1
|
Ceccopieri M, Troxell K, Stephens M, Ding Y, Gardinali P. Distribution, quality assessment and historical variation of trace metals in sediments from Deering Bay waterways (South Florida). MARINE POLLUTION BULLETIN 2025; 216:118052. [PMID: 40288306 DOI: 10.1016/j.marpolbul.2025.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
To achieve a comprehensive characterization and provide the first historical reconstruction of trace metal contamination in southeastern Florida, five surface sediment samples and one sediment core were collected from waterways near Deering Bay and Paradise Point, at their intersection with Biscayne Bay. These waterways have been influenced by rapid urban development and hydrological modifications in surrounding watersheds. Metal concentrations were determined using inductively coupled plasma triple quadrupole mass spectrometry (ICP-TQ-MS). All analyzed metals were below the Probable Effect Level (PEL) for coastal sediments. However, copper exceeded the Threshold Effect Level (TEL) from 35 cm depth to the surface, warranting further monitoring. A Pb-210 age model estimated an age of 122 years at 45 cm depth. Trace metal concentrations increased after the late 1800s, corresponding to early urban development, agricultural expansion, and Everglades drainage. Enrichment Factor (EF) and Geoaccumulation Index (Igeo) calculations indicated moderate to very high enrichment for elements such as silver, zinc, copper, cadmium, mercury and arsenic. Principal Component Analysis confirmed the anthropogenic signature of these contributions. The Potential Ecological Risk Index (PERI) revealed considerable ecological risk particularly in recent decades. Post-1970s environmental regulations possibly contributed to a decline in copper, lead, mercury, and cobalt levels. However, arsenic, cadmium, selenium, and zinc showed gradual increases towards the present, necessitating ongoing attention. Overall, sediment quality at Paradise Point does not pose a concern for the adjacent Deering Bay and Biscayne Bay waters, but continued monitoring is recommended to address emerging trends and ensure the long-term protection of these aquatic systems.
Collapse
Affiliation(s)
- Milena Ceccopieri
- Institute of Environment, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA; Department of Chemistry & Biochemistry, Modesto A. Maidique Campus, Miami, FL 33199, USA.
| | - Kassidy Troxell
- Institute of Environment, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA; Department of Chemistry & Biochemistry, Modesto A. Maidique Campus, Miami, FL 33199, USA
| | - Mark Stephens
- Applied Research Center, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| | - Yan Ding
- Institute of Environment, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA
| | - Piero Gardinali
- Institute of Environment, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA; Department of Chemistry & Biochemistry, Modesto A. Maidique Campus, Miami, FL 33199, USA
| |
Collapse
|
2
|
Samulewski RB, Graff IL, Nemšák S, Zaia DAM. Influence of Cyanide and Thiocyanate on the Formation of Magnetite Synthesized under Prebiotic Chemistry Conditions: Interplay between Surface, Structural, and Magnetic Properties. ACS OMEGA 2025; 10:13377-13387. [PMID: 40224451 PMCID: PMC11983221 DOI: 10.1021/acsomega.4c11450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Understanding the chemical and geological conditions of early Earth is crucial to unraveling the processes that led to the evolution of life. Iron, abundant in the early oceans, likely played a significant role in the evolution of life, particularly in the form of minerals that supported the emergence of the first life forms. This article investigates the catalytic effects of cyanide and thiocyanate ions on magnetite samples synthesized under conditions that simulate the early Earth. Magnetite samples were characterized using X-ray photoelectron spectroscopy (XPS), Fe L23 near-edge X-ray absorption fine structure (NEXAFS), transmission electron microscopy (TEM), and magnetization measurements. The results reveal variations in elemental composition influenced by synthesis conditions, with cyanide ions promoting the formation of magnetite and seawater and thiocyanate inducing the formation of ferrihydrite and goethite, respectively, along with magnetite. These discoveries enrich our understanding of Earth's earliest geochemical processes, contribute to new material synthesis routes, and help environmental science.
Collapse
Affiliation(s)
- Rafael Block Samulewski
- Programa
de Pós-Graduação em Ciência e Engenharia
de Materiais (PPGCEM), Universidade Tecnológica
Federal do Paraná UTFPR, Apucarana, Paraná CEP 86812-460, Brazil
| | - Ismael Leandro Graff
- Departamento
de Física, Universidade Federal do
Paraná UFPR, Curitiba, Paraná CEP 81531-980, Brazil
| | - Slavomír Nemšák
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
3
|
Zhi M, Wang G, Xu L, Li K, Nie W, Niu H, Shao L, Liu Z, Yi Z, Wang Y, Shi Z, Ito A, Zhai S, Li W. How Acid Iron Dissolution in Aged Dust Particles Responds to the Buffering Capacity of Carbonate Minerals during Asian Dust Storms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6167-6178. [PMID: 40051339 DOI: 10.1021/acs.est.4c12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Aerosol deposition significantly impacts ocean ecosystems by providing bioavailable iron (Fe). Acid uptake during the transport of Fe-containing particles has been shown to cause Fe dissolution. However, carbonate in dust particles affects the Fe acidification process, influencing Fe dissolution. Here, we carried out atmospheric observations and modeling to show that Fe solubility substantially increased from locations near dust sources to downwind regions in aged dust particles with pH > 3, driven by proton-promoted dissolution. We found that Fe solubility remained low when Ca solubility was under 45 ± 5%, but increased with Ca solubility when it was above 45 ± 5%. Moreover, we found that Fe dissolved in aqueous Ca-nitrate coatings on Fe-containing dust particles. Our results suggest that the mixing state and buffering capacity of carbonate and Fe minerals should be represented in atmospheric biogeochemical models to more accurately simulate acid Fe dissolution processes.
Collapse
Affiliation(s)
- Minkang Zhi
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Guochen Wang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Liang Xu
- College of Sciences, China Jiliang University, Hangzhou 310018, China
| | - Keliang Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hongya Niu
- Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan 056038, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Ziwei Yi
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zongbo Shi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B17 8PS, United Kingdom
| | - Akinori Ito
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan
| | - Shixian Zhai
- Department of Earth and Environmental Sciences and Graduation Division of Earth and Atmospheric Sciences, Faculty of Science, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
4
|
Hassler CS, Simó R, Fawcett SE, Ellwood MJ, Jaccard SL. Marine biogenic humic substances control iron biogeochemistry across the Southern Ocean. Nat Commun 2025; 16:2662. [PMID: 40102391 PMCID: PMC11920038 DOI: 10.1038/s41467-025-57491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Iron, which is an essential element for marine photosynthesis, is sparingly soluble in seawater. In consequence, iron bioavailability controls primary productivity in up to 40% of the world's ocean, including most of the Southern Ocean. Organic ligands are critical to maintaining iron in solution, but their nature is largely unknown. Here, we use a comprehensive dataset of electroactive humics and iron-binding ligands in contrasting regions across the Southern Ocean to show that humic substances are an important part of the iron binding ligand pool, as has been found elsewhere. However, we demonstrate that humics are mostly produced in situ and composed of exopolymeric substances from phytoplankton and bacteria, in contrast to other regions where terrestrially-derived humics are suggested to play a major role. While phytoplankton humics control the biogeochemistry, bioavailability and cycling of iron in surface waters, humics produced or reprocessed by bacteria affect iron cycling and residence time at the scale of the global ocean. Our findings indicate that autochthonous, freshly released organic matter plays a critical role in controlling primary productivity and ocean-climate feedbacks in iron-limited oceanic regions.
Collapse
Affiliation(s)
- C S Hassler
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Geneva, Switzerland.
- School of Architecture, Civil, and Environmental Engineering, Smart Environmental Sensing in Extreme Environements, ALPOLE, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
| | - R Simó
- Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalonia, Spain
| | - S E Fawcett
- Department of Oceanography, University of Cape Town, Rondebosch, South Africa
- Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Rondebosch, South Africa
| | - M J Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, Australia
- Australian Centre for Excellence in Antarctic Science (ACEAS), Australian National University, Canberra, Australia
| | - S L Jaccard
- Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Li J, Lu Y, Chen X, Wang L, Cao Z, Lei H, Zhang Z, Wang P, Sun B. Seasonal variation of microbial community and diversity in the Taiwan Strait sediments. ENVIRONMENTAL RESEARCH 2025; 268:120809. [PMID: 39798660 DOI: 10.1016/j.envres.2025.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Human activities and ocean currents in the Taiwan Strait exhibit significant seasonal variation, yet the response of marine microbes to ocean changes under anthropogenic and climatic stress remains unclear. Using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics and functional variations of microbial communities in sediment samples. Our findings revealed distinct seasonal patterns in microbial diversity and composition. Proteobacteria, Desulfobacterota, and Crenarchaeota dominated at the phylum level, while Candidatus Nitrosopumilus, Woeseia, and Subgroup 10 were prevalent at the genus level. Iron concentrations, heavy metals and C/N ratio were primary factors influencing microbial communities during specific seasons, whereas sulfur content, temperature fluctuations, and heavy metals shaped the entire microbial structure and diversity. Core microbial groups, including Desulfobulbus, Subgroup 10, Unidentified Latescibacterota, and Sumerlaea, played essential roles in regulating community structure and functional transitions. Marker species, such as Aliidiomarina sanyensis, Spirulina platensis, Croceimarina litoralis and Sulfuriflexus mobilis, acted as seasonal indicators. Bacteria exhibited survival strategy akin to higher organisms, encompassing process of synthesis, growth, dormancy, and disease resistance throughout the seasonal cycle. Core microbial groups and marker species in specific seasons can serve as indicators for monitoring and assessing the health of the Taiwan Strait ecosystem.
