1
|
Santosa EK, Zhang JM, Sauter JC, Lee ME, Ng BD, Stulz SV, Takizawa M, Grassmann S, Weizman OE, Adams NM, Chaligné R, Oxenius A, Gasteiger G, Lau CM, Sun JC. Defining molecular circuits of CD8+ T cell responses in tissues during latent viral infection. J Exp Med 2025; 222:e20242078. [PMID: 40387857 DOI: 10.1084/jem.20242078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/18/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
Latent viral infections rely on a precise coordination of the immune response to control sporadic viral reactivation. CD8+ T cells play a crucial role in controlling viral latency by generating diverse memory responses in an epitope-specific manner. Among these distinct responses, conventional and inflationary memory responses have been described during herpesvirus infections. Using a newly generated TCR transgenic mouse strain, we investigated the transcriptomic and epigenetic remodeling of distinct epitope-specific CD8+ T cells during CMV infection across tissues at both population and single-cell levels. Our findings reveal that whereas the transcriptomic and epigenetic landscapes of conventional and inflationary memory responses diverge in the spleen and liver, these molecular programs converge in the salivary gland, a site of CMV persistence. Thus, we provide evidence that the dynamics of memory CD8+ T cell responses are distinct between tissues.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University , New York, NY, USA
| | - Jennifer M Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Mariah E Lee
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Brandon D Ng
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University , New York, NY, USA
| | - Sigrun V Stulz
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Meril Takizawa
- Single Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ronan Chaligné
- Single Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | | | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Colleen M Lau
- Department of Microbiology and Immunology, College of Veterinary Medicine of Cornell University, Ithaca, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University , New York, NY, USA
| |
Collapse
|
2
|
MacLean F, Tsegaye AT, Graham JB, Swarts JL, Vick SC, Potchen NB, Cruz Talavera I, Warrier L, Dubrulle J, Schroeder LK, Saito A, Mar C, Thomas KK, Mack M, Sabo MC, Chohan BH, Ngure K, Mugo NR, Lingappa JR, Lund JM, for the Kinga Study Team. Bacterial vaginosis associates with dysfunctional T cells and altered soluble immune factors in the cervicovaginal tract. J Clin Invest 2025; 135:e184609. [PMID: 40131862 PMCID: PMC12077898 DOI: 10.1172/jci184609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUNDBacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome that is prevalent among reproductive-age females worldwide. Adverse health outcomes associated with BV include an increased risk of sexually acquired HIV, yet the immunological mechanisms underlying this association are not well understood.METHODSTo investigate BV-driven changes to cervicovaginal tract (CVT) and circulating T cell phenotypes, Kinga Study participants with or without BV provided vaginal tract (VT) and ectocervical (CX) tissue biopsies and PBMC samples.RESULTSHigh-parameter flow cytometry revealed an increased frequency of cervical CD4+ conventional T (Tconv) cells expressing CCR5 in BR+ versus BR- women. However, we found no difference in the number of CD3+CD4+CCR5+ cells in the CX or VT of BV+ versus BV- individuals, suggesting that BV-driven increased HIV susceptibility may not be solely attributed to increased CVT HIV target cell abundance. Flow cytometry also revealed that individuals with BV had an increased frequency of dysfunctional CX and VT CD39+ Tconv and CX tissue-resident CD69+CD103+ Tconv cells, reported to be implicated in HIV acquisition risk and replication. Many soluble immune factor differences in the CVT further support that BV elicits diverse and complex CVT immune alterations.CONCLUSIONOur comprehensive analysis expands on potential immunological mechanisms that may underlie the adverse health outcomes associated with BV, including increased HIV susceptibility.TRIAL REGISTRATIONClinicalTrials.gov NCT03701802.FUNDINGThis work was supported by National Institutes of Health grants R01AI131914, R01AI141435, and R01AI129715.
Collapse
Affiliation(s)
- Finn MacLean
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah C. Vick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicole B. Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Irene Cruz Talavera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lakshmi Warrier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center. Seattle, Washington, USA
| | - Lena K. Schroeder
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center. Seattle, Washington, USA
| | - Ayumi Saito
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Corinne Mar
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Katherine K. Thomas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Matthias Mack
- Department of Internal Medicine–Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Michelle C. Sabo
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kenneth Ngure
- Department of Global Health, University of Washington, Seattle, Washington, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nelly Rwamba Mugo
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
3
|
Betjes MGH, Klepper M, Smits G, van der Valk E, van der List ACJ, Litjens NHR. Recognition of different subsets of alloreactive T cells by activation-induced markers. Transpl Immunol 2025; 90:102227. [PMID: 40204006 DOI: 10.1016/j.trim.2025.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Alloreactive T-cells can be visualized using activation-induced markers (AIMs) including CD69, CD134, CD137 and CD154. Whether these AIMs recognize similar subsets of alloreactive T-cells is largely unknown. AIM-expressing alloreactive CD4+ T cells were analyzed in detail for phenotype by dissecting different T-cell subsets using antibodies directed to CCR7 and CD45RA. Moreover, detailed functional analysis was performed by determining proportions of cytokine producing cells within AIM-expressing CD4+ T cells using multiparameter flowcytometry. CD154 was predominantly expressed by naïve and central-memory alloreactive CD4+ T cells, CD134 by central-memory alloreactive CD4+ T cells and CD137 by CD4+ alloreactive memory T cells. Alloreactive CD8+ T cells could only be recognized by CD137 expression. The majority of alloreactive CD4+ T cells were single AIM-positive (72 %) and co-expression of all AIMs was infrequent. Polyclonal stimulation with anti-CD3/anti-CD28 resulted in a high frequency of CD4+ T cells co-expressing AIMs which was a dose-dependent phenomenon. Alloreactive memory CD4+ T cells expressing >1 AIM showed the highest proportion of polyfunctional cells. Allogeneic stimulation of sorted naïve CD4+ T cells yielded a population of proliferating T cells, progressing to effector-memory T cells expressing >1 AIM. In conclusion, different AIMs are preferentially expressed by different subsets of circulating alloreactive CD4+ T cells and expression of AIMs is determined by proliferation/differentiation and strength of the T cell receptor (TCR)-stimulation.
Collapse
Affiliation(s)
- Michiel G H Betjes
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Mariska Klepper
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Guido Smits
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Elodie van der Valk
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Amy C J van der List
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Nicolle H R Litjens
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Schneider Revueltas E, Ferreira-Gomes M, Guerra GM, Durek P, Heinrich F, Casanovas Subirana A, Tokoyoda K, Dong J, Reinke S, Hardt S, Hipfl C, Dörner T, Perka C, Hoffmann U, Chang HD, Mashreghi MF, Radbruch A. Surface CD69-Negative CD4 and CD8 Bone Marrow-Resident Human Memory T Cells. Eur J Immunol 2025; 55:e202451529. [PMID: 40375826 DOI: 10.1002/eji.202451529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/18/2025]
Abstract
Across tissues, tissue-resident memory T cells have been defined as cells that express CD69 on their cell surface but not sphingosine-1-phosphate receptor 1 (S1PR1), the receptor for the tissue-egress signal sphingosine-1-phosphate (S1P). It is less clear whether CD69-negative memory T cells are also tissue-resident. Here, we compare transcriptomes and T cell receptor repertoires of individual CD4 and CD8 memory T cells from paired blood and bone marrow samples from three human donors. CD69- memory T cells of blood and bone marrow share transcriptionally defined clusters, characterized by signature genes and reflecting their imprinting during original activation. However, cells of related clusters from blood and bone marrow have different TCR repertoires, evidence that they represent distinct compartments of memory and indicating that the CD69- memory T cells are residents of the bone marrow. Interestingly, the surface CD69- memory T cells of bone marrow do transcribe the CD69 gene and express S1PR1, suggesting that they are blindfolded to the perception of the egress signal sphingosine-1-phosphate by dimerization and internalization of CD69 and S1PR1, maintaining them in the bone marrow.
