1
|
Zhang P, Whipp EC, Skuli SJ, Gharghabi M, Saygin C, Sher SA, Carroll M, Pan X, Eisenmann ED, Lai TH, Harrington BK, Chan WK, Youssef Y, Chen B, Penson A, Lewis AM, Castro CR, Fox N, Cihan A, Le Luduec JB, DeWolf S, Kauffman T, Mims AS, Canfield D, Phillips H, Williams KE, Shaffer J, Lozanski A, Doong TJ, Lozanski G, Mao C, Walker CJ, Blachly JS, Daniyan AF, Alinari L, Baiocchi RA, Yang Y, Grieselhuber NR, Campbell MJ, Baker SD, Blaser BW, Abdel-Wahab O, Lapalombella R. TP53 mutations and TET2 deficiency cooperate to drive leukemogenesis and establish an immunosuppressive environment. J Clin Invest 2025; 135:e184021. [PMID: 40111422 PMCID: PMC12077897 DOI: 10.1172/jci184021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Mutations and deletions in TP53 are associated with adverse outcomes in patients with myeloid malignancies, and there is an urgent need for the development of improved therapies for TP53-mutant leukemias. Here, we identified mutations in TET2 as the most common co-occurring mutation in patients with TP53-mutant acute myeloid leukemia (AML). In mice, combined hematopoietic-specific deletion of TET2 and TP53 resulted in enhanced self-renewal compared with deletion of either gene alone. Tp53/Tet2 double-KO mice developed serially transplantable AML. Both mice and patients with AML with combined TET2/TP53 alterations upregulated innate immune signaling in malignant granulocyte-monocyte progenitors, which had leukemia-initiating capacity. A20 governs the leukemic maintenance by triggering aberrant noncanonical NF-κB signaling. Mice with Tp53/Tet2 loss had expansion of monocytic myeloid-derived suppressor cells (MDSCs), which impaired T cell proliferation and activation. Moreover, mice and patients with AML with combined TP53/TET2 alterations displayed increased expression of the TIGIT ligand, CD155, on malignant cells. TIGIT-blocking antibodies augmented NK cell-mediated killing of Tp53/Tet2 double-mutant AML cells, reduced leukemic burden, and prolonged survival in Tp53/Tet2 double-KO mice. These findings describe a leukemia-promoting link between TET2 and TP53 mutations and highlight therapeutic strategies to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Collapse
Affiliation(s)
- Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ethan C. Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sarah J. Skuli
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mehdi Gharghabi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Caner Saygin
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Steven A. Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Martin Carroll
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiangyu Pan
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Tzung-Huei Lai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bonnie K. Harrington
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bingyi Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Alex Penson
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Alexander M. Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Cynthia R. Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ali Cihan
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Susan DeWolf
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Tierney Kauffman
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Canfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Katie E. Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jami Shaffer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Arletta Lozanski
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Tzyy-Jye Doong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Gerard Lozanski
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Charlene Mao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Christopher J. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Nicole R. Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Moray J. Campbell
- Division of Cancer Biology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Bradley W. Blaser
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Huang R, Yong X, Li T, Wen H, Zhou X, Liao Y, You J, Yu C, Xu P, Wang Y, Wen D, Xia T, Yang H, Chen Y, Xu L, Zhong X, Li X, Xu Z, Zhou C. 15-Lipoxygenase-2 deficiency induces foam cell formation that can be restored by salidroside through the inhibition of arachidonic acid effects. Open Life Sci 2025; 20:20251091. [PMID: 40321157 PMCID: PMC12048898 DOI: 10.1515/biol-2025-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025] Open
Abstract
15-Lipoxygenase-2 (15-Lox-2) is one of the key enzymes in arachidonic acid (AA) metabolic pathway, which belongs to the unsaturated fatty acid metabolic pathway. This pathway is involved in the foam cell transformation of macrophages during the progression of atherosclerosis (AS). The role of salidroside (SAL) in cardiovascular diseases has been extensively studied, but its impact on macrophage foam cell formation has not yet been clearly clarified. We aimed to determine the effects of 15-Lox-2 deficiency on macrophage (Ana-1 cell) foam cell formation, and those of SAL on 15-Lox-2-deficient macrophages. 15-Lox-2-deficient macrophages were generated using short hairpin RNA. Results indicated that 15-Lox-2 expression in the aorta of atherosclerotic patients is lower than that of the normal group. Additionally, 15-Lox-2 deficiency dramatically promoted macrophage uptake of oxidized low-density lipoprotein (ox-LDL) and increased the Cyclin D1 level while dramatically decreasing caspase3 expression. Furthermore, inflammation, complement, and TNF-α signaling pathways, along with IL1α, IL1β, IL18, and Cx3cl1, were activated in 15-Lox-2-deficient macrophages. These changes were alleviated by SAL through inhibiting AA effects, and the effects of AA on macrophages could be inhibited by SAL. Consistently, phospholipase A2-inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) restored these changes. In summary, SAL reversed the effects of 15-Lox-2 deficiency on macrophages by inhibiting excessive AA and may be a promising therapeutic potential in treating atherosclerosis resulting from 15-Lox-2 deficiency.
Collapse
Affiliation(s)
- Rong Huang
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Xi Yong
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingting Li
- Department of Pharmacy, Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huling Wen
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xing Zhou
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yichen Liao
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Jun You
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Chunlei Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Peng Xu
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuquan Wang
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dan Wen
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tianqin Xia
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Hao Yang
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanqin Chen
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lei Xu
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaorong Zhong
- Translational Medicine Research Center, Institute of Hepatobiliary Research, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xianfu Li
- Department of Vascular Surgery, Department of Nuclear Medicine, Radiotherapy Department, Department of Oncology, Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhengmin Xu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, No. 234, Fujiang Road, Nanchong, Sichuan, 637000, China
| |
Collapse
|
3
|
Millman SE, Chaves-Perez A, Janaki-Raman S, Ho YJ, Morris JP, Narendra V, Chen CC, Jackson BT, Yashinskie JJ, Mezzadra R, Devine TI, Barthet VJA, Saoi M, Baslan T, Tian S, Sachs Z, Finley LWS, Cross JR, Lowe SW. α-Ketoglutarate dehydrogenase is a therapeutic vulnerability in acute myeloid leukemia. Blood 2025; 145:1422-1436. [PMID: 39791576 PMCID: PMC11969269 DOI: 10.1182/blood.2024025245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Perturbations in intermediary metabolism contribute to the pathogenesis of acute myeloid leukemia (AML) and can produce therapeutically actionable dependencies. Here, we probed whether α-ketoglutarate (αKG) metabolism represents a specific vulnerability in AML. Using functional genomics, metabolomics, and mouse models, we identified the αKG dehydrogenase complex, which catalyzes the conversion of αKG to succinyl coenzyme A, as a molecular dependency across multiple models of adverse-risk AML. Inhibition of 2-oxoglutarate dehydrogenase (OGDH), the E1 subunit of the αKG dehydrogenase complex, impaired AML progression and drove differentiation. Mechanistically, hindrance of αKG flux through the tricarboxylic acid (TCA) cycle resulted in rapid exhaustion of aspartate pools and blockade of de novo nucleotide biosynthesis, whereas cellular bioenergetics was largely preserved. Additionally, increased αKG levels after OGDH inhibition affected the biosynthesis of other critical amino acids. Thus, this work has identified a previously undescribed, functional link between certain TCA cycle components and nucleotide biosynthesis enzymes across AML. This metabolic node may serve as a cancer-specific vulnerability, amenable to therapeutic targeting in AML and perhaps in other cancers with similar metabolic wiring.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors
- Ketoglutarate Dehydrogenase Complex/metabolism
- Ketoglutarate Dehydrogenase Complex/genetics
- Animals
- Mice
- Humans
- Ketoglutaric Acids/metabolism
- Citric Acid Cycle
Collapse
Affiliation(s)
- Scott E. Millman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Almudena Chaves-Perez
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sudha Janaki-Raman
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John P. Morris
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Varun Narendra
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chi-Chao Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Riccardo Mezzadra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tessa I. Devine
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Valentin J. A. Barthet
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michelle Saoi
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sha Tian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine and Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Lydia W. S. Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin R. Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
4
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 PMCID: PMC11876076 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Kim HY, Shin S, Lee JM, Kim IS, Kim B, Kim HJ, Choi YJ, Bae B, Kim Y, Ji E, Kim H, Kim H, Lee JS, Chang YH, Kim HK, Lee JY, Yu S, Kim M, Cho YU, Jang S, Kim M. TP53 Mutation Status in Myelodysplastic Neoplasm and Acute Myeloid Leukemia: Impact of Reclassification Based on the 5th WHO and International Consensus Classification Criteria: A Korean Multicenter Study. Ann Lab Med 2025; 45:160-169. [PMID: 39497415 PMCID: PMC11788706 DOI: 10.3343/alm.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