Collapse
Affiliation(s)
- Jialong Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Xueting Chen
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China and the Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Xiamen 361005, China
| | - Lianghui Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhiwei Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhenjun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Bin Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Motshakeri M, Angoro B, Phillips ARJ, Svirskis D, Kilmartin PA, Sharma M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1474. [PMID: 40096308 PMCID: PMC11902859 DOI: 10.3390/s25051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods using non-mercury electrodes is increasing as alternatives to environmentally unsafe mercury-based electrodes. However, detecting iron species such as Fe(II) and Fe(III) remains challenging due to their distinct chemical properties, continuous oxidation-state interconversion, presence of interfering species, and complex behavior in diverse environments and matrixes. Selective trace detection demands careful optimization of electrochemical methods, including proper electrode materials selection, electrode surface modifications, operating conditions, and sample pretreatments. This review critically evaluates advancements over the past decade in mercury-free electrode materials and surface modification strategies for iron detection. Strategies include incorporating a variety of nanomaterials, composites, conducting polymers, membranes, and iron-selective ligands to improve sensitivity, selectivity, and performance. Despite advancements, achieving ultra-low detection limits in real-world samples with minimal interference remains challenging and emphasizes the need for enhanced sample pretreatment. This review identifies challenges, knowledge gaps, and future directions and paves the way for advanced iron electrochemical sensors for environmental monitoring, health diagnostics, and analytical precision.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Barbara Angoro
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Anthony R. J. Phillips
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Surgical and Translational Research Center, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Paul A. Kilmartin
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| |
Collapse
|
7
|
Strzepek RF, Latour P, Ellwood MJ, Shaked Y, Boyd PW. Microbial competition for iron determines its availability to the ferrous wheel. THE ISME JOURNAL 2025; 19:wraf015. [PMID: 39869783 PMCID: PMC11833320 DOI: 10.1093/ismejo/wraf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions. Evidence points to the key role of microbes in mediating this recycling, referred to as the "ferrous wheel", that remobilises iron initially supplied to ocean biota. In the iron-limited subantarctic waters of the Southern Ocean, iron uptake is dominated by microbes smaller than 2 μm and exhibits seasonal and depth-related variations. The microbial community within the <2 μm size fraction comprises heterotrophic bacteria and picophytoplankton, both competing for iron. Here, we dissect the demand component of the ferrous wheel by separately assessing iron uptake by heterotrophic bacteria and photoautotrophic picophytoplankton. To explore the seasonal and depth-related variability in iron uptake, the influence of light on iron uptake in both bacterial and phytoplankton communities was examined. We observed that picoeukaryote phytoplankton demonstrated iron uptake rates 10 times greater than those observed in bacteria when normalized to biomass. Light was shown to stimulate iron uptake by 8- to 16-fold in phytoplankton and by 4- to 8-fold in heterotrophic bacteria. These results highlight the unexpectedly significant role of picoeukaryotic phytoplankton in driving the speed of the ferrous wheel, with implications for iron recycling across diurnal cycles, different oceanic depths, and seasonally.
Collapse
Affiliation(s)
- Robert F Strzepek
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7004, Australia
| | - Pauline Latour
- ARC Australian Centre for Excellence in Antarctic Sciences, University of Tasmania, Hobart, TAS 7004, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Michael J Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Philip W Boyd
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7004, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| |
Collapse
|
8
|
González-Santana D, González-Dávila M, González AG, Medina-Escuela A, Fariña D, Santana-Casiano JM. Hot spot volcano emissions as a source of natural iron fertilization in the ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177638. [PMID: 39577584 DOI: 10.1016/j.scitotenv.2024.177638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Dust deposition, river runoff and glacial melt are the main sources of trace metals to the surface ocean. In the Canary Islands, deposition is dominated by dry dust deposition from the Saharan desert. However, during 85 days, from 19 September to 13 December 2021, the main source of trace metals on the island of La Palma changed drastically. The eruption of the Tajogaite volcano released tonnes of volcanic ash. Concurrently, several lava flows reached the coastal waters. Volcanic activity on land became the main source of iron (Fe) into the coastal waters. Fe concentrations in seawater reached over 1900 nmol L-1. ∼99 % of the iron was found in the particulate phase (particles >0.2 μm wide; 1920 ± 50 nmol L-1). Colloids, smaller size particles (0.02 μm < colloids < 0.2 μm) represented ∼0.7 % of the iron pool (14.5 ± 0.5 nmol L-1). While the truly soluble phase represented ∼0.03 %. However, the soluble phase presented concentrations reaching 0.66 ± 0.05 nmol L-1, which is ∼10 times higher than generally found in open Atlantic Ocean waters. The results show how the Fe size fractionation evolved during the eruption, from a dominance of large particle phases to smaller-sized compounds.
Collapse
Affiliation(s)
- David González-Santana
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
| | - Melchor González-Dávila
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
| | - Aridane G González
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
| | - Alfonso Medina-Escuela
- Institute for Applied Microelectronics (IUMA), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain.
| | - David Fariña
- Institute for Applied Microelectronics (IUMA), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain.
| | | |
Collapse
|
9
|
Sarathchandraprasad T, Tiwari M, Kumar V, Sherin S, Yadava MG. Glacial interglacial variations in the natural iron fertilization during the low sea ice periods along the eastern continental margin of Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176745. [PMID: 39383957 DOI: 10.1016/j.scitotenv.2024.176745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The Southern Ocean sequesters atmospheric CO2 through biological pumps, though its driving factors are debated. Modern productivity is regulated by natural iron fertilization from micronutrient influx through dust, regeneration, and Antarctic glaciers and sea ice melting (ice melt). The productivity along the eastern Antarctic continental margin was low during the last glacial period and gradually increased through the deglacial to Late Holocene, marked by distinct productivity peaks. The micronutrients also varied similarly, with reduced glacial influx and an increase in the Holocene, which may cause productivity peaks. Therefore, the coherence of enhanced productivity and micronutrient influx is considered as enhanced iron fertilization period. The productivity peaks declined within ∼1.5 kyr, mostly due to the Ekman transport and sea ice formation. Along with ice melt, the independent weathering pattern that responds with glacial- interglacial ice volume changes suggest the source of micronutrients is not terrigenous. Shelf interaction of oceanic currents can influence the water column nutrient stock significantly, while its utilization occurs during reduced ice periods (low sea ice and high glacier melting) for productivity. Therefore, enhanced natural iron fertilization periods are considered as ice low periods that occurred in a periodicity of 2 kyrs, at ∼7.5 kyr BP, ∼5.5 kyr BP, ∼4 kyr BP, ∼ 2.5 kyr BP, and ∼0.5 kyr BP, likely due to the combined effects of atmospheric and oceanographic factors driven by the high amplitude regional temperature variability during the mid to late Holocene.
Collapse
Affiliation(s)
- T Sarathchandraprasad
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India
| | - Manish Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India.
| | - Vikash Kumar
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India
| | - Sharmila Sherin
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco Da Gama, Goa 403804, India
| | - M G Yadava
- Geoscience Division, Physical Research Laboratory, Navrangapura, Ahmedabad 380009, India
| |
Collapse
|
10
|
Wang KL, Ma X, Li DB, Qi YL, Hua ZS, Tian T, Liu DF, Min D, Li WW, Huang GX, Yu HQ. Single Phototrophic Bacterium-Mediated Iron Cycling in Aquatic Environments. RESEARCH (WASHINGTON, D.C.) 2024; 7:0528. [PMID: 39559346 PMCID: PMC11570789 DOI: 10.34133/research.0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Redox cycling of iron plays a pivotal role in both nutrient acquisition by living organisms and the geochemical cycling of elements in aquatic environments. In nature, iron cycling is mediated by microbial Fe(II)-oxidizers and Fe(III)-reducers or through the interplay of biotic and abiotic iron transformation processes. Here, we unveil a specific iron cycling process driven by one single phototrophic species, Rhodobacter ferrooxidans SW2. It exhibits the capability to reduce Fe(III) during bacterial cultivation. A c-type cytochrome is identified with Fe(III)-reducing activity, implying the linkage of Fe(III) reduction with the electron transport system. R. ferrooxidans SW2 can mediate iron redox transformation, depending on the availability of light and/or organic substrates. Iron cycling driven by anoxygenic photoferrotrophs is proposed to exist worldwide in modern and ancient environments. Our work not only enriches the theoretical basis of iron cycling in nature but also implies multiple roles of anoxygenic photoferrotrophs in iron transformation processes.
