1
|
Zhao Y, Ma Y, Qiu H, Zhou L, He K, Ye Y. Wake up: the regulation of dormancy release and bud break in perennial plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1553953. [PMID: 40115948 PMCID: PMC11924409 DOI: 10.3389/fpls.2025.1553953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
In order to survive harsh winter conditions, perennial trees in the temperate and frigid regions enter a dormant state and cease growth in late summer after vigorous growth in spring and summer. After experiencing prolonged cold temperature and short days in winter, trees release their dormancy, and they resume growth to produce new buds in the following spring, a process known as bud break. The establishment/release of bud dormancy and bud break are crucial for the adaptations of woody plants and their survival in the natural environment. Photoperiod and temperature are key regulators in the bud dormancy and break cycle. In recent years, significant progress has been made in understanding the molecular mechanism for how photoperiod and temperature regulate seasonal growth and dormancy. Here, we summarized the regulatory network and mechanisms underlying the seasonal growth of perennial woody plants in the temperate and frigid regions, focusing on several molecular modules including the photoperiod, circadian clock, EARLY BUD BREAK 1 (EBB1) - SHORT VEGETATIVE PHASE Like (SVL) - EARLY BUD BREAK 3 (EBB3) module and hormone regulation. Through these modules, we will summarize how perennial trees release dormancy and bud break in order to better understand their differences and connections. By elucidating the interactions among these factors, we also point out the questions and challenges need to be addressed in understanding the bud dormancy and break cycle of perennial plants.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yahui Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Hanruo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Rogivue A, Leempoel K, Guillaume AS, Choudhury RR, Felber F, Kasser M, Joost S, Parisod C, Gugerli F. Locally Specific Genome-Wide Signatures of Adaptation to Environmental Variation at High Resolution in an Alpine Plant. Mol Ecol 2025; 34:e17646. [PMID: 39821486 DOI: 10.1111/mec.17646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Microevolutionary processes shape adaptive responses to heterogeneous environments, where these effects vary both among and within species. However, it remains largely unknown to which degree signatures of adaptation to environmental drivers can be detected based on the choice of spatial scale and genomic marker. We studied signatures of local adaptation across two levels of spatial extents, investigating complementary types of genomic variants-single-nucleotide polymorphisms (SNPs) and polymorphic transposable elements (TEs)-in populations of the alpine model plant species Arabis alpina . We coupled environmental factors, derived from remote sensed digital elevation models (DEMs) at very high resolution (0.5 m), with whole-genome sequencing data of 304 individuals across four populations. By comparing putatively adaptive loci detected between each local population versus a regional assessment including all populations simultaneously, we demonstrate that responses of A. alpina to similar amounts of abiotic variation are largely governed by local evolutionary processes. Furthermore, we find minimally overlapping signatures of local adaptation between SNPs and polymorphic TEs. Notably, functional annotations of candidate genes for adaptation revealed several symbiosis-related genes associated with the abiotic factors studied, which could represent selective pressures from biotic agents. Our results highlight the importance of considering different spatial extents and types of genomic polymorphisms when searching for signatures of adaptation to environmental variation. Such insights provide key information on microevolutionary processes and could guide management decisions to mitigate negative impacts of climate change on alpine plant populations.
Collapse
Affiliation(s)
- Aude Rogivue
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Kevin Leempoel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | - Annie S Guillaume
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | | | - François Felber
- Musée et Jardins Botaniques Cantonaux, Lausanne, Switzerland
| | - Michel Kasser
- Haute-Ecole d'Ingénierie et de Gestion (HEIG), INSIT Laboratory, Switzerland
| | - Stéphane Joost
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | | | - Felix Gugerli
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Li Z, Ma R, Bhalerao RP. Perenniality: the tale of three MADS-box genes. Cell Res 2024; 34:753-754. [PMID: 38992287 PMCID: PMC11528107 DOI: 10.1038/s41422-024-01001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Affiliation(s)
- Zheng Li
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China.
| | - Ruichen Ma
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
| |
Collapse
|
4
|
Penfield S. Beyond floral initiation: the role of flower bud dormancy in flowering time control of annual plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6056-6062. [PMID: 38795335 PMCID: PMC11480682 DOI: 10.1093/jxb/erae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
The phenology of temperate perennials, including the timing of vegetative growth and flowering, is well known to be controlled by seasonal dormancy cycles. Dormant structures are known as buds and have specialized covering structures, symplastic isolation from the plant, and often autonomous stores of carbon and nitrogen reserves. In contrast, in annual plants, our current understanding of the control of the timing of flowering focuses on the mechanisms affecting floral initiation, the transition from a vegetative apical meristem to a inflorescence meristem producing flower primordia in place of leaves. Recently we revealed that annual crops in Brassicaceae exhibit chilling-responsive growth control in a manner closely resembling bud dormancy breakage in perennial species. Here I discuss evidence that vernalization in autumn is widespread and further discuss its role in inducing flower bud set prior to winter. I also review evidence that flower bud dormancy has a more widespread role in annual plant flowering time control than previously appreciated.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
5
|
Kyung J, Jeong D, Eom H, Kim J, Kim JS, Lee I. C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 promotes flowering with TAF15b by repressing the floral repressor gene FLOWERING LOCUS C. Mol Cells 2024; 47:100114. [PMID: 39293741 PMCID: PMC11822305 DOI: 10.1016/j.mocell.2024.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Arabidopsis TATA-BINDING PROTEIN-ASSOCIATED FACTOR15b (TAF15b) is a plant-specific component of the transcription factor IID complex. TAF15b is involved in the autonomous pathway for flowering and represses the transcription of FLOWERING LOCUS C (FLC), a major floral repressor in Arabidopsis. While components of the autonomous flowering pathway have been extensively studied, scant attention has been directed toward elucidating the direct transcriptional regulators responsible for repressing FLC transcription. Here, we demonstrate that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1) is a physical and functional partner of TAF15b, playing a role in FLC repression. CPL1 is a protein phosphatase that dephosphorylates the C-terminal domain of RNA polymerase II (Pol II). Through the immunoprecipitation and mass spectrometry technique, we identified CPL1 as an interacting partner of TAF15b. Similar to taf15b, the cpl1 mutant showed a late-flowering phenotype caused by an increase in FLC levels. Additionally, the increase in cpl1 was correlated with the enrichment of phosphorylated Pol II in the FLC chromatin, as expected. We also discovered that CPL1 and TAF15b share additional common target genes through transcriptome analysis. These results suggest that TAF15b and CPL1 cooperatively repress transcription through the dephosphorylation of Pol II, especially at the FLC locus.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Hyunjoo Eom
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Des Marais DL. Timing is everything: How plants optimize reproduction in a variable environment. Cell 2024; 187:3504-3505. [PMID: 38996485 DOI: 10.1016/j.cell.2024.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Organisms experience a constantly changing environment and must adjust their development to maximize fitness. These "life histories" are fantastically diverse and have fascinated biologists for decades. Recent work published in Cell reveals the complex genetic mechanisms that drive life-history variation within and among species in the Brassicaceae plant family.
