1
|
Fu B, Ma H, Wang L, Guo Z, Wang F, Liu D, Zhang D. Embryonic Origins of Cancer: Insights from Double Homeobox 4 Regulation. Biomolecules 2025; 15:721. [PMID: 40427614 PMCID: PMC12108839 DOI: 10.3390/biom15050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Embryogenesis and tumorigenesis share several key biological characteristics, such as rapid cell proliferation, high plasticity, and immune evasion. This similarity indicates that developmental pathways can be hijacked, leading to the formation of malignant cell states. With regard to this, cancer can be regarded as a stem cell disease. On the contrary, a fetus, in many ways, has similar characteristics to the "ideal tumor", such as immune evasion and rapid growth. Therefore, deciphering the molecular mechanisms beneath these phenomena will help us to understand the embryonic origins of cancer. This review discusses the relationship between embryogenesis and tumorigenesis, highlighting the potential roles played by DUX4. DUX4 is involved in the activation of the zygote genome and then facilitates the establishment of totipotency in pre-implantation embryos, whereas the misexpression of DUX4 is associated with different types of cancer. Taken together, this indicates that DUX4 performs analogous functions in these two processes and connects embryogenesis and tumorigenesis. Through examining DUX4, this review underscores the importance of developmental mechanisms in cancer biology, suggesting that the insights gained from studying embryonic processes may provide novel therapeutic strategies. As we continue to explore the complex relationship between cancer and embryogenesis, elucidating the role of DUX4 in linking these two processes will be critical for developing targeted therapies that exploit developmental pathways.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Zhenhua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
2
|
Yu C, Zhong B, Zhang Y, Zhao H, Wu J, Yu H, Yu H, Li H. Combining ATAC-seq and RNA-seq reveals key genes for gonadal abnormalities in one-month-old XX-DSD pigs. BMC Genomics 2025; 26:447. [PMID: 40329180 PMCID: PMC12057259 DOI: 10.1186/s12864-025-11613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Disorders of Sex Development (DSD) are caused by congenital abnormalities in the chromosomes, and subsequent development of gonads or sexual anatomy. XX-DSD pigs exhibit a series of adverse symptoms such as sterility, genital infections, and decline in meat quality, leading to significant economic losses in the breeding industry. However, the understanding of the etiology and pathogenesis of XX-DSD in pigs remains limited. To investigate the molecular mechanisms underlying abnormal gonadal development in XX-DSD pigs, we analyzed the gonads of 1-month-old XX-DSD pigs, normal females, and normal males using RNA-seq and ATAC-seq techniques. RESULTS From RNA-seq, we identified potential genes involved in gonadal development in XX-DSD pigs, including SOX9, HSD3B1, CYP19A1, CCNB2, CYP11A1, DMRT1, and MGP. Following this, we analyzed ATAC-seq data and identified 14,820 differential accessible chromatin peaks. Then, by integrating the ATAC-seq and RNA-seq analysis results, we identified several candidate genes (SOX9, COL1A1, COL1A2, FDX1, COL6A1, HSD3B1, FSHR, and CYP17A1) that might be associated with sex development. Through PPI (Protein-Protein Interaction Networks) analysis, we found that SOX9 gene was the top hub gene. Furthermore, we confirmed the effect of the open chromatin region on SOX9 gene expression by a dual-luciferase reporter assay, thus further validating the critical role of this open region in regulating SOX9 expression. CONCLUSIONS This study elucidates the critical regulatory role of specific open chromatin structures in the SOX9 gene promoter region (8647563-8648475) in gonadal development of XX-DSD pigs. Additionally, we identify that genes such as SOX9, HSD3B1, and CYP19A1 act in concert to participate in gonadal development. These findings provide molecular evidence for the dynamic chromatin regulatory network underlying gonadal dysgenesis in XX-DSD and lay the foundation for subsequent mechanistic studies.
Collapse
Affiliation(s)
- Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Animal Science and Technology College, Foshan University, Foshan, Guangdong, 528225, China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Animal Science and Technology College, Foshan University, Foshan, Guangdong, 528225, China
| | - Yuqiao Zhang
- Zhongshan Baishi Pig Farm Co., Ltd.r, Zhongshan, 528463, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Animal Science and Technology College, Foshan University, Foshan, Guangdong, 528225, China
| | - Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Animal Science and Technology College, Foshan University, Foshan, Guangdong, 528225, China
| | - Haiyi Yu
- School of Biological Sciences, Crawley (Perth), The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Animal Science and Technology College, Foshan University, Foshan, Guangdong, 528225, China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Animal Science and Technology College, Foshan University, Foshan, Guangdong, 528225, China.
| |
Collapse
|
3
|
Zhang J, Li H, Li L, Wu J, Song L, Liu X, Pan Z, Zhou C, Li W, Liu Z, Jiao M, Hu M, Dong Z, Zhang H, Shi B, Wang Y, Wang D, Carter B, Zhao S, Ren G, Zhao Y, Zhang Y. Super RNA Pol II domains enhance minor ZGA through 3D interaction to ensure the integrity of major transcriptional waves in late-ZGA mammals. CELL GENOMICS 2025:100856. [PMID: 40315839 DOI: 10.1016/j.xgen.2025.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
Zygotic genome activation (ZGA) occurs at distinct stages across mammals, with mice initiating ZGA at the 2-cell stage and bovines and humans activating the process in the 4- to 8-cell stages. RNA polymerase II (RNA Pol II) gradually initiates ZGA in mice, but regulation in late-ZGA species remains unclear. Here, RNA Pol II profiling in bovine embryos identified strong intergenic clusters that boost minor ZGA gene expression via chromatin interactions and are named super RNA Pol II domains (SPDs). CRISPRi perturbation of SPDs in bovine embryos decreases the expression of minor ZGA genes, whereas the knockdown of these genes disrupts major ZGA and embryogenesis. Rapid enhancement of minor ZGA genes also occurs in human embryos. Alternatively, mouse and porcine oocytes precociously express these minor ZGA genes without SPDs. Thus, SPDs appear to be an adaptation in bovine embryos, promoting minor ZGA gene expression to comparable levels as early-ZGA species, illuminating species-specific regulation of ZGA timing.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Hengkuan Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Linmi Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Linjie Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangyuan Pan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Zhou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Wenying Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Zixiao Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mingyang Hu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Zhenyu Dong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Debao Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Benjamin Carter
- Department of Biochemistry, Purdue University, 175 S University Street, West Lafayette, IN 47907, USA
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
| | - Gang Ren
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yunxia Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
5
|
Lian J, An Y, Wei W, Lu Y, Zhang X, Sun G, Guo H, Xu L, Chen X, Hu H. Transcriptional landscape and chromatin accessibility reveal key regulators for liver regenerative initiation and organoid formation. Cell Rep 2025; 44:115633. [PMID: 40286271 DOI: 10.1016/j.celrep.2025.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Liver regeneration is a well-organized and phase-restricted process that involves chromatin remodeling and transcriptional alterations. However, the specific transcription factors (TFs) that act as key "switches" to initiate hepatocyte regeneration and organoid formation remain unclear. Comprehensive integration of RNA sequencing and ATAC sequencing reveals that ATF3 representing "Initiation_on" TF and ONECUT2 representing "Initiation_off" TF transiently modulate the occupancy of target promoters to license liver cells for regeneration. Knockdown of Atf3 or overexpression of Onecut2 not only reduces organoid formation but also delays tissue-damage repair after PHx or CCl4 treatment. Mechanistically, we demonstrate that ATF3 binds to the promoter of Slc7a5 to activate mTOR signals while the Hmgcs1 promoter loses ONECUT2 binding to facilitate regenerative initiation. The results identify the mechanism for initiating regeneration and reveal the remodeling of transcriptional landscapes and chromatin accessibility, thereby providing potential therapeutic targets for liver diseases with regenerative defects.