Collapse
MESH Headings
- Humans
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, CD/genetics
- Immunologic Memory
- Memory T Cells/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/genetics
- Sphingosine-1-Phosphate Receptors
- CD8-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Lysophospholipids/metabolism
- Bone Marrow/immunology
- Lymphocyte Activation/immunology
- Bone Marrow Cells/immunology
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
Collapse
Affiliation(s)
| | - Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Anna Casanovas Subirana
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Tottori University, Yonago, Japan
| | - Jun Dong
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Simon Reinke
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin and BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Sebastian Hardt
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hipfl
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| |
Collapse
|
5
|
Tilsed CM, Brotman J, O’Brien S, Lee B, Moon E, Albelda SM. Identification and characterization of tissue resident memory T cells in malignant pleural effusions associated with non-small cell lung cancer. Immunohorizons 2025; 9:vlaf013. [PMID: 40285480 PMCID: PMC12032394 DOI: 10.1093/immhor/vlaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/29/2025] Open
Abstract
Tissue resident memory T cells (TRM) play a critical role in cancer immunity and their presence in solid tumors is associated with improved prognosis and response to therapy. Although TRM have been identified and their function characterized in lung cancers, little is known regarding TRM outside of a tissue context, such as within malignant pleural effusions (MPE). As MPE are routinely drained and collected to manage symptoms, analysis of this fluid can provide an insight into the peri-tumoral environment. In this study, we performed flow cytometry and single cell RNAseq (scRNAseq) on MPE associated with non-small lung cancer and examined the phenotype and function of TRM. We found that 14% of CD8+ T cells and 6% of CD4+ T cells were TRM, as defined by the phenotype of CD45RO+CCR7-CD62L- and expressing 1 or both of CD69 and CD103. The scRNAseq revealed distinct clusters expressing TRM-associated genes including ITGAE and CD49A and lacking expression of SELL, CCR7, and IL7RA. TRM did not differ from other memory T cell subsets, such as T central memory (TCM) and T effector memory (TEM) cells, in expression of the inhibitory markers PD-1, TIGIT, and CD39. When TRM function was assessed by measuring the production of IFN-γ, TNF-α, and CD107a after stimulation with αnti-CD3 antibodies in vitro, TRM had comparable function to T effector cells (TE), indicating that despite expression of exhaustion markers these cells retained effector function. Finally, we found that CD69 expression, and not CD103 expression, on TRM was associated with production of effector cytokines.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Joshua Brotman
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Shaun O’Brien
- Informatics and Predictive Sciences, Mechanisms of Cancer Resistance, Bristol Myers Squibb, Cambridge, MA, United States
| | - Brennan Lee
- Informatics and Predictive Sciences, Mechanisms of Cancer Resistance, Bristol Myers Squibb, Cambridge, MA, United States
| | - Edmund Moon
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Steven M Albelda
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Marrocco R, Lucero-Meza E, Benedict CA. Type I interferon regulation of group I ILC subsets during both homeostasis and cytomegalovirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf051. [PMID: 40258300 DOI: 10.1093/jimmun/vkaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025]
Abstract
Type 1 innate lymphoid cells (ILC1s) and conventional natural killer cells belong to the group 1 ILCs (gILC1), characterized largely by T-bet expression and interferon γ secretion. While much has been done to define factors that regulate the development, differentiation, and effector functions of both cell types, little is known about what controls gILC1 homeostasis. Here, mixed bone marrow chimeras were used to define the role of type I interferon receptor (IFNAR) signaling in regulating gILC1 in the spleen and liver at homeostasis and during murine cytomegalovirus infection. We show that basal IFNAR signaling induces cell and tissue-specific phenotypic changes in gILC1, inhibiting bona-fide ILC1 markers (CD49a, CD200R, CXCR6) and regulating expression of perforin and granzymes B and C. Finally, while IFNAR signaling enhances cytokine responsiveness in vitro in both gILC1 subsets, it has a dichotomous effect on interferon γ production during murine cytomegalovirus infection, stimulating it in conventional natural killer cells and inhibiting it in ILC1.
Collapse
Affiliation(s)
- Remi Marrocco
- Center for Vaccine Innovation and Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eduardo Lucero-Meza
- Center for Vaccine Innovation and Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Chris A Benedict
- Center for Vaccine Innovation and Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
7
|
Morrison AI, Kuipers JE, Roest HP, van der Laan LJW, de Winde CM, Koning JJ, Gibbs S, Mebius RE. Functional organotypic human lymph node model with native immune cells benefits from fibroblastic reticular cell enrichment. Sci Rep 2025; 15:12233. [PMID: 40210900 PMCID: PMC11986095 DOI: 10.1038/s41598-025-95031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
Lymphoid organ function depends on fibroblastic reticular cells (FRCs), the non-hematopoietic mesenchymal stromal cells that crucially support immune activity in human lymph nodes (LNs). The in vitro study of human immunology requires physiological LN models, yet the inclusion of FRCs in current models is lacking. Here, we created an organotypic LN hydrogel model, containing native immune cells from LN tissue and ex vivo cultured autologous FRCs. During a oneweek culture period, enrichment of FRCs into the LN model benefited the viability of all immune cell populations, particularly B cells, and promoted the presence of certain subsets including CD4+ naïve T cells and unswitched (US) memory B cells. FRCs enhanced the production of immune-related cytokines and chemokines, such as B cell activating factor from the TNF family (BAFF), CXC motif chemokine ligand 12 (CXCL12), CC motif chemokine ligand 19 (CCL19) and interleukin-6 (IL-6). Functionality of the LN model was assessed through T cell activation by CD3 stimulation or initiation of an allogenic reaction with different maturation statuses of monocyte-derived dendritic cells (moDCs). Interestingly, T cell expansion was restricted in FRC-enriched LN models, reflecting an intrinsic characteristic of LN FRCs. As such, this organotypic LN model highlights the influence of FRCs on immune cells and allows an opportunity to further study antigen-induced immune responses, e.g. vaccine or immunotherapy testing.
Collapse
Affiliation(s)
- Andrew I Morrison
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Jesse E Kuipers
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Koning
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Susan Gibbs
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Golob JL, Hou G, Swanson BJ, Berinstein JA, Bishu S, Grasberger H, Zataari ME, Lee A, Kao JY, Kamada N, Bishu S. Inflammation-Induced Th17 Cells Synergize with the Inflammation-Trained Microbiota to Mediate Host Resiliency Against Intestinal Injury. Inflamm Bowel Dis 2025; 31:1082-1094. [PMID: 39851236 DOI: 10.1093/ibd/izae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND AND AIMS Inflammation can generate pathogenic Th17 cells and cause an inflammatory dysbiosis. In the context of inflammatory bowel disease (IBD), these inflammatory Th17 cells and dysbiotic microbiota may perpetuate injury to intestinal epithelial cells. However, many models of IBD like T-cell transfer colitis and IL-10-/- mice rely on the absence of regulatory pathways, so it is difficult to tell if inflammation can also induce protective Th17 cells. METHODS We subjected C57BL6, RAG1-/-, or JH-/- mice to systemic or gastrointestinal (GI) Citrobacter rodentium (Cr). Mice were then subjected to 2.5% dextran sodium sulfate (DSS) to cause epithelial injury. Fecal microbiota transfer was performed by bedding transfer and co-housing. Flow cytometry, qPCR, and histology were used to assess mucosal and systemic immune responses, cytokines, and tissue inflammation. 16s sequencing was used to assess gut bacterial taxonomy. RESULTS Transient inflammation with GI but not systemic Cr was protective against subsequent intestinal injury. This was replicated with sequential DSS collectively indicating that transient inflammation provides tissue-specific protection. Inflammatory Th17 cells that have a tissue-resident memory (TRM) signature expanded in the intestine. Experiments with reconstituted RAG1-/-, JH-/- mice, and cell trafficking inhibitors showed that inflammation-induced Th17 cells were required for protection. Fecal microbiota transfer showed that the inflammation-trained microbiota was necessary for protection, likely by maintaining protective Th17 cells in situ. CONCLUSION Inflammation can generate protective Th17 cells that synergize with the inflammation-trained microbiota to provide host resiliency against subsequent injury, indicating that inflammation-induced Th17 TRM T cells are heterogenous and contain protective subsets.