Collapse
Affiliation(s)
- David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell 2024; 187:3319-3337.e18. [PMID: 38810645 DOI: 10.1016/j.cell.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.
Collapse
Affiliation(s)
- Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiao-Li Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
8
|
López ME, Denoyes B, Bucher E. Epigenomic and transcriptomic persistence of heat stress memory in strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2024; 24:405. [PMID: 38750420 PMCID: PMC11096098 DOI: 10.1186/s12870-024-05093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, Geneva, 1205, Switzerland
| | - Béatrice Denoyes
- INRAE, Biologie du Fruit et Pathologie, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland.
| |
Collapse
|
9
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Mishra P, Roggen A, Ljung K, Albani MC, Vayssières A. Adventitious rooting in response to long-term cold: a possible mechanism of clonal growth in alpine perennials. FRONTIERS IN PLANT SCIENCE 2024; 15:1352830. [PMID: 38693930 PMCID: PMC11062184 DOI: 10.3389/fpls.2024.1352830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximize fitness and ensure reproductive success. We used the arctic alpine perennial Arabis alpina to explore the role of prolonged cold exposure on adventitious rooting. We exposed plants to 4°C for different durations and scored the presence of adventitious roots on the main stem and axillary branches. Our physiological studies demonstrated the presence of adventitious roots after 21 weeks at 4°C saturating the effect of cold on this process. Notably, adventitious roots on the main stem developing in specific internodes allowed us to identify the gene regulatory network involved in the formation of adventitious roots in cold using transcriptomics. These data and histological studies indicated that adventitious roots in A. alpina stems initiate during cold exposure and emerge after plants experience growth promoting conditions. While the initiation of adventitious root was not associated with changes of DR5 auxin response and free endogenous auxin level in the stems, the emergence of the adventitious root primordia was. Using the transcriptomic data, we discerned the sequential hormone responses occurring in various stages of adventitious root formation and identified supplementary pathways putatively involved in adventitious root emergence, such as glucosinolate metabolism. Together, our results highlight the role of low temperature during clonal growth in alpine plants and provide insights on the molecular mechanisms involved at distinct stages of adventitious rooting.
Collapse
Affiliation(s)
- Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Rijk Zwaan, De Lier, Netherlands
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
11
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
12
|
Liu J, Ke M, Sun Y, Niu S, Zhang W, Li Y. Epigenetic regulation and epigenetic memory resetting during plant rejuvenation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:733-745. [PMID: 37930766 DOI: 10.1093/jxb/erad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
13
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
14
|
Khodaverdi M, Mullinger MD, Shafer HR, Preston JC. Melica as an emerging model system for comparative studies in temperate Pooideae grasses. ANNALS OF BOTANY 2023; 132:1175-1190. [PMID: 37696761 PMCID: PMC10902897 DOI: 10.1093/aob/mcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS Pooideae grasses contain some of the world's most important crop and forage species. Although much work has been conducted on understanding the genetic basis of trait diversification within a few annual Pooideae, comparative studies at the subfamily level are limited by a lack of perennial models outside 'core' Pooideae. We argue for development of the perennial non-core genus Melica as an additional model for Pooideae, and provide foundational data regarding the group's biogeography and history of character evolution. METHODS Supplementing available ITS and ndhF sequence data, we built a preliminary Bayesian-based Melica phylogeny, and used it to understand how the genus has diversified in relation to geography, climate and trait variation surveyed from various floras. We also determine biomass accumulation under controlled conditions for Melica species collected across different latitudes and compare inflorescence development across two taxa for which whole genome data are forthcoming. KEY RESULTS Our phylogenetic analyses reveal three strongly supported geographically structured Melica clades that are distinct from previously hypothesized subtribes. Despite less geographical affinity between clades, the two sister 'Ciliata' and 'Imperfecta' clades segregate from the more phylogenetically distant 'Nutans' clade in thermal climate variables and precipitation seasonality, with the 'Imperfecta' clade showing the highest levels of trait variation. Growth rates across Melica are positively correlated with latitude of origin. Variation in inflorescence morphology appears to be explained largely through differences in secondary branch distance, phyllotaxy and number of spikelets per secondary branch. CONCLUSIONS The data presented here and in previous studies suggest that Melica possesses many of the necessary features to be developed as an additional model for Pooideae grasses, including a relatively fast generation time, perenniality, and interesting variation in physiology and morphology. The next step will be to generate a genome-based phylogeny and transformation tools for functional analyses.
Collapse
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Mark D Mullinger
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Hannah R Shafer
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
15
|
Wunder J, Fulgione A, Toräng P, Wötzel S, Herzog M, Obeso JR, Kourmpetis Y, van Ham R, Odong T, Bink M, Kemi U, Ågren J, Coupland G. Adaptation of perennial flowering phenology across the European range of Arabis alpina. Proc Biol Sci 2023; 290:20231401. [PMID: 37989245 PMCID: PMC10688268 DOI: 10.1098/rspb.2023.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.
Collapse
Affiliation(s)
- Jörg Wunder
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andrea Fulgione
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Wötzel
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Michel Herzog
- Laboratoire d’Écologie Alpine, LECA, Université Grenoble Alpes, 38000 Grenoble, France
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Spain
| | - Yiannis Kourmpetis
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Roeland van Ham
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
- KeyGene, 6708 PW Wageningen, The Netherlands
| | - Thomas Odong
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Marco Bink
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Ulla Kemi
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
16
|
Reig C, García-Lorca A, Martínez-Fuentes A, Mesejo C, Agustí M. Warm temperature during floral bud transition turns off EjTFL1 gene expression and promotes flowering in Loquat (Eriobotrya japonica Lindl.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111810. [PMID: 37500016 DOI: 10.1016/j.plantsci.2023.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The Rosaceae family includes several deciduous woody species whose flower development extends over two consecutive growing seasons with a winter dormant period in between. Loquat (Eriobotrya japonica Lindl.) belongs to this family, but it is an evergreen species whose flower bud initiation and flowering occur within the same growing year. Vegetative growth dominates from spring to late summer when terminal buds bloom as panicles. Thus, its floral buds do not undergo winter dormancy until flowering, but a summer heat period of dormancy is required for floral bud differentiation, and that is why we used loquat to study the mechanism by which this summer rest period contributes to floral differentiation of Rosaceae species. As for the deciduous species, the bud transition to the generative stage is initiated by the floral integrator genes. There is evidence that combinations of environmental signals and internal cues (plant hormones) control the expression of TFL1, but the mechanism by which this gene regulates its expression in loquat needs to be clarified for a better understanding of its floral initiation and seasonal growth cycles. Under high temperatures (>25ºC) after floral bud inductive period, EjTFL1 expression decreases during meristem transition to the reproductive stage, and the promoters of flowering (EjAP1 and EjLFY) increase, indicating that the floral bud differentiation is affected by high temperatures. Monitoring the apical meristem of loquat in June-August of two consecutive years under ambient and thermal controlled conditions showed that under lower temperatures (<25ºC) during the same period, shoot apex did not stop growing and a higher EjTFL1 expression was recorded, preventing the bud to flower. Likewise, temperature directly affects ABA content in the meristem paralleling EjTFL1 expression, suggesting signaling cascades could converge to refine the expression of EjTFL1 under specific conditions (Tª<25ºC) during the floral transition stage.