Collapse
Affiliation(s)
- Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenjing Wei
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yao Lu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longjin Xu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Xuena Chen
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Bai D, Yang J, Xue X, Gao Y, Wang Y, Cui M, He B, Zeng H, Xiang H, Guo Z, Zhu L, Gao J, Zhu C, Tang F, Yi C. Single-cell 5-hydroxymethylcytosine landscapes of mouse early embryos at single-base resolution. Cell Rep 2025; 44:115520. [PMID: 40186870 DOI: 10.1016/j.celrep.2025.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
DNA methylation and hydroxymethylation are extensively reprogrammed during mammalian early embryogenesis, and studying their regulatory functions requires comprehensive DNA hydroxymethylation maps at base resolution. Here, we develop single-cell 5-hydroxymethylcytosine (5hmC) chemical-assisted C-to-T conversion-enabled sequencing (schmC-CATCH), a method leveraging selective 5hmC labeling for a quantitative, base-resolution, genome-wide landscape of the DNA hydroxymethylome in mouse gametes and preimplantation embryos spanning from the zygote to blastocyst stage. We revealed that, in addition to late zygotic stages, onset of ten-eleven translocation (TET)-mediated DNA hydroxymethylation initiates immediately after fertilization and is characterized by the distinct 5hmC patterns on the parental genomes shaped by TET3 demethylase. We identified persistent clusters of 5hmC hotspots throughout early embryonic stages, which are highly associated with young retroelements. 5hmC is also associated with different regulatory elements, indicating a potential regulatory function during early embryogenesis. Collectively, our work elucidates the dynamics of active DNA demethylation during mouse preimplantation development and provides a valuable resource for functional studies of epigenetic reprogramming in early embryos.
Collapse
Affiliation(s)
- Dongsheng Bai
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Jinmin Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PRC
| | - Yun Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PRC
| | - Mengge Cui
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Bo He
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, PRC
| | - Hu Zeng
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PRC; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230022, PRC
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PRC
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC; The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, PRC
| | - Juan Gao
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Chenxu Zhu
- New York Genome Center, New York, NY 10013, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, PRC.
| | - Chengqi Yi
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, PRC; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PRC; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, PRC.
| |
Collapse
|
7
|
Zhang Z, Wu T, Sang Q, Wang L. Human oocyte quality and reproductive health. Sci Bull (Beijing) 2025:S2095-9273(25)00403-7. [PMID: 40335394 DOI: 10.1016/j.scib.2025.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Declining female fertility is a health issue that has received broad global attention. Oocyte quality is the key limiting factor of female fertility, and key processes affecting oocyte quality involve the secretion of and response to hormones, ovarian function, oogenesis, oocyte maturation, and meiosis. However, compared with other species, the research and understanding of human oocyte quality and human reproductive health is limited. This review highlights our current understanding of the physiological factors and pathological factors related to human oocyte quality and discusses potential treatments. In terms of physiology, we discuss the regulation of the hypothalamic-pituitary-gonadal axis, granulosa cells, key subcellular structures, maternal mRNA homeostasis, the extracellular matrix, the maternal microenvironment, and multi-omics resources related to human oocyte quality. In terms of pathology, we review hypothalamic-pituitary-gonadal defects, ovarian dysfunction (including premature ovarian insufficiency and polycystic ovary syndrome), human oocyte development defects, and aging. In terms of the pathological aspects of human oocyte development and quality defects, nearly half of the reported pathogenic genes are involved in meiosis, while the remainder are involved in maternal mRNA regulation, the subcortical maternal complex, zona pellucida formation, ion channels, protein transport, and mitochondrial function. Furthermore, we outline the emerging scientific prospects and challenges for future explorations of the biological mechanisms behind infertility and the development of clinical treatments. This review seeks to deepen our understanding of the mechanisms regulating human oocyte quality and to provide novel insights into clinical female infertility characterized by defects in oocyte quality and oocyte development.
Collapse
Affiliation(s)
- Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Shanghai Academy of Natural Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Nakatani T, Schauer T, Pal M, Ettinger A, Altamirano-Pacheco L, Zorn J, Gilbert DM, Torres-Padilla ME. RIF1 controls replication timing in early mouse embryos independently of lamina-associated nuclear organization. Dev Cell 2025:S1534-5807(25)00179-0. [PMID: 40262611 DOI: 10.1016/j.devcel.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/18/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Cells must duplicate their genome before they divide to ensure equal transmission of genetic information. The genome is replicated with a defined temporal order, replication timing (RT), which is cell-type specific and linked to 3D-genome organization. During mammalian development, RT is initially not well defined and becomes progressively consolidated from the 4-cell stage. However, the molecular regulators are unknown. Here, by combining loss-of-function analysis with genome-wide investigation of RT in mouse embryos, we identify Rap1 interacting factor 1 (RIF1) as a regulator of the progressive consolidation of RT. Embryos without RIF1 show DNA replication features of an early, more totipotent state. RIF1 regulates the progressive stratification of RT values and its depletion leads to global RT changes and a more heterogeneous RT program. Developmental RT changes are disentangled from changes in transcription and nuclear organization, specifically nuclear lamina association. Our work provides molecular understanding of replication and genome organization at the beginning of mammalian development.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Luis Altamirano-Pacheco
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Julia Zorn
- Core Facility Laboratory Animal Services, Helmholtz Zentrum München, 81377 München, Germany
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
9
|
Pal M, Schauer T, Burton A, Nakatani T, Pecori F, Hernández-Giménez A, Nadelson I, Marti-Renom MA, Torres-Padilla ME. The establishment of nuclear organization in mouse embryos is orchestrated by multiple epigenetic pathways. Cell 2025:S0092-8674(25)00396-4. [PMID: 40273908 DOI: 10.1016/j.cell.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/07/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The folding of the genome in the 3D nuclear space is fundamental for regulating all DNA-related processes. The association of the genome with the nuclear lamina into lamina-associated domains (LADs) represents the earliest feature of nuclear organization during development. Here, we performed a gain-of-function screen in mouse embryos to obtain mechanistic insights. We find that perturbations impacting histone H3 modifications, heterochromatin, and histone content are crucial for the establishment of nuclear architecture in zygotes and/or 2-cell-stage embryos. Notably, some perturbations exerted differential effects on zygotes versus 2-cell-stage embryos. Moreover, embryos with disrupted LADs can rebuild nuclear architecture at the 2-cell stage, indicating that the initial establishment of LADs in zygotes might be dispensable for early development. Our findings provide valuable insights into the functional interplay between chromatin and structural components of the nucleus that guide genome-lamina interactions during the earliest developmental stages.
Collapse
Affiliation(s)
- Mrinmoy Pal
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Iliya Nadelson
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Marc A Marti-Renom
- National Center for Genome Analysis, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany; Faculty of Biology, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
10
|
Formichetti S, Serrano JB, Chitnavis U, Sadowska A, Liu N, Boskovic A, Boulard M. Perturbing nuclear glycosylation in the mouse preimplantation embryo slows down embryonic development. Proc Natl Acad Sci U S A 2025; 122:e2410520122. [PMID: 40203037 PMCID: PMC12012502 DOI: 10.1073/pnas.2410520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The main form of intracellular protein glycosylation (O-GlcNAc) is reversible and has been mapped on thousands of cytoplasmic and nuclear proteins, including RNA polymerase II, transcription factors, and chromatin modifiers. The O-GlcNAc modification is catalyzed by a single enzyme known as O-GlcNAc Transferase, that is required for mammalian early development. Yet, neither the regulatory function of protein O-GlcNAcylation in the embryo nor the embryonic O-GlcNAc proteome have been documented. Here, we devised a strategy to enzymatically remove O-GlcNAc from preimplantation embryonic nuclei, where this modification accumulates coincidently with embryonic genome activation (EGA). Unexpectedly, the depletion of nuclear O-GlcNAc to undetectable levels has no impact on EGA, but dampens the transcriptional upregulation of the translational machinery, and triggers a spindle checkpoint response. These molecular alterations were phenotypically associated with a developmental delay starting from early cleavage stages and persisting after embryo implantation, establishing a link between nuclear glycosylation and the pace of embryonic development.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
- Combined Faculty of Mathematics, Engineering and Natural Sciences, collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg69117, Germany
| | - Joana B. Serrano
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Urvashi Chitnavis
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Agnieszka Sadowska
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Na Liu
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Ana Boskovic
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL) Rome, Monterotondo00015, Italy
| |
Collapse
|
11
|
Guo D, Du Z, Liu Y, Lin M, Lu Y, Hardikar S, Xue Y, Zhang J, Chen T, Dan J. The ZBTB24-CDCA7-HELLS axis suppresses the totipotent 2C-like reprogramming by maintaining Dux methylation and repression. Nucleic Acids Res 2025; 53:gkaf302. [PMID: 40226918 PMCID: PMC11995263 DOI: 10.1093/nar/gkaf302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Two-cell-like cells (2CLCs), a rare population (∼0.5%) in mouse embryonic stem cell (mESC) cultures, are in a transient totipotent-like state resembling that of 2C-stage embryos, and their discovery and characterization have greatly facilitated the study of early developmental events, such as zygotic genome activation. However, the molecular determinants governing 2C-like reprogramming remain to be elucidated. Here, we show that ZBTB24, CDCA7, and HELLS, components of a molecular pathway that is involved in the pathogenesis of immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, function as negative regulators of 2C-like reprogramming by maintaining DNA methylation of the Dux cluster, a master inducer of the 2C-like state. Disruption of the ZBTB24-CDCA7-HELLS axis results in Dux hypomethylation and derepression, leading to dramatic upregulation of 2C-specific genes, which can be reversed by site-specific re-methylation in the Dux promoter. We also provide evidence that CDCA7 is enriched at the Dux cluster and recruits the CDCA7-HELLS chromatin remodeling complex to constitutive heterochromatin. Our study uncovers a key role for the ZBTB24-CDCA7-HELLS axis in safeguarding the mESC state by suppressing the 2C-like reprogramming.