Background TP53 mutations are associated with poor prognosis in myelodysplastic neoplasm (MDS) and AML. The updated 5th WHO classification and International Consensus Classification (ICC) categorize TP53-mutated MDS and AML as unique entities. We conducted a multicenter study in Korea to investigate the characteristics of TP53-mutated MDS and AML, focusing on diagnostic aspects based on updated classifications. Methods This study included patients aged ≥ 18 yrs who were diagnosed as having MDS (N=1,244) or AML (N=2,115) at six institutions. The results of bone marrow examination, cytogenetic studies, and targeted next-generation sequencing, including TP53, were collected and analyzed. Results TP53 mutations were detected in 9.3% and 9.2% of patients with MDS and AML, respectively. Missense mutation was the most common, with hotspot codons R248/R273/G245/Y220/R175/C238 accounting for 25.4% of TP53 mutations. Ten percent of patients had multiple TP53 mutations, and 78.4% had a complex karyotype. The median variant allele frequency (VAF) of TP53 mutations was 41.5%, with a notable difference according to the presence of a complex karyotype. According to the 5th WHO classification and ICC, the multi-hit TP53 mutation criteria were met in 58.6% and 75% of MDS patients, respectively, and the primary determinants were a TP53 VAF >50% for the 5th WHO classification and the presence of a complex karyotype for the ICC. Conclusions Collectively, we elucidated the molecular genetic characteristics of patients with TP53-mutated MDS and AML, highlighting key factors in applying TP53 mutation-related criteria in updated classifications, which will aid in establishing diagnostic strategies.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In-Suk Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Boram Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu Jeong Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Byunggyu Bae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eunhui Ji
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyerin Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Hyerim Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Young Lee
- Department of Laboratory Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Shinae Yu
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Miyoung Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Mohamed AM, Eid M, Eid O, Hussein SH, Mahmoud W, Mahrous R, Refaat K, Farid M. Generation of Dual-Color FISH probes targeting 9p21, Xp21, and 17p13.1 loci as diagnostic markers for some genetic disorders and cancer in Egypt. J Genet Eng Biotechnol 2025; 23:100449. [PMID: 40074450 PMCID: PMC11720894 DOI: 10.1016/j.jgeb.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The fluorescence in situ hybridization (FISH) is a very important technique, as it can diagnose many genetic disorders and cancers. Molecular cytogenetic analysis (FISH) can diagnose numerical chromosome aberrations, sex chromosomes anomalies, and many genetic disorders. AIM With the limited number of commercially available probes that do not cover all research needs and the high prices of the commercial probes, our goal is to apply recent technologies to produce FISH probes that can accurately and sensitively diagnose genetic diseases and cancer in Egypt and establishing the inhouse production of different FISH probes. We intend to adhere to the published guidelines and validation procedures to ensure the production of accurate FISH probes for clinical diagnosis. METHODS We used specific DNA segments extracted from BAC clones, and we performed nick translation to label the segment with fluorescence labeled dye. The second method involved the use of specific primers for the centromere of certain chromosomes and using PCR technique for amplification and labeling. The probes were tested on metaphase and interphase cells derived from cultured human peripheral blood samples. We followed standard guidelines to test the adequacy of probe slide hybridization, proper probe localization, probe sensitivity and specificity, probe reproducibility, cut-off values, and overall probe validation. RESULTS In this research, we presented the generation of three dual-color probes, each probe has a control locus. We offered three dual-color probes targeted 9p21, Xp21 and 17p13.1 loci. chromosome 9p21probe for diagnosis of structural abnormalities in chromosome 9, the Xp21 to test for structural abnormalities of chromosome X, and the 17p13.1 for TP53 gene to detect the loss of p53. We also produced probes for Down syndrome specific region, Rb gene and centromeres for chromosomes X, 17, and 18. CONCLUSION The produced probes are specific and sensitive and can be produced at the commercial level in the laboratory. The production of FISH probes in Egypt can be used as a powerful diagnostic marker for genetic disorders and cancers and our work can be consider as a base to start national project to produce our needs of FISH probes.
Collapse
Affiliation(s)
- Amal M Mohamed
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt.
| | - Maha Eid
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Ola Eid
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Shymaa H Hussein
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Wael Mahmoud
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Rana Mahrous
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Khaled Refaat
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Marwa Farid
- Human Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| |
Collapse
|
7
|
Butera A, Amelio I. Deciphering the significance of p53 mutant proteins. Trends Cell Biol 2025; 35:258-268. [PMID: 38960851 DOI: 10.1016/j.tcb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.
Collapse
Affiliation(s)
- Alessio Butera
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
8
|
Mao Y, Zhao Y, Zhou Q, Li W. Chromosome Engineering: Technologies, Applications, and Challenges. Annu Rev Anim Biosci 2025; 13:25-47. [PMID: 39541223 DOI: 10.1146/annurev-animal-111523-102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
Collapse
Affiliation(s)
- Yihuan Mao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Yulong Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
9
|
Aakash F, Gisriel SD, Zeidan AM, Bennett JM, Bejar R, Bewersdorf JP, Borate UM, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, DeZern AE, Efficace F, Fenaux P, Figueroa ME, Garcia-Manero G, Gore SD, Greenberg PL, Griffiths EA, Halene S, Hourigan CS, Kim TK, Kim N, Komrokji RS, Kutchroo VK, List AF, Little RF, Majeti R, Nazha A, Nimer SD, Odenike O, Padron E, Patnaik MM, Platzbecker U, Della Porta MG, Roboz GJ, Sallman DA, Santini V, Sanz G, Savona MR, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Wei AH, Xie Z, Xu ML, Hasserjian RP, Loghavi S. Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes-Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS]). Mod Pathol 2024; 37:100615. [PMID: 39322118 DOI: 10.1016/j.modpat.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous group of biologically distinct entities characterized by variable degrees of ineffective hematopoiesis. Recently, 2 classification systems (the 5th edition of the World Health Organization Classification of Haematolymphoid tTumours and the International Consensus Classification) further subcharacterized MDS into morphologically and genetically defined groups. Accurate diagnosis and subclassification of MDS require a multistep systemic approach. The International Consortium for MDS (icMDS) summarizes a contemporary, practical, and multimodal approach to MDS diagnosis and classification.
Collapse
Affiliation(s)
- Fnu Aakash
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Savanah D Gisriel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - John M Bennett
- James P. Wilmot Cancer Center, Division of Hematopathology, University of Rochester Medical Center, Rochester, New York
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, California
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Uma M Borate
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew M Brunner
- Division of Hematology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Rena Buckstein
- Division of Medical Oncology/Hematology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jane E Churpek
- Division of Haematology, Oncology, and Palliative Care, Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Naval G Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Fabio Efficace
- Health Outcomes Research Unit, Italian Group for Adult Hematologic Diseases (GIMEMA), Rome, Italy
| | - Pierre Fenaux
- Service d'hématologie, Hôpital Saint-Louis (Assistance Publique Hôpitaux de Paris), Université de Paris-Cité, Paris, France
| | - Maria E Figueroa
- Biochemistry & Molecular Biology, Sylvester Comprehensive Cancer Center. University of Miami Miller School of Medicine, Miami, Florida
| | | | - Steven D Gore
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Peter L Greenberg
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - Christopher S Hourigan
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, District of Columbia
| | - Tae Kon Kim
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Rami S Komrokji
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Alan F List
- Chief Scientific Officer, Stelexis Therapeutics, New York, New York
| | - Richard F Little
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Aziz Nazha
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen D Nimer
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Olatoyosi Odenike
- Leukemia Program, Section of Hematology/Oncology, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Eric Padron
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Uwe Platzbecker
- Department of Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gail J Roboz
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York
| | - David A Sallman
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Michael R Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mikkael A Sekeres
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Maximilian Stahl
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew H Wei
- Department of Haematology, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Victoria, Australia
| | - Zhuoer Xie
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
Palmer MA, Benatzy Y, Brüne B. Murine Alox8 versus the human ALOX15B ortholog: differences and similarities. Pflugers Arch 2024; 476:1817-1832. [PMID: 38637408 PMCID: PMC11582214 DOI: 10.1007/s00424-024-02961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Human arachidonate 15-lipoxygenase type B is a lipoxygenase that catalyzes the peroxidation of arachidonic acid at carbon-15. The corresponding murine ortholog however has 8-lipoxygenase activity. Both enzymes oxygenate polyunsaturated fatty acids in S-chirality with singular reaction specificity, although they generate a different product pattern. Furthermore, while both enzymes utilize both esterified fatty acids and fatty acid hydro(pero)xides as substrates, they differ with respect to the orientation of the fatty acid in their substrate-binding pocket. While ALOX15B accepts the fatty acid "tail-first," Alox8 oxygenates the free fatty acid with its "head-first." These differences in substrate orientation and thus in regio- and stereospecificity are thought to be determined by distinct amino acid residues. Towards their biological function, both enzymes share a commonality in regulating cholesterol homeostasis in macrophages, and Alox8 knockdown is associated with reduced atherosclerosis in mice. Additional roles have been linked to lung inflammation along with tumor suppressor activity. This review focuses on the current knowledge of the enzymatic activity of human ALOX15B and murine Alox8, along with their association with diseases.
