and cell-mediated immune responses at 2 weeks after a single immunization. The glycoprotein (GP)-specific immune responses could be further enhanced with a booster immunization. Compared to protein antigens, Zaire ebolavirus GP and Zaire ebolavirus-like particles, rAd2-ZGP could induce stronger cross-reactive antibody and cell-mediated immune responses to heterologous Sudan ebolavirus in mice and rhesus macaques. In rAd2-ZGP-immunized macaques, GP-specific CD8+ T cells could secret IFN-γ and IL-2, indicating a Th1-biased response. In adenovirus serotype 5 seropositive macaques, rAd2-ZGP could induce robust antibody and cell-mediated immune responses, suggesting that the efficacy of rAd2-ZGP is not affected by pre-existing immunity to adenovirus serotype 5. These results demonstrated that rAd2-ZGP can be considered an alternative ebolavirus vaccine for use in adenovirus serotype 5 seropositive subjects or as a sequential booster vaccine after the subjects have been immunized with a recombinant adenovirus serotype 5-based vaccine.
Collapse
Affiliation(s)
- Yupeng Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chufang Li
- The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Peiyu Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehua Zheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Changhua Yi
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ying Feng
- The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Xu
- The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Yao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fu Geroge Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China.
| |
Collapse
|
41
|
Lehrer AT, Wong TAS, Lieberman MM, Humphreys T, Clements DE, Bakken RR, Hart MK, Pratt WD, Dye JM. Recombinant proteins of Zaire ebolavirus induce potent humoral and cellular immune responses and protect against live virus infection in mice. Vaccine 2018; 36:3090-3100. [PMID: 28216187 PMCID: PMC8426131 DOI: 10.1016/j.vaccine.2017.01.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Ebola Vaccines/immunology
- Ebolavirus
- Female
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Mice, Inbred BALB C
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/immunology
- Viral Matrix Proteins/immunology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Axel T Lehrer
- PanThera Biopharma, LLC, Aiea, HI 96701, United States.
| | | | | | | | | | - Russell R Bakken
- US Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Mary Kate Hart
- US Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, United States
| | - William D Pratt
- US Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, United States
| | - John M Dye
- US Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, United States
| |
Collapse
|
42
|
Abstract
The family Filoviridae, which includes the genera Marburgvirus and Ebolavirus, contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research.
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Gary Wong
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen Guangzhou 518020, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Guo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. .,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
43
|
Yoshida K, Iyori M, Blagborough AM, Salman AM, Dulal P, Sala KA, Yamamoto DS, Khan SM, Janse CJ, Biswas S, Yoshii T, Yusuf Y, Tokoro M, Hill AVS, Yoshida S. Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model. Sci Rep 2018; 8:3896. [PMID: 29497047 PMCID: PMC5832798 DOI: 10.1038/s41598-018-21369-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/02/2018] [Indexed: 12/16/2022] Open
Abstract
With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use.
Collapse
Affiliation(s)
- Kunitaka Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan.,Kanazawa University Graduate School of Medical Sciences, 13 Takara-machi, Kanazawa, 920-0934, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Andrew M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Pawan Dulal
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0431, Tochigi, Japan
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sumi Biswas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Tatsuya Yoshii
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masaharu Tokoro
- Kanazawa University Graduate School of Medical Sciences, 13 Takara-machi, Kanazawa, 920-0934, Japan
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
44
|
Wong G, Mendoza EJ, Plummer FA, Gao GF, Kobinger GP, Qiu X. From bench to almost bedside: the long road to a licensed Ebola virus vaccine. Expert Opin Biol Ther 2018; 18:159-173. [PMID: 29148858 PMCID: PMC5841470 DOI: 10.1080/14712598.2018.1404572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. AREAS COVERED This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. EXPERT OPINION Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics.