Collapse
Affiliation(s)
- Jonathan L Golob
- Division of Infectious Diseases, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Guoqing Hou
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 42 and Emile, Omaha, NE 68198, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Shreenath Bishu
- Laboratory and Pathology Diagnostics LLC, 1220 Hobson Road, Suite 244, Naperville, IL 60540, USA
| | - Helmut Grasberger
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Mohamed El Zataari
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Allen Lee
- Division of Infectious Diseases, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - John Y Kao
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Shrinivas Bishu
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Nelson AJ, Tatematsu BK, Beach JR, Sojka DK, Wu YL. Lung-resident memory B cells maintain allergic IgE responses in the respiratory tract. Immunity 2025; 58:875-888.e8. [PMID: 40139187 PMCID: PMC12068553 DOI: 10.1016/j.immuni.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Although allergen-specific immunoglobulin E (IgE) is a key mediator of allergic asthma, IgE-expressing B cells fail to form memory B cells (MBCs). Here, we studied the cellular mechanisms supporting IgE production in the respiratory tract. Allergen inhalation induced B cell infiltration into the lungs and IgE in the airway. Tracking B cells poised to class switch to IgE in reporter mice revealed predominant IgE class switching in the lung and identified IgG1+ MBCs as precursors of IgE-producing cells, which was supported by B cell receptor (BCR) repertoire sequencing. B cells localized with CD4+ T cells in peribronchiolar lymphoid aggregates. In coculture, interleukin-4 from lung Th2 cells induced lung MBCs to class switch to IgE. Lung-resident MBCs expanded after antigen rechallenge, concurrent with the emergence of IgE-secreting plasma cells (PCs), and the production of IgE in the airway was independent of systemic IgE in circulation, as indicated by parabiosis. Thus, lung-resident IgG1+ MBCs are cellular precursors for IgE-secreting PCs in the respiratory mucosa.
Collapse
Affiliation(s)
- Alexander J Nelson
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bruna K Tatematsu
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Dorothy K Sojka
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Yee Ling Wu
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
10
|
He J, Burova E, Taduriyasas C, Ni M, Adler C, Wei Y, Negron N, Xiong K, Bai Y, Shavlakadze T, Ioffe E, Lin JC, Ferrando A, Glass DJ. Single cell-resolved cellular, transcriptional, and epigenetic changes in mouse T cell populations linked to age-associated immune decline. Proc Natl Acad Sci U S A 2025; 122:e2425992122. [PMID: 40163732 PMCID: PMC12002302 DOI: 10.1073/pnas.2425992122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Splenic T cells are pivotal to the immune system, yet their function deteriorates with age. To elucidate the specific aspects of T cell biology affected by aging, we conducted a comprehensive multi-time point single-cell RNA sequencing study, complemented by single-cell Assay for Transposase Accessible Chromatin (ATAC) sequencing and single-cell T cell repertoire (TCR) sequencing on splenic T cells from mice across 10 different age groups. This map of age-related changes in the distribution of T cell lineages and functional states reveals broad changes in T cell function and composition, including a prominent enrichment of Gzmk+ T cells in aged mice, encompassing both CD4+ and CD8+ T cell subsets. Notably, there is a marked decrease in TCR diversity across specific T cell populations in aged mice. We identified key pathways that may underlie the perturbation of T cell functions with aging, supporting cytotoxic T cell clonal expansion with age. This study provides insights into the aging process of splenic T cells and also highlights potential targets for therapeutic intervention to enhance immune function in the elderly. The dataset should serve as a resource for further research into age-related immune dysfunction and for identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Jing He
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Kun Xiong
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | - Yu Bai
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Ella Ioffe
- Preclinical and Early Development, Cullinan Therapeutics, Cambridge, MA02142
| | - John C. Lin
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | |
Collapse
|
11
|
Gu Y, Bi Y, Huang Z, Liao C, Li X, Hu H, Xie H, Huang Y. CD69 Expression is Negatively Associated With T-Cell Immunity and Predicts Antiviral Therapy Response in Chronic Hepatitis B. Ann Lab Med 2025; 45:185-198. [PMID: 39703148 PMCID: PMC11788699 DOI: 10.3343/alm.2024.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 12/21/2024] Open
Abstract
Background The function of CD69 expressed on T cells in chronic hepatitis B (CHB) remains unclear. We aimed to elucidate the roles of CD69 on T cells in the disease process and in antiviral therapy for CHB. Methods We enrolled 335 treatment-naive patients with CHB and 93 patients with CHB on antiviral therapy. CD69, antiviral cytokine production by T cells, T-helper (Th) cells, and inhibitory molecules of T cells were measured using flow cytometry, and clinical-virological characteristics were examined dynamically during antiviral therapy. Results CD69 expression on CD3+, CD4+, and CD8+ T cells was the lowest in the immune-active phase and was negatively correlated with liver transaminase activity, fibrosis features, inflammatory cytokine production by T cells, and Th-cell frequencies but positively with inhibitory molecules on T cells. CD69 expression on CD3+, CD4+, and CD8+ T cells decreased after 48 weeks of antiviral therapy, and patients with hepatitis B e antigen (HBeAg) seroconversion in week 48 showed lower CD69 expression on T cells at baseline and week 48. The area under the ROC curve of CD69 expression on T cells at baseline for predicting HBeAg seroconversion in week 48 was 0.870, the sensitivity was 0.909, and the specificity was 0.714 (P =0.002). Conclusions CD69 negatively regulates T-cell immunity during CHB, and its expression decreases with antiviral therapy. CD69 expression predicts HBeAg seroconversion in week 48. CD69 may play an important negative role in regulating T cells and affect the efficacy of antiviral therapy.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Hu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huaping Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Xu G, Li Y, Lu G, Xie D. Tissue-resident memory T cells in urinary tract diseases. Front Immunol 2025; 16:1535930. [PMID: 40066439 PMCID: PMC11891219 DOI: 10.3389/fimmu.2025.1535930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are a specialized subset of memory T cells that permanently reside in non-lymphoid tissues, providing localized and long-lasting immune protection. In the urinary tract, TRM cells play critical roles in defending against infections, mediating tumor immunity, and influencing the pathogenesis of chronic inflammatory diseases. Their therapeutic potential is immense, with promising avenues for vaccine development, enhanced cancer immunotherapy, and targeted treatments for chronic inflammation. However, challenges remain in harnessing their protective roles while minimizing their pathological effects, particularly in immunosuppressive or inflammatory microenvironments. This review explores the diverse roles of TRM cells in urinary tract diseases, including infections, cancer, and chronic inflammation, and discusses therapeutic strategies and future directions for leveraging TRM cells to improve clinical outcomes. By advancing our understanding of TRM cell biology, we can develop innovative interventions that balance their immune-protective and regulatory functions.
Collapse
Affiliation(s)
- Guofeng Xu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuying Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Deyang People’s Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Daoyuan Xie
- Laboratory of Translational Medicine Research, Deyang People’s Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
13
|
Sarkkinen J, Yohannes DA, Kreivi N, Dürnsteiner P, Elsakova A, Huuhtanen J, Nowlan K, Kurdo G, Linden R, Saarela M, Tienari PJ, Kekäläinen E, Perdomo M, Laakso SM. Altered immune landscape of cervical lymph nodes reveals Epstein-Barr virus signature in multiple sclerosis. Sci Immunol 2025; 10:eadl3604. [PMID: 39982975 DOI: 10.1126/sciimmunol.adl3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/17/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and Epstein-Barr virus (EBV) infection is a prerequisite for developing the disease. However, the pathogenic mechanisms that lead to MS remain to be determined. Here, we characterized the immune landscape of deep cervical lymph nodes (dcLNs) in newly diagnosed untreated patients with MS (pwMS) using fine-needle aspirations. By combining single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing, we observed increased memory B cells and reduced germinal center B cells with decreased clonality in pwMS. Double-negative memory B cells were increased in pwMS that transcriptionally resembled B cells with a lytic EBV infection. Moreover, EBV-targeting memory CD8 T cells were detected in a subset of pwMS. We also detected increased EBV DNA in dcLNs and elevated viral loads in patient saliva. These findings suggest that EBV-driven B cell dysregulation is a critical mechanism in MS pathogenesis.
Collapse
Affiliation(s)
- Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Dawit A Yohannes
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Nea Kreivi
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Pia Dürnsteiner
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Alexandra Elsakova
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Goran Kurdo
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riikka Linden
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Saarela
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Perdomo
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sini M Laakso
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Zheng H, Yu J, Gao L, Wang K, Xu Z, Zeng Z, Zheng K, Tang X, Tian X, Zhao Q, Zhao J, Wan H, Cao Z, Zhang K, Cheng J, Brosius J, Zhang H, Li W, Yan W, Shao Z, Luo F, Deng C. S1PR1-biased activation drives the resolution of endothelial dysfunction-associated inflammatory diseases by maintaining endothelial integrity. Nat Commun 2025; 16:1826. [PMID: 39979282 PMCID: PMC11842847 DOI: 10.1038/s41467-025-57124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
G protein-coupled sphingosine-1-phosphate receptor 1 (S1PR1), a drug target for inflammatory bowel disease (IBD), enables immune cells to egress from lymph nodes, but the treatment increases the risk of immunosuppression. The functional signaling pathway triggered by S1PR1 activation in endothelial cells and its therapeutic application remains unclear. Here, we showed that S1PR1 is highly expressed in endothelial cells of IBD patients and positively correlated with endothelial markers. Gi-biased agonist-SAR247799 activated S1PR1 and reversed pathology in male mouse and organoid IBD models by protecting the integrity of the endothelial barrier without affecting immune cell egress. Cryo-electron microscopy structure of S1PR1-Gi signaling complex bound to SAR247799 with a resolution of 3.47 Å revealed the recognition mode for the biased ligand. With the efficacy of SAR247799 in treating other endothelial dysfunction-associated inflammatory diseases, our study offers mechanistic insights into the Gi-biased S1PR1 agonist and represents a strategy for endothelial dysfunction-associated disease treatment.