Collapse
Affiliation(s)
- Megan A Palmer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Werner B, Powell E, Duggan J, Cortesi M, Lee YC, Arora V, Athavale R, Dean M, Warton K, Ford CE. Cell-free DNA from ascites identifies clinically relevant variants and tumour evolution in patients with advanced ovarian cancer. Mol Oncol 2024; 18:2668-2683. [PMID: 39115191 PMCID: PMC11547227 DOI: 10.1002/1878-0261.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 11/09/2024] Open
Abstract
The emergence of targeted therapies has transformed ovarian cancer treatment. However, biomarker profiling for precision medicine is limited by access to quality, tumour-enriched tissue samples. The use of cell-free DNA (cfDNA) in ascites presents a potential solution to this challenge. In this study, next-generation sequencing was performed on ascites-derived cfDNA samples (26 samples from 15 human participants with ovarian cancer), with matched DNA from ascites-derived tumour cells (n = 5) and archived formalin-fixed paraffin-embedded (FFPE) tissue (n = 5). Similar tumour purity and variant detection were achieved with cfDNA compared to FFPE and ascites cell DNA. Analysis of large-scale genomic alterations, loss of heterozygosity and tumour mutation burden identified six cases of high genomic instability (including four with pathogenic BRCA1 and BRCA2 mutations). Copy number profiles and subclone prevalence changed between sequential ascites samples, particularly in a case where deletions and chromothripsis in Chr17p13.1 and Chr8q resulted in changes in clinically relevant TP53 and MYC variants over time. Ascites cfDNA identified clinically actionable information, concordant to tissue biopsies, enabling opportunistic molecular profiling. This advocates for analysis of ascites cfDNA in lieu of accessing tumour tissue via biopsy.
Collapse
Affiliation(s)
- Bonnita Werner
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Elyse Powell
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Jennifer Duggan
- Gynaecological Oncology DepartmentRoyal Hospital for WomenSydneyAustralia
| | - Marilisa Cortesi
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
- Laboratory of Cellular and Molecular Engineering, Department of Electrical, Electronic and Information EngineeringAlma Mater Studiorum‐University of BolognaItaly
| | - Yeh Chen Lee
- Gynaecological Oncology DepartmentRoyal Hospital for WomenSydneyAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Vivek Arora
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
- Prince of Wales Private HospitalSydneyAustralia
| | - Ramanand Athavale
- Gynaecological Oncology DepartmentRoyal Hospital for WomenSydneyAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMDUSA
| | - Kristina Warton
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Caroline E. Ford
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| |
Collapse
|
12
|
de Haan LM, de Groen RAL, de Groot FA, Noordenbos T, van Wezel T, van Eijk R, Ruano D, Diepstra A, Koens L, Nicolae-Cristea A, Hartog WCED, Terpstra V, Ahsmann E, Dekker TJA, Sijs-Szabo A, Veelken H, Cleven AHG, Jansen PM, Vermaat JSP. Real-world routine diagnostic molecular analysis for TP53 mutational status is recommended over p53 immunohistochemistry in B-cell lymphomas. Virchows Arch 2024; 485:643-654. [PMID: 37851120 PMCID: PMC11522076 DOI: 10.1007/s00428-023-03676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Previous studies in patients with mature B-cell lymphomas (MBCL) have shown that pathogenic TP53 aberrations are associated with inferior chemotherapeutic efficacy and survival outcomes. In solid malignancies, p53 immunohistochemistry is commonly used as a surrogate marker to assess TP53 mutations, but this correlation is not yet well-established in lymphomas. This study evaluated the accuracy of p53 immunohistochemistry as a surrogate marker for TP53 mutational analysis in a large real-world patient cohort of 354 MBCL patients within routine diagnostic practice. For each case, p53 IHC was assigned to one of three categories: wild type (staining 1-50% of tumor cells with variable nuclear staining), abnormal complete absence or abnormal overexpression (strong and diffuse staining > 50% of tumor cells). Pathogenic variants of TP53 were identified with a targeted next generation sequencing (tNGS) panel. Wild type p53 expression was observed in 267 cases (75.4%), complete absence in twenty cases (5.7%) and the overexpression pattern in 67 cases (18.9%). tNGS identified a pathogenic TP53 mutation in 102 patients (29%). The overall accuracy of p53 IHC was 84.5% (95% CI 80.3-88.1), with a robust specificity of 92.1% (95% CI 88.0- 95.1), but a low sensitivity of 65.7% (95% CI 55.7-74.8). These results suggest that the performance of p53 IHC is insufficient as a surrogate marker for TP53 mutations in our real-world routine diagnostic workup of MBCL patients. By using p53 immunohistochemistry alone, there is a significant risk a TP53 mutation will be missed, resulting in misevaluation of a high-risk patient. Therefore, molecular analysis is recommended in all MBCL patients, especially for further development of risk-directed therapies based on TP53 mutation status.
Collapse
Affiliation(s)
- Lorraine M de Haan
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands.
| | - Ruben A L de Groen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fleur A de Groot
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Troy Noordenbos
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Arjan Diepstra
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne Koens
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | | | - Valeska Terpstra
- Department of Pathology, Haaglanden Medical Centrum, The Hague, The Netherlands
| | - Els Ahsmann
- Department of Pathology, Groene Hart Ziekenhuis, Gouda, The Netherlands
| | - Tim J A Dekker
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aniko Sijs-Szabo
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Patty M Jansen
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Sdeor E, Okada H, Saad R, Ben-Yishay T, Ben-David U. Aneuploidy as a driver of human cancer. Nat Genet 2024; 56:2014-2026. [PMID: 39358600 DOI: 10.1038/s41588-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics. In this Review, we discuss recurrent aneuploidies and their function as drivers of tumor development. We then delve into the context-dependent identification and functional characterization of the driver genes underlying driver aneuploidies and examine emerging strategies to uncover these driver genes using cancer genomics data and cancer models. Lastly, we explore opportunities for targeting driver aneuploidies in cancer by leveraging the functional consequences of these common genetic alterations.
Collapse
Affiliation(s)
- Eran Sdeor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hajime Okada
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Wan X, Liu Y, Peng Y, Wang J, Yan SM, Zhang L, Wu W, Zhao L, Chen X, Ren K, Long H, Luo Y, Yan Q, Zhang L, Lei D, Liu P, Li S, Liu L, Guo L, Du J, Zhang M, Dai S, Yang Y, Liu H, Chen N, Bei J, Feng L, Liu Y, Zeng MS, Chen C, Zhong Q. Primary and Orthotopic Murine Models of Nasopharyngeal Carcinoma Reveal Molecular Mechanisms Underlying its Malignant Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403161. [PMID: 39049720 PMCID: PMC11423139 DOI: 10.1002/advs.202403161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Nasopharyngeal carcinoma (NPC), a squamous cell carcinoma originating in the nasopharynx, is a leading malignancy in south China and other south and east Asia areas. It is frequently associated with Epstein-Barr virus (EBV) infection, while there are also some NPC patients without EBV infection. Here, it is shown that the EBV+ (EBV positive) and EBV- (EBV negative) NPCs contain both shared and distinct genetic abnormalities, among the latter are increased mutations in TP53. To investigate the functional roles of NPC-associated genetic alterations, primary, orthotopic, and genetically defined NPC models were developed in mice, a key tool missed in the field. These models, initiated with gene-edited organoids of normal nasopharyngeal epithelium, faithfully recapitulated the pathological features of human disease. With these models, it is found that Trp53 and Cdkn2a deficiency are crucial for NPC initiation and progression. And latent membrane protein1 (LMP1), an EBV-coding oncoprotein, significantly promoted the distal metastasis. Further, loss of TGFBR2, which is frequently disrupted both in EBV- and EBV+ NPCs, dramatically accelerated the progression and lung metastasis of NPC probably by altering tumor microenvironment. Taken together, this work establishes a platform to dissect the genetic mechanisms underlying NPC pathogenesis and might be of value for future translational studies.
Collapse
Affiliation(s)
- Xudong Wan
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuantao Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yiman Peng
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shu-Mei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lu Zhang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wanchun Wu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Zhao
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuelan Chen
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kexin Ren
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haicheng Long
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yiling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Qin Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lele Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Dengzhi Lei
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengpeng Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shujun Li
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihui Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Linjie Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiajia Du
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengsha Zhang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Siqi Dai
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Yang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyu Liu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nianyong Chen
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yu Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Chong Chen
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
15
|
Huber A, Allam AH, Dijkstra C, Thiem S, Huynh J, Poh AR, Konecnik J, Jacob SP, Busuttil R, Liao Y, Chisanga D, Shi W, Alorro MG, Forrow S, Tauriello DVF, Batlle E, Boussioutas A, Williams DS, Buchert M, Ernst M, Eissmann MF. Mutant TP53 switches therapeutic vulnerability during gastric cancer progression within interleukin-6 family cytokines. Cell Rep 2024; 43:114616. [PMID: 39128004 PMCID: PMC11372443 DOI: 10.1016/j.celrep.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of KrasG12D;Pik3caH1047R or Trp53R172H and/or ablation of Pten or Trp53. We find that KrasG12D;Pik3caH1047R is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions. An additional challenge with either Trp53 loss- or gain-of-function alleles further accelerated tumor progression and triggered metastatic disease. While tumor-intrinsic STAT3 signaling in response to gp130 family cytokines remained as a gatekeeper for all stages of tumor development, metastatic progression required a mutant Trp53-induced interleukin (IL)-11 to IL-6 dependency switch. Consistent with the poorer survival of patients with high IL-6 expression, we identify IL-6/STAT3 signaling as a therapeutic vulnerability for TP53-mutant gastric cancer.