Collapse
Affiliation(s)
- Gary Wong
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
| | - Emelissa J. Mendoza
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - George F. Gao
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Gary P. Kobinger
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Département de microbiologie-infectiologie et d’immunologie, Universite Laval, Quebec, QC, Canada
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
| |
Collapse
|
45
|
|
46
|
Abstract
Background Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family. Methods All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon’s entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes. Results & discussion ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the putative epitopes matched reported experimentally validated HLA ligands/T-cell epitopes of A2, A3 and/or B7 supertype representative allele restrictions. The epitopes generally corresponded to functional motifs/domains and there was no correlation to localization on the protein 3D structure. These data and the epitope map provide important insights into the interaction between EBOV and the host immune system. Electronic supplementary material The online version of this article (10.1186/s12864-017-4328-8) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Abstract
Immunization has played a large role in substantially reducing the infected and death tolls from infectious diseases. In the case of emerging diseases, the identity of the pathogen responsible, as well as the time and location for the next outbreak, cannot be accurately predicted using current means. Coupled with disjointed efforts towards the development of vaccines and a lack of funds and desire to advance promising products against known emerging pathogens to clinical trials, there has been a shortage of approved products ready for emergency use. Recent outbreaks have exposed these weaknesses, and the Coalition for Epidemic Preparedness Innovations (CEPI) was created in 2016 to address these issues. In this commentary, we discuss the establishment of such a global vaccine fund, and provide some additional points to consider for stimulating further discussion on this comprehensive, ambitious initiative.
Collapse
Affiliation(s)
- Gary Wong
- a Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital , Shenzhen , China
| | - Xiangguo Qiu
- b Special Pathogens Program, National Microbiology Laboratory , Winnipeg , Canada.,c Department of Medical Microbiology , University of Manitoba , Winnipeg , Canada
| |
Collapse
|
48
|
|
49
|
Ebola virus disease: an update on post-exposure prophylaxis. THE LANCET. INFECTIOUS DISEASES 2017; 18:e183-e192. [PMID: 29153266 DOI: 10.1016/s1473-3099(17)30677-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
The massive outbreak of Ebola virus disease in west Africa between 2013 and 2016 resulted in intense efforts to evaluate the efficacy of several specific countermeasures developed through years of preclinical work, including the first clinical trials for therapeutics and vaccines. In this Review, we discuss how the experience and data generated from that outbreak have helped to advance the understanding of the use of these countermeasures for post-exposure prophylaxis against Ebola virus infection. In future outbreaks, post-exposure prophylaxis could play an important part in reducing community transmission of Ebola virus by providing more immediate protection than does immunisation as well as providing additional protection for health-care workers who are inadvertently exposed over the course of their work. We propose provisional guidance for use of post-exposure prophylaxis in Ebola virus disease and identify the priorities for future preparedness and further research.
Collapse
|
50
|
Speranza E, Altamura LA, Kulcsar K, Bixler SL, Rossi CA, Schoepp RJ, Nagle E, Aguilar W, Douglas CE, Delp KL, Minogue TD, Palacios G, Goff AJ, Connor JH. Comparison of Transcriptomic Platforms for Analysis of Whole Blood from Ebola-Infected Cynomolgus Macaques. Sci Rep 2017; 7:14756. [PMID: 29116224 PMCID: PMC5676990 DOI: 10.1038/s41598-017-15145-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Ebola virus disease (EVD) is a serious illness with mortality rates of 20-90% in various outbreaks. EVD is characterized by robust virus replication and strong host inflammatory response. Analyzing host immune responses has increasingly involved multimodal approaches including transcriptomics to profile gene expression. We studied cynomolgus macaques exposed to Ebola virus Makona via different routes with the intent of comparing RNA-Seq to a NanoString nCounter codeset targeting 769 non-human primate (NHP) genes. RNA-Seq analysis of serial blood samples showed different routes led to the same overall transcriptional response seen in previously reported EBOV-exposed NHP studies. Both platforms displayed a strong correlation in gene expression patterns, including a strong induction of innate immune response genes at early times post-exposure, and neutrophil-associated genes at later time points. A 41-gene classifier was tested in both platforms for ability to cluster samples by infection status. Both NanoString and RNA-Seq could be used to predict relative abundances of circulating immune cell populations that matched traditional hematology. This demonstrates the complementarity of RNA-Seq and NanoString. Moreover, the development of an NHP-specific NanoString codeset should augment studies of filoviruses and other high containment infectious diseases without the infrastructure requirements of RNA-Seq technology.
Collapse
Affiliation(s)
- Emily Speranza
- Department of Microbiology, Bioinformatics Program, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Louis A Altamura
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Kirsten Kulcsar
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Sandra L Bixler
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Cynthia A Rossi
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Randal J Schoepp
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Elyse Nagle
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - William Aguilar
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Christina E Douglas
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Korey L Delp
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Arthur J Goff
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States.
| | - John H Connor
- Department of Microbiology, Bioinformatics Program, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.
| |
Collapse
|