Collapse
Affiliation(s)
- Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.
| | - Ana García-Lorca
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| |
Collapse
|
17
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
18
|
Karami O, Mueller-Roeber B, Rahimi A. The central role of stem cells in determining plant longevity variation. PLANT COMMUNICATIONS 2023; 4:100566. [PMID: 36840355 PMCID: PMC10504568 DOI: 10.1016/j.xplc.2023.100566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vascular plants display a huge variety of longevity patterns, from a few weeks for several annual species up to thousands of years for some perennial species. Understanding how longevity variation is structured has long been considered a fundamental aspect of the life sciences in view of evolution, species distribution, and adaptation to diverse environments. Unlike animals, whose organs are typically formed during embryogenesis, vascular plants manage to extend their life by continuously producing new tissues and organs in apical and lateral directions via proliferation of stem cells located within specialized tissues called meristems. Stem cells are the main source of plant longevity. Variation in plant longevity is highly dependent on the activity and fate identity of stem cells. Multiple developmental factors determine how stem cells contribute to variation in plant longevity. In this review, we provide an overview of the genetic mechanisms, hormonal signaling, and environmental factors involved in controlling plant longevity through long-term maintenance of stem cell fate identity.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
19
|
Morgan R, Danilova T, Newell M, Cai X, Jones S. Agronomic Evaluation and Molecular Cytogenetic Characterization of Triticum aestivum × Thinopyrum spp. Derivative Breeding Lines Presenting Perennial Growth Habits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3217. [PMID: 37765381 PMCID: PMC10534903 DOI: 10.3390/plants12183217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
The transition from annual to perennial growth habits can contribute to increased sustainability and diversification of staple cropping systems like those based on annual wheat. Amphiploids between Triticum aestivum and Thinopyrum spp. can present a wheat-like morphology and post sexual cycle regrowth. The complex and unpredictable nature of the chromosomal rearrangements typical of inter-generic hybrids can hamper progress in the development of this new crop. By using fluorescence in situ hybridization, we described the genomic constitution of three perennial wheat breeding lines that regrew and completed a second year of production in field conditions in Washington state (USA). Two breeding lines presented stable, 56-chromosome partial amphiploids; however, their chromosome composition differed significantly. The third breeding line presented an unstable karyotype with a chromosome number ranging from 53 to 58 across eight individuals. The agronomic performance of the perennial breeding lines was evaluated for two growing seasons from 2020 to 2022. The grain yields of the perennial lines were lower than the grain production of the annual wheat control line in the first season. The perennial lines displayed vigorous regrowth after the initial harvest; however, worsening environmental conditions in the second season of growth hampered subsequent growth and grain yield. This information facilitates the breeding work necessary to improve key traits by grouping agronomically valuable individuals according to their genomic constitution.
Collapse
Affiliation(s)
- Robin Morgan
- WSU Breadlab, Department of Crop Science, Washington State University, 11768 Westar Ln, Burlington, WA 98233, USA;
| | - Tatiana Danilova
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA; (T.D.); (X.C.)
| | - Matthew Newell
- Cowra Agricultural Research Station, NSW Department of Primary Industries, 296 Binni Ck Rd, Cowra, NSW 2794, Australia;
| | - Xiwen Cai
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA; (T.D.); (X.C.)
| | - Stephen Jones
- WSU Breadlab, Department of Crop Science, Washington State University, 11768 Westar Ln, Burlington, WA 98233, USA;
| |
Collapse
|
20
|
Li F, Yang JJ, Sun ZY, Wang L, Qi LY, A S, Liu YQ, Zhang HM, Dang LF, Wang SJ, Luo CX, Nian WF, O’Conner S, Ju LZ, Quan WP, Li XK, Wang C, Wang DP, You HL, Cheng ZK, Yan J, Tang FC, Yang DC, Xia CW, Gao G, Wang Y, Zhang BC, Zhou YH, Guo X, Xiang SH, Liu H, Peng TB, Su XD, Chen Y, Ouyang Q, Wang DH, Zhang DM, Xu ZH, Hou HW, Bai SN, Li L. Plant-on-chip: Core morphogenesis processes in the tiny plant Wolffia australiana. PNAS NEXUS 2023; 2:pgad141. [PMID: 37181047 PMCID: PMC10169700 DOI: 10.1093/pnasnexus/pgad141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
A plant can be thought of as a colony comprising numerous growth buds, each developing to its own rhythm. Such lack of synchrony impedes efforts to describe core principles of plant morphogenesis, dissect the underlying mechanisms, and identify regulators. Here, we use the minimalist known angiosperm to overcome this challenge and provide a model system for plant morphogenesis. We present a detailed morphological description of the monocot Wolffia australiana, as well as high-quality genome information. Further, we developed the plant-on-chip culture system and demonstrate the application of advanced technologies such as single-nucleus RNA-sequencing, protein structure prediction, and gene editing. We provide proof-of-concept examples that illustrate how W. australiana can decipher the core regulatory mechanisms of plant morphogenesis.