Collapse
Affiliation(s)
- Huaping Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Yu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Luhua Gao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kexin Wang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Xu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongwei Cao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology and University Hospital, Macau, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jürgen Brosius
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Zhenhua Shao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
MacLean F, Tsegaye AT, Graham JB, Swarts JL, Vick SC, Potchen N, Talavera IC, Warrier L, Dubrulle J, Schroeder LK, Saito A, Thomas KK, Mack M, Sabo MC, Chohan BH, Ngure K, Mugo N, Lingappa JR, Lund JM. Bacterial vaginosis-driven changes in cervicovaginal immunity that expand the immunological hypothesis for increased HIV susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.03.601916. [PMID: 39005354 PMCID: PMC11245000 DOI: 10.1101/2024.07.03.601916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome that is prevalent among reproductive-age females worldwide. Adverse health outcomes associated with BV include an increased risk of sexually-acquired HIV, yet the immunological mechanisms underlying this association are not well understood. To investigate BV-driven changes to cervicovaginal tract (CVT) and circulating T cell phenotypes, participants with or without BV provided vaginal tract (VT) and ectocervical (CX) tissue biopsies and PBMC samples. High-parameter flow cytometry revealed an increased frequency of cervical conventional CD4+ T cells (Tconv) expressing CCR5. However, we found no difference in number of CD3+CD4+CCR5+ cells in the CX or VT of BV+ vs BV- individuals, suggesting that BV-driven increased HIV susceptibility may not be solely attributed to increased CVT HIV target cell abundance. Flow cytometry also revealed that individuals with BV have an increased frequency of dysfunctional CX and VT CD39+ Tconv and CX tissue-resident CD69+CD103+ Tconv, reported to be implicated in HIV acquisition risk and replication. Many soluble immune factor differences in the CVT further support that BV elicits diverse and complex CVT immune alterations. Our comprehensive analysis expands on potential immunological mechanisms that may underlie the adverse health outcomes associated with BV including increased HIV susceptibility.
Collapse
Affiliation(s)
- Finn MacLean
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | | | - Jessica B. Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Jessica L. Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Sarah C. Vick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Nicole Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Irene Cruz Talavera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lakshmi Warrier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Lena K. Schroeder
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ayumi Saito
- Department of Global Health, University of Washington, Seattle, USA
| | | | - Matthias Mack
- Department of Internal Medicine-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, USA
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kenneth Ngure
- Department of Global Health, University of Washington, Seattle, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nelly Mugo
- Department of Global Health, University of Washington, Seattle, USA
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, USA
- Department of Medicine, University of Washington, Seattle, USA
- Department of Pediatrics, University of Washington, Seattle, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Global Health, University of Washington, Seattle, USA
| |
Collapse
|
18
|
Khan MAAK, Sedgwick AJ, Sun Y, Vivian JP, Corbett AJ, Dolcetti R, Mantamadiotis T, Mangiola S, Barrow AD. Transcriptional signature of CD56 bright NK cells predicts favourable prognosis in bladder cancer. Front Immunol 2025; 15:1474652. [PMID: 39877370 PMCID: PMC11772185 DOI: 10.3389/fimmu.2024.1474652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Human natural killer (NK) cells can be sub-divided into two functional subsets but the clinical significance of these CD56bright and CD56dim NK cells in anti-tumour immunity remains largely unexplored. We determined the relative abundances of gene signatures for CD56bright and CD56dim NK cells along with 3 stromal and 18 other immune cell types in the patient tumour transcriptomes from the cancer genome atlas bladder cancer dataset (TCGA-BLCA). Using this computational approach, CD56bright NK cells were predicted to be the more abundant tumour-infiltrating NK subset which was also associated with improved patient prognosis. A similar favorable survival trend was projected using gene signatures for mature myeloid dendritic cells (mDC) and CD8+ effector memory T cells (TEM) and unveiled a potential CD56bright NK-mDC-CD8+T cell crosstalk in the BLCA tumour microenvironment. Expression of transcripts encoding the activating NK cell receptors, NKG2D, NKp44, CD2, and CD160, showed positive survival trends in combination with CD56bright NK cell infiltration. Transcription factors including HOBIT, IRF3, and STAT2 were also correlated with CD56bright NK cell abundance. Additionally, a HOBIT-dependent tissue-residency program correlated with the CD56bright NK and CD8+ TEM cell signatures was found to be associated with favourable BLCA patient survival. Overall, our study highlights the significance of CD56bright NK cells in BLCA patient prognosis. Our findings facilitate a better understanding of the NK cell anti-tumour responses that may ultimately lead to the development of promising NK and T cell-based therapies for BLCA.
Collapse
Affiliation(s)
- Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian P. Vivian
- St. Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Australian Catholic University, Melbourne, VIC, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Riccardo Dolcetti
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Mangiola
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Scott MC, Steier Z, Pierson MJ, Stolley JM, O'Flanagan SD, Soerens AG, Wijeyesinghe SP, Beura LK, Dileepan G, Burbach BJ, Künzli M, Quarnstrom CF, Ghirardelli Smith OC, Weyu E, Hamilton SE, Vezys V, Shalek AK, Masopust D. Deep profiling deconstructs features associated with memory CD8 + T cell tissue residence. Immunity 2025; 58:162-181.e10. [PMID: 39708817 PMCID: PMC11852946 DOI: 10.1016/j.immuni.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs-location, stimulation history, antigen persistence, and environment-resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
Collapse
Affiliation(s)
- Milcah C Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zoë Steier
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gayathri Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon J Burbach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Künzli
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia C Ghirardelli Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex K Shalek
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Xie D, Lu G, Mai G, Guo Q, Xu G. Tissue-resident memory T cells in diseases and therapeutic strategies. MedComm (Beijing) 2025; 6:e70053. [PMID: 39802636 PMCID: PMC11725047 DOI: 10.1002/mco2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, TRM cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues. Recent advances have revealed their important roles in chronic inflammation, autoimmunity, and cancer, illuminating both their protective and their pathogenic potential. This review synthesizes current knowledge on TRM cells' molecular signatures, maintenance pathways, and functional dynamics across different tissues. We also explore the interactions of TRM cells with other immune cells, such as B cells, macrophages, and dendritic cells, highlighting the complex network that underpins the efficacy of TRM cells in immune surveillance and response. Understanding the nuanced regulation of TRM cells is essential for developing targeted therapeutic strategies, including vaccines and immunotherapies, to enhance their protective roles while mitigating adverse effects. Insights into TRM cells' biology hold promise for innovative treatments for infectious diseases, cancer, and autoimmune conditions.
Collapse
Affiliation(s)
- Daoyuan Xie
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Guanting Lu
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Gang Mai
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaAcademy of Chinese Medical SciencesBeijingChina
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research UnitThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
21
|
Mendes-da-Cruz DA, Lemos JP, Belorio EP, Savino W. Intrathymic Cell Migration: Implications in Thymocyte Development and T Lymphocyte Repertoire Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:139-175. [PMID: 40067586 DOI: 10.1007/978-3-031-77921-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
During the development of T cells in the thymus, differentiating thymocytes move through specific thymic compartments and interact with the cortical and medullary microenvironments of the thymic lobules. This migration is primarily controlled by adhesion molecules, such as extracellular matrix ligands and receptors, and soluble factors like chemokines that are important for thymocyte differentiation. The migration events driven by these molecules include the entry of lymphoid progenitors from the bone marrow, movement within the thymus, and the exit of mature thymocytes. Notably, the migration of developing T cells can also impact the positive and negative selection processes, which are crucial for preventing the development of self-reactive T cells. This chapter will focus on the key molecules involved in thymocyte migration and how their expression patterns may affect T cell development and the formation of T cell repertoires.