Collapse
Affiliation(s)
- Dan Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zeling Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Youqi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
| | - Yanna Xue
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jinghong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, United States
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
12
|
Burton A, Torres-Padilla ME. Epigenome dynamics in early mammalian embryogenesis. Nat Rev Genet 2025:10.1038/s41576-025-00831-4. [PMID: 40181107 DOI: 10.1038/s41576-025-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
During early embryonic development in mammals, the totipotency of the zygote - which is reprogrammed from the differentiated gametes - transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
13
|
Liu M, Yue Y, Chen X, Xian K, Dong C, Shi M, Xiong H, Tian K, Li Y, Zhang QC, He A. Genome-coverage single-cell histone modifications for embryo lineage tracing. Nature 2025; 640:828-839. [PMID: 40011786 PMCID: PMC12003199 DOI: 10.1038/s41586-025-08656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
Substantial epigenetic resetting during early embryo development from fertilization to blastocyst formation ensures zygotic genome activation and leads to progressive cellular heterogeneities1-3. Mapping single-cell epigenomic profiles of core histone modifications that cover each individual cell is a fundamental goal in developmental biology. Here we develop target chromatin indexing and tagmentation (TACIT), a method that enabled genome-coverage single-cell profiling of seven histone modifications across mouse early embryos. We integrated these single-cell histone modifications with single-cell RNA sequencing data to chart a single-cell resolution epigenetic landscape. Multimodal chromatin-state annotations showed that the onset of zygotic genome activation at the early two-cell stage already primes heterogeneities in totipotency. We used machine learning to identify totipotency gene regulatory networks, including stage-specific transposable elements and putative transcription factors. CRISPR activation of a combination of these identified transcription factors induced totipotency activation in mouse embryonic stem cells. Together with single-cell co-profiles of multiple histone modifications, we developed a model that predicts the earliest cell branching towards the inner cell mass and the trophectoderm in latent multimodal space and identifies regulatory elements and previously unknown lineage-specifying transcription factors. Our work provides insights into single-cell epigenetic reprogramming, multimodal regulation of cellular lineages and cell-fate priming during mouse pre-implantation development.
Collapse
Affiliation(s)
- Min Liu
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Yanzhu Yue
- Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, Jilin Provincial Clinical Research Center for Birth Defect and Rare Disease, The First Hospital of Jilin University, Changchun, China
| | - Xubin Chen
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Kexin Xian
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Chao Dong
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Ming Shi
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Haiqing Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kang Tian
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhe Li
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Aibin He
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education of China, Peking University Cancer Hospital and Institute, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
14
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Li M, Jiang Z, Xu X, Wu X, Liu Y, Chen K, Liao Y, Li W, Wang X, Guo Y, Zhang B, Wen L, Kee K, Tang F. Chromatin accessibility landscape of mouse early embryos revealed by single-cell NanoATAC-seq2. Science 2025; 387:eadp4319. [PMID: 40146829 DOI: 10.1126/science.adp4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/13/2025] [Indexed: 03/29/2025]
Abstract
In mammals, fertilized eggs undergo genome-wide epigenetic reprogramming to generate the organism. However, our understanding of epigenetic dynamics during preimplantation development at single-cell resolution remains incomplete. Here, we developed scNanoATAC-seq2, a single-cell assay for transposase-accessible chromatin using long-read sequencing for scarce samples. We present a detailed chromatin accessibility landscape of mouse preimplantation development, revealing distinct chromatin signatures in the epiblast, primitive endoderm, and trophectoderm during lineage segregation. Differences between zygotes and two-cell embryos highlight reprogramming in chromatin accessibility during the maternal-to-zygotic transition. Single-cell long-read sequencing enables in-depth analysis of chromatin accessibility in noncanonical imprinting, imprinted X chromosome inactivation, and low-mappability genomic regions, such as repetitive elements and paralogs. Our data provide insights into chromatin dynamics during mammalian preimplantation development and lineage differentiation.
Collapse
Affiliation(s)
- Mengyao Li
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Complex, Severe, and Rare Diseases; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zhenhuan Jiang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xueqiang Xu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei , China
| | - Yun Liu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Kexuan Chen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuhan Liao
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Wen Li
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Xiao Wang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Bo Zhang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Kehkooi Kee
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Complex, Severe, and Rare Diseases; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fuchou Tang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
16
|
Wang Y, Zhang Y, Li T, Ren Y, Zhou P, Fu L, Xiao C, Huang Z, Huang H, Xie W, Luo Y, Qi Y, Zhao H, Yu Y, Fan Y, Pan H. Transcriptional insights on the incomplete cytoplasmic maturation and developmental potential of oocytes cultured without granulosa cells in mice. BMC Genomics 2025; 26:270. [PMID: 40102748 PMCID: PMC11921487 DOI: 10.1186/s12864-025-11455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Oocyte maturation is crucial for female fertility and embryonic development, encompassing nuclear and cytoplasmic maturation. Supportive cells of follicles, such as granulosa cells, are essential for oocyte growth and maturation. Oocytes can achieve nuclear maturation without granulosa cells during in vitro maturation (IVM). However, there is still a higher chance of incomplete cytoplasmic maturation for these oocytes with mature nuclei compared with oocytes cultured with granulosa cells. Oocytes with incomplete cytoplasmic maturation have lower fertilization rates and developmental potential than mature ones, although underlying mechanisms are poorly understood. Identifying key genes and signaling pathways associated with oocyte cytoplasmic maturation can help further elucidate the maturing process of oocytes and understand the impact of immature oocytes on embryonic development, throwing insights into the strategy to improve the success rate of assisted reproductive technologies. RESULTS Our study investigated murine oocytes maturing with and without granulosa cells. IVM without granulosa cells yielded oocytes with lower nuclear maturation rates than IVM with granulosa cells and in vivo maturation (IVO). Even though oocytes could achieve nuclear maturation without granulosa cells, they showed incomplete cytoplasmic maturation featuring higher levels of reactive oxygen species, lower mitochondrial density, and higher proportions of cells with abnormal distributions of cortical granules. Of note, oocytes with immature and mature cytoplasm had distinct transcriptional profiles. In the immature oocytes, we observed a deficient mRNA restoration of genes in crucial regulatory pathways of cellular growth and division, potentially affecting embryonic development. Differentially expressed genes (DEGs) between immature and mature oocytes were identified to be highly expressed in different pre-implantation stages, such as the MII oocyte, the 8-cell stage, and the ICM stage. Identified DEGs were enriched in key regulatory pathways of fertilization and embryonic development, such as energy and metabolic pathways. These observations indicated that the impeded development potential of oocytes with immature cytoplasm might be the result of abnormal gene expressions during oocyte maturation. CONCLUSIONS We show that granulosa cells are important for both nuclear and cytoplasmic maturation of oocytes. Abnormal gene expression in oocytes with incomplete cytoplasmic maturation may be associated with potential defects in fertilization and embryonic development.
Collapse
Affiliation(s)
- Yibo Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yichuan Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Tianjie Li
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yun Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Chenxi Xiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ziying Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Hanji Huang
- Department of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, China
| | - Wenfeng Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yuxin Luo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yanan Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Hongcui Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Beijing, China.