Collapse
Affiliation(s)
- Feng Li
- The High School Affiliated to Renmin University of China, Beijing 100080, China
- Center of Quantitative Biology, Peking University, Beijing 100871, China
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing-Jing Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zong-Yi Sun
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - Lei Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Le-Yao Qi
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Sina A
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Yi-Qun Liu
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Hong-Mei Zhang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Lei-Fan Dang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Jing Wang
- Center of Quantitative Biology, Peking University, Beijing 100871, China
| | - Chun-Xiong Luo
- Center of Quantitative Biology, Peking University, Beijing 100871, China
| | - Wei-Feng Nian
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Seth O’Conner
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Long-Zhen Ju
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | | | - Xiao-Kang Li
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - Chao Wang
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - De-Peng Wang
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - Han-Li You
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhu-Kuan Cheng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jia Yan
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Fu-Chou Tang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - De-Chang Yang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Beijing 100871, China
- Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Chu-Wei Xia
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Beijing 100871, China
- Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Ge Gao
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Beijing 100871, China
- Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Yan Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Bao-Cai Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yi-Hua Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sun-Huan Xiang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Tian-Bo Peng
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Qi Ouyang
- Center of Quantitative Biology, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Da-Ming Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Hong-Wei Hou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shu-Nong Bai
- Center of Quantitative Biology, Peking University, Beijing 100871, China
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
21
|
Gullotta G, Korte A, Marquardt S. Functional variation in the non-coding genome: molecular implications for food security. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2338-2351. [PMID: 36316269 DOI: 10.1093/jxb/erac395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 06/06/2023]
Abstract
The growing world population, in combination with the anticipated effects of climate change, is pressuring food security. Plants display an impressive arsenal of cellular mechanisms conferring resilience to adverse environmental conditions, and humans rely on these mechanisms for stable food production. The elucidation of the molecular basis of the mechanisms used by plants to achieve resilience promises knowledge-based approaches to enhance food security. DNA sequence polymorphisms can reveal genomic regions that are linked to beneficial traits of plants. However, our ability to interpret how a given DNA sequence polymorphism confers a fitness advantage at the molecular level often remains poor. A key factor is that these polymorphisms largely localize to the enigmatic non-coding genome. Here, we review the functional impact of sequence variations in the non-coding genome on plant biology in the context of crop breeding and agricultural traits. We focus on examples of non-coding with particularly convincing functional support. Our survey combines findings that are consistent with the view that the non-coding genome contributes to cellular mechanisms assisting many plant traits. Understanding how DNA sequence polymorphisms in the non-coding genome shape plant traits at the molecular level offers a largely unexplored reservoir of solutions to address future challenges in plant growth and resilience.
Collapse
Affiliation(s)
- Giorgio Gullotta
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord 32, 97074 Würzburg, Germany
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| |
Collapse
|
22
|
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C. Curr Opin Genet Dev 2023; 78:102016. [PMID: 36549195 DOI: 10.1016/j.gde.2022.102016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the similarity in temperature regimes between late autumn and early spring, plants exhibit distinct developmental responses that result in distinct morphologies, that is, overwintering and reproductive forms. In Arabidopsis, the control of autumn-spring distinction involves the transcriptional regulation of the floral repressor FLOWERING LOCUS C (FLC). The memory of winter cold is registered as epigenetic silencing of FLC. Recent studies on A. thaliana FLC revealed detailed and additional mechanisms of silencing in response to autumn and winter cold. Studies on perennial Arabidopsis FLC revealed that its expression responds to spring warmth and is robustly upregulated, ignoring cold. These new studies provide mechanistic insights into the distinct regulation of FLC under autumn and spring temperature regimes.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan.
| |
Collapse
|
23
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
24
|
Lyu J, Aiwaili P, Gu Z, Xu Y, Zhang Y, Wang Z, Huang H, Zeng R, Ma C, Gao J, Zhao X, Hong B. Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1159-1175. [PMID: 36214418 PMCID: PMC10092002 DOI: 10.1111/tpj.16002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is well known as a photoperiod-sensitive flowering plant. However, it has also evolved into a temperature-sensitive ecotype. Low temperature can promote the floral transition of the temperature-sensitive ecotype, but little is known about the underlying molecular mechanisms. Here, we identified MADS AFFECTING FLOWERING 2 (CmMAF2), a putative MADS-box gene, which induces floral transition in response to low temperatures independent of day length conditions in this ecotype. CmMAF2 was shown to bind to the promoter of the GA biosynthesis gene CmGA20ox1 and to directly regulate the biosynthesis of bioactive GA1 and GA4 . The elevated bioactive GA levels activated LEAFY (CmLFY) expression, ultimately initiating floral transition. In addition, CmMAF2 expression in response to low temperatures was directly activated by CmC3H1, a CCCH-type zinc-finger protein upstream. In summary, our results reveal that the CmC3H1-CmMAF2 module regulates flowering time in response to low temperatures by regulating GA biosynthesis in the temperature-sensitive chrysanthemum ecotype.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Palinuer Aiwaili
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Yunhan Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Zhiling Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Hongfeng Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Ruihong Zeng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Chao Ma
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Junping Gao
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Xin Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Bo Hong
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| |
Collapse
|
25
|
Cardon CH, de Oliveira RR, Lesy V, Ribeiro THC, Fust C, Pereira LP, Colasanti J, Chalfun-Junior A. Expression of coffee florigen CaFT1 reveals a sustained floral induction window associated with asynchronous flowering in tropical perennials. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111479. [PMID: 36181945 DOI: 10.1016/j.plantsci.2022.111479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The behavior of florigen(s) and environment-influenced regulatory pathways that control floral initiation in tropical perennials species with complex phenological cycles is poorly understood. Understanding the mechanisms underlying this process is important for food production in the face of climate change, thus, we used Coffea sp. L. (Rubiaceae) as a model to explore this issue. Homologs of FLOWERING LOCUS T (CaFT1) and environment-related regulators CONSTANS (CaCO), PHYTOCHROME INTERACTING FACTOR 4 (CaPIF4) and FLOWERING LOCUS C (CaFLC) were retrieved from coffee genomes and identified through phylogenetic analysis. Overexpression of CaFT1 in Arabidopsis caused early-flowering phenotype and yeast two hybrid studies indicated CaFT1 binding to bZIP floral regulator FD, which suggests that CaFT1 is a coffee florigen. Expression of CaFT1 and other floral regulators, together with carbohydrate analysis, were evaluated over one year using three contrasting genotypes, two C. arabica cultivars and C. canephora. All genotypes showed active and variable CaFT1 transcription from February until October, indicating the potential window for floral induction that reached a maximum in the cold period of June. CaCO expression, as expected, varied over a 24-hour day period and monthly with day length, whereas expression of temperature-responsive homologs, CaFLC and CaPIF4, did not correlate with temperature changes nor CaFT1 expression, suggesting alternative FT regulatory pathways in coffee. Based on our results, we suggest a continuum of floral induction that allows different starting points for floral activation, which explains developmental asynchronicity and prolonged anthesis events in tropical perennial species.