Collapse
Affiliation(s)
- Kai-Li Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xin Ma
- School of Life Sciences,
University of Science and Technology of China, Hefei 230026, China
| | - Dao-Bo Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Applied Microbiology Southern China,
Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yan-Ling Qi
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Tian Tian
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Di Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Gui-Xiang Huang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
11
|
Lampe RH, Coale TH, McQuaid JB, Allen AE. Molecular Mechanisms for Iron Uptake and Homeostasis in Marine Eukaryotic Phytoplankton. Annu Rev Microbiol 2024; 78:213-232. [PMID: 39018471 DOI: 10.1146/annurev-micro-041222-023252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The micronutrient iron is essential for phytoplankton growth due to its central role in a wide variety of key metabolic processes including photosynthesis and nitrate assimilation. As a result of scarce bioavailable iron in seawater, marine primary productivity is often iron-limited with future iron supplies remaining uncertain. Although evolutionary constraints resulted in high cellular iron requirements, phytoplankton evolved diverse mechanisms that enable uptake of multiple forms of iron, storage of iron over short and long timescales, and modulation of their iron requirement under stress. Genomics continues to increase our understanding of iron-related proteins that are homologous to those characterized in other model organisms, while recently, molecular and cell biology have been revealing unique genes and processes with connections to iron acquisition or use. Moreover, there are an increasing number of examples showing the interplay between iron uptake and extracellular processes such as boundary layer chemistry and microbial interactions.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| | - Tyler H Coale
- Department of Ocean Sciences, University of California, Santa Cruz, California, USA;
| | - Jeffrey B McQuaid
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; , ,
- Microbial and Environmental Genomics Department, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
12
|
Azzouz A, Dewez D, Benghaffour A, Hausler R, Roy R. Role of Clay Minerals in Natural Media Self-Regeneration from Organic Pollution-Prospects for Nature-Inspired Water Treatments. Molecules 2024; 29:5108. [PMID: 39519749 PMCID: PMC11547395 DOI: 10.3390/molecules29215108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pollution from organic molecules is a major environmental issue that needs to be addressed because of the negative impacts of both the harmfulness of the molecule structures and the toxicity that can spread through natural media. This is mainly due to their unavoidable partial oxidation under exposure to air and solar radiation into diverse derivatives. Even when insoluble, the latter can be dispersed in aqueous media through solvatation and/or complexation with soluble species. Coagulation-flocculation, biological water treatments or adsorption on solids cannot result in a total elimination of organic pollutants. Chemical degradation by chlorine and/or oxygen-based oxidizing agents is not a viable approach due to incomplete mineralization into carbon dioxide and other oxides. A more judicious strategy resides in mimicking natural oxidation under ambient conditions. Soils and aqueous clay suspensions are known to display adsorptive and catalytic properties, and slow and complete self-regeneration can be achieved in an optimum time frame with a much slower pollution throughput. A deep knowledge of the behavior of aluminosilicates and of oxidizing species in soils and aquatic media allows us to gain an understanding of their roles in natural oxidative processes. Their individual and combined contributions will be discussed in the present critical analysis of the reported literature.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
- Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;
| | - David Dewez
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
| | - Amina Benghaffour
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
| | - Robert Hausler
- Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;
| | - René Roy
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
13
|
Zhu J, Chen G, Tang S, Cheng K, Wu K, Cai Z, Zhou J. The micro-ecological feature of colonies is a potential strategy for Phaeocystis globosa bloom formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174134. [PMID: 38909792 DOI: 10.1016/j.scitotenv.2024.174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.
Collapse
Affiliation(s)
- Jianming Zhu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Si Tang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Kebi Wu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
14
|
Xu Z, Huang Z, Li H, Zhu S, Lei Z, Liu C, Meng F, Chen JL, Chen TY, Feng C. Sulfidation-reoxidation enhances heavy metal immobilization by vivianite. WATER RESEARCH 2024; 263:122195. [PMID: 39116713 DOI: 10.1016/j.watres.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2-) and vivianite triggers an unexpected sulfidation-reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2- boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation-reoxidation dynamics in iron phosphate minerals.
Collapse
Affiliation(s)
- Zhangyi Xu
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ziyuan Huang
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Han Li
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shishu Zhu
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhenchao Lei
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Chunhua Feng
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Jeffers TL, Purvine SO, Nicora CD, McCombs R, Upadhyaya S, Stroumza A, Whang K, Gallaher SD, Dohnalkova A, Merchant SS, Lipton M, Niyogi KK, Roth MS. Iron rescues glucose-mediated photosynthesis repression during lipid accumulation in the green alga Chromochloris zofingiensis. Nat Commun 2024; 15:6046. [PMID: 39025848 PMCID: PMC11258321 DOI: 10.1038/s41467-024-50170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Energy status and nutrients regulate photosynthetic protein expression. The unicellular green alga Chromochloris zofingiensis switches off photosynthesis in the presence of exogenous glucose (+Glc) in a process that depends on hexokinase (HXK1). Here, we show that this response requires that cells lack sufficient iron (-Fe). Cells grown in -Fe+Glc accumulate triacylglycerol (TAG) while losing photosynthesis and thylakoid membranes. However, cells with an iron supplement (+Fe+Glc) maintain photosynthesis and thylakoids while still accumulating TAG. Proteomic analysis shows that known photosynthetic proteins are most depleted in heterotrophy, alongside hundreds of uncharacterized, conserved proteins. Photosynthesis repression is associated with enzyme and transporter regulation that redirects iron resources to (a) respiratory instead of photosynthetic complexes and (b) a ferredoxin-dependent desaturase pathway supporting TAG accumulation rather than thylakoid lipid synthesis. Combining insights from diverse organisms from green algae to vascular plants, we show how iron and trophic constraints on metabolism aid gene discovery for photosynthesis and biofuel production.
Collapse
Affiliation(s)
- Tim L Jeffers
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan McCombs
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Shivani Upadhyaya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Adrien Stroumza
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ken Whang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Sean D Gallaher
- UCLA DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Quantitative Biosciences Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mary Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Melissa S Roth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
16
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
17
|
Grosjean N, Yee EF, Kumaran D, Chopra K, Abernathy M, Biswas S, Byrnes J, Kreitler DF, Cheng JF, Ghosh A, Almo SC, Iwai M, Niyogi KK, Pakrasi HB, Sarangi R, van Dam H, Yang L, Blaby IK, Blaby-Haas CE. A hemoprotein with a zinc-mirror heme site ties heme availability to carbon metabolism in cyanobacteria. Nat Commun 2024; 15:3167. [PMID: 38609367 PMCID: PMC11014987 DOI: 10.1038/s41467-024-47486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Estella F Yee
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA
| | - Macon Abernathy
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, USA
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | | | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hubertus van Dam
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Ian K Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
18
|
Li Y, Wang W, Han Y, Liu W, Wang R, Zhang R, Zhao Z, Sheng L, Zhou Y. Impact of COVID-19 emission reduction on dust aerosols and marine chlorophyll-a concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170493. [PMID: 38307263 DOI: 10.1016/j.scitotenv.2024.170493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The long-range transport of dust aerosols plays a crucial role in biogeochemical cycling, and dust deposition is an important source of nutrients for marine phytoplankton growth. To study the impact of COVID-19 emission reduction on dust aerosols and marine chlorophyll-a (Chl-a) concentration, we selected two similar dust processes from the COVID-19 period (10-15 March 2020) and the non-COVID-19 period (15-20 March 2019) using the Euclidean distance calculation method in combination with the HYSPLIT model and multiple satellite data. During the non-COVID-19 period, the proportion of dust was 6.68 %, approximately half that of the COVID-19 period. Meanwhile, the proportion of polluted dust during the non-COVID-19 period was 4.95 %, which was more than tenfold compared to the COVID-19 period. Furthermore, noticeable discrepancies in Chl-a concentration were observed between the two periods. In the non-COVID-19 period, the maximum daily deposition of dust aerosols can reach 16.23 mg/m2, resulting in a 39-85 % increase in Chl-a concentration. However, during COVID-19 period, the maximum daily dust deposition can reach 33.33 mg/m2, while the increase in Chl-a concentration was <30 %. This conclusion suggests that reductions in anthropogenic emissions during the COVID-19 period have influenced the nutrient content of dust aerosols, resulting in a lesser impact on Chl-a concentrations in the ocean.