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Heng Pan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
17
|
Peng B, Wang Q, Zhang F, Shen H, Du P. Mouse totipotent blastomere-like cells model embryogenesis from zygotic genome activation to post implantation. Cell Stem Cell 2025; 32:391-408.e11. [PMID: 39826539 DOI: 10.1016/j.stem.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively. We found Wnt signaling enabled the rapid expansion of TBLCs and the optimization of their culture medium. We successfully developed a TBLC-spontaneous differentiation system in which mouse TBLCs (mTBLCs) firstly converted into two types of ZGA-like cells (ZLCs) distinguished by Zscan4 expression. Surprisingly, Zscan4-, but not Zscan4+, ZLCs further passed through intermediate 4-cell and then 8-cell/morula stages to produce epiblast, primitive endoderm, and trophectoderm lineages. Significantly, single TBLCs underwent expansion, compaction, and polarization to efficiently generate blastocyst-like structures and even post-implantation egg-cylinder-like structures. Conclusively, we established TBLC-based differentiation and embryo-like structure formation systems to model early embryonic development, offering criteria for evaluating and understanding totipotency.
Collapse
Affiliation(s)
- Bing Peng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Cheng Y, Li J, Shang J, Jia X, Bi Y, Gu J, Jiang N, Huan Y, Li Y, Sun M. Comparative analysis of chromatin accessibility in porcine oocytes from follicles of different sizes. Res Vet Sci 2025; 185:105565. [PMID: 39908890 DOI: 10.1016/j.rvsc.2025.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Chromatin accessibility and transcription levels during oocyte growth are important for oocyte maturation and subsequent development. However, chromatin accessibility changes in porcine oocytes during growth are unclear. The present study demonstrated that porcine oocytes derived from large follicles (LFO) exhibited higher developmental capacity than those derived from small follicles (SFO). Assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis identified 1117 and 1694 uniquely accessible chromatin peaks in LFO and SFO, respectively. Motif analysis of differential peaks revealed the top 10 significantly enriched transcription factor (TF)-binding motifs in LFO versus SFO, with only one increased peak (Spi1 binding site) and nine decreased peaks (NFYA, ATOH1, ZNF549, Foxn1, HAND2, THRB, NHLH2, FoxP1, and FoxP2 binding sites). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified key processes in the regulation of oocyte growth and maturation. Integration of ATAC-seq and RNA sequencing data revealed the top 10 hub genes involved in chromatin remodeling (MYSM1 and EZH2), histone modification (MYSM1, RNF2, USP1, EZH2, and MIER1), and transcription regulation (MYSM1, ASXL3, and MIER1), as well as those involved in metabolic processes and signal transduction (DOCK7, FGGY, DTL, and DNAJC6). All these genes exhibited increased expression levels in LFO versus SFO. In conclusion, the study demonstrated the dynamic nature of chromatin accessibility during porcine oocyte growth and revealed the TFs and genes closely associated with oocyte growth and maturation. These findings provide new insight into porcine oocyte growth and offer a potential strategy to enhance the in vitro developmental ability of SFO.
Collapse
Affiliation(s)
- Yazhuo Cheng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Jiyong Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xilong Jia
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yeling Bi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jiaxu Gu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Nan Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Youwei Li
- College of Haidu, Qingdao Agricultural University, Laiyang, Shandong Province 265200, China.
| | - Mingju Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
19
|
Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I, Wu G, Adachi K, Scholer HR. Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos. eLife 2025; 13:RP100735. [PMID: 40014376 PMCID: PMC11867617 DOI: 10.7554/elife.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Yanlin Hou
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Zhengwen Nie
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Qi Jiang
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sandra Heising
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Kenjiro Adachi
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Hans R Scholer
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| |
Collapse
|
20
|
Wu H, Cao L, Wen X, Fan J, Wang Y, Hu H, Ji S, Zhang Y, Ye C, Xie W, Zhang J, Xu H, Fu X. Lysosomal catabolic activity promotes the exit of murine totipotent 2-cell state by silencing early-embryonic retrotransposons. Dev Cell 2025; 60:512-523.e7. [PMID: 39561778 DOI: 10.1016/j.devcel.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
During mouse preimplantation development, a subset of retrotransposons/genes are transiently expressed in the totipotent 2-cell (2C) embryos. These 2C transcripts rapidly shut down their expression beyond the 2C stage of embryos, promoting the embryo to exit from the 2C stage. However, the mechanisms regulating this shutdown remain unclear. Here, we identified that lysosomal catabolism played a role in the exit of the totipotent 2C state. Our results showed that the activation of embryonic lysosomal catabolism promoted the embryo to exit from the 2C stage and suppressed 2C transcript expression. Mechanistically, our results indicated that lysosomal catabolism suppressed 2C transcripts through replenishing cellular amino-acid levels, thereby inactivating transcriptional factors TFE3/TFEB and abolishing their transcriptional activation of 2C retrotransposons, MERVL (murine endogenous retrovirus-L)/MT2_Mm. Collectively, our study identified that lysosomal activity modulated the transcriptomic landscape and development in mouse embryos and identified an unanticipated layer of transcriptional control on early-embryonic retrotransposons from lysosomal signaling.
Collapse
Affiliation(s)
- Hao Wu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Lanrui Cao
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xinpeng Wen
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Jiawei Fan
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuan Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Heyong Hu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Shuyan Ji
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Cunqi Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jin Zhang
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Haoxing Xu
- Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
21
|
Sebastian-Perez R, Nakagawa S, Tu X, Aranda S, Pesaresi M, Gomez-Garcia PA, Alcoverro-Bertran M, Gomez-Vazquez JL, Carnevali D, Borràs E, Sabidó E, Martin L, Nissim-Rafinia M, Meshorer E, Neguembor MV, Di Croce L, Cosma MP. SMARCAD1 and TOPBP1 contribute to heterochromatin maintenance at the transition from the 2C-like to the pluripotent state. eLife 2025; 12:RP87742. [PMID: 39969508 PMCID: PMC11839162 DOI: 10.7554/elife.87742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.
Collapse
Affiliation(s)
- Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Xiaochuan Tu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Marc Alcoverro-Bertran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jose Luis Gomez-Vazquez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| |
Collapse
|
22
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
23
|
Zhang J, Li X, Zhao Q, Ji J, Cui H, Hou W, Wang X, Song E, Xiao S, Ling S, Gao S, Liu X, Wen D, Kong Q. Acetylation at lysine 27 on maternal H3.3 regulates minor zygotic genome activation. Cell Rep 2025; 44:115148. [PMID: 39932187 PMCID: PMC11892348 DOI: 10.1016/j.celrep.2024.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 03/12/2025] Open
Abstract
Zygotic genome activation (ZGA) initiates transcription in early embryogenesis and requires extensive chromatin remodeling, including rapid incorporation of the histone variant H3.3. The distinct sources of H3.3 from paternal and maternal alleles (paH3.3 and maH3.3) complicate tracking their individual contributions. Here, using an H3.3B-hemagglutinin (HA)-tagged mouse model, we profile the temporal dynamics of paH3.3 and maH3.3, revealing a unique pattern of maH3.3 enrichment at the promoter regions from zygotes to 2-cell embryos, highlighting the crucial role of maternally stored H3.3 mRNAs and proteins (mH3.3) in pre-implantation development. Knockdown of mH3.3 compromises cleavage and minor ZGA. Mechanistically, mH3.3 facilitates minor ZGA through H3.3S31ph-dependent H3K27ac deposition. Profiling of H3.3 landscape in parthenogenetic (PG) and androgenetic (AG) embryos highlights the role of mH3.3 in remodeling the paternal genome by establishing H3K27ac. These findings demonstrate that mH3.3-mediated parental chromatin reprogramming is essential for orchestrating minor ZGA.