Collapse
Affiliation(s)
- Carlos Henrique Cardon
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Victoria Lesy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Catherine Fust
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Luísa Peloso Pereira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| |
Collapse
|
26
|
Ma J, Chen X, Han F, Song Y, Zhou B, Nie Y, Li Y, Niu S. The long road to bloom in conifers. FORESTRY RESEARCH 2022; 2:16. [PMID: 39525411 PMCID: PMC11524297 DOI: 10.48130/fr-2022-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 11/16/2024]
Abstract
More than 600 species of conifers (phylum Pinophyta) serve as the backbone of the Earth's terrestrial plant community and play key roles in global carbon and water cycles. Although coniferous forests account for a large fraction of global wood production, their productivity relies largely on the use of genetically improved seeds. However, acquisition of such seeds requires recurrent selection and testing of genetically superior parent trees, eventually followed by the establishment of a seed orchard to produce the improved seeds. The breeding cycle for obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period. Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The molecular regulatory programs associated with the reproductive transition and annual reproductive cycle of conifers are modulated by environmental cues and endogenous developmental signals. Mounting evidence indicates that an increase in global average temperature seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that control the vegetative to reproductive transition is imminent. However, comparison of the signaling pathways that control the reproductive transition in conifers and the floral transition in Arabidopsis has revealed many differences. Therefore, a more complete understanding of the underlying regulatory mechanisms that control the conifer reproductive transition is of paramount importance. Here, we review our current understanding of the molecular basis for reproductive regulation, highlight recent discoveries, and review new approaches for molecular research on conifers.
Collapse
Affiliation(s)
- Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, PR China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Biao Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
27
|
Viñegra de la Torre N, Vayssières A, Obeng-Hinneh E, Neumann U, Zhou Y, Lázaro A, Roggen A, Sun H, Stolze SC, Nakagami H, Schneeberger K, Timmers T, Albani MC. FLOWERING REPRESSOR AAA + ATPase 1 is a novel regulator of perennial flowering in Arabis alpina. THE NEW PHYTOLOGIST 2022; 236:729-744. [PMID: 35832005 DOI: 10.1111/nph.18374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.
Collapse
Affiliation(s)
- Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Evelyn Obeng-Hinneh
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ana Lázaro
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hequan Sun
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Sara C Stolze
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| |
Collapse
|
28
|
Winter warming post floral initiation delays flowering via bud dormancy activation and affects yield in a winter annual crop. Proc Natl Acad Sci U S A 2022; 119:e2204355119. [PMID: 36122201 PMCID: PMC9522361 DOI: 10.1073/pnas.2204355119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In temperate climates many plant species use long-term detection of winter chilling as a seasonal cue. Previously the timing of flowering in winter annual plants has been shown to be controlled by the promotion of the floral transition by chilling, known as vernalization. In contrast, many temperate perennial species produce flower buds prior to winter and require winter chilling to break bud dormancy to enable bud break and flowering in the following spring. Here we show that flowering time in winter annuals can be controlled by bud dormancy and that in winter oilseed rape–reduced chilling during flower bud dormancy is associated with yield declines. Winter annual life history is conferred by the requirement for vernalization to promote the floral transition and control the timing of flowering. Here we show using winter oilseed rape that flowering time is controlled by inflorescence bud dormancy in addition to vernalization. Winter warming treatments given to plants in the laboratory and field increase flower bud abscisic acid levels and delay flowering in spring. We show that the promotive effect of chilling reproductive tissues on flowering time is associated with the activity of two FLC genes specifically silenced in response to winter temperatures in developing inflorescences, coupled with activation of a BRANCHED1-dependent bud dormancy transcriptional module. We show that adequate winter chilling is required for normal inflorescence development and high yields in addition to the control of flowering time. Because warming during winter flower development is associated with yield losses at the landscape scale, our work suggests that bud dormancy activation may be important for effects of climate change on winter arable crop yields.
Collapse
|
29
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
30
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
31
|
Kyung J, Jeon M, Jeong G, Shin Y, Seo E, Yu J, Kim H, Park CM, Hwang D, Lee I. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element. THE PLANT CELL 2022; 34:1020-1037. [PMID: 34931682 PMCID: PMC8894950 DOI: 10.1093/plcell/koab304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/22/2021] [Indexed: 05/20/2023]
Abstract
Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yourae Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Eunjoo Seo
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihyeon Yu
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoyeun Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Author for correspondence:
| |
Collapse
|
32
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
33
|
Zhuang Y, Wang X, Li X, Hu J, Fan L, Landis JB, Cannon SB, Grimwood J, Schmutz J, Jackson SA, Doyle JJ, Zhang XS, Zhang D, Ma J. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. NATURE PLANTS 2022; 8:233-244. [PMID: 35288665 DOI: 10.1038/s41477-022-01102-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polyploidy and life-strategy transitions between annuality and perenniality often occur in flowering plants. However, the evolutionary propensities of polyploids and the genetic bases of such transitions remain elusive. We assembled chromosome-level genomes of representative perennial species across the genus Glycine including five diploids and a young allopolyploid, and constructed a Glycine super-pangenome framework by integrating 26 annual soybean genomes. These perennial diploids exhibit greater genome stability and possess fewer centromere repeats than the annuals. Biased subgenomic fractionation occurred in the allopolyploid, primarily by accumulation of small deletions in gene clusters through illegitimate recombination, which was associated with pre-existing local subgenomic differentiation. Two genes annotated to modulate vegetative-reproductive phase transition and lateral shoot outgrowth were postulated as candidates underlying the perenniality-annuality transition. Our study provides insights into polyploid genome evolution and lays a foundation for unleashing genetic potential from the perennial gene pool for soybean improvement.
Collapse
Affiliation(s)
- Yongbin Zhuang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Xutong Wang
- Department of Agronomy, and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Xianchong Li
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Junmei Hu
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Lichuan Fan
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China
| | - Jacob B Landis
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Steven B Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Jeffrey J Doyle
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xian Sheng Zhang
- College of Life Sciences, and State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Dajian Zhang
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai'an, China.
| | - Jianxin Ma
- Department of Agronomy, and Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
34
|
Identification and Comparative Analysis of Genes and MicroRNAs Involved in the Floral Transition of the Xinjiang Early-Flowering Walnut (Juglans regia L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For tree crops, shortening the juvenile phase is a vital strategy to advance fruit bearing and enhance the breeding efficiency. Walnut (Juglans regia L.) seedlings usually take at least eight to 10 years to flower, but early-flowering (EF) types can flower one or two years after planting. In this study, RNA sequencing (RNA-Seq) and microRNA sequencing (miRNA-Seq) were used for a transcriptome-wide analysis of gene and miRNA expression in hybrids of the Xinjiang EF walnut variety ‘Xinwen 81’ and later-flowering (LF) walnut. Based on a high-quality chromosome-scale reference genome, a total of 3009 differentially expressed genes (DEGs) were identified, of which 933 were upregulated (accounting for 31%) and 2076 were downregulated (accounting for 69%). DEGs were functionally annotated, and the flowering-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and LEAFY (LFY) showed remarkable upregulation in EF compared with in the LF walnut. In addition, miRNAs associated with floral transition were screened as candidates for flowering time regulation in the walnut. This work provides new insights into walnut floral transition, which may ultimately contribute to genetic improvement of the walnut.