Collapse
Affiliation(s)
- Anne Huber
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Amr H Allam
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Stefan Thiem
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Joshua Konecnik
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Saumya P Jacob
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Rita Busuttil
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Mariah G Alorro
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia; Department of Anatomical Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia.
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia.
| |
Collapse
|
16
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
17
|
Klockner TC, Campbell CS. Selection forces underlying aneuploidy patterns in cancer. Mol Cell Oncol 2024; 11:2369388. [PMID: 38919375 PMCID: PMC11197905 DOI: 10.1080/23723556.2024.2369388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.
Collapse
Affiliation(s)
- Tamara C. Klockner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
- A Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Christopher S. Campbell
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Gulla A, Morelli E, Johnstone M, Turi M, Samur MK, Botta C, Cifric S, Folino P, Vinaixa D, Barello F, Clericuzio C, Favasuli VK, Maisano D, Talluri S, Prabhala R, Bianchi G, Fulciniti M, Wen K, Kurata K, Liu J, Penailillo J, Bragoni A, Sapino A, Richardson PG, Chauhan D, Carrasco RD, Hideshima T, Munshi NC, Anderson KC. Loss of GABARAP mediates resistance to immunogenic chemotherapy in multiple myeloma. Blood 2024; 143:2612-2626. [PMID: 38551812 PMCID: PMC11830986 DOI: 10.1182/blood.2023022777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/16/2024] [Indexed: 06/21/2024] Open
Abstract
ABSTRACT Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.
Collapse
Affiliation(s)
- Annamaria Gulla
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Eugenio Morelli
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Megan Johnstone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Marcello Turi
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Mehmet K. Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Selma Cifric
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pietro Folino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Delaney Vinaixa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Northeastern University, Boston, MA
| | - Francesca Barello
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Cole Clericuzio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Northeastern University, Boston, MA
| | - Vanessa Katia Favasuli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Domenico Maisano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Srikanth Talluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Rao Prabhala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Giada Bianchi
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jiye Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Johany Penailillo
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alberto Bragoni
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Dharminder Chauhan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Barriga FM, Lowe SW. Engineering megabase-sized genomic deletions with MACHETE (Molecular Alteration of Chromosomes with Engineered Tandem Elements). Nat Protoc 2024; 19:1381-1399. [PMID: 38326496 PMCID: PMC11642290 DOI: 10.1038/s41596-024-00953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/21/2023] [Indexed: 02/09/2024]
Abstract
The elimination of large genomic regions has been enabled by the advent of site-specific nucleases. However, as the intended deletions get larger, the efficiency of successful engineering decreases to a point where it is not feasible to retrieve edited cells due to the rarity of on-target events. To address this issue, we developed a system called molecular alteration of chromosomes with engineered tandem elements (MACHETE). MACHETE is a CRISPR-Cas9-based system involving two stages: the initial insertion of a bicistronic positive/negative selection cassette to the locus of interest. This is followed by the introduction of single-guide RNAs flanking the knockin cassette to engineer the intended deletion, where only cells that have lost the locus survive the negative selection. In contrast to other approaches optimizing the activity of sequence-specific nucleases, MACHETE selects for the deletion event itself, thus greatly enriching for cells with the engineered alteration. The procedure routinely takes 4-6 weeks from design to selection of polyclonal populations bearing the deletion of interest. We have successfully deployed MACHETE to engineer deletions of up to 45 Mb, as well as the rapid creation of allelic series to map the relevant activities within a locus. This protocol details the design and step-by-step procedure to engineer megabase-sized deletions in cells of interest, with potential application for cancer genetics, transcriptional regulation, genome architecture and beyond.
Collapse
Affiliation(s)
- Francisco M Barriga
- Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Scott W Lowe
- Cancer Biology and Genetics Program and Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
21
|
Di-Iacovo N, Ferracchiato S, Pieroni S, Scopetti D, Castelli M, Piobbico D, Pierucci L, Gargaro M, Chiasserini D, Servillo G, Della-Fazia MA. HOPS/TMUB1 Enhances Apoptosis in TP53 Mutation-Independent Setting in Human Cancers. Int J Mol Sci 2024; 25:4600. [PMID: 38731819 PMCID: PMC11083489 DOI: 10.3390/ijms25094600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
TP53 mutations are prevalent in various cancers, yet the complexity of apoptotic pathway deregulation suggests the involvement of additional factors. HOPS/TMUB1 is known to extend the half-life of p53 under normal and stress conditions, implying a regulatory function. This study investigates, for the first time, the potential modulatory role of the ubiquitin-like-protein HOPS/TMUB1 in p53-mutants. A comprehensive analysis of apoptosis in the most frequent p53-mutants, R175, R248, and R273, in SKBR3, MIA PaCa2, and H1975 cells indicates that the overexpression of HOPS induces apoptosis at least equivalent to that caused by DNA damage. Immunoprecipitation assays confirm HOPS binding to p53-mutant forms. The interaction of HOPS/TMUB1 with p53-mutants strengthens its effect on the apoptotic cascade, showing a context-dependent gain or loss of function. Gene expression analysis of the MYC and TP63 genes shows that H1975 exhibit a gain-of-function profile, while SKBR3 promote apoptosis in a TP63-dependent manner. The TCGA data further corroborate HOPS/TMUB1's positive correlation with apoptotic genes BAX, BBC3, and NOXA1, underscoring its relevance in patient samples. Notably, singular TP53 mutations inadequately explain pathway dysregulation, emphasizing the need to explore additional contributing factors. These findings illuminate the intricate interplay among TP53 mutations, HOPS/TMUB1, and apoptotic pathways, providing valuable insights for targeted cancer interventions.
Collapse
Affiliation(s)
- Nicola Di-Iacovo
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Simona Ferracchiato
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Stefania Pieroni
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Damiano Scopetti
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Marilena Castelli
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Danilo Piobbico
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Luca Pierucci
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| | - Marco Gargaro
- Section of Biochemical and Health Sciences, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Giuseppe Servillo
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia, 06123 Perugia, Italy
| | - Maria Agnese Della-Fazia
- Section of General Pathology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (N.D.-I.); (S.P.); (D.S.); (M.C.); (D.P.); (G.S.)
| |
Collapse
|
22
|
Kuzmin E, Baker TM, Lesluyes T, Monlong J, Abe KT, Coelho PP, Schwartz M, Del Corpo J, Zou D, Morin G, Pacis A, Yang Y, Martinez C, Barber J, Kuasne H, Li R, Bourgey M, Fortier AM, Davison PG, Omeroglu A, Guiot MC, Morris Q, Kleinman CL, Huang S, Gingras AC, Ragoussis J, Bourque G, Van Loo P, Park M. Evolution of chromosome-arm aberrations in breast cancer through genetic network rewiring. Cell Rep 2024; 43:113988. [PMID: 38517886 PMCID: PMC11063629 DOI: 10.1016/j.celrep.2024.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.
Collapse
Affiliation(s)
- Elena Kuzmin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| | | | | | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Kento T Abe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Schwartz
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Joseph Del Corpo
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Dongmei Zou
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Genevieve Morin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alain Pacis
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Yang Yang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Constanza Martinez
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| | - Jarrett Barber
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Mathieu Bourgey
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Anne-Marie Fortier
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Peter G Davison
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Sidong Huang
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Peter Van Loo
- The Francis Crick Institute, NW1 1AT London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada.
| |
Collapse
|
23
|
Jubran J, Slutsky R, Rozenblum N, Rokach L, Ben-David U, Yeger-Lotem E. Machine-learning analysis reveals an important role for negative selection in shaping cancer aneuploidy landscapes. Genome Biol 2024; 25:95. [PMID: 38622679 PMCID: PMC11020441 DOI: 10.1186/s13059-024-03225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression. RESULTS Here, we apply interpretable machine learning methods to study tissue-selective aneuploidy patterns. We define 20 types of features corresponding to genomic attributes of chromosome-arms, normal tissues, primary tumors, and cancer cell lines (CCLs), and use them to model gains and losses of chromosome arms in 24 cancer types. To reveal the factors that shape the tissue-specific cancer aneuploidy landscapes, we interpret the machine learning models by estimating the relative contribution of each feature to the models. While confirming known drivers of positive selection, our quantitative analysis highlights the importance of negative selection for shaping aneuploidy landscapes. This is exemplified by tumor suppressor gene density being a better predictor of gain patterns than oncogene density, and vice versa for loss patterns. We also identify the importance of tissue-selective features and demonstrate them experimentally, revealing KLF5 as an important driver for chr13q gain in colon cancer. Further supporting an important role for negative selection in shaping the aneuploidy landscapes, we find compensation by paralogs to be among the top predictors of chromosome arm loss prevalence and demonstrate this relationship for one paralog interaction. Similar factors shape aneuploidy patterns in human CCLs, demonstrating their relevance for aneuploidy research. CONCLUSIONS Our quantitative, interpretable machine learning models improve the understanding of the genomic properties that shape cancer aneuploidy landscapes.