Collapse
Affiliation(s)
- Yundan Li
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wencai Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China.
| | - Yongqing Han
- Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Jinan 250031, China; Shandong Meteorological Observatory, Jinan 250031, China
| | - Wenjing Liu
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Ronghao Wang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Ruonan Zhang
- Xi'an Environmental Monitoring Station, Xi'an 710054, China
| | - Zhixin Zhao
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Lifang Sheng
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
19
|
Emsley SA, Loughran RM, Shlafstein MD, Pfannmuller KM, De La Flor YT, Lein CG, Dove NC, Koyack MJ, Oline DK, Hanson TE, Videau P, Saw JH, Ushijima B. Fluctibacter corallii gen. nov., sp. nov., isolated from the coral Montipora capitata on a reef in Kāne'ohe Bay, O'ahu, Hawai'i, reclassification of Aestuariibacter halophilus as Fluctibacter halophilus comb. nov., and Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica. Antonie Van Leeuwenhoek 2024; 117:45. [PMID: 38424217 DOI: 10.1007/s10482-024-01934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Strain AA17T was isolated from an apparently healthy fragment of Montipora capitata coral from the reef surrounding Moku o Lo'e in Kāne'ohe Bay, O'ahu, Hawai'i, USA, and was taxonomically evaluated using a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain AA17T shared the greatest similarity with Aestuariibacter halophilus JC2043T (96.6%), and phylogenies based on 16S rRNA gene sequences grouped strain AA17T with members of the Aliiglaciecola, Aestuariibacter, Lacimicrobium, Marisediminitalea, Planctobacterium, and Saliniradius genera. To more precisely infer the taxonomy of strain AA17T, a phylogenomic analysis was conducted and indicated that strain AA17T formed a monophyletic clade with A. halophilus JC2043T, divergent from Aestuariibacter salexigens JC2042T and other related genera. As a result of monophyly and multiple genomic metrics of genus demarcation, strain AA17T and A. halophilus JC2043T comprise a distinct genus for which the name Fluctibacter gen. nov. is proposed. Based on a polyphasic characterisation and identifying differences in genomic and taxonomic data, strain AA17T represents a novel species, for which the name Fluctibacter corallii sp. nov. is proposed. The type strain is AA17T (= LMG 32603 T = NCTC 14664T). This work also supports the reclassification of A. halophilus as Fluctibacter halophilus comb. nov., which is the type species of the Fluctibacter genus. Genomic analyses also support the reclassification of Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica.
Collapse
Affiliation(s)
- Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Rachel M Loughran
- Microbiology Graduate Program, University of Delaware, Newark, DE, USA
| | | | | | - Yesmarie T De La Flor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | | | - Marc J Koyack
- School of Arts and Sciences, Gwynedd Mercy University, Gwynedd Valley, PA, USA
| | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Thomas E Hanson
- Microbiology Graduate Program, University of Delaware, Newark, DE, USA
- School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Delaware, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA
- AgBiome, Research Triangle Park, NC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| |
Collapse
|
20
|
Schiksnis C, Xu M, Saito MA, McIlvin M, Moran D, Bian X, John SG, Zheng Q, Yang N, Fu F, Hutchins DA. Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation. Front Microbiol 2024; 15:1323499. [PMID: 38444803 PMCID: PMC10912551 DOI: 10.3389/fmicb.2024.1323499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria Synechococcus will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study, Synechococcus isolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations in Synechococcus strains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.
Collapse
Affiliation(s)
- Cara Schiksnis
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Min Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Matthew McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Dawn Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Xiaopeng Bian
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Seth G. John
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nina Yang
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Feixue Fu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - David A. Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
21
|
Cheriyan E, Kumar BSK, Gupta GVM, Rao DB. Implications of ocean acidification on micronutrient elements-iron, copper and zinc, and their primary biological impacts: A review. MARINE POLLUTION BULLETIN 2024; 199:115991. [PMID: 38211542 DOI: 10.1016/j.marpolbul.2023.115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
This review has been undertaken to understand the effectiveness of ocean acidification on oceanic micronutrient metal cycles (iron, copper and zinc) and its potential impacts on marine biota. Ocean acidification will slow down the oxidation of Fe(II) thereby retarding Fe(III) formation and subsequent hydrolysis/precipitation leading to an increase in iron bioavailability. Further, the increased primary production sustains enzymatic bacteria assisted Fe(III) reduction and subsequently the binding of weaker ligands favours the dissociation of free Fe(II) ions, thus increasing the bioavailability. The increasing pCO2 condition increases the bioavailability of copper ions by decreasing the availability of free CO32- ligand concentration. The strong complexation by dissolved organic matter may decrease the bioavailable iron and zinc ion concentration. Since ocean acidification affects the bioavailability of essential metals, studies on the uptake rates of these elements by phytoplankton should be carried out to reveal the future scenario and its effect on natural environment.
Collapse
Affiliation(s)
- Eldhose Cheriyan
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India
| | - B S K Kumar
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India.
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India
| | - D Bhaskara Rao
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi 682508, India
| |
Collapse
|
22
|
Manck LE, Coale TH, Stephens BM, Forsch KO, Aluwihare LI, Dupont CL, Allen AE, Barbeau KA. Iron limitation of heterotrophic bacteria in the California Current System tracks relative availability of organic carbon and iron. THE ISME JOURNAL 2024; 18:wrae061. [PMID: 38624181 PMCID: PMC11069385 DOI: 10.1093/ismejo/wrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected insitu. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.
Collapse
Affiliation(s)
- Lauren E Manck
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, United States
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, United States
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Brandon M Stephens
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Oceanography, National Taiwan University, Taipei, 106, Taiwan
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| | - Lihini I Aluwihare
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| | - Christopher L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Human Health, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Synthetic Biology, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
23
|
Chung HY, Jung J, Yang K, Kim J, Kim K. Frozen Clay Minerals as a Potential Source of Bioavailable Iron and Magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19805-19816. [PMID: 37934905 DOI: 10.1021/acs.est.3c06144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Iron (Fe) is an essential micronutrient that affects biological production. Iron-containing clay minerals are an important source of bioavailable iron. However, the dissolution of iron-containing clay minerals at temperatures below the freezing point has not been investigated. Here, we demonstrate the enhanced reductive dissolution of iron from a clay mineral in ice in the presence of iodide (I-) as the electron donor. The accelerated production of dissolved iron in the frozen state was irreversible, and the freeze concentration effect was considered the main driving force. Furthermore, the formation of magnetite (Fe3O4) after the freezing process was observed using transmission electron microscopy analysis. Our results suggest a new mechanism of accelerated abiotic reduction of Fe(III) in clay minerals, which may release bioavailable iron, Fe(II), and reactive iodine species into the natural environment. We also propose a novel process for magnetite formation in ice. The freezing process can serve as a source of bioavailable iron or act as a sink, leading to the formation of magnetite.
Collapse
Affiliation(s)
- Hyun Young Chung
- Korea Polar Research Institute (KOPRI), Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Korea
| | - Jaewoo Jung
- Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Korea
| | - Kiho Yang
- Department of Oceanography, Pusan National University, Busan 46241, Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Korea
| |
Collapse
|
24
|
Tanentzap AJ, Kolmakova O. Global change ecology: Science to heal a damaged planet. PLoS Biol 2023; 21:e3002455. [PMID: 38079446 PMCID: PMC10914387 DOI: 10.1371/journal.pbio.3002455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/05/2024] [Indexed: 03/07/2024] Open
Abstract
Humanity has drastically altered the biophysical systems that sustain life on Earth. We summarize progress and chart future directions in the emerging field of global change ecology, which studies interactions between organisms and their changing environment.
Collapse
Affiliation(s)
- Andrew J. Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Olesya Kolmakova
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Bachar-Wikstrom E, Dhillon B, Gill Dhillon N, Abbo L, Lindén SK, Wikstrom JD. Mass Spectrometry Analysis of Shark Skin Proteins. Int J Mol Sci 2023; 24:16954. [PMID: 38069276 PMCID: PMC10707392 DOI: 10.3390/ijms242316954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage in which proteins play a key role. While proteins in the skin mucus layer of various common bony fish species have been explored, the proteins of shark skin mucus remain unexplored. In this pilot study, we examine the protein composition of the skin mucus in spiny dogfish sharks and chain catsharks through mass spectrometry (NanoLC-MS/MS). Overall, we identified 206 and 72 proteins in spiny dogfish (Squalus acanthias) and chain catsharks (Scyliorhinus retifer), respectively. Categorization showed that the proteins belonged to diverse biological processes and that most proteins were cellular albeit a significant minority were secreted, indicative of mucosal immune roles. The secreted proteins are reviewed in detail with emphasis on their immune potentials. Moreover, STRING protein-protein association network analysis showed that proteins of closely related shark species were more similar as compared to a more distantly related shark and a bony fish, although there were also significant overlaps. This study contributes to the growing field of molecular shark studies and provides a foundation for further research into the functional roles and potential human biomedical implications of shark skin mucus proteins.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Braham Dhillon
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, IFAS, University of Florida, Davie, FL 33314, USA
| | - Navi Gill Dhillon
- Department of Biological Sciences, Nova Southeastern University, Davie, FL 33314, USA
| | - Lisa Abbo
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Dermato-Venereology Clinic, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
26
|
Browning TJ, Al-Hashem AA, Achterberg EP, Carvalho PC, Catry P, Matthiopoulos J, Miller JAO, Wakefield ED. The role of seabird guano in maintaining North Atlantic summertime productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165309. [PMID: 37406699 DOI: 10.1016/j.scitotenv.2023.165309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Nutrients supplied via seabird guano increase primary production in some coastal ecosystems. A similar process may occur in the open ocean. To investigate this directly, we first measured bulk and leachable nutrient concentrations in guano sampled in the North Atlantic. We found that guano was strongly enriched in phosphorus, which was released as phosphate in solution. Nitrogen release was dominated by reduced forms (ammonium and urea) whilst release of nitrate was relatively low. A range of trace elements, including the micronutrient iron, were released. Using in-situ bioassays, we then showed that supply of fresh guano to ambient seawater increases phytoplankton biomass and photochemical efficiencies. Based on these results, modelled seabird distributions, and known defecation rates, we estimate that on annual scales guano is a minor source of nutrients for the surface North Atlantic. However, on shorter timescales in late spring/summer it could be much more important: Estimates of upper-level depositions of phosphorus by seabirds were three orders of magnitude higher than modelled aerosol deposition and comparable to diffusion from deeper waters.