Collapse
|
35
|
Mesejo C, Marzal A, Martínez-Fuentes A, Reig C, de Lucas M, Iglesias DJ, Primo-Millo E, Blázquez MA, Agustí M. Reversion of fruit-dependent inhibition of flowering in Citrus requires sprouting of buds with epigenetically silenced CcMADS19. THE NEW PHYTOLOGIST 2022; 233:526-533. [PMID: 34403516 DOI: 10.1111/nph.17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 05/16/2023]
Abstract
In Citrus, the response to environmental floral inductive signals is inhibited by the presence of developing fruits. The mechanism involves epigenetic activation of the CcMADS19 locus (FLC orthologue), encoding a floral repressor. To understand how this epigenetic regulation is reverted to allow flowering in the following season, we have forced precocious sprouting of axillary buds in fruit-bearing shoots, and examined the competence to floral inductive signals of old and new leaves derived from them. We have found that CcMADS19 is enriched in repressive H3K27me3 marks in young, but not old leaves, revealing that axillary buds retain a silenced version of the floral repressor that is mitotically transmitted to the newly emerging leaves, which are able to induce flowering. Therefore, we propose that flowering in Citrus is necessarily preceded by vegetative sprouting, so that the competence to respond to floral inductive signals is reset in the new leaves.
Collapse
Affiliation(s)
- Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Andrés Marzal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| | - Miguel de Lucas
- Department of Biosciences, Durham University, Stockton Rd, Durham, DH1 3LE, UK
| | - Domingo J Iglesias
- Centro de Citricultura y Producción Vegetal, IVIA-GV, Moncada, València, 46113, Spain
| | - Eduardo Primo-Millo
- Centro de Citricultura y Producción Vegetal, IVIA-GV, Moncada, València, 46113, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, València, 46022, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, 46022, Spain
| |
Collapse
|
36
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
37
|
Mapar M, Chopra D, Stephan L, Schrader A, Sun H, Schneeberger K, Albani M, Coupland G, Hülskamp M. Genetic and Molecular Analysis of Root Hair Development in Arabis alpina. FRONTIERS IN PLANT SCIENCE 2021; 12:767772. [PMID: 34721494 PMCID: PMC8554057 DOI: 10.3389/fpls.2021.767772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Root hair formation in Arabidopsis thaliana is a well-established model system for epidermal patterning and morphogenesis in plants. Over the last decades, many underlying regulatory genes and well-established networks have been identified by thorough genetic and molecular analysis. In this study, we used a forward genetic approach to identify genes involved in root hair development in Arabis alpina, a related crucifer species that diverged from A. thaliana approximately 26-40 million years ago. We found all root hair mutant classes known in A. thaliana and identified orthologous regulatory genes by whole-genome or candidate gene sequencing. Our findings indicate that the gene-phenotype relationships regulating root hair development are largely conserved between A. thaliana and A. alpina. Concordantly, a detailed analysis of one mutant with multiple hairs originating from one cell suggested that a mutation in the SUPERCENTIPEDE1 (SCN1) gene is causal for the phenotype and that AaSCN1 is fully functional in A. thaliana. Interestingly, we also found differences in the regulation of root hair differentiation and morphogenesis between the species, and a subset of root hair mutants could not be explained by mutations in orthologs of known genes from A. thaliana. This analysis provides insight into the conservation and divergence of root hair regulation in the Brassicaceae.
Collapse
Affiliation(s)
- Mona Mapar
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Divykriti Chopra
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Andrea Schrader
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Hequan Sun
- Faculty of Biology, LMU Munich, Munich, Germany
| | | | - Maria Albani
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| |
Collapse
|
38
|
Vest K, Sobel JM. Variation in seasonal timing traits and life history along a latitudinal transect in Mimulus ringens. J Evol Biol 2021; 34:1803-1816. [PMID: 34582606 DOI: 10.1111/jeb.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Seasonal timing traits are commonly under recurrent, spatially variable selection, and are therefore predicted to exhibit clinal variation. Temperate perennial plants often require vernalization to prompt growth and reproduction; however, little is known about whether vernalization requirements change across the range of a broadly distributed species. We performed a critical vernalization duration study in Mimulus ringens, coupled with population genomic analysis. Plants from eight populations spanning the latitudinal range were exposed to varying durations of 4°C vernalization between 0 and 56 days, and flowering response was assessed. RADSeq was also performed to generate 1179 polymorphic SNPs, which were used to examine population structure. We found unexpected life history variation, with some populations lacking vernalization requirement. Population genomic analyses show that these life history variants are highly divergent from perennials, potentially revealing a cryptic species. For perennial populations, minimum vernalization time was surprisingly consistent. However, once vernalized, northern populations flowered almost 3 weeks faster than southern. Furthermore, southern populations exhibited sensitivity to vernalization times beyond flowering competency, suggesting an ability to respond adaptively to different lengths of winter. Mimulus ringens, therefore, reveals evidence of clinal variation, and provides opportunities for future studies addressing mechanistic and ecological hypotheses both within and between incipient species.
Collapse
Affiliation(s)
- Kelly Vest
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | - James M Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| |
Collapse
|
39
|
Transposition and duplication of MADS-domain transcription factor genes in annual and perennial Arabis species modulates flowering. Proc Natl Acad Sci U S A 2021; 118:2109204118. [PMID: 34548402 PMCID: PMC8488671 DOI: 10.1073/pnas.2109204118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Annual and perennial species differ in their timing and intensity of flowering, but the underlying mechanisms are poorly understood. We hybridized closely related annual and perennial plants and used genetics, transgenesis, and genomics to characterize differences in the activity and function of their flowering-time genes. We identify a gene encoding a transcription factor that moved between chromosomes and is retained in the annual but absent from the perennial. This gene strongly delays flowering, and we propose that it has been retained in the annual to compensate for reduced activity of closely related genes. This study highlights the value of using direct hybridization between closely related plant species to characterize functional differences in fast-evolving reproductive traits. The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina. These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.
Collapse
|
40
|
Wötzel S, Andrello M, Albani MC, Koch MA, Coupland G, Gugerli F. Arabis alpina: A perennial model plant for ecological genomics and life-history evolution. Mol Ecol Resour 2021; 22:468-486. [PMID: 34415668 PMCID: PMC9293087 DOI: 10.1111/1755-0998.13490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Many model organisms were chosen and achieved prominence because of an advantageous combination of their life‐history characteristics, genetic properties and also practical considerations. Discoveries made in Arabidopsis thaliana, the most renowned noncrop plant model species, have markedly stimulated studies in other species with different biology. Within the family Brassicaceae, the arctic–alpine Arabis alpina has become a model complementary to Arabidopsis thaliana to study the evolution of life‐history traits, such as perenniality, and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including genomic aspects, the diversification of its mating system and demographic properties, and we discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. From this published knowledge, we derive open questions that might inspire future research in A. alpina, other Brassicaceae species or more distantly related plant families.