Collapse
Affiliation(s)
- Jiaming Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Xuanwen Li
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingzhang Ji
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongdi Cui
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weibo Hou
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Wang
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Entong Song
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songling Xiao
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shukuan Ling
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaorong Gao
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiaoyu Liu
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
25
|
Quan C, Zhang Q, Zhang X, Chai K, Cheng G, Ma C, Dai C. Interspecific hybridization in Brassica species leads to changes in agronomic traits through the regulation of gene expression by chromatin accessibility and DNA methylation. Gigascience 2025; 14:giaf029. [PMID: 40272880 PMCID: PMC12012897 DOI: 10.1093/gigascience/giaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoni Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kexin Chai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Cheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
26
|
Yang J, Bu J, Liu B, Liu Y, Zhang Z, Li Z, Lu F, Zhu B, Li Y. MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA. Nat Commun 2025; 16:248. [PMID: 39747175 PMCID: PMC11696134 DOI: 10.1038/s41467-024-55610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The mammalian early embryo development requires translation of maternal mRNA inherited from the oocyte. While poly(A) tail length influences mRNA translation efficiency during the oocyte-to-embryo transition (OET), molecular mechanisms regulating maternal RNA poly(A) tail length are not fully understood. In this study, we identified MARTRE, a previously uncharacterized protein family (MARTRE1-MARTRE6), as regulators expressed during mouse OET that modulate poly(A) tail length. MARTRE inhibits deadenylation through the direct interaction with the deadenylase CCR4-NOT, and ectopic expression of Martre stabilized mRNA by attenuating poly(A) tail shortening. Deletion of the Martre gene locus results in shortened poly(A) tails and decreased translation efficiency of actively translated mRNAs in mouse zygotes, but does not affect maternal mRNA decay. MARTRE proteins thus fine-tune maternal mRNA translation by negatively regulating the deadenylating activity of CCR4-NOT. Moreover, Martre knockout embryos show delayed 2-cell stage progression and compromised preimplantation development. Together, our findings highlight protection of long poly(A) tails from active deadenylation as an important mechanism to coordinate translation of maternal mRNA.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusheng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziyi Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Falong Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yingfeng Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Formichetti S, Sadowska A, Ascolani M, Hansen J, Ganter K, Lancrin C, Humphreys N, Boulard M. Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo. PLoS Genet 2025; 21:e1011507. [PMID: 39787076 PMCID: PMC11717234 DOI: 10.1371/journal.pgen.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees. The severity of the embryonic lethality was proportional to the extent of impairment of OGT's catalysis, demonstrating that the O-GlcNAc modification itself is required for early development. We identified hypomorphic Ogt alleles that perturb O-GlcNAc homeostasis while being compatible with embryogenesis. The analysis of the transcriptomes of the mutant embryos at different developmental stages suggested a sexually-dimorphic developmental delay caused by the decrease in O-GlcNAc. Furthermore, a mild reduction of OGT's enzymatic activity was sufficient to loosen the silencing of endogenous retroviruses in vivo.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Agnieszka Sadowska
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Michela Ascolani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Julia Hansen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Kerstin Ganter
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Christophe Lancrin
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Neil Humphreys
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Mathieu Boulard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| |
Collapse
|
28
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
29
|
Zhou C, Wang M, Zhang C, Zhang Y. The transcription factor GABPA is a master regulator of naive pluripotency. Nat Cell Biol 2025; 27:48-58. [PMID: 39747581 PMCID: PMC11735382 DOI: 10.1038/s41556-024-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/04/2024] [Indexed: 01/04/2025]
Abstract
The establishment of naive pluripotency is a continuous process starting with the generation of inner cell mass (ICM) that then differentiates into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naive pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naive pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TF regulatory network.
Collapse
Affiliation(s)
- Chengjie Zhou
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Yang J, Dan J, Zhao N, Liu L, Wang H, Liu Q, Wang L, Li J, Wu Y, Chen F, Fu W, Liu F, Lin M, Zhang W, Chen F, Liu X, Lu X, Chen Q, Wu X, Niu Y, Yang N, Zhu Y, Long J, Liu L. Zscan4 mediates ubiquitination and degradation of the corepressor complex to promote chromatin accessibility in 2C-like cells. Proc Natl Acad Sci U S A 2024; 121:e2407490121. [PMID: 39705314 DOI: 10.1073/pnas.2407490121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Zygotic genome activation occurs in two-cell (2C) embryos, and a 2C-like state is also activated in sporadic (~1%) naïve embryonic stem cells in mice. Elevated chromatin accessibility is critical for the 2C-like state to occur, yet the underlying molecular mechanisms remain elusive. Zscan4 exhibits burst expression in 2C embryos and 2C-like cells. Here, we show that Zscan4 mediates chromatin remodeling to promote the chromatin accessibility for achieving the 2C-like state. Through coimmunoprecipitation/mass spectrometry, we identified that Zscan4 interacts with the corepressors Kap1/Trim28, Lsd1, and Hdac1, also with H3K9me3 modifiers Suv39h1/2, to transiently form a repressive chromatin complex. Then, Zscan4 mediates the degradation of these chromatin repressors by recruiting Trim25 as an E3 ligase, enabling the ubiquitination of Lsd1, Hdac1, and Suv39h1/2. Degradation of the chromatin repressors promotes the chromatin accessibility for activation of the 2C-like state. These findings reveal the molecular insights into the roles of Zscan4 in promoting full activation of the 2C-like state.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Huasong Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Yiwei Wu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Feilong Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weilun Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Fei Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Xudong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China
| |
Collapse
|
31
|
Chatterjee K, Uyehara CM, Kasliwal K, Madhuranath S, Scourzic L, Polyzos A, Apostolou E, Stadtfeld M. Coordinated repression of totipotency-associated gene loci by histone methyltransferase EHMT2 through binding to LINE-1 regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629181. [PMID: 39763795 PMCID: PMC11702699 DOI: 10.1101/2024.12.18.629181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition. This allowed us to define categories of EHMT2 target genes characterized by distinct modes of EHMT2 chromatin engagement and repression. Most notably, EHMT2 directly represses large clusters of co-regulated gene loci that comprise a significant fraction of the 2CLC-specific transcriptome by initiating H3K9me2 spreading from distal LINE-1 elements. EHMT2 counteracts the recruitment of the activator DPPA2/4 to promoter-proximal endogenous retroviral elements (ERVs) at 2CLC genes. EHMT2 depletion elevates the expression of ZGA-associated transcripts in 2CLCs and synergizes with spliceosome inhibition and retinoic acid signaling in facilitating the mESC-to-2CLC transition. In contrast to ZGA-associated genes, repression of germ layer-associated transcripts by EHMT2 occurs outside of gene clusters in collaboration with ZFP462 and entails binding to non-repeat enhancers. Our observations show that EHMT2 attenuates the bidirectional differentiation potential of mouse pluripotent stem cells and define molecular modes for locus-specific transcriptional repression by this essential histone methyltransferase.
Collapse
Affiliation(s)
- K Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - C M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - K Kasliwal
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - S Madhuranath
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - L Scourzic
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
32
|
Yuan X, Meng K, Wang Y, Wang Y, Pan C, Sun H, Wang J, Li X. Unlocking the genetic secrets of Dorper sheep: insights into wool shedding and hair follicle development. Front Vet Sci 2024; 11:1489379. [PMID: 39726582 PMCID: PMC11670804 DOI: 10.3389/fvets.2024.1489379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Dorper sheep is popular among farming enterprises with strong adaptability, disease resistance, and roughage tolerance, and an unique characteristic of natural shedding of wool. In a large number of observations on experimental sheep farms, it was found that the wool of some sheep still had not shed after May, thus manual shearing was required. Therefore, understanding the molecular mechanisms of normal hair follicles (HFs) development is crucial to revealing the improvement of sheep wool-related traits and mammalian skin-related traits. In this study, transcriptome analysis was performed on skin tissues of adult Dorper ewes in the shedding (S) and non-shedding (N) groups in September 2019, January 2020, and March 2020, respectively. The results identified 3,278 differentially expressed transcripts (DETs) in the three comparison groups within the S group, 720 DETs in the three comparison groups within the N group, and 1,342 DETs in the three comparison groups between the S-vs-N groups. Time-series expression analysis revealed 2 unique expression patterns in HF development, namely, elevated expression in the anagen phase (A pattern) and the telogen phase (T pattern). DETs with stage-specific expression had a significant presence in processes related to the hair cycle and skin development, and several classic signaling pathways involved in sheep HF development, such as Rap1, estrogen, PI3K-Akt, and MAPK, were detected. Combined analysis of DETs, time-series expression data, and weighted gene co-expression network analysis identified core genes and their transcripts influencing HF development, such as DBI, FZD3, KRT17, ZDHHC21, TMEM79, and HOXC13. Additionally, alternative splicing analysis predicted that the isoforms XM_004004383.4 and XM_012125926.3 of ZDHHC21 might play a crucial role in sheep HF development. This study is a valuable resource for explaining the morphology of normal growth and development of sheep HFs and the genetic foundation of mammalian skin-related traits. It also offers potential insights into factors influencing human hair advancement.