Collapse
Affiliation(s)
- Thomas J Browning
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Kiel, Germany.
| | - Ali A Al-Hashem
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Kiel, Germany
| | - Eric P Achterberg
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Kiel, Germany
| | - Paloma C Carvalho
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Paulo Catry
- Marine and Environmental Sciences Centre (MARE) / Aquatic Research Network (ARNET), ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal
| | - Jason Matthiopoulos
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Julie A O Miller
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Ewan D Wakefield
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, United Kingdom; Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
27
|
Strauss J, Deng L, Gao S, Toseland A, Bachy C, Zhang C, Kirkham A, Hopes A, Utting R, Joest EF, Tagliabue A, Löw C, Worden AZ, Nagel G, Mock T. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. Nat Microbiol 2023; 8:2050-2066. [PMID: 37845316 PMCID: PMC10627834 DOI: 10.1038/s41564-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
Collapse
Affiliation(s)
- Jan Strauss
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
- German Maritime Centre, Hamburg, Germany.
| | - Longji Deng
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, France
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Amy Kirkham
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert Utting
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Eike F Joest
- Department of Biology, Biocenter, University of Würzburg, Wuerzburg, Germany
| | | | - Christian Löw
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
28
|
Zhang R, Debeljak P, Blain S, Obernosterer I. Seasonal shifts in Fe-acquisition strategies in Southern Ocean microbial communities revealed by metagenomics and autonomous sampling. Environ Microbiol 2023; 25:1816-1829. [PMID: 37157891 DOI: 10.1111/1462-2920.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Iron (Fe) governs the cycling of organic carbon in large parts of the Southern Ocean. The strategies of diverse microbes to acquire the different chemical forms of Fe under seasonally changing organic carbon regimes remain, however, poorly understood. Here, we report high-resolution seasonal metagenomic observations from the region off Kerguelen Island (Indian Sector of the Southern Ocean) where natural Fe-fertilization induces consecutive spring and summer phytoplankton blooms. Our data illustrate pronounced, but distinct seasonal patterns in the abundance of genes implicated in the transport of different forms of Fe and organic substrates, of siderophore biosynthesis and carbohydrate-active enzymes. The seasonal dynamics suggest a temporal decoupling in the prokaryotic requirements of Fe and organic carbon during the spring phytoplankton bloom and a concerted access to these resources after the summer bloom. Taxonomic assignments revealed differences in the prokaryotic groups harbouring genes of a given Fe-related category and pronounced seasonal successions were observed. Using MAGs we could decipher the respective Fe- and organic substrate-related genes of individual taxa assigned to abundant groups. The ecological strategies related to Fe-acquisition provide insights on how this element could shape microbial community composition with potential implications on organic matter transformations in the Southern Ocean.
Collapse
Affiliation(s)
- Rui Zhang
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-Mer, France
| | - Pavla Debeljak
- Sorbonne Université, Muséum National d'Histoire, Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), Paris, France
- SupBiotech, Villejuif, France
| | - Stephane Blain
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-Mer, France
| | - Ingrid Obernosterer
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-Mer, France
| |
Collapse
|
29
|
Iriarte-Mesa C, Pretzler M, von Baeckmann C, Kählig H, Krachler R, Rompel A, Kleitz F. Immobilization of Agaricus bisporus Polyphenol Oxidase 4 on mesoporous silica: Towards mimicking key enzymatic processes in peat soils. J Colloid Interface Sci 2023; 646:413-425. [PMID: 37207423 DOI: 10.1016/j.jcis.2023.04.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
HYPOTHESIS The use of immobilized enzyme-type biocatalysts to mimic specific processes in soil can be considered one of the most promising alternatives to overcome the difficulties behind the structural elucidation of riverine humic-derived iron-complexes. Herein, we propose that the immobilization of the functional mushroom tyrosinase, Agaricus bisporus Polyphenol Oxidase 4 (AbPPO4) on mesoporous SBA-15-type silica could contribute to the study of small aquatic humic ligands such as phenols. EXPERIMENTS The silica support was functionalized with amino-groups in order to investigate the impact of surface charge on the tyrosinase loading efficiency as well as on the catalytic performance of adsorbed AbPPO4. The oxidation of various phenols was catalyzed by the AbPPO4-loaded bioconjugates, yielding high levels of conversion and confirming the retention of enzyme activity after immobilization. The structures of the oxidized products were elucidated by integrating chromatographic and spectroscopic techniques. We also evaluated the stability of the immobilized enzyme over a wide range of pH values, temperatures, storage-times and sequential catalytic cycles. FINDINGS This is the first report where the latent AbPPO4 is confined within silica mesopores. The improved catalytic performance of the adsorbed AbPPO4 shows the potential use of these silica-based mesoporous biocatalysts for the preparation of a column-type bioreactor for in situ identification of soil samples.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; www.bpc.univie.ac.at
| | - Cornelia von Baeckmann
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Hanspeter Kählig
- Department of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Regina Krachler
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; www.bpc.univie.ac.at.
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
30
|
Zhang Q, Ding H, Yu X, Wang Q, Li X, Zhang R, Feng J. Plasma non-transferrin-bound iron uptake by the small intestine leads to intestinal injury and intestinal flora dysbiosis in an iron overload mouse model and Caco-2 cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2041-2055. [PMID: 37452897 DOI: 10.1007/s11427-022-2347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
Iron overload often occurs during blood transfusion and iron supplementation, resulting in the presence of non-transferrin-bound iron (NTBI) in host plasma and damage to multiple organs, but effects on the intestine have rarely been reported. In this study, an iron overload mouse model with plasma NTBI was established by intraperitoneal injection of iron dextran. We found that plasma NTBI damaged intestinal morphology, caused intestinal oxidative stress injury and reactive oxygen species (ROS) accumulation, and induced intestinal epithelial cell apoptosis. In addition, plasma NTBI increased the relative abundance of Ileibacterium and Desulfovibrio in the cecum, while the relative abundance of Faecalibaculum and Romboutsia was reduced. Ileibacterium may be a potential microbial biomarker of plasma NTBI. Based on the function prediction analysis, plasma NTBI led to the weakening of intestinal microbiota function, significantly reducing the function of the extracellular structure. Further investigation into the mechanism of injury showed that iron absorption in the small intestine significantly increased in the iron group. Caco-2 cell monolayers were used as a model of the intestinal epithelium to study the mechanism of iron transport. By adding ferric ammonium citrate (FAC, plasma NTBI in physiological form) to the basolateral side, the apparent permeability coefficient (Papp) values from the basolateral to the apical side were greater than 3×10-6 cm s-1. Intracellular ferritin level and apical iron concentration significantly increased, and SLC39A8 (ZIP8) and SLC39A14 (ZIP14) were highly expressed in the FAC group. Short hairpin RNA (shRNA) was used to knock down ZIP8 and ZIP14 in Caco-2 cells. Transfection with ZIP14-specific shRNA decreased intracellular ferritin level and inhibited iron uptake. These results revealed that plasma NTBI may cause intestinal injury and intestinal flora dysbiosis due to the uptake of plasma NTBI from the basolateral side into the small intestine, which is probably mediated by ZIP14.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoxuan Ding
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Yu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejiao Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Tagliabue A, Buck KN, Sofen LE, Twining BS, Aumont O, Boyd PW, Caprara S, Homoky WB, Johnson R, König D, Ohnemus DC, Sohst B, Sedwick P. Authigenic mineral phases as a driver of the upper-ocean iron cycle. Nature 2023; 620:104-109. [PMID: 37532817 DOI: 10.1038/s41586-023-06210-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 08/04/2023]
Abstract
Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.
Collapse
Affiliation(s)
| | - Kristen N Buck
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Laura E Sofen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Olivier Aumont
- LOCEAN, IRD-CNRS-Sorbonne Université-MNHN, IPSL, Paris, France
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Salvatore Caprara
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Daniela König
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Daniel C Ohnemus
- Skidaway Institute of Oceanography, University of Georgia, Department of Marine Sciences, Savannah, GA, USA
| | - Bettina Sohst
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
| | - Peter Sedwick
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
32
|
Xing B, Graham NJD, Zhao B, Li X, Tang Y, Kappler A, Dong H, Winkler M, Yu W. Goethite Formed in the Periplasmic Space of Pseudomonas sp. JM-7 during Fe Cycling Enhances Its Denitrification in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11096-11107. [PMID: 37467428 DOI: 10.1021/acs.est.3c02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 μA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.