Collapse
Affiliation(s)
- Stefan Wötzel
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt and Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council, CNR-IAS, Rome, Italy
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - George Coupland
- Department of Plant Development Biology, MPI for Plant Breeding Research, Cologne, Germany
| | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
41
|
Penfield S, Warner S, Wilkinson L. Molecular responses to chilling in a warming climate and their impacts on plant reproductive development and yield. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab375. [PMID: 34409451 DOI: 10.1093/jxb/erab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Responses to prolonged winter chilling are universal in temperate plants which use seasonal temperature cues in the seed, vegetative and reproductive phases to align development with the earth's orbit. Climate change is driving a decline in reliable winter chill and affecting the sub-tropical extent of cultivation for temperate over-wintering crops. Here we explore molecular aspects of plant responses to winter chill including seasonal bud break and flowering, and how variation in the intensity of winter chilling or de-vernalisation can lead to effects on post-chilling plant development, including that of structures necessary for crop yields.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Samuel Warner
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Laura Wilkinson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
42
|
Walker CH, Wheeldon CD, Bennett T. Integrated dominance mechanisms regulate reproductive architecture in Arabidopsis thaliana and Brassica napus. PLANT PHYSIOLOGY 2021; 186:1985-2002. [PMID: 33914872 PMCID: PMC8331136 DOI: 10.1093/plphys/kiab194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/15/2021] [Indexed: 05/29/2023]
Abstract
The production of seed in flowering plants is complicated by the need to first invest in reproductive shoots, inflorescences, flowers, and fruit. Furthermore, in many species, it will be months between plants generating flowers and setting seed. How can plants therefore produce an optimal seed-set relative to environmental resources when the "reproductive architecture" that supports seed-set needs to be elaborated so far in advance? Here, we address this question by investigating the spatio-temporal control of reproductive architecture in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We show that resource and resource-related signals such as substrate volume play a key role in determining the scale of reproductive effort, and that this is reflected in the earliest events in reproductive development, which broadly predict the subsequent reproductive effort. We show that a series of negative feedbacks both within and between developmental stages prevent plants from over-committing to early stages of development. These feedbacks create a highly plastic, homeostatic system in which additional organs can be produced in the case of reproductive failure elsewhere in the system. We propose that these feedbacks represent an "integrated dominance" mechanism that allows resource use to be correctly sequenced between developmental stages to optimize seed set.
Collapse
Affiliation(s)
- Catriona H Walker
- Faculty of Biological Sciences,School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Cara D Wheeldon
- Faculty of Biological Sciences,School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Tom Bennett
- Faculty of Biological Sciences,School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
43
|
Morelli L, Paulišić S, Qin W, Iglesias-Sanchez A, Roig-Villanova I, Florez-Sarasa I, Rodriguez-Concepcion M, Martinez-Garcia JF. Light signals generated by vegetation shade facilitate acclimation to low light in shade-avoider plants. PLANT PHYSIOLOGY 2021; 186:2137-2151. [PMID: 34618102 PMCID: PMC8331150 DOI: 10.1093/plphys/kiab206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/08/2021] [Indexed: 05/27/2023]
Abstract
When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Sandi Paulišić
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Wenting Qin
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Ariadna Iglesias-Sanchez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Irma Roig-Villanova
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
| | - Jaime F Martinez-Garcia
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
44
|
Sheng Y, Hao Z, Peng Y, Liu S, Hu L, Shen Y, Shi J, Chen J. Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. HORTICULTURE RESEARCH 2021; 8:174. [PMID: 34333549 PMCID: PMC8325688 DOI: 10.1038/s41438-021-00610-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
Flowering is crucial to plant reproduction and controlled by multiple factors. However, the mechanisms underlying the regulation of flowering in perennial plants are still largely unknown. Here, we first report a super long blooming 1 (slb1) mutant of the relict tree Liriodendron chinense possessing a prolonged blooming period of more than 5 months, in contrast to the 1 month blooming period in the wild type (WT). Phenotypic characterization showed that earlier maturation of lateral shoots was caused by accelerated axillary bud fate, leading to the phenotype of continuous flowering in slb1 mutants. The transcriptional activity of genes related to hormone signaling (auxin, cytokinin, and strigolactone), nutrient availability, and oxidative stress relief further indicated active outgrowth of lateral buds in slb1 mutants. Interestingly, we discovered a unique FT splicing variant with intron retention specific to slb1 mutants, representing a potential causal mutation in the slb1 mutants. Surprisingly, most slb1 inbred offspring flowered precociously with shorter juvenility (~4 months) than that (usually 8-10 years) required in WT plants, indicating heritable variation underlying continuous flowering in slb1 mutants. This study reports an example of a perennial tree mutant that flowers continuously, providing a rare resource for both breeding and genetic research.
Collapse
Affiliation(s)
- Yu Sheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Peng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Siqin Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lingfeng Hu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongbao Shen
- Southern Tree Seed Inspection Center National Forestry Administration, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
45
|
Gruner P, Miedaner T. Perennial Rye: Genetics of Perenniality and Limited Fertility. PLANTS 2021; 10:plants10061210. [PMID: 34198672 PMCID: PMC8232189 DOI: 10.3390/plants10061210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Perenniality, the ability of plants to regrow after seed set, could be introgressed into cultivated rye by crossing with the wild relative and perennial Secale strictum. However, studies in the past showed that Secale cereale × Secale strictum-derived cultivars were also characterized by reduced fertility what was related to so called chromosomal multivalents, bulks of chromosomes that paired together in metaphase I of pollen mother cells instead of only two chromosomes (bivalents). Those multivalents could be caused by ancient translocations that occurred between both species. Genetic studies on perennial rye are quite old and especially the advent of molecular markers and genome sequencing paved the way for new insights and more comprehensive studies. After a brief review of the past research, we used a basic QTL mapping approach to analyze the genetic status of perennial rye. We could show that for the trait perennation 0.74 of the genetic variance in our population was explained by additively inherited QTLs on chromosome 2R, 3R, 4R, 5R and 7R. Fertility on the other hand was with 0.64 of explained genetic variance mainly attributed to a locus on chromosome 5R, what was most probably the self-incompatibility locus S5. Additionally, we could trace the Z locus on chromosome 2R by high segregation distortion of markers. Indications for chromosomal co-segregation, like multivalents, could not be found. This study opens new possibilities to use perennial rye as genetic resource and for alternative breeding methods, as well as a valuable resource for comparative studies of perennation across different species.