Collapse
Affiliation(s)
- Xiaochun Yuan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Ke Meng
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yayan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yifan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Cuili Pan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Haoran Sun
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jankui Wang
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
33
|
Xu P, Yuan Z, Lu X, Zhou P, Qiu D, Qiao Z, Zhou Z, Guan L, Jia Y, He X, Sun L, Wan Y, Wang M, Yu Y. RAG-seq: NSR-primed and Transposase Tagmentation-mediated Strand-specific Total RNA Sequencing in Single Cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae072. [PMID: 39388199 DOI: 10.1093/gpbjnl/qzae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity with unprecedented resolution. However, many current methods are limited in capturing full-length transcripts and discerning strand orientation. Here, we present RAG-seq, an innovative strand-specific total RNA sequencing technique that combines not-so-random (NSR) primers with Tn5 transposase-mediated tagmentation. RAG-seq overcomes previous limitations by delivering comprehensive transcript coverage and maintaining strand orientation, which are essential for accurate quantification of overlapping genes and detection of antisense transcripts. Through optimized reverse transcription with oligo-dT primers, rRNA depletion via Depletion of Abundant Sequences by Hybridization (DASH), and linear amplification, RAG-seq enhances sensitivity and reproducibility, especially for low-input samples and single cells. Application to mouse oocytes and early embryos highlights RAG-seq's superior performance in identifying stage-specific antisense transcripts, shedding light on their regulatory roles during early development. This advancement represents a significant leap in transcriptome analysis within complex biological contexts.
Collapse
Affiliation(s)
- Ping Xu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
- School of Life Sciences, Jilin University, Changchun 130012, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiheng Yuan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ding Qiu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Li Guan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yongkang Jia
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ling Sun
- Center for Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Solberg T, Kobayashi-Ishihara M, Siomi H. The impact of retrotransposons on zygotic genome activation and the chromatin landscape of early embryos. Ann N Y Acad Sci 2024; 1542:11-24. [PMID: 39576233 DOI: 10.1111/nyas.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In mammals, fertilization is followed by extensive reprogramming and reorganization of the chromatin accompanying the transcriptional activation of the embryo. This reprogramming results in blastomeres with the ability to give rise to all cell types and a complete organism, including extra-embryonic tissues, and is known as totipotency. Transcriptional activation occurs in a process known as zygotic genome activation (ZGA) and is tightly linked to the expression of transposable elements, including endogenous retroviruses (ERVs) such as endogenous retrovirus with leucine tRNA primer (ERVL). Recent studies discovered the importance of ERVs in this process, yet the race to decipher the network surrounding these elements is still ongoing, and the molecular mechanism behind their involvement remains a mystery. Amid a recent surge of studies reporting the discovery of various factors and pathways involved in the regulation of ERVs, this review provides an overview of the knowns and unknowns in the field, with a particular emphasis on the chromatin landscape and how ERVs shape preimplantation development in mammals. In so doing, we highlight recent discoveries that have advanced our understanding of how these elements are involved in transforming the quiescent zygote into the most powerful cell type in mammals.
Collapse
Affiliation(s)
- Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | | | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
35
|
Wang X, Hu G, Wang L, Lu Y, Liu Y, Yang S, Liao J, Zhao Q, Huang Q, Wang W, Guo W, Li H, Fu Y, Song Y, Cai Q, Zhang X, Wang X, Chen YQ, Zhang X, Yao H. DEAD-box RNA helicase 10 is required for 18S rRNA maturation by controlling the release of U3 snoRNA from pre-rRNA in embryonic stem cells. Nat Commun 2024; 15:10303. [PMID: 39604362 PMCID: PMC11603299 DOI: 10.1038/s41467-024-53822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Ribosome biogenesis plays a pivotal role in maintaining stem cell homeostasis, yet the precise regulatory mechanisms governing this process in mouse embryonic stem cells (mESCs) remain largely unknown. In this investigation, we ascertain that DEAD-box RNA helicase 10 (DDX10) is indispensable for upholding cellular homeostasis and the viability of mESCs. Positioned predominantly at the nucleolar dense fibrillar component (DFC) and granular component (GC), DDX10 predominantly binds to 45S ribosomal RNA (rRNA) and orchestrates ribosome biogenesis. Degradation of DDX10 prevents the release of U3 snoRNA from pre-rRNA, leading to perturbed pre-rRNA processing and compromised maturation of the 18S rRNA, thereby disrupting the biogenesis of the small ribosomal subunit. Moreover, DDX10 participates in the process of liquid-liquid phase separation (LLPS), which is necessary for efficient ribosome biogenesis. Notably, the NUP98-DDX10 fusion associated with acute myelocytic leukemia (AML) alters the cellular localization of DDX10 and results in loss of ability to regulate pre-rRNA processing. Collectively, this study reveals the critical role of DDX10 as a pivotal regulator of ribosome biogenesis in mESCs.
Collapse
Affiliation(s)
- Xiuqin Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Lisha Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuli Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjiang Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengxiong Yang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junzhi Liao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiuling Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wentao Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Heying Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Fu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yawei Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qingqing Cai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofei Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangting Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue-Qin Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongjie Yao
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
36
|
Zhou C, Wang M, Zhang C, Zhang Y. The transcription factor GABPA is a master regulator of naïve pluripotency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623003. [PMID: 39605507 PMCID: PMC11601318 DOI: 10.1101/2024.11.11.623003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The establishment of naïve pluripotency is a continuous process starting with the generation of inner cell mass (ICM) which then differentiating into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naïve pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naïve pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TFs regulatory network.
Collapse
Affiliation(s)
- Chengjie Zhou
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
37
|
Festuccia N, Vandormael-Pournin S, Chervova A, Geiselmann A, Langa-Vives F, Coux RX, Gonzalez I, Collet GG, Cohen-Tannoudji M, Navarro P. Nr5a2 is dispensable for zygotic genome activation but essential for morula development. Science 2024; 386:eadg7325. [PMID: 39361745 DOI: 10.1126/science.adg7325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024]
Abstract
Early embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF Nr5a2, we show that Nr5a2-/- embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects. Although NR5A2 plays a minor but measurable role during zygotic genome activation, it predominantly acts as a master regulator at the eight-cell stage, controlling expression of lineage-specifying TFs and genes involved in mitosis, telomere maintenance, and DNA repair. We conclude that NR5A2 coordinates proliferation, genome stability, and lineage specification to ensure correct morula development.
Collapse
Affiliation(s)
- Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Sandrine Vandormael-Pournin
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Anna Geiselmann
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
- Sorbonne Université, Complexité du Vivant, 75005 Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Inma Gonzalez
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Guillaume Giraud Collet
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
- Université Paris Cité, BioSPC, 75013 Paris, France
| | - Michel Cohen-Tannoudji
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| |
Collapse
|
38
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
39
|
Wang J, Zhang Y, Gao J, Feng G, Liu C, Li X, Li P, Liu Z, Lu F, Wang L, Li W, Zhou Q, Liu Y. Alternative splicing of CARM1 regulated by LincGET-guided paraspeckles biases the first cell fate in mammalian early embryos. Nat Struct Mol Biol 2024; 31:1341-1354. [PMID: 38658621 PMCID: PMC11402786 DOI: 10.1038/s41594-024-01292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The heterogeneity of CARM1 controls first cell fate bias during early mouse development. However, how this heterogeneity is established is unknown. Here, we show that Carm1 mRNA is of a variety of specific exon-skipping splicing (ESS) isoforms in mouse two-cell to four-cell embryos that contribute to CARM1 heterogeneity. Disruption of paraspeckles promotes the ESS of Carm1 precursor mRNAs (pre-mRNAs). LincGET, but not Neat1, is required for paraspeckle assembly and inhibits the ESS of Carm1 pre-mRNAs in mouse two-cell to four-cell embryos. We further find that LincGET recruits paraspeckles to the Carm1 gene locus through HNRNPU. Interestingly, PCBP1 binds the Carm1 pre-mRNAs and promotes its ESS in the absence of LincGET. Finally, we find that the ESS seen in mouse two-cell to four-cell embryos decreases CARM1 protein levels and leads to trophectoderm fate bias. Our findings demonstrate that alternative splicing of CARM1 has an important role in first cell fate determination.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaze Gao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xueke Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
40
|
Owens LA, Thurber MI, Goldberg TL. CRISPR-Cas9-mediated host signal reduction for 18S metabarcoding of host-associated eukaryotes. Mol Ecol Resour 2024; 24:e13980. [PMID: 38804043 PMCID: PMC11288772 DOI: 10.1111/1755-0998.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Metabarcoding-based methods for identification of host-associated eukaryotes have the potential to revolutionize parasitology and microbial ecology, yet significant technical challenges remain. In particular, highly abundant host reads can mask the presence of less-abundant target organisms, especially for sample types rich in host DNA (e.g., blood and tissues). Here, we present a new CRISPR-Cas9-mediated approach designed to reduce host signal by selective amplicon digestion, thus enriching clinical samples for eukaryotic endosymbiont sequences during metabarcoding. Our method achieves a nearly 76% increased efficiency in host signal reduction compared with no treatment and a nearly 60% increased efficiency in host signal reduction compared with the most commonly used published method. Furthermore, the application of our method to clinical samples allows for the detection of parasite infections that would otherwise have been missed.