Collapse
Affiliation(s)
| | - Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elizabeth Pinto Belorio
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Binish F, Xiao J. Deciphering the role of sphingosine 1-phosphate in central nervous system myelination and repair. J Neurochem 2025; 169:e16228. [PMID: 39290063 DOI: 10.1111/jnc.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid of the sphingolipid family and plays a pivotal role in the mammalian nervous system. Indeed, S1P is a therapeutic target for treating demyelinating diseases such as multiple sclerosis. Being part of an interconnected sphingolipid metabolic network, the amount of S1P available for signalling is equilibrated between its synthetic (sphingosine kinases 1 and 2) and degradative (sphingosine 1-phosphate lyase) enzymes. Once produced, S1P exerts its biological roles via signalling to a family of five G protein-coupled S1P receptors 1-5 (S1PR1-5). Despite significant progress, the precise roles that S1P metabolism and downstream signalling play in regulating myelin formation and repair remain largely opaque and somewhat controversial. Genetic or pharmacological studies adopting various model systems identify that stimulating S1P-S1PR signalling protects myelin-forming oligodendrocytes after central nervous system (CNS) injury and attenuates demyelination in vivo. However, evidence to support its role in remyelination of the mammalian CNS is limited, although blocking S1P synthesis sheds light on the role of endogenous S1P in promoting CNS remyelination. This review focuses on summarising the current understanding of S1P in CNS myelin formation and repair, discussing the complexity of S1P-S1PR interaction and the underlying mechanism by which S1P biosynthesis and signalling regulates oligodendrocyte myelination in the healthy and injured mammalian CNS, raising new questions for future investigation.
Collapse
Affiliation(s)
- Fatima Binish
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
23
|
Duan R, Jiang L, Wang T, Li Z, Yu X, Gao Y, Jia R, Fan X, Su W. Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis. Nat Commun 2024; 15:10860. [PMID: 39738047 PMCID: PMC11685811 DOI: 10.1038/s41467-024-55164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils. Mechanistically, age-dependent downregulation of the immune trafficking receptor S1pr1 drives the expansion of γδ17. Compared to young mice, expanded γδ17 recruit tumor-promoting neutrophils with lower expression levels of CD62L and higher levels of C-kit and CXCR4. These neutrophils suppress the stemness and tumor-killing functions of CD8+ T cells in aged male mice. Accordingly, antibody-mediated depletion of γδT or neutrophils reduces tumor metastatic foci in aged animals, and the administration of the senolytic agent procyanidin C1 reverses the observed immune-mediated, tumor-promoting effects of aging. Thus, we uncover a γδ17-Neutrophil-CD8 axis that promotes aging-driven tumor metastasis in male mice and provides potential insights for managing metastatic tumors.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Tumor Microenvironment/immunology
- Aging/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/genetics
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Nieves-Rosado HM, Banerjee H, Gocher-Demske A, Manandhar P, Mehta I, Ezenwa O, Xie B, Murter B, Das J, Vignali DAA, Delgoffe GM, Kane LP. Tim-3 Is Required for Regulatory T Cell-Mediated Promotion of T Cell Exhaustion and Viral Persistence during Chronic Lymphocytic Choriomeningitis Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1488-1498. [PMID: 39345172 DOI: 10.4049/jimmunol.2400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Expression of T cell Ig and mucin domain-containing protein 3 (Tim-3) is upregulated on regulatory T cells (Tregs) during chronic viral infections. In several murine and human chronic infections, the expression of Tim-3 is associated with poor control of viral burden and impaired antiviral immune responses. However, the role of Tim-3+ Tregs during persistent viral infections has not been fully defined. We employed an inducible Treg-specific Tim-3 loss-of-function (Tim-3 Treg knockout) murine model to dissect the role of Tim-3 on Tregs during chronic lymphocytic choriomeningitis virus infection. Tim-3 Treg knockout mice exhibited a decrease in morbidity, a more potent virus-specific T cell response, and a significant decrease in viral burden. These mice also had a reduction in the frequency of PD-1+Tim-3+ and PD-1+Tox+ gp33-specific exhausted CD8+ T cells. Our findings demonstrate that modulation of a single surface protein on Tregs can lead to a reduction in viral burden, limit T cell exhaustion, and enhance gp33-specific T cell response. These studies may help to identify Tim-3-directed therapies for the management of persistent infections and cancer.
Collapse
Affiliation(s)
- Hector M Nieves-Rosado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Ben Murter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
25
|
Fernandes J, Veldhoen M, Ferreira C. Tissue-resident memory T cells: Harnessing their properties against infection for cancer treatment. Bioessays 2024; 46:e2400119. [PMID: 39258352 DOI: 10.1002/bies.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
We have rapidly gained insights into the presence and function of T lymphocytes in non-lymphoid tissues, the tissue-resident memory T (TRM) cells. The central pillar of adaptive immunity has been expanded from classic central memory T cells giving rise to progeny upon reinfection and effector memory cells circulating through the blood and patrolling the tissues to include TRM cells that reside and migrate inside solid organs and tissues. Their development and maintenance have been studied in detail, providing exciting clues on how their unique properties used to fight infections may benefit therapies against solid tumors. We provide an overview of CD8 TRM cells and the properties that make them of interest for vaccination and cancer therapies.
Collapse
Affiliation(s)
- João Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
27
|
Govindaraj S, Tyree S, Herring GB, Rahman SJ, Babu H, Ibegbu C, Young MR, Mehta CC, Haddad LB, Smith AK, Velu V. Differential expression of HIV target cells CCR5 and α4β7 in tissue resident memory CD4 T cells in endocervix during the menstrual cycle of HIV seronegative women. Front Immunol 2024; 15:1456652. [PMID: 39386203 PMCID: PMC11461385 DOI: 10.3389/fimmu.2024.1456652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ovarian hormones are known to modulate the immune system in the female genital tract (FGT). We sought to define the impact of the menstrual cycle on the mucosal HIV target cell levels, and tissue-resident CD4 T cells. Materials and methods Here, we characterized the distribution, phenotype, and function of CD4 T cells with special emphasis on HIV target cells (CCR5+ and α4β7+) as well as tissue-resident memory (TRM; CD69+ and CD103+) CD4 T cells in FGT of cycling women. Peripheral blood and Endocervical cells (EC-collected from cytobrush) were collected from 105 healthy women and performed multicolor flow cytometry to characterize the various subsets of CD4 T cells. Cervicovaginal lavage (CVL) were collected for cytokine analysis and plasma were collected for hormonal analysis. All parameters were compared between follicular and luteal phase of menstrual cycle. Results Our findings revealed no significant difference in the blood CD4 T cell subsets between the follicular and luteal phase. However, in EC, the proportion of several cell types was higher in the follicular phase compared to the luteal phase of menstrual cycle, including CCR5+α4β7-cells (p=0.01), CD69+CD103+ TRM (p=0.02), CCR5+CD69+CD103+ TRM (p=0.001) and FoxP3+ CD4 T cells (p=0.0005). In contrast, α4β7+ CCR5- cells were higher in the luteal phase (p=0.0004) compared to the follicular phase. In addition, we also found that hormonal levels (P4/E2 ratio) and cytokines (IL-5 and IL-6) were correlated with CCR5+ CD4 T cells subsets during the follicular phase of the menstrual cycle. Conclusion Overall, these findings suggest the difference in the expression of CCR5 and α4β7 in TRM CD4 T cell subsets in endocervix of HIV seronegative women between the follicular and luteal phase. Increase in the CCR5+ expression on TRM subsets could increase susceptibility to HIV infection during follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Staple Tyree
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Gina Bailey Herring
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Grady Ponce de Leon Center, Grady Health System, Atlanta, GA, United States
| | - Sadia J. Rahman
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Hemalatha Babu
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chris Ibegbu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisa R. Young
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - C. Christina Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa B. Haddad
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Giovenzana A, Codazzi V, Pandolfo M, Petrelli A. T cell trafficking in human chronic inflammatory diseases. iScience 2024; 27:110528. [PMID: 39171290 PMCID: PMC11338127 DOI: 10.1016/j.isci.2024.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Circulating T cells, which migrate from the periphery to sites of tissue inflammation, play a crucial role in the development of various chronic inflammatory conditions. Recent research has highlighted subsets of tissue-resident T cells that acquire migratory capabilities and re-enter circulation, referred to here as "recirculating T cells." In this review, we examine recent advancements in understanding the biology of T cell trafficking in diseases where T cell infiltration is pivotal, such as multiple sclerosis and inflammatory bowel diseases, as well as in metabolic disorders where the role of T cell migration is less understood. Additionally, we discuss current insights into therapeutic strategies aimed at modulating T cell circulation across tissues and the application of state-of-the-art technologies for studying recirculation in humans. This review underscores the significance of investigating T trafficking as a novel potential target for therapeutic interventions across a spectrum of human chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anna Giovenzana
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Codazzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Pandolfo
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
29
|
Yount KS, Darville T. Immunity to Sexually Transmitted Bacterial Infections of the Female Genital Tract: Toward Effective Vaccines. Vaccines (Basel) 2024; 12:863. [PMID: 39203989 PMCID: PMC11359697 DOI: 10.3390/vaccines12080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Sexually transmitted infections (STIs) caused by bacterial pathogens Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum present significant public health challenges. These infections profoundly impact reproductive health, leading to pelvic inflammatory disease, infertility, and increased susceptibility to other infections. Prevention measures, including antibiotic treatments, are limited by the often-asymptomatic nature of these infections, the need for repetitive and continual screening of sexually active persons, antibiotic resistance for gonorrhea, and shortages of penicillin for syphilis. While vaccines exist for viral STIs like human papillomavirus (HPV) and hepatitis B virus (HBV), there are no vaccines available for bacterial STIs. This review examines the immune responses in the female genital tract to these bacterial pathogens and the implications for developing effective vaccines against bacterial STIs.