Collapse
|
46
|
Abstract
Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.
Collapse
|
47
|
Menon G, Schulten A, Dean C, Howard M. Digital paradigm for Polycomb epigenetic switching and memory. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102012. [PMID: 33662809 PMCID: PMC8250048 DOI: 10.1016/j.pbi.2021.102012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
How epigenetic memory states are established and maintained is a central question in gene regulation. A major epigenetic process important for developmental biology involves Polycomb-mediated chromatin silencing. Significant progress has recently been made on elucidating Polycomb silencing in plant systems through analysis of Arabidopsis FLOWERING LOCUS C (FLC). Quantitative silencing of FLC by prolonged cold exposure was shown to represent an ON to OFF switch in an increasing proportion of cells. Here, we review the underlying all-or-nothing, digital paradigm for Polycomb epigenetic silencing. We then examine other Arabidopsis Polycomb-regulated targets where digital regulation may also be relevant.
Collapse
Affiliation(s)
- Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anna Schulten
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
48
|
Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, Tamada Y, Moriya S, Tao R. Functional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud development. TREE PHYSIOLOGY 2021; 41:562-570. [PMID: 31728534 DOI: 10.1093/treephys/tpz111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/22/2019] [Indexed: 05/26/2023]
Abstract
We previously identified the FLOWERING LOCUS C (FLC)-like gene, a MADS-box transcription factor gene that belongs to Arabidopsis thaliana L. FLC clade, in apple (Malus $\times$ domestica Borkh.), and its expression in dormant flower buds is positively correlated with cumulative cold exposure. To elucidate the role of the MdFLC-like in the dormancy process and flower development, we first characterized the phenotypes of MdFLC-like overexpressing lines with the Arabidopsis Columbia-0 background. The overexpression of MdFLC-like significantly delayed the bolting date and reduced the plant size, but it did not significantly affect the number of rosette leaves or flower organ formation. Thus, MdFLC-like may affect vegetative growth and development rather than flowering when expressed in Arabidopsis, which is not like Arabidopsis FLC that affects development of flowering. We compared seasonal expression patterns of MdFLC-like in low-chill 'Anna' and high-chill 'Fuji' and 'Tsugaru' apples collected from trees grown in a cold winter region in temperate zone and found an earlier upregulation in 'Anna' compared with 'Fuji' and 'Tsugaru'. Expression patterns were also compared in relation to developmental changes in the flower primordia during the chilling accumulation period. Overall, MdFLC-like was progressively upregulated during flower primordia differentiation and development in autumn to early winter and reached a maximum expression level at around the same time as the genotype-dependent chilling requirements were fulfilled in high-chill cultivars. Thus, we hypothesize MdFLC-like may be upregulated in response to cold exposure and flower primordia development during the progress of endodormancy. Our study also suggests MdFLC-like may have a growth-inhibiting function during the end of endodormancy and ecodormancy when the temperature is low and unfavorable for rapid bud outgrowth.
Collapse
Affiliation(s)
- Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Chikako Honda
- Graduate School of Agricultural and Life Science, The University of Tokyo, Midori-Cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Kazuma Okada
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, Sokendai, Okazaki 444-8585, Japan
| | - Shigeki Moriya
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
49
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight RC, Poole AM, Jameson PE. Molecular control of the floral transition in the mast seeding plant Celmisia lyallii (Asteraceae). Mol Ecol 2021; 30:1846-1863. [PMID: 33624370 DOI: 10.1111/mec.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Mast flowering (or masting) is synchronous, highly variable flowering among years in populations of perennial plants. Despite having widespread consequences for seed consumers, endangered fauna and human health, masting is hard to predict. While observational studies show links to various weather patterns in different plant species, the mechanism(s) underpinning the regulation of masting is still not fully explained. We studied floral induction in Celmisia lyallii (Asteraceae), a mast flowering herbaceous alpine perennial, comparing gene expression in flowering and nonflowering plants. We performed translocation experiments to induce the floral transition in C. lyallii plants followed by both global and targeted expression analysis of flowering-pathway genes. Differential expression analysis showed elevated expression of ClSOC1 and ClmiR172 (promoters of flowering) in leaves of plants that subsequently flowered, in contrast to elevated expression of ClAFT and ClTOE1 (repressors of flowering) in leaves of plants that did not flower. The warm summer conditions that promoted flowering led to differential regulation of age and hormonal pathway genes, including ClmiR172 and ClGA20ox2, known to repress the expression of floral repressors and permit flowering. Upregulated expression of epigenetic modifiers of floral promoters also suggests that plants may maintain a novel "summer memory" across years to induce flowering. These results provide a basic mechanistic understanding of floral induction in masting plants and evidence of their ability to imprint various environmental cues to synchronize flowering, allowing us to better predict masting events under climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
50
|
Buzas DM, Nishio H, Kudoh H. The Flowering Season-Meter at FLOWERING LOCUS C Across Life Histories in Crucifers. FRONTIERS IN PLANT SCIENCE 2021; 12:640442. [PMID: 33777074 PMCID: PMC7991900 DOI: 10.3389/fpls.2021.640442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Many plant species overwinter before they flower. Transition to flowering is aligned to the seasonal transition as a response to the prolonged cold in winter by a process called vernalization. Multiple well-documented vernalization properties in crucifer species with diverse life histories are derived from environmental regulation of a central inhibitor of the flowering gene, Flowering Locus C (FLC). Episode(s) of flowering are prevented during high FLC expression and enabled during low FLC expression. FLC repression outlasts the winter to coincide with spring; this heterochronic aspect is termed "winter memory." In the annual Arabidopsis thaliana, winter memory has long been associated with the highly conserved histone modifiers Polycomb and Trithorax, which have antagonistic roles in transcription. However, there are experimental limitations in determining how dynamic, heterogenous histone modifications within the FLC locus generate the final transcriptional output. Recent theoretical considerations on cell-to-cell variability in gene expression and histone modifications generating bistable states brought support to the hypothesis of chromatin-encoded memory, as with other experimental systems in eukaryotes. Furthermore, these advances unify multiple properties of vernalization, not only the winter memory. Similarly, in the perennial Arabidopsis halleri ssp. gemmifera, recent integration of molecular with mathematical and ecological approaches unifies FLC chromatin features with the all-year-round memory of seasonal temperature. We develop the concept of FLC season-meter to combine existing information from the contrasting annual/perennial and experimental/theoretical sectors into a transitional framework. We highlight simplicity, high conservation, and discrete differences across extreme life histories in crucifers.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Faculty of Life and Environmental Sciences, Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| |
Collapse
|