Collapse
Affiliation(s)
- Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Ouyang Z, Liu F, Li W, Wang J, Chen B, Zheng Y, Li Y, Tao H, Xu X, Li C, Cong Y, Li H, Bo X, Chen H. The developmental and evolutionary characteristics of transcription factor binding site clustered regions based on an explainable machine learning model. Nucleic Acids Res 2024; 52:7610-7626. [PMID: 38813828 PMCID: PMC11260490 DOI: 10.1093/nar/gkae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Gene expression is temporally and spatially regulated by the interaction of transcription factors (TFs) and cis-regulatory elements (CREs). The uneven distribution of TF binding sites across the genome poses challenges in understanding how this distribution evolves to regulate spatio-temporal gene expression and consequent heritable phenotypic variation. In this study, chromatin accessibility profiles and gene expression profiles were collected from several species including mammals (human, mouse, bovine), fish (zebrafish and medaka), and chicken. Transcription factor binding sites clustered regions (TFCRs) at different embryonic stages were characterized to investigate regulatory evolution. The study revealed dynamic changes in TFCR distribution during embryonic development and species evolution. The synchronization between TFCR complexity and gene expression was assessed across species using RegulatoryScore. Additionally, an explainable machine learning model highlighted the importance of the distance between TFCR and promoter in the coordinated regulation of TFCRs on gene expression. Our results revealed the developmental and evolutionary dynamics of TFCRs during embryonic development from fish, chicken to mammals. These data provide valuable resources for exploring the relationship between transcriptional regulation and phenotypic differences during embryonic development.
Collapse
Affiliation(s)
- Zhangyi Ouyang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Feng Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Wanying Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Junting Wang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Bijia Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yang Zheng
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Huan Tao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiang Xu
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Yuwen Cong
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hao Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
42
|
Wang Z, Ke J, Guo Z, Wang Y, Lei K, Wang S, Chen G, Shen Z, Li W, Ou G. Transposase-assisted tagmentation: an economical and scalable strategy for single-worm whole-genome sequencing. G3 (BETHESDA, MD.) 2024; 14:jkae094. [PMID: 38856093 PMCID: PMC11228870 DOI: 10.1093/g3journal/jkae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 06/11/2024]
Abstract
AlphaMissense identifies 23 million human missense variants as likely pathogenic, but only 0.1% have been clinically classified. To experimentally validate these predictions, chemical mutagenesis presents a rapid, cost-effective method to produce billions of mutations in model organisms. However, the prohibitive costs and limitations in the throughput of whole-genome sequencing (WGS) technologies, crucial for variant identification, constrain its widespread application. Here, we introduce a Tn5 transposase-assisted tagmentation technique for conducting WGS in Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii. This method, demands merely 20 min of hands-on time for a single-worm or single-cell clones and incurs a cost below 10 US dollars. It effectively pinpoints causal mutations in mutants defective in cilia or neurotransmitter secretion and in mutants synthetically sterile with a variant analogous to the B-Raf Proto-oncogene, Serine/Threonine Kinase (BRAF) V600E mutation. Integrated with chemical mutagenesis, our approach can generate and identify missense variants economically and efficiently, facilitating experimental investigations of missense variants in diverse species.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Jingyi Ke
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Zhengyang Guo
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Kexin Lei
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Shimin Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Guanghan Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Zijie Shen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100190, China
| | - Guangshuo Ou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| |
Collapse
|
43
|
Gui L, Zhong Q, Yang J, Sun J, Lu J, Picton HM, Li C. Acquisition of 2C-like totipotency through defined maternal-effect factors. Stem Cells 2024; 42:581-592. [PMID: 38655883 DOI: 10.1093/stmcls/sxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Fully grown oocytes have the natural ability to transform 2 terminally differentiated gametes into a totipotent zygote representing the acquisition of totipotency. This process wholly depends on maternal-effect factors (MFs). MFs stored in the eggs are therefore likely to be able to induce cellular reprogramming to a totipotency state. Here we report the generation of totipotent-like stem cells from mESCs using 4MFs Hsf1, Zar1, Padi6, and Npm2, designated as MFiTLSCs. MFiTLSCs exhibited a unique and inherent capability to differentiate into embryonic and extraembryonic derivatives. Transcriptomic analysis revealed that MFiTLSCs are enriched with 2-cell-specific genes that appear to synergistically induce a transcriptional repressive state, in that parental genomes are remodeled to a poised transcriptional repression state while totipotency is established following fertilization. This method to derive MFiTLSCs could help advance the understanding of fate determinations of totipotent stem cells in a physiological context and establish a foundation for the development of oocyte biology-based reprogramming technology.
Collapse
Affiliation(s)
- Liming Gui
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Qin Zhong
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jue Yang
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jiajia Sun
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
| | - Jianping Lu
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Changzhong Li
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
| |
Collapse
|
44
|
Mielnicka M, Tabaro F, Sureka R, Acurzio B, Paoletti R, Scavizzi F, Raspa M, Crevenna AH, Lapouge K, Remans K, Boulard M. Trim66's paternal deficiency causes intrauterine overgrowth. Life Sci Alliance 2024; 7:e202302512. [PMID: 38719749 PMCID: PMC11077763 DOI: 10.26508/lsa.202302512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
The tripartite motif-containing protein 66 (TRIM66, also known as TIF1-delta) is a PHD-Bromo-containing protein primarily expressed in post-meiotic male germ cells known as spermatids. Biophysical assays showed that the TRIM66 PHD-Bromodomain binds to H3 N-terminus only when lysine 4 is unmethylated. We addressed TRIM66's role in reproduction by loss-of-function genetics in the mouse. Males homozygous for Trim66-null mutations produced functional spermatozoa. Round spermatids lacking TRIM66 up-regulated a network of genes involved in histone acetylation and H3K4 methylation. Profiling of H3K4me3 patterns in the sperm produced by the Trim66-null mutant showed minor alterations below statistical significance. Unexpectedly, Trim66-null males, but not females, sired pups overweight at birth, hence revealing that Trim66 mutations cause a paternal effect phenotype.