Collapse
Affiliation(s)
- Bobo Xing
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Binghao Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xian Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-5014, United States
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
33
|
Liu X, Wang X, Sun C, Hu X, Song W. Brine available two-dimensional nano-architectonics of fluorescent probe based on phosphate doped ZIF-L for detection of Fe 3. Heliyon 2023; 9:e17884. [PMID: 37539111 PMCID: PMC10393607 DOI: 10.1016/j.heliyon.2023.e17884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Herein, we propose a simple and effective strategy for designing a zeolitic imidazolate frameworks (ZIFs) fluorescent probe with a two-dimensional leaf-like structure. By doping ZIF-L with phosphate, we developed a fluorescent probe for iron (Fe3+) in systems with high salinity. The fluorescence of P-ZIF-L was quenched effectively with the presence of Fe3+. The physicochemical structure, surface morphology, selectivity, stability and composition of the probe were investigated. Under optimized conditions, the fluorescent probe had a detection limit of 0.5 μM. Furthermore, the results that the probe exhibited desirable salt-tolerance and was suitable for determination of Fe3+ in brine water samples with satisfactory results.
Collapse
|
34
|
Fourquez M, Janssen DJ, Conway TM, Cabanes D, Ellwood MJ, Sieber M, Trimborn S, Hassler C. Chasing iron bioavailability in the Southern Ocean: Insights from Phaeocystis antarctica and iron speciation. SCIENCE ADVANCES 2023; 9:eadf9696. [PMID: 37379397 PMCID: PMC10306294 DOI: 10.1126/sciadv.adf9696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Dissolved iron (dFe) availability limits the uptake of atmospheric CO2 by the Southern Ocean (SO) biological pump. Hence, any change in bioavailable dFe in this region can directly influence climate. On the basis of Fe uptake experiments with Phaeocystis antarctica, we show that the range of dFe bioavailability in natural samples is wider (<1 to ~200% compared to free inorganic Fe') than previously thought, with higher bioavailability found near glacial sources. The degree of bioavailability varied regardless of in situ dFe concentration and depth, challenging the consensus that sole dFe concentrations can be used to predict Fe uptake in modeling studies. Further, our data suggest a disproportionately major role of biologically mediated ligands and encourage revisiting the role of humic substances in influencing marine Fe biogeochemical cycling in the SO. Last, we describe a linkage between in situ dFe bioavailability and isotopic signatures that, we anticipate, will stimulate future research.
Collapse
Affiliation(s)
- Marion Fourquez
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UMR 110, Marseille 13288, France
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
| | - David J. Janssen
- Department Surface Waters, Eawag–Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Tim M. Conway
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Damien Cabanes
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
- Australian Centre for Excellence in Antarctic Science, Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Matthias Sieber
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Scarlett Trimborn
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Christel Hassler
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
- Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland
- School of Architecture, Civil, and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Sion 1951, Switzerland
| |
Collapse
|
35
|
Thomalla SJ, Du Plessis M, Fauchereau N, Giddy I, Gregor L, Henson S, Joubert WR, Little H, Monteiro PMS, Mtshali T, Nicholson S, Ryan-Keogh TJ, Swart S. Southern Ocean phytoplankton dynamics and carbon export: insights from a seasonal cycle approach. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220068. [PMID: 37150201 DOI: 10.1098/rsta.2022.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO2. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP. This approach highlights the potential for integrating autonomous and remote sensing observations of fine scale dynamics to derive regionally optimized biogeochemical parameterizations for Southern Ocean models. Ongoing development in both the observational and modelling fields will generate new insights into Southern Ocean ecosystem function for improved predictions of the sensitivity of the Southern Ocean BCP to climate change. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
Collapse
Affiliation(s)
- Sandy J Thomalla
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town, South Africa
- Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, South Africa
| | - Marcel Du Plessis
- Department of Marine Sciences, University of Gothenburg, Göteburg, Sweden
| | - Nicolas Fauchereau
- The National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Isabelle Giddy
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town, South Africa
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | - Luke Gregor
- Environmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | | | | | - Hazel Little
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | - Pedro M S Monteiro
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town, South Africa
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Thato Mtshali
- Department of Forestry, Fisheries and the Environment, Oceans and Coast, Cape Town, South Africa
| | - Sarah Nicholson
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town, South Africa
| | | | - Sebastiaan Swart
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
- Department of Marine Sciences, University of Gothenburg, Göteburg, Sweden
| |
Collapse
|
36
|
Tang Y, Han G, Man L, Zeng J, Qu R. Fe contents and isotopes in suspended particulate matter of Lancang River in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162964. [PMID: 36958553 DOI: 10.1016/j.scitotenv.2023.162964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Iron (Fe) isotope geochemistry in rivers is crucial for comprehending surficial weathering and geochemical cycle mechanisms. Lancang River is an important channel for material transport between the Tibet Plateau and the oceans of Southeast Asia. In this study, Fe contents and Fe isotope (δ56Fe) compositions in the suspended particulate matter (SPM) are investigated to discuss the rock weathering processes in the Lancang River Basin. The δ56Fe values of SPM range from 0.01 ‰ to 0.21 ‰, with an average of 0.12 ‰, close to the average δ56Fe value of continental crust (0.07 ‰). The results indicate that the fractionation of Fe isotopes is limited caused of weathering process in the Lancang River Basin. Due to the interception of dense dams in the middle and lower reaches (1000-2000 m), the dissolved oxygen (DO) values of river water and the Fe contents of SPM remain at a relatively highest level, whereas the δ56Fe values in SPM are more positive. The positive correlation between chemical index of alteration (CIA) values and the Fe contents suggest that Fe in the tributary SPM may represent the weathering degree of their source areas. The increase of DO in the mainstream water may promote the decomposition and dissolution of SPM, thus increasing the contents of Fe in the remaining SPM, and causing slight positive fractionation of Fe in SPM. This study presents a complete analysis of the Fe isotope's potential utility in identifying the source of SPM. In addition, the Fe isotope may represent some alterations encountered by SPM throughout the runoff process.
Collapse
Affiliation(s)
- Yang Tang
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550004, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Liu Man
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rui Qu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
37
|
Zan J, Maher B, Yamazaki T, Fang X, Han W, Kang J, Hu Z. Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization. Proc Natl Acad Sci U S A 2023; 120:e2304773120. [PMID: 37279267 PMCID: PMC10268273 DOI: 10.1073/pnas.2304773120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Increasing Asian dust fluxes, associated with late Cenozoic cooling and intensified glaciations, are conventionally thought to drive iron fertilization of phytoplankton productivity in the North Pacific, contributing to ocean carbon storage and drawdown of atmospheric CO2. During the early Pleistocene glaciations, however, productivity remained low despite higher Asian dust fluxes, only displaying glacial stage increases after the mid-Pleistocene climate transition (~800 ka B.P.). We solve this paradox by analyzing an Asian dust sequence, spanning the last 3.6 My, from the Tarim Basin, identifying a major switch in the iron composition of the dust at ~800 ka, associated with expansion of Tibetan glaciers and enhanced production of freshly ground rock minerals. This compositional shift in the Asian dust was recorded synchronously in the downwind, deep sea sediments of the central North Pacific. The switch from desert dust, containing stable, highly oxidized iron, to glacial dust, richer in reactive reduced iron, coincided with increased populations of silica-producing phytoplankton in the equatorial North Pacific and increased primary productivity in more northerly locations, such as the South China Sea. We calculate that potentially bioavailable Fe2+ flux to the North Pacific was more than doubled after the switch to glacially- sourced dust. These findings indicate a positive feedback between Tibetan glaciations, glaciogenic production of dust with enhanced iron bioavailability, and changes in North Pacific iron fertilization. Notably, this strengthened link between climate and eolian dust coincided with the mid-Pleistocene transition to increased storage of C in the glacial North Pacific and more intense northern hemisphere glaciations.