Collapse
Affiliation(s)
- Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel Slutsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Rozenblum
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Rokach
- Department of Software & Information Systems Engineering, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
24
|
Henick BS, Herzberg BO, Concepcion-Crisol CP, Taylor AM. Controlled Chaos: Parsing Acquired Immunoresistance in Lung Cancer. J Clin Oncol 2024; 42:1211-1214. [PMID: 38422476 PMCID: PMC11095881 DOI: 10.1200/jco.23.02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Brian S. Henick
- Herbert Irving Comprehensive Cancer Center, New York, NY
- Division of Hematology/Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Benjamin O. Herzberg
- Herbert Irving Comprehensive Cancer Center, New York, NY
- Division of Hematology/Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Carla P. Concepcion-Crisol
- Herbert Irving Comprehensive Cancer Center, New York, NY
- Department of Molecular Pharmacology & Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Alison M. Taylor
- Herbert Irving Comprehensive Cancer Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
25
|
Zhao Z, Liu M, Lin Z, Zhu M, Lv L, Zhu X, Fan R, Al-Danakh A, He H, Tan G. The mechanism of USP43 in the development of tumor: a literature review. Aging (Albany NY) 2024; 16:6613-6626. [PMID: 38613804 PMCID: PMC11042928 DOI: 10.18632/aging.205731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Xinqing Zhu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Rui Fan
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, National, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Abdullah Al-Danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| |
Collapse
|
26
|
Pereira MP, Herrity E, Kim DDH. TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: biology, treatment challenges, and upcoming approaches. Ann Hematol 2024; 103:1049-1067. [PMID: 37770618 DOI: 10.1007/s00277-023-05462-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Improved understanding of TP53 biology and the clinicopathological features of TP53-mutated myeloid neoplasms has led to the recognition of TP53-mutated acute myeloid leukemia/myelodysplastic syndrome (TP53m AML/MDS) as a unique entity, characterized by dismal outcomes following conventional therapies. Several clinical trials have investigated combinations of emerging therapies for these patients with the poorest molecular prognosis among myeloid neoplasms. Although some emerging therapies have shown improvement in overall response rates, this has not translated into better overall survival, hence the notion that p53 remains an elusive target. New therapeutic strategies, including novel targeted therapies, immune checkpoint inhibitors, and monoclonal antibodies, represent a shift away from cytotoxic and hypomethylating-based therapies, towards approaches combining non-immune and novel immune therapeutic strategies. The triple combination of azacitidine and venetoclax with either magrolimab or eprenetapopt have demonstrated safety in early trials, with phase III trials currently underway, and promising interim clinical results. This review compiles background on TP53 biology, available and emerging therapies along with their mechanisms of action for the TP53m disease entity, current treatment challenges, and recently published data and status of ongoing clinical trials for TP53m AML/MDS.
Collapse
Affiliation(s)
- Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Dennis D H Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada.
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
28
|
Palanivel C, Madduri LSV, Hein AL, Jenkins CB, Graff BT, Camero AL, Zhou S, Enke CA, Ouellette MM, Yan Y. PR55α-controlled protein phosphatase 2A inhibits p16 expression and blocks cellular senescence induction by γ-irradiation. Aging (Albany NY) 2024; 16:4116-4137. [PMID: 38441530 PMCID: PMC10968692 DOI: 10.18632/aging.205619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lepakshe S. V. Madduri
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashley L. Hein
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher B. Jenkins
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brendan T. Graff
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alison L. Camero
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Charles A. Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michel M. Ouellette
- Department of Internal Medicine - Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
29
|
Yan Y, Di F, Zhang R, Song L, Zhang R, Qiu J. Arachidonic acid inhibit granulosa cell function by affecting metabolic function of liver in brown adipose transplantation rats. J Ovarian Res 2024; 17:43. [PMID: 38374173 PMCID: PMC10875878 DOI: 10.1186/s13048-024-01374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a gynecological endocrine disease and could be considered a metabolic disease because it is often accompanied by obesity and insulin resistance. Brown adipose tissue (BAT) transplantation has been shown to be effective in treating PCOS rats. RESULTS The study demonstrated that BAT successfully recovered the reproductive and metabolic phenotype of PCOS rats. The disorder estrous cycle, abnormal hyperglycemia and the expression of liver factors were improved. Differentially expressed metabolites were analyzed, among them, arachidonic acid may play a role in inhibiting cell proliferation, enhancing oxidative stress reaction, promoting estrogen expression, and reducing progesterone level in KGN cells. CONCLUSION Our findings suggest that BAT transplantation may be a therapeutic strategy for PCOS by changing the expression of some cytokines and metabolites. Differentially expressed metabolites might be crucially important for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yan Yan
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Fangfang Di
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Ruoxi Zhang
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Liwen Song
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| | - Runjie Zhang
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| | - Jin Qiu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
30
|
Stafylidis C, Vlachopoulou D, Kontandreopoulou CN, Diamantopoulos PΤ. Unmet Horizons: Assessing the Challenges in the Treatment of TP53-Mutated Acute Myeloid Leukemia. J Clin Med 2024; 13:1082. [PMID: 38398394 PMCID: PMC10889132 DOI: 10.3390/jcm13041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute myeloid leukemia (AML) remains a challenging hematologic malignancy. The presence of TP53 mutations in AML poses a therapeutic challenge, considering that standard treatments face significant setbacks in achieving meaningful responses. There is a pressing need for the development of innovative treatment modalities to overcome resistance to conventional treatments attributable to the unique biology of TP53-mutated (TP53mut) AML. This review underscores the role of TP53 mutations in AML, examines the current landscape of treatment options, and highlights novel therapeutic approaches, including targeted therapies, combination regimens, and emerging immunotherapies, as well as agents being explored in preclinical studies according to their potential to address the unique hurdles posed by TP53mut AML.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Τ. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.S.); (D.V.); (C.-N.K.)
| |
Collapse
|
31
|
Martinez TC, McNerney ME. Haploinsufficient Transcription Factors in Myeloid Neoplasms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:571-598. [PMID: 37906947 DOI: 10.1146/annurev-pathmechdis-051222-013421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many transcription factors (TFs) function as tumor suppressor genes with heterozygous phenotypes, yet haploinsufficiency generally has an underappreciated role in neoplasia. This is no less true in myeloid cells, which are normally regulated by a delicately balanced and interconnected transcriptional network. Detailed understanding of TF dose in this circuitry sheds light on the leukemic transcriptome. In this review, we discuss the emerging features of haploinsufficient transcription factors (HITFs). We posit that: (a) monoallelic and biallelic losses can have distinct cellular outcomes; (b) the activity of a TF exists in a greater range than the traditional Mendelian genetic doses; and (c) how a TF is deleted or mutated impacts the cellular phenotype. The net effect of a HITF is a myeloid differentiation block and increased intercellular heterogeneity in the course of myeloid neoplasia.
Collapse
Affiliation(s)
- Tanner C Martinez
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Megan E McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
32
|
Lavikka K, Oikkonen J, Li Y, Muranen T, Micoli G, Marchi G, Lahtinen A, Huhtinen K, Lehtonen R, Hietanen S, Hynninen J, Virtanen A, Hautaniemi S. Deciphering cancer genomes with GenomeSpy: a grammar-based visualization toolkit. Gigascience 2024; 13:giae040. [PMID: 39101783 PMCID: PMC11299109 DOI: 10.1093/gigascience/giae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Visualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Yet, current grammar-based solutions fall short in adequately supporting the interactive analysis of large datasets with extensive sample collections, a pivotal task often encountered in cancer research. FINDINGS We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. By using combinatorial building blocks and a declarative language, users can implement new visualization designs easily and embed them in web pages or end-user-oriented applications. A distinctive element of GenomeSpy's architecture is its effective use of the graphics processing unit in all rendering, enabling a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability. CONCLUSIONS GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available at https://genomespy.app/.
Collapse
Affiliation(s)
- Kari Lavikka
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Taru Muranen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Giulia Micoli
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanni Marchi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandra Lahtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Cancer Research Unit, Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20521 Turku, Finland
| | - Rainer Lehtonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
33
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
34
|
Lakhani AA, Thompson SL, Sheltzer JM. Aneuploidy in human cancer: new tools and perspectives. Trends Genet 2023; 39:968-980. [PMID: 37778926 PMCID: PMC10715718 DOI: 10.1016/j.tig.2023.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.
Collapse
Affiliation(s)
- Asad A Lakhani
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring, Harbor, NY 11724, USA
| | | | | |
Collapse
|
35
|
Zhong J, Xiao C, Chen Q, Pan X, Xu T, Wang Y, Hou W, Liu L, Cao F, Wang Y, Li X, Zhou L, Yang H, Yang Y, Zhao C. Zebrafish functional xenograft vasculature platform identifies PF-502 as a durable vasculature normalization drug. iScience 2023; 26:107734. [PMID: 37680473 PMCID: PMC10480778 DOI: 10.1016/j.isci.2023.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Tumor vasculature often exhibits disorder and inefficiency. Vascular normalization offers potential for alleviating hypoxia and optimizing drug delivery in tumors. However, identifying effective agents is hindered by a lack of robust screening. We aimed to establish a comprehensive method using the zebrafish functional xenograft vasculature platform (zFXVP) to visualize and quantify tumor vasculature changes. Employing zFXVP, we systematically screened compounds, identifying PF-502 as a robust vascular normalization agent. Mechanistic studies showed PF-502 induces endothelial cell-cycle arrest, streamlines vasculature, and activates Notch1 signaling, enhancing stability and hemodynamics. In murine models, PF-502 exhibited pronounced vascular normalization and improved drug delivery at a sub-maximum tolerated dose. These findings highlight zFXVP's utility and suggest PF-502 as a promising adjunctive for vascular normalization in clinical settings.