Collapse
Affiliation(s)
| | - Toni Darville
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
30
|
Van der Borght K, Brimnes J, Haspeslagh E, Brand S, Neyt K, Gupta S, Knudsen NPH, Hammad H, Andersen PS, Lambrecht BN. Sublingual allergen immunotherapy prevents house dust mite inhalant type 2 immunity through dendritic cell-mediated induction of Foxp3 + regulatory T cells. Mucosal Immunol 2024; 17:618-632. [PMID: 38570140 DOI: 10.1016/j.mucimm.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Sublingual allergen immunotherapy (SLIT) is an emerging treatment option for allergic asthma and a potential disease-modifying strategy for asthma prevention. The key cellular events leading to such long-term tolerance remain to be fully elucidated. We administered prophylactic SLIT in a mouse model of house dust mite (HDM)-driven allergic asthma. HDM extract was sublingually administered over 3 weeks followed by intratracheal sensitization and intranasal challenges with HDM. Prophylactic SLIT prevented allergic airway inflammation and hyperreactivity with a low lab-to-lab variation. The HDM-specific T helper (Th)2 (cluster of differentiation 4 Th) response was shifted by SLIT toward a regulatory and Th17 response in the lung and mediastinal lymph node. By using Derp1-specific cluster of differentiation 4+ T cells (1-DER), we found that SLIT blocked 1-DER T cell recruitment to the mediastinal lymph node and dampened IL-4 secretion following intratracheal HDM sensitization. Sublingually administered Derp1 protein activated 1-DER T cells in the cervical lymph node via chemokine receptor7+ migratory dendritic cells (DC). DCs migrating from the oral submucosa to the cervical lymph node after SLIT-induced Foxp3+ regulatory T cells. When mice were sensitized with HDM, prior prophylactic SLIT increased Derp1 specific regulatory T cells (Tregs) and lowered Th2 recruitment in the lung. By using Foxp3-diphtheria toxin receptor mice, Tregs were found to contribute to the immunoregulatory prophylactic effect of SLIT on type 2 immunity. These findings in a mouse model suggest that DC-mediated functional Treg induction in oral mucosa draining lymph nodes is one of the driving mechanisms behind the disease-modifying effect of prophylactic SLIT.
Collapse
Affiliation(s)
- Katrien Van der Borght
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jens Brimnes
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Eline Haspeslagh
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stephanie Brand
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Katrijn Neyt
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Shashank Gupta
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Peter S Andersen
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Kroll KW, Hueber B, Balachandran H, Afifi A, Manickam C, Nettere D, Pollara J, Hudson A, Woolley G, Ndhlovu LC, Reeves RK. FcαRI (CD89) is upregulated on subsets of mucosal and circulating NK cells and regulates IgA-class specific signaling and functions. Mucosal Immunol 2024; 17:692-699. [PMID: 38677592 PMCID: PMC11323182 DOI: 10.1016/j.mucimm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Immunoglobulin A (IgA) is the predominant mucosal antibody class with both anti- and pro-inflammatory roles1-3. However, the specific role of the IgA receptor cluster of differentiation (CD)89, expressed by a subset of natural killer (NK) cells, is poorly explored. We found that CD89 protein expression on circulating NK cells is infrequent in humans and rhesus macaques, but transcriptomic analysis showed ubiquitous CD89 expression, suggesting an inducible phenotype. Interestingly, CD89+ NK cells were more frequent in cord blood and mucosae, indicating a putative IgA-mediated NK cell function in the mucosae and infant immune system. CD89+ NK cells signaled through upregulated CD3 zeta chain (CD3ζ), spleen tyrosine kinase (Syk), zeta chain-associated protein kinase 70 (ZAP70), and signaling lymphocytic activation molecule family 1 (SLAMF1), but also showed high expression of inhibitory receptors such as killer cell lectin-like receptor subfamily G (KLRG1) and reduced activating NKp46 and NKp30. CD89-based activation or antibody-mediated cellular cytotoxicity with monomeric IgA1 reduced NK cell functions, while antibody-mediated cellular cytotoxicity with combinations of IgG and IgA2 was enhanced compared to IgG alone. These data suggest that functional CD89+ NK cells survey mucosal sites, but CD89 likely serves as regulatory receptor which can be further modulated depending on IgA and IgG subclass. Although the full functional niche of CD89+ NK cells remains unexplored, these intriguing data suggest the CD89 axis could represent a novel immunotherapeutic target in the mucosae or early life.
Collapse
Affiliation(s)
- Kyle W Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brady Hueber
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ameera Afifi
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Danielle Nettere
- Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Justin Pollara
- Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Hudson
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
32
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Noviello M, De Lorenzo R, Chimienti R, Maugeri N, De Lalla C, Siracusano G, Lorè NI, Rancoita PMV, Cugnata F, Tassi E, Dispinseri S, Abbati D, Beretta V, Ruggiero E, Manfredi F, Merolla A, Cantarelli E, Tresoldi C, Pastori C, Caccia R, Sironi F, Marzinotto I, Saliu F, Ghezzi S, Lampasona V, Vicenzi E, Cinque P, Manfredi AA, Scarlatti G, Dellabona P, Lopalco L, Di Serio C, Malnati M, Ciceri F, Rovere-Querini P, Bonini C. The longitudinal characterization of immune responses in COVID-19 patients reveals novel prognostic signatures for disease severity, patients' survival and long COVID. Front Immunol 2024; 15:1381091. [PMID: 39136010 PMCID: PMC11317765 DOI: 10.3389/fimmu.2024.1381091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.
Collapse
Affiliation(s)
- Maddalena Noviello
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Raniero Chimienti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia De Lalla
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriel Siracusano
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maria Vittoria Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caccia
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sironi
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Andrea Manfredi
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Malnati
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
de Greef PC, Njeru SN, Benz C, Fillatreau S, Malissen B, Agenès F, de Boer RJ, Kirberg J. The TCR assigns naive T cells to a preferred lymph node. SCIENCE ADVANCES 2024; 10:eadl0796. [PMID: 39047099 PMCID: PMC11268406 DOI: 10.1126/sciadv.adl0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Naive T cells recirculate between the spleen and lymph nodes where they mount immune responses when meeting dendritic cells presenting foreign antigen. As this may happen anywhere, naive T cells ought to visit all lymph nodes. Here, deep sequencing almost-complete TCR repertoires led to a comparison of different lymph nodes within and between individual mice. We find strong evidence for a deterministic CD4/CD8 lineage choice and a consistent spatial structure. Specifically, some T cells show a preference for one or multiple lymph nodes, suggesting that their TCR interacts with locally presented (self-)peptides. These findings are mirrored in TCR-transgenic mice showing localized CD69 expression, retention, and cell division. Thus, naive T cells intermittently sense antigenically dissimilar niches, which is expected to affect their homeostatic competition.