Collapse
Affiliation(s)
- Monika Mielnicka
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Francesco Tabaro
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Rahul Sureka
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Basilia Acurzio
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | | | - Ferdinando Scavizzi
- National Research Council (IBBC), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| | - Marcello Raspa
- National Research Council (IBBC), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo, Italy
| | - Alvaro H Crevenna
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Karine Lapouge
- European Molecular Biology Laboratory, Protein Expression and Purification Core Facility, Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory, Protein Expression and Purification Core Facility, Heidelberg, Germany
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| |
Collapse
|
45
|
Wang H, Zhan Q, Ning M, Guo H, Wang Q, Zhao J, Bao P, Xing S, Chen S, Zuo S, Xia X, Li M, Wang P, Lu ZJ. Depletion-assisted multiplexed cell-free RNA sequencing reveals distinct human and microbial signatures in plasma versus extracellular vesicles. Clin Transl Med 2024; 14:e1760. [PMID: 39031987 PMCID: PMC11259601 DOI: 10.1002/ctm2.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Cell-free long RNAs in human plasma and extracellular vesicles (EVs) have shown promise as biomarkers in liquid biopsy, despite their fragmented nature. METHODS To investigate these fragmented cell-free RNAs (cfRNAs), we developed a cost-effective cfRNA sequencing method called DETECTOR-seq (depletion-assisted multiplexed cell-free total RNA sequencing). DETECTOR-seq utilised a meticulously tailored set of customised guide RNAs to remove large amounts of unwanted RNAs (i.e., fragmented ribosomal and mitochondrial RNAs) in human plasma. Early barcoding strategy was implemented to reduce costs and minimise plasma requirements. RESULTS Using DETECTOR-seq, we conducted a comprehensive analysis of cell-free transcriptomes in both whole human plasma and EVs. Our analysis revealed discernible distributions of RNA types in plasma and EVs. Plasma exhibited pronounced enrichment in structured circular RNAs, tRNAs, Y RNAs and viral RNAs, while EVs showed enrichment in messenger RNAs (mRNAs) and signal recognition particle RNAs (srpRNAs). Functional pathway analysis highlighted RNA splicing-related ribonucleoproteins (RNPs) and antimicrobial humoral response genes in plasma, while EVs demonstrated enrichment in transcriptional activity, cell migration and antigen receptor-mediated immune signals. Our study indicates the comparable potential of cfRNAs from whole plasma and EVs in distinguishing cancer patients (i.e., colorectal and lung cancer) from healthy donors. And microbial cfRNAs in plasma showed potential in classifying specific cancer types. CONCLUSIONS Our comprehensive analysis of total and EV cfRNAs in paired plasma samples provides valuable insights for determining the need for EV purification in cfRNA-based studies. We envision the cost effectiveness and efficiency of DETECTOR-seq will empower transcriptome-wide investigations in the fields of cfRNAs and liquid biopsy. KEYPOINTS DETECTOR-seq (depletion-assisted multiplexed cell-free total RNA sequencing) enabled efficient and specific depletion of sequences derived from fragmented ribosomal and mitochondrial RNAs in plasma. Distinct human and microbial cell-free RNA (cfRNA) signatures in whole Plasma versus extracellular vesicles (EVs) were revealed. Both Plasma and EV cfRNAs were capable of distinguishing cancer patients from normal individuals, while microbial RNAs in Plasma cfRNAs enabled better classification of cancer types than EV cfRNAs.
Collapse
Affiliation(s)
- Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
- Geneplus‐Beijing InstituteBeijingChina
| | - Qing Zhan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| | - Meng Ning
- Tianjin Third Central HospitalTianjinChina
| | - Hongjie Guo
- Department of Interventional Radiology and Vascular SurgeryPeking University First HospitalBeijingChina
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
- School of Life SciencesPeking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Tsinghua UniversityBeijingChina
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| | - Shanwen Chen
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Shuai Zuo
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | | | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Pengyuan Wang
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
46
|
Deaville LA, Berrens RV. Technology to the rescue: how to uncover the role of transposable elements in preimplantation development. Biochem Soc Trans 2024; 52:1349-1362. [PMID: 38752836 PMCID: PMC11346443 DOI: 10.1042/bst20231262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.
Collapse
Affiliation(s)
- Lauryn A. Deaville
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
- MRC Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Rebecca V. Berrens
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
47
|
Guo Y, Kitano T, Inoue K, Murano K, Hirose M, Li TD, Sakashita A, Ishizu H, Ogonuki N, Matoba S, Sato M, Ogura A, Siomi H. Obox4 promotes zygotic genome activation upon loss of Dux. eLife 2024; 13:e95856. [PMID: 38856708 PMCID: PMC11196112 DOI: 10.7554/elife.95856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024] Open
Abstract
Once fertilized, mouse zygotes rapidly proceed to zygotic genome activation (ZGA), during which long terminal repeats (LTRs) of murine endogenous retroviruses with leucine tRNA primer (MERVL) are activated by a conserved homeodomain-containing transcription factor, DUX. However, Dux-knockout embryos produce fertile mice, suggesting that ZGA is redundantly driven by an unknown factor(s). Here, we present multiple lines of evidence that the multicopy homeobox gene, Obox4, encodes a transcription factor that is highly expressed in mouse two-cell embryos and redundantly drives ZGA. Genome-wide profiling revealed that OBOX4 specifically binds and activates MERVL LTRs as well as a subset of murine endogenous retroviruses with lysine tRNA primer (MERVK) LTRs. Depletion of Obox4 is tolerated by embryogenesis, whereas concomitant Obox4/Dux depletion markedly compromises embryonic development. Our study identified OBOX4 as a transcription factor that provides genetic redundancy to preimplantation development.
Collapse
Grants
- Grant-in-Aid for Scientific Research in Innovative Areas,19H05753 Ministry of Education, Culture, Sports, Science and Technology
- Project to Elucidate and Control Mechanisms of Aging and Longevity Japan Agency for Medical Research and Development
- Grant-in-Aid for Scientific Research in Innovative Areas,19H05758 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research KAKENHI,20K21507 Japan Society for the Promotion of Science
- Grant-in-Aid for Scientific Research KAKENHI,22H02534 Japan Society for the Promotion of Science
- Student Grant-in-Aid Program Keio University
- Doctoral Program Student Support Fellowship Japan Science and Technology Agency
- Grant-in-Aid for Scientific Research in Innovative Areas 19H05753 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research in Innovative Areas 19H05758 Ministry of Education, Culture, Sports, Science and Technology
- Grant-in-Aid for Scientific Research KAKENHI 20K21507 Japan Society for the Promotion of Science
- Grant-in-Aid for Scientific Research KAKENHI 22H02534 Japan Society for the Promotion of Science
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Sumitomo Foundation
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Tomohiro Kitano
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Kimiko Inoue
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Michiko Hirose
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio UniversityTokyoJapan
| | - Ten D Li
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Narumi Ogonuki
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
| | - Shogo Matoba
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
| | - Masayuki Sato
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Center, RIKENTsukubaJapan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of MedicineTokyoJapan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio UniversityTokyoJapan
| |
Collapse
|
48
|
Funaya S, Takahashi Y, Suzuki MG, Suzuki Y, Aoki F. H3.1/3.2 regulate the initial progression of the gene expression program. Nucleic Acids Res 2024; 52:6158-6170. [PMID: 38567720 PMCID: PMC11194095 DOI: 10.1093/nar/gkae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 06/25/2024] Open
Abstract
In mice, transcription from the zygotic genome is initiated at the mid-one-cell stage, and occurs promiscuously in many areas of the genome, including intergenic regions. Regulated transcription from selected genes is established during the two-cell stage. This dramatic change in the gene expression pattern marks the initiation of the gene expression program and is essential for early development. We investigated the involvement of the histone variants H3.1/3.2 in the regulation of changes in gene expression pattern during the two-cell stage. Immunocytochemistry analysis showed low nuclear deposition of H3.1/3.2 in the one-cell stage, followed by a rapid increase in the late two-cell stage. Where chromatin structure is normally closed between the one- and two-cell stages, it remained open until the late two-cell stage when H3.1/3.2 were knocked down by small interfering RNA. Hi-C analysis showed that the formation of the topologically associating domain was disrupted in H3.1/3.2 knockdown (KD) embryos. Promiscuous transcription was also maintained in the late two-cell stage in H3.1/3.2 KD embryos. These results demonstrate that H3.1/3.2 are involved in the initial process of the gene expression program after fertilization, through the formation of a closed chromatin structure to execute regulated gene expression during the two-cell stage.
Collapse
Affiliation(s)
- Satoshi Funaya
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yusuke Takahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Fugaku Aoki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
49
|
Fu B, Ma H, Liu D. Pioneer Transcription Factors: The First Domino in Zygotic Genome Activation. Biomolecules 2024; 14:720. [PMID: 38927123 PMCID: PMC11202083 DOI: 10.3390/biom14060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
50
|
Liu B, He Y, Wu X, Lin Z, Ma J, Qiu Y, Xiang Y, Kong F, Lai F, Pal M, Wang P, Ming J, Zhang B, Wang Q, Wu J, Xia W, Shen W, Na J, Torres-Padilla ME, Li J, Xie W. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat Cell Biol 2024; 26:962-974. [PMID: 38839978 DOI: 10.1038/s41556-024-01422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Ma
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jingyi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weimin Shen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | | | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|