Collapse
Affiliation(s)
- Jinbo Zan
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing1000449China
| | - Barbara A. Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, University of Lancaster,LancasterLA1 4YQ, UK
| | - Toshitsugu Yamazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa277-8564, Japan
| | - Xiaomin Fang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing1000449China
| | - Wenxia Han
- School of Resource and Environmental Sciences, Linyi University,276000Linyi, China
| | - Jian Kang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing1000449China
| | - Zhe Hu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing1000449China
| |
Collapse
|
38
|
Ajayi TM, Shirato N, Rojas T, Wieghold S, Cheng X, Latt KZ, Trainer DJ, Dandu NK, Li Y, Premarathna S, Sarkar S, Rosenmann D, Liu Y, Kyritsakas N, Wang S, Masson E, Rose V, Li X, Ngo AT, Hla SW. Characterization of just one atom using synchrotron X-rays. Nature 2023; 618:69-73. [PMID: 37259001 DOI: 10.1038/s41586-023-06011-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2023] [Indexed: 06/02/2023]
Abstract
Since the discovery of X-rays by Roentgen in 1895, its use has been ubiquitous, from medical and environmental applications to materials sciences1-5. X-ray characterization requires a large number of atoms and reducing the material quantity is a long-standing goal. Here we show that X-rays can be used to characterize the elemental and chemical state of just one atom. Using a specialized tip as a detector, X-ray-excited currents generated from an iron and a terbium atom coordinated to organic ligands are detected. The fingerprints of a single atom, the L2,3 and M4,5 absorption edge signals for iron and terbium, respectively, are clearly observed in the X-ray absorption spectra. The chemical states of these atoms are characterized by means of near-edge X-ray absorption signals, in which X-ray-excited resonance tunnelling (X-ERT) is dominant for the iron atom. The X-ray signal can be sensed only when the tip is located directly above the atom in extreme proximity, which confirms atomically localized detection in the tunnelling regime. Our work connects synchrotron X-rays with a quantum tunnelling process and opens future X-rays experiments for simultaneous characterizations of elemental and chemical properties of materials at the ultimate single-atom limit.
Collapse
Affiliation(s)
- Tolulope M Ajayi
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
- Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH, USA
| | - Nozomi Shirato
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
| | - Tomas Rojas
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Sarah Wieghold
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xinyue Cheng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Kyaw Zin Latt
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
| | - Daniel J Trainer
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
| | - Naveen K Dandu
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Sineth Premarathna
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
- Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH, USA
| | - Sanjoy Sarkar
- Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH, USA
| | - Daniel Rosenmann
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
| | - Yuzi Liu
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA
| | - Nathalie Kyritsakas
- Molecular Tectonics Laboratory, University of Strasbourg, UMR UDS-CNRS 7140, Institut le Bel, Strasbourg, France
| | - Shaoze Wang
- Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH, USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | - Volker Rose
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Anh T Ngo
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Saw-Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, USA.
- Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH, USA.
| |
Collapse
|
39
|
Bonnet S, Guieu C, Taillandier V, Boulart C, Bouruet-Aubertot P, Gazeau F, Scalabrin C, Bressac M, Knapp AN, Cuypers Y, González-Santana D, Forrer HJ, Grisoni JM, Grosso O, Habasque J, Jardin-Camps M, Leblond N, Le Moigne FAC, Lebourges-Dhaussy A, Lory C, Nunige S, Pulido-Villena E, Rizzo AL, Sarthou G, Tilliette C. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean. Science 2023; 380:812-817. [PMID: 37228198 DOI: 10.1126/science.abq4654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.
Collapse
Affiliation(s)
- Sophie Bonnet
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | - Cécile Guieu
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Vincent Taillandier
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Cédric Boulart
- Adaptation et Diversité en Milieu Marin, UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pascale Bouruet-Aubertot
- Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN-IPSL), Sorbonne University, CNRS-IRD-MNHN, 75005 Paris, France
| | - Frédéric Gazeau
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Carla Scalabrin
- Ifremer, Univ Brest, CNRS, UMR 6538 Geo-Ocean, F-29280 Plouzané, France
| | - Matthieu Bressac
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Angela N Knapp
- Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Yannis Cuypers
- Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN-IPSL), Sorbonne University, CNRS-IRD-MNHN, 75005 Paris, France
| | - David González-Santana
- CNRS, Univ Brest, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - Heather J Forrer
- Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jean-Michel Grisoni
- Institut de la Mer de Villefranche, IMEV, Sorbonne Université, Villefranche-sur-Mer, France
| | - Olivier Grosso
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | - Jérémie Habasque
- CNRS, Univ Brest, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | | | - Nathalie Leblond
- Institut de la Mer de Villefranche, IMEV, Sorbonne Université, Villefranche-sur-Mer, France
| | - Frédéric A C Le Moigne
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
- CNRS, Univ Brest, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | | | - Caroline Lory
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | - Sandra Nunige
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | | | - Andrea L Rizzo
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano, Via Alfonso Corti 12, 20133 Milano, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
| | | | - Chloé Tilliette
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
40
|
Wang D, Liu J, Wang C, Zhang W, Yang G, Chen Y, Zhang X, Wu Y, Gu L, Chen H, Yuan W, Chen X, Liu G, Gao B, Chen Q, Zhao Y. Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy. Nat Commun 2023; 14:2943. [PMID: 37221237 DOI: 10.1038/s41467-023-38796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
Cancer immunotherapy is revolutionizing oncology. The marriage of nanotechnology and immunotherapy offers a great opportunity to amplify antitumor immune response in a safe and effective manner. Here, electrochemically active Shewanella oneidensis MR-1 can be applied to produce FDA-approved Prussian blue nanoparticles on a large-scale. We present a mitochondria-targeting nanoplatform, MiBaMc, which consists of Prussian blue decorated bacteria membrane fragments having further modifications with chlorin e6 and triphenylphosphine. We find that MiBaMc specifically targets mitochondria and induces amplified photo-damages and immunogenic cell death of tumor cells under light irradiation. The released tumor antigens subsequently promote the maturation of dendritic cells in tumor-draining lymph nodes, eliciting T cell-mediated immune response. In two tumor-bearing mouse models using female mice, MiBaMc triggered phototherapy synergizes with anti-PDL1 blocking antibody for enhanced tumor inhibition. Collectively, the present study demonstrates biological precipitation synthetic strategy of targeted nanoparticles holds great potential for the preparation of microbial membrane-based nanoplatforms to boost antitumor immunity.
Collapse
Affiliation(s)
- Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- The Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, P.R. China
| | - Changlai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Weiyun Zhang
- School of Biomedical Engineering, Shenzhen University, 518060, Shenzhen, P.R. China
| | - Guangbao Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Long Gu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Guofeng Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bin Gao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
41
|
Jiang S, Xue Y, Wang M, Wang H, Liu L, Dai Y, Liu X, Yue T, Zhao J. Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162533. [PMID: 36870492 DOI: 10.1016/j.scitotenv.2023.162533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification (OA) exhibits high threat to marine microalgae. However, the role of marine sediment in the OA-induced adverse effect towards microalgae is largely unknown. In this work, the effects of OA (pH 7.50) on the growth of individual and co-cultured microalgae (Emiliania huxleyi, Isochrysis galbana, Chlorella vulgaris, Phaeodactylum tricornutum, and Platymonas helgolandica tsingtaoensis) were systematically investigated in the sediment-seawater systems. OA inhibited E. huxleyi growth by 25.21 %, promoted P. helgolandica (tsingtaoensis) growth by 15.49 %, while did not cause any effect on the other three microalgal species in the absence of sediment. In the presence of the sediment, OA-induced growth inhibition of E. huxleyi was significantly mitigated, because the released chemicals (N, P and Fe) from seawater-sediment interface increased the photosynthesis and reduced oxidative stress. For P. tricornutum, C. vulgaris and P. helgolandica (tsingtaoensis), the growth was significantly increased in the presence of sediment in comparison with those under OA alone or normal seawater (pH 8.10). For I. galbana, the growth was inhibited when the sediment was introduced. Additionally, in the co-culturing system, C. vulgaris and P. tricornutum were the dominant species, while OA increased the proportions of dominant species and decreased the community stability as indicated by Shannon and Pielou's indexes. After the introduction of sediment, the community stability was recovered, but remained lower than that under normal condition. This work demonstrated the role of sediment in the biological responses to OA, and could be helpful for better understanding the impact of OA on marine ecosystems.
Collapse
Affiliation(s)
- Shiyang Jiang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yinhao Xue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Meng Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Lu Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
42
|
Huang Y, Fassbender A, Bushinsky S. Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proc Natl Acad Sci U S A 2023; 120:e2217909120. [PMID: 37099629 PMCID: PMC10160987 DOI: 10.1073/pnas.2217909120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air-sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air-sea CO2 exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the "great calcite belt." Relative to an abiotic SO, organic carbon production enhances CO2 uptake by 2.80 ± 0.28 Pg C y-1, while PIC production diminishes CO2 uptake by 0.27 ± 0.21 Pg C y-1. Without organic carbon production, the SO would be a CO2 source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air-sea CO2 exchange.