Collapse
Affiliation(s)
- Jian Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qin Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Tongtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yiyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Wanting Hou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Fujun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yulin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaoying Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yu Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| |
Collapse
|
36
|
Lam YK, Yu J, Huang H, Ding X, Wong AM, Leung HH, Chan AW, Ng KK, Xu M, Wang X, Wong N. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 2023; 78:727-740. [PMID: 36221953 PMCID: PMC10086078 DOI: 10.1002/hep.32802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Major genomic drivers of hepatocellular carcinoma (HCC) are nowadays well recognized, although models to establish their roles in human HCC initiation remain scarce. Here, we used human liver organoids in experimental systems to mimic the early stages of human liver carcinogenesis from the genetic lesions of TP53 loss and L3 loop R249S mutation. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) of HCC cell lines shed important functional insights into the initiation of HCC consequential to the loss of tumor-suppressive function from TP53 deficiency and gain-of-function activities from mutant p53. APPROACH AND RESULTS Human liver organoids were generated from surgical nontumor liver tissues. CRISPR knockout of TP53 in liver organoids consistently demonstrated tumor-like morphological changes, increased in stemness and unrestricted in vitro propagation. To recapitulate TP53 status in human HCC, we overexpressed mutant R249S in TP53 knockout organoids. A spontaneous increase in tumorigenic potentials and bona fide HCC histology in xenotransplantations were observed. ChIP-seq analysis of HCC cell lines underscored gain-of-function properties from L3 loop p53 mutants in chromatin remodeling and overcoming extrinsic stress. More importantly, direct transcriptional activation of PSMF1 by mutant R249S could increase organoid resistance to endoplasmic reticulum stress, which was readily abrogated by PSMF1 knockdown in rescue experiments. In a patient cohort of primary HCC tumors and genome-edited liver organoids, quantitative polymerase chain reaction corroborated ChIP-seq findings and verified preferential genes modulated by L3 mutants, especially those enriched by R249S. CONCLUSIONS We showed differential tumorigenic effects from TP53 loss and L3 mutations, which together confer normal hepatocytes with early clonal advantages and prosurvival functions.
Collapse
Affiliation(s)
- Yin Kau Lam
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Alissa M. Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Howard H. Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W. Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K. Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Zhang L, Zhang J, Xuan X, Wu D, Yu J, Wang P, Yang X, Zhang J, Gan W, He M, Liu XM, Zhou J, Wang D, Gu W, Li D. A p53/LINC00324 positive feedback loop suppresses tumor growth by counteracting SET-mediated transcriptional repression. Cell Rep 2023; 42:112833. [PMID: 37480565 DOI: 10.1016/j.celrep.2023.112833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023] Open
Abstract
The p53 tumor suppressor exerts antitumor functions through its ability to regulate the transcription of its downstream targets. Long noncoding RNAs (lncRNAs) act as oncogenes or tumor suppressors implicated in tumorigenesis and tumor progression. Here, we identify the lncRNA LINC00324 (long intergenic noncoding RNA 00324) as a direct p53 transcriptional target. Knockdown of LINC00324 expression promotes tumor growth by reducing p53 transcriptional activity, whereas ectopic LINC00324 expression demonstrates a reverse effect. Notably, LINC00324 is present in the endogenous p53 complex in tumor cells and directly binds to the C-terminal domain of p53 in vitro. Mechanistically, LINC00324 enables p53 transactivation by competitively disrupting the p53-SET interaction, resulting in an increase of p300/CBP-mediated H3K18 and H3K27 acetylation on the p53 target promoters. Lower LINC00324 expression is associated with more aggressive disease status and predicts worse overall survival of patients with cancer. Our study identifies a p53/LINC00324 positive feedback loop that suppresses tumor growth by counteracting SET-mediated transcriptional repression.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jun Zhang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaofeng Xuan
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Di Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jianfeng Yu
- Department of Life Science and Technology, Changshu Institute of Technology, 99 South Third Ring Road, Suzhou 215500, China
| | - Peizhen Wang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Wenjuan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou 215300, China
| | - Mengfan He
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Xiao-Min Liu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jun Zhou
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China.
| |
Collapse
|
38
|
Balla B, Tripon F, Candea M, Banescu C. Copy Number Variations and Gene Mutations Identified by Multiplex Ligation-Dependent Probe Amplification in Romanian Chronic Lymphocytic Leukemia Patients. J Pers Med 2023; 13:1239. [PMID: 37623489 PMCID: PMC10455273 DOI: 10.3390/jpm13081239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is known for its wide-ranging clinical and genetic diversity. The study aimed to assess the associations between copy number variations (CNVs) and various biological and clinical features, as well as the survival rates of CLL patients and to evaluate the effectiveness of the multiplex ligation-dependent probe amplification (MLPA) technique in CLL patients.DNA was extracted from 110 patients, and MLPA was performed. Mutations in NOTCH1, SF3B1, and MYD88 were also analyzed. A total of 52 patients showed at least one CNV, 26 had at least one somatic mutation, and 10 presented both, CNVs, and somatic mutations. The most commonly identified CNVs were del(114.3), del(11q22.3), and dup(12q23.2). Other CNVs identified included del(17p13.1), del(14q32.33), dup(10q23.31), and del(19p13.2). One patient was identified with concomitant trisomy 12, 13, and 19. NOTCH1 and SF3B1 mutations were found in 13 patients each, either alone or in combination with other mutations or CNVs, while MYD88 mutation was identified in one patient. Forty-two patients had normal results. Associations between the investigated CNVs and gene mutations and patients' overall survival were found. The presence of NOTCH1 and SF3B1 mutations or the combination of NOTCH1 mutation and CNVs significantly influenced the survival of patients with CLL. Both mutations are frequently associated with different CNVs. Del(13q) is associated with the longest survival rate, while the shortest survival is found in patients with del(17p). Even if MLPA has constraints, it may be used as the primary routine analysis in patients with CLL.
Collapse
Affiliation(s)
- Beata Balla
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Florin Tripon
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Claudia Banescu
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Medical Genetics Laboratory, Emergency County Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
39
|
Zeng K, Zeng Y, Zhan H, Zhan Z, Wang L, Xie Y, Tang Y, Li C, Chen Y, Li S, Liu M, Chen X, Liang L, Deng F, Song Y, Zhou A. SEC61G assists EGFR-amplified glioblastoma to evade immune elimination. Proc Natl Acad Sci U S A 2023; 120:e2303400120. [PMID: 37523556 PMCID: PMC10410745 DOI: 10.1073/pnas.2303400120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
Amplification of chromosome 7p11 (7p11) is the most common alteration in primary glioblastoma (GBM), resulting in gains of epidermal growth factor receptor (EGFR) copy number in 50 to 60% of GBM tumors. However, treatment strategies targeting EGFR have thus far failed in clinical trials, and the underlying mechanism remains largely unclear. We here demonstrate that EGFR amplification at the 7p11 locus frequently encompasses its neighboring genes and identifies SEC61G as a critical regulator facilitating GBM immune evasion and tumor growth. We found that SEC61G is always coamplified with EGFR and is highly expressed in GBM. As an essential subunit of the SEC61 translocon complex, SEC61G promotes translocation of newly translated immune checkpoint ligands (ICLs, including PD-L1, PVR, and PD-L2) into the endoplasmic reticulum and promotes their glycosylation, stabilization, and membrane presentation. Depletion of SEC61G promotes the infiltration and cytolytic activity of CD8+ T cells and thus inhibits GBM occurrence. Further, SEC61G inhibition augments the therapeutic efficiency of EGFR tyrosine kinase inhibitors in mice. Our study demonstrates a critical role of SEC61G in GBM immune evasion, which provides a compelling rationale for combination therapy of EGFR-amplified GBMs.
Collapse
Affiliation(s)
- Kunlin Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Hongchao Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Ziling Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Li Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yuxin Xie
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yanqing Tang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Cuiying Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Yanwen Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Shangbiao Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou510285, China
| | - Ming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Xiaoxia Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Li Liang
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Aidong Zhou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou510285, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
40
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
41
|
Masnikosa R, Pirić D, Post JM, Cvetković Z, Petrović S, Paunović M, Vučić V, Bindila L. Disturbed Plasma Lipidomic Profiles in Females with Diffuse Large B-Cell Lymphoma: A Pilot Study. Cancers (Basel) 2023; 15:3653. [PMID: 37509314 PMCID: PMC10377844 DOI: 10.3390/cancers15143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lipidome dysregulation is a hallmark of cancer and inflammation. The global plasma lipidome and sub-lipidome of inflammatory pathways have not been reported in diffuse large B-cell lymphoma (DLBCL). In a pilot study of plasma lipid variation in female DLBCL patients and BMI-matched disease-free controls, we performed targeted lipidomics using LC-MRM to quantify lipid mediators of inflammation and immunity, and those known or hypothesised to be involved in cancer progression: sphingolipids, resolvin D1, arachidonic acid (AA)-derived oxylipins, such as hydroxyeicosatetraenoic acids (HETEs) and dihydroxyeicosatrienoic acids, along with their membrane structural precursors. We report on the role of the eicosanoids in the separation of DLBCL from controls, along with lysophosphatidylinositol LPI 20:4, implying notable changes in lipid metabolic and/or signalling pathways, particularly pertaining to AA lipoxygenase pathway and glycerophospholipid remodelling in the cell membrane. We suggest here the set of S1P, SM 36:1, SM 34:1 and PI 34:1 as DLBCL lipid signatures which could serve as a basis for the prospective validation in larger DLBCL cohorts. Additionally, untargeted lipidomics indicates a substantial change in the overall lipid metabolism in DLBCL. The plasma lipid profiling of DLBCL patients helps to better understand the specific lipid dysregulations and pathways in this cancer.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Julia Maria Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Zorica Cvetković
- Department of Haematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia
| | - Snježana Petrović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (S.P.)
| | - Marija Paunović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (S.P.)