Collapse
MESH Headings
- Animals
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Mice, Transgenic
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | | | - Claudia Benz
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Fabien Agenès
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Inserm, Délégation Régionale Auvergne Rhône Alpes, 69500 Bron, France
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| |
Collapse
|
35
|
Jakobs J, Bertram J, Rink L. Ca 2+ signals are essential for T-cell proliferation, while Zn 2+ signals are necessary for T helper cell 1 differentiation. Cell Death Discov 2024; 10:336. [PMID: 39043646 PMCID: PMC11266428 DOI: 10.1038/s41420-024-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The regulation of T-cell fate is crucial for the balance between infection control and tolerance. Calcium (Ca2+) and zinc (Zn2+) signals are both induced after T-cell stimulation, but their specific roles in the fate of activation and differentiation remain to be elucidated. Are Zn2+- and Ca2+ signals responsible for different aspects in T-cell activation and differentiation and do they act in concert or in opposition? It is crucial to understand the interplay of the intracellular signals to influence the fate of T cells in diseases with undesirable T-cell activities or in Zn2+-deficient patients. Human peripheral blood mononuclear cells were stimulated with the Zn2+ ionophore pyrithione and thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). Intracellular Zn2+ and Ca2+ signals were monitored by flow cytometry and ELISA, quantitative PCR and western blot were used to evaluate T-cell differentiation and the underlying molecular mechanism. We found that Zn2+ signals upregulated the early T-cell activation marker CD69, interferon regulatory factor 1 (IRF-1), and Krüppel-like factor 10 (KLF-10) expression, which are important for T helper cell (Th) 1 differentiation. Ca2+ signals, on the other hand, increased T-bet and Forkhead box P3 (FoxP3) expression and interleukin (IL)-2 release. Most interestingly, the combination of Zn2+ and Ca2+ signals was indispensable to induce interferon (IFN)-γ expression and increased the surface expression of CD69 by several-fold. These results highlight the importance of the parallel occurrence of Ca2+ and Zn2+ signals. Both signals act in concert and are required for the differentiation into Th1 cells, for the stabilization of regulatory T cells, and induces T-cell activation by several-fold. This provides further insight into the impaired immune functions of patients with zinc deficiency.
Collapse
Affiliation(s)
- Jana Jakobs
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Jens Bertram
- Institute for Occupational, Social and Environmental Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
36
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
37
|
Coppard V, Szep G, Georgieva Z, Howlett SK, Jarvis LB, Rainbow DB, Suchanek O, Needham EJ, Mousa HS, Menon DK, Feyertag F, Mahbubani KT, Saeb-Parsy K, Jones JL. FlowAtlas: an interactive tool for high-dimensional immunophenotyping analysis bridging FlowJo with computational tools in Julia. Front Immunol 2024; 15:1425488. [PMID: 39086484 PMCID: PMC11288863 DOI: 10.3389/fimmu.2024.1425488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
As the dimensionality, throughput and complexity of cytometry data increases, so does the demand for user-friendly, interactive analysis tools that leverage high-performance machine learning frameworks. Here we introduce FlowAtlas: an interactive web application that enables dimensionality reduction of cytometry data without down-sampling and that is compatible with datasets stained with non-identical panels. FlowAtlas bridges the user-friendly environment of FlowJo and computational tools in Julia developed by the scientific machine learning community, eliminating the need for coding and bioinformatics expertise. New population discovery and detection of rare populations in FlowAtlas is intuitive and rapid. We demonstrate the capabilities of FlowAtlas using a human multi-tissue, multi-donor immune cell dataset, highlighting key immunological findings. FlowAtlas is available at https://github.com/gszep/FlowAtlas.jl.git.
Collapse
Affiliation(s)
- Valerie Coppard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Grisha Szep
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London, United Kingdom
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sarah K. Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lorna B. Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ondrej Suchanek
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward J. Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Hani S. Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Department of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | | | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Joanne L. Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Dong C, Zhu W, Wei L, Kim JK, Ma Y, Kang SM, Wang BZ. Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines. Nat Commun 2024; 15:5800. [PMID: 38987276 PMCID: PMC11237032 DOI: 10.1038/s41467-024-50087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA.
| |
Collapse
|
39
|
Viano ME, Baez NS, Savid-Frontera C, Baigorri RE, Dinatale B, Pacini MF, Bulfoni Balbi C, Gonzalez FB, Fozzatti L, Lidón NL, Young HA, Hodge DL, Cerban F, Stempin CC, Pérez AR, Rodriguez-Galán MC. Systemic inflammatory Th1 cytokines during Trypanosoma cruzi infection disrupt the typical anatomical cell distribution and phenotypic/functional characteristics of various cell subsets within the thymus. Microbes Infect 2024; 26:105337. [PMID: 38615883 PMCID: PMC11227410 DOI: 10.1016/j.micinf.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ruth Eliana Baigorri
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | - Maria Florencia Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina
| | | | - Laura Fozzatti
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Nicolas Leonel Lidón
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick MD 21702-1201, USA
| | - Deborah L Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick MD 21702-1201, USA
| | - Fabio Cerban
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPREB), Facultad de Cs. Médicas de la Universidad Nacional de Rosario (UNR), Argentina
| | | |
Collapse
|
40
|
Levi J, Guglielmetti C, Henrich TJ, Yoon JC, Gokhale PC, Reardon DA, Packiasamy J, Huynh L, Cabrera H, Ruzevich M, Blecha J, Peluso MJ, Huynh TL, An SM, Dornan M, Belanger AP, Nguyen QD, Seo Y, Song H, Chaumeil MM, VanBrocklin HF, Chae HD. [ 18F]F-AraG imaging reveals association between neuroinflammation and brown- and bone marrow adipose tissue. Commun Biol 2024; 7:793. [PMID: 38951146 PMCID: PMC11217368 DOI: 10.1038/s42003-024-06494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, USA.
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | | | | | | | - Lyna Huynh
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | - Hilda Cabrera
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | | | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Mark Dornan
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anthony P Belanger
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hee-Don Chae
- CellSight Technologies Incorporated, San Francisco, CA, USA
| |
Collapse
|
41
|
Cadot S, Audebert C, Dion C, Ken S, Dupré L, Largeaud L, Laurent C, Ysebaert L, Crauste F, Quillet-Mary A. New pharmacodynamic parameters linked with ibrutinib responses in chronic lymphocytic leukemia: Prospective study in real-world patients and mathematical modeling. PLoS Med 2024; 21:e1004430. [PMID: 39037964 PMCID: PMC11262688 DOI: 10.1371/journal.pmed.1004430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND One of the first clinical observations of ibrutinib activity in the treatment of chronic lymphocytic leukemia (CLL) is a rapid decline in lymph nodes size. This phenomenon is accompanied by an hyperlymphocytosis, either transient or prolonged, which is associated with distinct clinical responses and thus has an impact on long-term outcomes. Understanding which factors determine distinct disease courses upon ibrutinib treatment remains a scientific challenge. METHODS AND FINDINGS From 2016 to 2021, we conducted a longitudinal and observational study in 2 cohorts of patients with chronic lymphocytic leukemia (CLL) (cohort 1, n = 41; cohort 2, n = 81). These cohorts reflect the well-known clinical features of CLL patients, such as Male/Female sex ratio of 2/1, a median age of 70 years at diagnosis, and include patients in first-line therapy (27%) or relapsed/refractory patients (73%). Blood cell counts were followed for each patient during 2 years of ibrutinib treatment. In addition, immunophenotyping and whole-body magnetic resonance imaging (MRI) were assessed in patients from cohort 1. These data were integrated in a newly built mathematical model, inspired by previous mathematical works on CLL treatment and combining dynamical and statistical models, leading to the identification of biological mechanisms associated with the 2 types of clinical responses. This multidisciplinary approach allowed to identify baseline parameters that dictated lymphocytes kinetics upon ibrutinib treatment. Indeed, ibrutinib-induced lymphocytosis defined 2 CLL patient subgroups, transient hyperlymphocytosis (tHL) or prolonged hyperlymphocytosis (pHL), that can be discriminated, before the treatment, by absolute counts of CD4+ T lymphocytes (p = 0.026) and regulatory CD4 T cells (p = 0.007), programmed cell death protein 1 PD1 (p = 0.022) and CD69 (p = 0.03) expression on B leukemic cells, CD19/CD5high/CXCR4low level (p = 0.04), and lymph node cellularity. We also pinpointed that the group of patients identified by the transient hyperlymphocytosis has lower duration response and a poor clinical outcome. The mathematical approach led to the reproduction of patient-specific dynamics and the estimation of associated patient-specific biological parameters, and highlighted that the differences between the 2 groups were mainly due to the production of leukemic B cells in lymph node compartments, and to a lesser extent to T lymphocytes and leukemic B cell egress into bloodstream. Access to additional data, especially longitudinal MRI data, could strengthen the conclusions regarding leukemic B cell dynamics in lymph nodes and the relevance of 2 distinct groups of patients. CONCLUSIONS Altogether, our multidisciplinary study provides a better understanding of ibrutinib response and highlights new pharmacodynamic parameters before and along ibrutinib treatment. Since our results highlight a reduced duration response and outcome in patients with transient hyperlymphocytosis, our approach provides support for managing ibrutinib therapy after 3 months of treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02824159.