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (S.P.)
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
42
|
Nakanishi S, Li J, Berglund AE, Kim Y, Zhang Y, Zhang L, Yang C, Song J, Mirmira RG, Cleveland JL. The Polyamine-Hypusine Circuit Controls an Oncogenic Translational Program Essential for Malignant Conversion in MYC-Driven Lymphoma. Blood Cancer Discov 2023; 4:294-317. [PMID: 37070973 PMCID: PMC10320645 DOI: 10.1158/2643-3230.bcd-22-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
The MYC oncoprotein is activated in a broad spectrum of human malignancies and transcriptionally reprograms the genome to drive cancer cell growth. Given this, it is unclear if targeting a single effector of MYC will have therapeutic benefit. MYC activates the polyamine-hypusine circuit, which posttranslationally modifies the eukaryotic translation factor eIF5A. The roles of this circuit in cancer are unclear. Here we report essential intrinsic roles for hypusinated eIF5A in the development and maintenance of MYC-driven lymphoma, where the loss of eIF5A hypusination abolishes malignant transformation of MYC-overexpressing B cells. Mechanistically, integrating RNA sequencing, ribosome sequencing, and proteomic analyses revealed that efficient translation of select targets is dependent upon eIF5A hypusination, including regulators of G1-S phase cell-cycle progression and DNA replication. This circuit thus controls MYC's proliferative response, and it is also activated across multiple malignancies. These findings suggest the hypusine circuit as a therapeutic target for several human tumor types. SIGNIFICANCE Elevated EIF5A and the polyamine-hypusine circuit are manifest in many malignancies, including MYC-driven tumors, and eIF5A hypusination is necessary for MYC proliferative signaling. Not-ably, this circuit controls an oncogenic translational program essential for the development and maintenance of MYC-driven lymphoma, supporting this axis as a target for cancer prevention and treatment. See related commentary by Wilson and Klein, p. 248. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Shima Nakanishi
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders E. Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yonghong Zhang
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jinming Song
- Department of Pathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
43
|
Pellot Ortiz KI, Rechberger JS, Nonnenbroich LF, Daniels DJ, Sarkaria JN. MDM2 Inhibition in the Treatment of Glioblastoma: From Concept to Clinical Investigation. Biomedicines 2023; 11:1879. [PMID: 37509518 PMCID: PMC10377337 DOI: 10.3390/biomedicines11071879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Inhibition of the interaction between MDM2 and p53 has emerged as a promising strategy for combating cancer, including the treatment of glioblastoma (GBM). Numerous MDM2 inhibitors have been developed and are currently undergoing rigorous testing for their potential in GBM therapy. Encouraging results from studies conducted in cell culture and animal models suggest that MDM2 inhibitors could effectively treat a specific subset of GBM patients with wild-type TP53 or functional p53. Combination therapy with clinically established treatment modalities such as radiation and chemotherapy offers the potential to achieve a more profound therapeutic response. Furthermore, an increasing array of other molecularly targeted therapies are being explored in combination with MDM2 inhibitors to increase the effects of individual treatments. While some MDM2 inhibitors have progressed to early phase clinical trials in GBM, their efficacy, alone and in combination, is yet to be confirmed. In this article, we present an overview of MDM2 inhibitors currently under preclinical and clinical investigation, with a specific focus on the drugs being assessed in ongoing clinical trials for GBM patients.
Collapse
Affiliation(s)
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Leo F Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
44
|
Boldrin E, Piano MA, Bernaudo F, Alfieri R, Biasin MR, Montagner IM, Volpato A, Mattara G, Lamacchia F, Magni G, Rosato A, Scapinello A, Pilati P, Curtarello M. p53/ TP53 Status Assessment in Gastroesophageal Adenocarcinoma. Cancers (Basel) 2023; 15:2783. [PMID: 37345120 DOI: 10.3390/cancers15102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Chromosomal instability (CIN) is very frequent in gastroesophageal adenocarcinoma (GEA) and it is characterized by TP53 deletions/mutations resulting in p53 nuclear accumulation, as revealed by immunohistochemistry (IHC), which considers the cases with "high" staining levels to be positive. Aiming to improve aberrant TP53 detection, droplet digital PCR (ddPCR) was used to evaluate TP53 deletion in formalin-fixed, paraffin-embedded DNA (FFPE-DNA) and cell-free DNA (cfDNA). To further investigate the mutational TP53 profile, next-generation sequencing (NGS) was performed in a subset of FFPE samples. After combining "low" and "high" IHC staining level groups, the proportion of deletion events was significantly higher compared to the "intermediate" group (72.9% vs. 47.5%, p-value = 0.002). The ddPCR TP53 deletion assay was feasible for cfDNA but only had good agreement (72.7%, Cohen's kappa = 0.48) with the assay performed with FFPE-DNA of the "low-level" group. NGS analysis confirmed that, in the "low-level" group, a high percentage (66.7%) of cases were aberrant, with disruptive mutations that probably led to p53 loss. Data suggested that p53 IHC alone underestimates the CIN phenotype in GEA and that molecular analysis in both solid and liquid biopsies could be integrated with it; in particular, in cases of completely negative staining.
Collapse
Affiliation(s)
- Elisa Boldrin
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Assunta Piano
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Francesco Bernaudo
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Rita Alfieri
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Raffaella Biasin
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Isabella Monia Montagner
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Alice Volpato
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Genny Mattara
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Francesco Lamacchia
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giovanna Magni
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Antonio Scapinello
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| |
Collapse
|
45
|
Trias I, Saco A, Marimon L, López Del Campo R, Manzotti C, Ordi O, Del Pino M, Pérez FM, Vega N, Alós S, Martínez A, Rodriguez-Carunchio L, Reig O, Jares P, Teixido C, Ajami T, Corral-Molina JM, Algaba F, Ribal MJ, Ribera-Cortada I, Rakislova N. P53 in Penile Squamous Cell Carcinoma: A Pattern-Based Immunohistochemical Framework with Molecular Correlation. Cancers (Basel) 2023; 15:2719. [PMID: 37345055 DOI: 10.3390/cancers15102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 06/23/2023] Open
Abstract
p53 immunohistochemistry (IHC) has been proposed as a surrogate for TP53 mutations in penile squamous cell carcinomas (PSCC). We aimed to evaluate the performance of a pattern-based evaluation of p53 IHC in PSCC. Human papilloma virus (HPV) DNA testing, p16 and p53 IHC, and whole exome sequencing were performed in a series of 40 PSCC. p53 IHC was evaluated following a pattern-based framework and conventional p53 IHC evaluation. Out of 40 PSCC, 12 (30.0%) were HPV-associated, and 28 (70.0%) were HPV-independent. The agreement between the p53 IHC pattern-based evaluation and TP53 mutational status was almost perfect (k = 0.85). The sensitivity and accuracy of the pattern-based framework for identifying TP53 mutations were 95.5% and 92.5%, respectively, which were higher than the values of conventional p53 IHC interpretation (54.5% and 70.0%, respectively), whereas the specificity was the same (88.9%). In conclusions, the pattern-based framework improves the accuracy of detecting TP53 mutations in PSCC compared to the classical p53 IHC evaluation.