Collapse
Affiliation(s)
- Sarah Cadot
- INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Laboratoire d’Excellence ’TOUCAN-2’, Toulouse, France
| | - Chloe Audebert
- Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions UMR 7598, Paris, France
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, Paris, France
| | | | - Soleakhena Ken
- INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Loic Dupré
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laetitia Largeaud
- INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Camille Laurent
- INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Laboratoire d’Excellence ’TOUCAN-2’, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Loic Ysebaert
- INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Laboratoire d’Excellence ’TOUCAN-2’, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Fabien Crauste
- Université Paris Cité, CNRS, MAP5 UMR 8145, Paris, France
| | - Anne Quillet-Mary
- INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Laboratoire d’Excellence ’TOUCAN-2’, Toulouse, France
| |
Collapse
|
42
|
Rakebrandt N, Yassini N, Kolz A, Schorer M, Lambert K, Goljat E, Estrada Brull A, Rauld C, Balazs Z, Krauthammer M, Carballido JM, Peters A, Joller N. Innate acting memory Th1 cells modulate heterologous diseases. Proc Natl Acad Sci U S A 2024; 121:e2312837121. [PMID: 38838013 PMCID: PMC11181110 DOI: 10.1073/pnas.2312837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.
Collapse
Affiliation(s)
- Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
| | - Nima Yassini
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Anna Kolz
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg, Germany
| | - Michelle Schorer
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
| | - Katharina Lambert
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
| | - Eva Goljat
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Anna Estrada Brull
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Celine Rauld
- Novartis Biomedical Research, 4002Basel, Switzerland
| | - Zsolt Balazs
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| | | | - Anneli Peters
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152Planegg, Germany
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, 8057Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, 8057Zurich, Switzerland
| |
Collapse
|
43
|
Miyahara A, Umeki A, Sato K, Nomura T, Yamamoto H, Miyasaka T, Tanno D, Matsumoto I, Zong T, Kagesawa T, Oniyama A, Kawamura K, Yuan X, Yokoyama R, Kitai Y, Kanno E, Tanno H, Hara H, Yamasaki S, Saijo S, Iwakura Y, Ishii K, Kawakami K. Innate phase production of IFN-γ by memory and effector T cells expressing early activation marker CD69 during infection with Cryptococcus deneoformans in the lungs. Infect Immun 2024; 92:e0002424. [PMID: 38700335 PMCID: PMC11237684 DOI: 10.1128/iai.00024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.
Collapse
Grants
- 18H02851, 21H02965 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K17920, 21K16314 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19jm0210073, JP20jm0210073, JP21jm0210073 Japan Agency for Medical Research and Development (AMED)
- ID-014 MSD Life Science Foundation, Public Interest Incorporated Foundation (SD Life Science Foundation)
- 20-02, 21-04 medical mycology research center, chiba university
Collapse
Affiliation(s)
- Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aya Umeki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomomitsu Miyasaka
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromasa Tanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
44
|
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
45
|
Ito T, Ishida Y, Zhang Y, Guichard V, Zhang W, Han R, Guckian K, Chun J, Que J, Smith A, Urban JF, Huang Y. ILC2s navigate tissue redistribution during infection using stage-specific S1P receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.592576. [PMID: 38798480 PMCID: PMC11118432 DOI: 10.1101/2024.05.12.592576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.
Collapse
|
46
|
Etesami NS, Barker KA, Shenoy AT, De Ana CL, Arafa EI, Grifno GN, Matschulat AM, Vannini ME, Pihl RMF, Breen MP, Soucy AM, Goltry WN, Ha CT, Betsuyaku H, Browning JL, Varelas X, Traber KE, Jones MR, Quinton LJ, Maglione PJ, Nia HT, Belkina AC, Mizgerd JP. B cells in the pneumococcus-infected lung are heterogeneous and require CD4 + T cell help including CD40L to become resident memory B cells. Front Immunol 2024; 15:1382638. [PMID: 38715601 PMCID: PMC11074383 DOI: 10.3389/fimmu.2024.1382638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.
Collapse
Affiliation(s)
- Neelou S. Etesami
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kimberly A. Barker
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Emad I. Arafa
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Gabrielle N. Grifno
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Adeline M. Matschulat
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael E. Vannini
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Riley M. F. Pihl
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael P. Breen
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Alicia M. Soucy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Wesley N. Goltry
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Catherine T. Ha
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hanae Betsuyaku
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey L. Browning
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Xaralabos Varelas
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Katrina E. Traber
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Matthew R. Jones
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Lee J. Quinton
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Paul J. Maglione
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hadi T. Nia
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Anna C. Belkina
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
47
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
48
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
49
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
50
|
Torell A, Stockfelt M, Blennow K, Zetterberg H, Akhter T, Leonard D, Rönnblom L, Pihl S, Saleh M, Sjöwall C, Strevens H, Jönsen A, Bengtsson AA, Trysberg E, Majczuk Sennström M, Zickert A, Svenungsson E, Gunnarsson I, Bylund J, Jacobsson B, Rudin A, Lundell AC. Low CD4 + T cell count is related to specific anti-nuclear antibodies, IFNα protein positivity and disease activity in systemic lupus erythematosus pregnancy. Arthritis Res Ther 2024; 26:65. [PMID: 38459582 PMCID: PMC10924387 DOI: 10.1186/s13075-024-03301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Lymphopenia, autoantibodies and activation of the type I interferon (IFN) system are common features in systemic lupus erythematosus (SLE). We speculate whether lymphocyte subset counts are affected by pregnancy and if they relate to autoantibody profiles and/or IFNα protein in SLE pregnancy. METHODS Repeated blood samples were collected during pregnancy from 80 women with SLE and 51 healthy controls (HC). Late postpartum samples were obtained from 19 of the women with SLE. Counts of CD4 + and CD8 + T cells, B cells and NK cells were measured by flow cytometry. Positivity for anti-nuclear antibodies (ANA) fine specificities (double-stranded DNA [dsDNA], Smith [Sm], ribonucleoprotein [RNP], chromatin, Sjögren's syndrome antigen A [SSA] and B [SSB]) and anti-phospholipid antibodies (cardiolipin [CL] and β2 glycoprotein I [β2GPI]) was assessed with multiplexed bead assay. IFNα protein concentration was quantified with Single molecule array (Simoa) immune assay. Clinical data were retrieved from medical records. RESULTS Women with SLE had lower counts of all lymphocyte subsets compared to HC throughout pregnancy, but counts did not differ during pregnancy compared to postpartum. Principal component analysis revealed that low lymphocyte subset counts differentially related to autoantibody profiles, cluster one (anti-dsDNA/anti-Sm/anti-RNP/anti-Sm/RNP/anti-chromatin), cluster two (anti-SSA/anti-SSB) and cluster three (anti-CL/anti-β2GPI), IFNα protein levels and disease activity. CD4 + T cell counts were lower in women positive to all ANA fine specificities in cluster one compared to those who were negative, and B cell numbers were lower in women positive for anti-dsDNA and anti-Sm compared to negative women. Moreover, CD4 + T cell and B cell counts were lower in women with moderate/high compared to no/low disease activity, and CD4 + T cell count was lower in IFNα protein positive relative to negative women. Finally, CD4 + T cell count was unrelated to treatment. CONCLUSION Lymphocyte subset counts are lower in SLE compared to healthy pregnancies, which seems to be a feature of the disease per se and not affected by pregnancy. Our results also indicate that low lymphocyte subset counts relate differentially to autoantibody profiles, IFNα protein levels and disease activity, which could be due to divergent disease pathways.
Collapse
Affiliation(s)
- Agnes Torell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 405 30, Gothenburg, Sweden.
| | - Marit Stockfelt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 405 30, Gothenburg, Sweden
- Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Winsconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Tansim Akhter
- Department of Women's and Children's Health, Section of Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Sofia Pihl
- Department of Obstetrics and Gynecology, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Linköping University, Linköping, Sweden
| | - Muna Saleh
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helena Strevens
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Estelle Trysberg
- Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Majczuk Sennström
- Department of Womens and Childrens Health, Division for Obstetrics and Gynecology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 405 30, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 405 30, Gothenburg, Sweden
| |
Collapse
|