Collapse
Affiliation(s)
- Isabel Trias
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Adela Saco
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Lorena Marimon
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Barcelona Institute of Global Health (ISGlobal), University of Barcelona, 08036 Barcelona, Spain
| | - Ricardo López Del Campo
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Carolina Manzotti
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Barcelona Institute of Global Health (ISGlobal), University of Barcelona, 08036 Barcelona, Spain
| | - Oriol Ordi
- Barcelona Institute of Global Health (ISGlobal), University of Barcelona, 08036 Barcelona, Spain
| | - Marta Del Pino
- Department of Obstetrics and Gynecology, Hospital Clínic of Barcelona, Universityof Barcelona, 08036 Barcelona, Spain
| | - Francisco M Pérez
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Naiara Vega
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Silvia Alós
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Martínez
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Leonardo Rodriguez-Carunchio
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Oscar Reig
- Translational Genomic and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Pedro Jares
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Translational Genomic and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Tarek Ajami
- Uro-Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | | | - Ferran Algaba
- Department of Pathology, Fundació Puigvert, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - María J Ribal
- Uro-Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Inmaculada Ribera-Cortada
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Natalia Rakislova
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Barcelona Institute of Global Health (ISGlobal), University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
46
|
Wu B, Chen X, Pan X, Deng X, Li S, Wang Z, Wang J, Liao D, Xu J, Chen M, Zhao C, Xue Z, Wang Y, Niu T, Lin J, Chen L, Liu Y, Chen C. Single-cell transcriptome analyses reveal critical roles of RNA splicing during leukemia progression. PLoS Biol 2023; 21:e3002088. [PMID: 37130348 PMCID: PMC10154039 DOI: 10.1371/journal.pbio.3002088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/21/2023] [Indexed: 05/04/2023] Open
Abstract
Leukemogenesis is proposed to be a multistep process by which normal hematopoietic stem and progenitor cells are transformed into full-blown leukemic cells, the details of which are not fully understood. Here, we performed serial single-cell transcriptome analyses of preleukemic and leukemic cells (PLCs) and constructed the cellular and molecular transformation trajectory in a Myc-driven acute myeloid leukemia (AML) model in mice, which represented the transformation course in patients. We found that the Myc targets were gradually up-regulated along the trajectory. Among them were splicing factors, which showed stage-specific prognosis for AML patients. Furthermore, we dissected the detailed gene network of a tipping point for hematopoietic stem and progenitor cells (HSPCs) to generate initiating PLCs, which was characterized by dramatically increased splicing factors and unusual RNA velocity. In the late stage, PLCs acquired explosive heterogeneity through RNA alternative splicing. Among them, the Hsp90aa1hi subpopulation was conserved in both human and mouse AML and associated with poor prognosis. Exon 4 skipping of Tmem134 was identified in these cells. While the exon skipping product Tmem134β promoted the cell cycle, full-length Tmem134α delayed tumorigenesis. Our study emphasized the critical roles of RNA splicing in the full process of leukemogenesis.
Collapse
Affiliation(s)
- Baohong Wu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelan Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Pan
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xintong Deng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shujun Li
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongwang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liao
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zhihong Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingwen Lin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Romanovsky E, Kluck K, Ourailidis I, Menzel M, Beck S, Ball M, Kazdal D, Christopoulos P, Schirmacher P, Stiewe T, Stenzinger A, Budczies J. Homogenous TP53mut-associated tumor biology across mutation and cancer types revealed by transcriptome analysis. Cell Death Discov 2023; 9:126. [PMID: 37059713 PMCID: PMC10104808 DOI: 10.1038/s41420-023-01413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancer. While no TP53-targeting drugs have been approved in the USA or Europe so far, preclinical and clinical studies are underway to investigate targeting of specific or all TP53 mutations, for example, by restoration of the functionality of mutated TP53 (TP53mut) or protecting wildtype TP53 (TP53wt) from negative regulation. We performed a comprehensive mRNA expression analysis in 24 cancer types of TCGA to extract (i) a consensus expression signature shared across TP53 mutation types and cancer types, (ii) differential gene expression patterns between tumors harboring different TP53 mutation types such as loss of function, gain of function or dominant-negative mutations, and (iii) cancer-type-specific patterns of gene expression and immune infiltration. Analysis of mutational hotspots revealed both similarities across cancer types and cancer type-specific hotspots. Underlying ubiquitous and cancer type-specific mutational processes with the associated mutational signatures contributed to explaining this observation. Virtually no genes were differentially expressed between tumors harboring different TP53 mutation types, while hundreds of genes were over- and underexpressed in TP53mut compared to TP53wt tumors. A consensus list included 178 genes that were overexpressed and 32 genes that were underexpressed in the TP53mut tumors of at least 16 of the investigated 24 cancer types. In an association analysis of immune infiltration with TP53 mutations in 32 cancer subtypes, decreased immune infiltration was observed in six subtypes, increased infiltration in two subtypes, a mixed pattern of decreased and increased immune cell populations in four subtypes, while immune infiltration was not associated with TP53 status in 20 subtypes. The analysis of a large cohort of human tumors complements results from experimental studies and supports the view that TP53 mutations should be further evaluated as predictive markers for immunotherapy and targeted therapies.
Collapse
Affiliation(s)
- Eva Romanovsky
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Iordanis Ourailidis
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, member of the German Center for Lung Research (DZL), Philipps-University, 35037, Marburg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
48
|
Rahmé R, Braun T, Manfredi JJ, Fenaux P. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines 2023; 11:biomedicines11041152. [PMID: 37189770 DOI: 10.3390/biomedicines11041152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
TP53 mutations are less frequent in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) than in solid tumors, except in secondary and therapy-related MDS/AMLs, and in cases with complex monosomal karyotype. As in solid tumors, missense mutations predominate, with the same hotspot mutated codons (particularly codons 175, 248, 273). As TP53-mutated MDS/AMLs are generally associated with complex chromosomal abnormalities, it is not always clear when TP53 mutations occur in the pathophysiological process. It is also uncertain in these MDS/AML cases, which often have inactivation of both TP53 alleles, if the missense mutation is only deleterious through the absence of a functional p53 protein, or through a potential dominant-negative effect, or finally a gain-of-function effect of mutant p53, as demonstrated in some solid tumors. Understanding when TP53 mutations occur in the disease course and how they are deleterious would help to design new treatments for those patients who generally show poor response to all therapeutic approaches.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université Paris Cité, 75010 Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université Paris Cité, 75010 Paris, France
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Thorsten Braun
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Fenaux
- Senior Hematology Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| |
Collapse
|
49
|
Ball S, Loghavi S, Zeidan AM. TP53-altered higher-risk myelodysplastic syndromes/neoplasms and acute myeloid leukemia: a distinct genetic entity with unique unmet needs. Leuk Lymphoma 2023; 64:540-550. [PMID: 36323304 DOI: 10.1080/10428194.2022.2136969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Pathogenic alterations of TP53 are an independent poor prognostic factor in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Clinical course of TP53- altered myeloid neoplasms is dictated by genetic characteristics, such as TP53 allelic state and variant allele frequency (VAF), and not the blast count. Hence, it was recently proposed that MDS (with increased blasts) and AML with TP53 alterations may be best classified as a single molecular disease entity, TP53-mutated higher-risk (HR)-MDS/AML. TP53 mutations drive resistance to intensive chemotherapies and less intensive hypomethylating agents (HMA). Novel combinations incorporating BCL2 inhibitor venetoclax improve response rates for TP53-mutated subgroup, but the survival is not improved. Early clinical studies combining HMA with investigational agents demonstrated activity in TP53-mutated HR-MDS/AML, but updated results with larger samples, longer follow-up, or randomized trials were less impressive to date. Future research should focus on finding novel, potentially disease-modifying therapies to improve outcomes in patients with TP53-mutated HR-MDS/AML.
Collapse
Affiliation(s)
- Somedeb Ball
- Division of Hematology and Medical Oncology, University of South Florida/H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
50
|
Qi L, Pan X, Chen X, Liu P, Chen M, Zhang Q, Hang X, Tang M, Wen D, Dai L, Chen C, Liu Y, Xu Z. COX-2/PGE2 upregulation contributes to the chromosome 17p-deleted lymphoma. Oncogenesis 2023; 12:5. [PMID: 36750552 PMCID: PMC9905509 DOI: 10.1038/s41389-023-00451-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Deletions of chromosome 17p, where TP53 gene locates, are the most frequent chromosome alterations in human cancers and associated with poor outcomes in patients. Our previous work suggested that there were p53-independent mechanisms involved in chromosome 17p deletions-driven cancers. Here, we report that altered arachidonate metabolism, due to the deficiency of mouse Alox8 on chromosome 11B3 (homologous to human ALOX15B on chromosome 17p), contributes to the B cell malignancy. While the metabolites produced from lipoxygenase pathway reduced, chromosome 11B3 deletions or Alox8 loss, lead to upregulating its paralleling cyclooxygenase pathway, indicated by the increased levels of oncometabolite prostaglandin E2. Ectopic PGE2 prevented the apoptosis and differentiation of pre-B cells. Further studies revealed that Alox8 deficiency dramatically and specifically induced Cox-2(Ptgs2) gene expression. Repressing Cox-2 by its shRNAs impaired the tumorigenesis driven by Alox8 loss. And, in turn, tumor cells with Alox8 or 11B3 loss were sensitive to the COX-2 inhibitor celecoxib. This correlation between COX-2 upregulation and chromosome 17p deletions was consistent in human B-cell lymphomas. Hence, our studies reveal that the arachidonate metabolism abnormality with unbalanced ALOX and COX pathways underlies human cancers with 17p deletions and suggest new susceptibility for this disease.
Collapse
Affiliation(s)
- Lu Qi
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiangyu Pan
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xuelan Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Pengpeng Liu
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Mei Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Qi Zhang
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaohang Hang
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Minghai Tang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Dan Wen
- grid.449525.b0000 0004 1798 4472Department of Rheumatology, North Sichuan Medical College First Affiliated Hospital, Institute of Material Medicine, North Sichuan Medical College, Nanchong, Sichuan China
| | - Lunzhi Dai
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Chong Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhengmin Xu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Department of Rheumatology, North Sichuan Medical College First Affiliated Hospital, Institute of Material Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|