Collapse
Affiliation(s)
- Yibin Huang
- Department of Ocean Sciences, University of California, Santa Cruz, CA95064
- National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Seattle, WA98115
| | - Andrea J. Fassbender
- Department of Ocean Sciences, University of California, Santa Cruz, CA95064
- National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Seattle, WA98115
| | - Seth M. Bushinsky
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, HA96822
| |
Collapse
|
43
|
Long M, Lelong A, Bucciarelli E, Le Grand F, Hégaret H, Soudant P. Physiological adaptation of the diatom Pseudo-nitzschia delicatissima under copper starvation. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105995. [PMID: 37087845 DOI: 10.1016/j.marenvres.2023.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
In the open ocean and particularly in iron (Fe)-limited environment, copper (Cu) deficiency might limit the growth of phytoplankton species. Cu is an essential trace metal used in electron-transfer reactions, such as respiration and photosynthesis, when bound to specific enzymes. Some phytoplankton species, such as the diatom Pseudo-nitzschia spp. can cope with Cu starvation through adaptative strategies. In this study, we investigated the physiological strategies of the marine diatom P. delicatissima against Cu starvation. Compared to the control, Cu starvation inhibited growth by 35%, but did not induce any excess mortality. Despite the bottleneck measured in the electron flow of the photosynthetic chain, cells of P. delicatissima conserved their photosynthesis ability. This photosynthesis maintenance was accompanied by structural changes of membranes, where pigments and lipid composition were strongly modified. Diatoms also strongly modified their metabolism, by redirecting their C allocation to energy storage under the form of triglycerides. By maintaining essential metabolic functions and storing energy under the form of lipids, these physiological adaptations might be a strategy enabling this diatom to later bloom under the return of favorable nutritional condition.
Collapse
Affiliation(s)
- Marc Long
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France.
| | - Aurélie Lelong
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | - Eva Bucciarelli
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | | | - Hélène Hégaret
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | - Philippe Soudant
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| |
Collapse
|
44
|
Ito A, Miyakawa T. Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4091-4100. [PMID: 36853188 PMCID: PMC10018757 DOI: 10.1021/acs.est.2c06472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric iron (Fe) from anthropogenic, lithogenic, and pyrogenic sources contributes to ocean fertilization, climate change, and human health risk. However, significant uncertainties remain in the source apportionment due to a lack of source-specific evaluation of Fe-laden aerosols. Here, the large uncertainties in the model estimates are investigated using different Fe emissions from metal production. The best agreement in the anthropogenic factor of aerosol Fe concentrations with the field data in the downstream region of East Asian outflow (median: 0.026 μg m-3) is obtained with the low case (0.023 μg m-3), whereas the best agreement of aerosol Fe bioaccessibility with field data (4.5%) over oceans south of 45°S is obtained with the high case (4.9%). Our simulation with the low case confirms that anthropogenic aerosols play dominant roles in bioaccessible Fe deposition in the northwestern Pacific, compared to lithogenic sources. Our simulations with higher cases suggest that Fe-containing particles co-emitted with sulfur dioxide from metal production substantially contribute to atmospheric bioaccessible Fe fluxes to the Southern Ocean. These findings highlight that accurate representation of aerosol Fe from metal production is a key to reduce large uncertainties in bioaccessible Fe deposition fluxes to the Southern Ocean (0.7-4.4 Gg Fe year-1).
Collapse
|
45
|
Ryan-Keogh TJ, Thomalla SJ, Monteiro PMS, Tagliabue A. Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton. Science 2023; 379:834-840. [PMID: 36821685 DOI: 10.1126/science.abl5237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Southern Ocean primary productivity is principally controlled by adjustments in light and iron limitation, but the spatial and temporal determinants of iron availability, accessibility, and demand are poorly constrained, which hinders accurate long-term projections. We present a multidecadal record of phytoplankton photophysiology between 1996 and 2022 from historical in situ datasets collected by Biogeochemical Argo (BGC-Argo) floats and ship-based platforms. We find a significant multidecadal trend in irradiance-normalized nonphotochemical quenching due to increasing iron stress, with concomitant declines in regional net primary production. The observed trend of increasing iron stress results from changing Southern Ocean mixed-layer physics as well as complex biological and chemical feedback that is indicative of important ongoing changes to the Southern Ocean carbon cycle.
Collapse
Affiliation(s)
- Thomas J Ryan-Keogh
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town 7700, South Africa
| | - Sandy J Thomalla
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town 7700, South Africa
- Marine and Antarctic Research for Innovation and Sustainability, University of Cape Town, Cape Town 7700, South Africa
| | - Pedro M S Monteiro
- Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town 7700, South Africa
- School for Climate Studies, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Alessandro Tagliabue
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
| |
Collapse
|
46
|
West CP, Morales AC, Ryan J, Misovich MV, Hettiyadura APS, Rivera-Adorno F, Tomlin JM, Darmody A, Linn BN, Lin P, Laskin A. Molecular investigation of the multi-phase photochemistry of Fe(III)-citrate in aqueous solution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:190-213. [PMID: 35634912 DOI: 10.1039/d1em00503k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is ubiquitous in nature and found as FeII or FeIII in minerals or as dissolved ions Fe2+ or Fe3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of FeIII into natural aquatic systems, organic carboxylic acids efficiently chelate FeIII to form [FeIII-carboxylate]2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of FeIII-carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of FeIII-citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of (φ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe3+-citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j1 ∼ 0.12 min-1 and j2 ∼ 0.05 min-1, respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe-organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe-carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of FeIII-citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | - Maria V Misovich
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | | | | | - Jay M Tomlin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | - Andrew Darmody
- Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, IN, USA
| | - Brittany N Linn
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | - Peng Lin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
- Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
47
|
Klaes B, Thiele-Bruhn S, Wörner G, Höschen C, Mueller CW, Marx P, Arz HW, Breuer S, Kilian R. Iron (hydr)oxide formation in Andosols under extreme climate conditions. Sci Rep 2023; 13:2818. [PMID: 36797309 PMCID: PMC9935883 DOI: 10.1038/s41598-023-29727-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Redox-driven biogeochemical cycling of iron plays an integral role in the complex process network of ecosystems, such as carbon cycling, the fate of nutrients and greenhouse gas emissions. We investigate Fe-(hydr)oxide (trans)formation pathways from rhyolitic tephra in acidic topsoils of South Patagonian Andosols to evaluate the ecological relevance of terrestrial iron cycling for this sensitive fjord ecosystem. Using bulk geochemical analyses combined with micrometer-scale-measurements on individual soil aggregates and tephra pumice, we document biotic and abiotic pathways of Fe released from the glassy tephra matrix and titanomagnetite phenocrysts. During successive redox cycles that are controlled by frequent hydrological perturbations under hyper-humid climate, (trans)formations of ferrihydrite-organic matter coprecipitates, maghemite and hematite are closely linked to tephra weathering and organic matter turnover. These Fe-(hydr)oxides nucleate after glass dissolution and complexation with organic ligands, through maghemitization or dissolution-(re)crystallization processes from metastable precursors. Ultimately, hematite represents the most thermodynamically stable Fe-(hydr)oxide formed under these conditions and physically accumulates at redox interfaces, whereas the ferrihydrite coprecipitates represent a so far underappreciated terrestrial source of bio-available iron for fjord bioproductivity. The insights into Fe-(hydr)oxide (trans)formation in Andosols have implications for a better understanding of biogeochemical cycling of iron in this unique Patagonian fjord ecosystem.
Collapse
Affiliation(s)
- Björn Klaes
- Geology Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296, Trier, Germany. .,Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296, Trier, Germany.
| | - Sören Thiele-Bruhn
- grid.12391.380000 0001 2289 1527Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany
| | - Gerhard Wörner
- grid.7450.60000 0001 2364 4210Division of Geochemistry and Isotope Geology, GZG, Georg-August-University Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany
| | - Carmen Höschen
- grid.6936.a0000000123222966Soil Science, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising-Weihenstephan, Germany
| | - Carsten W. Mueller
- grid.6936.a0000000123222966Soil Science, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising-Weihenstephan, Germany ,grid.5254.60000 0001 0674 042XDepartment for Geosciences and Environmental Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Denmark
| | - Philipp Marx
- grid.12391.380000 0001 2289 1527Soil Science Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany
| | - Helge Wolfgang Arz
- grid.423940.80000 0001 2188 0463Marine Geology Section, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Sonja Breuer
- grid.15606.340000 0001 2155 4756Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Rolf Kilian
- grid.12391.380000 0001 2289 1527Geology Department, Trier University, Campus II (Geozentrum), Behringstraße 21, 54296 Trier, Germany ,grid.442242.60000 0001 2287 1761University of Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
| |
Collapse
|
48
|
Vivado D, Ardini F, Salis A, Damonte G, Rivaro P. Combining voltammetric and mass spectrometric data to evaluate iron organic speciation in subsurface coastal seawater samples of the Ross sea (Antarctica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26718-26734. [PMID: 36369443 PMCID: PMC9995544 DOI: 10.1007/s11356-022-23975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) is the most important trace element in the ocean, as it is required by phytoplankton for photosynthesis and nitrate assimilation. Iron speciation is important to better understand the biogeochemical cycle and availability of this micronutrient, in particular in the Southern Ocean. Dissolved Fe (dFe) concentration and speciation were determined in 24 coastal subsurface seawater samples collected in the western Ross sea (Antarctica) during the austral summer 2017 as part of the CELEBeR (CDW Effects on glacial mElting and on Bulk of Fe in the Western Ross sea) project. ICP-DRC-MS was used for dFe determination, whereas CLE-AdSV was used to obtain the concentration of complexed and free dFe, of the ligands, and the values of the stability constants of the complexes. Dissolved Fe values ranged from 0.4 to 2.5 nM and conditional stability constant (logK'Fe'L) from 13.0 to 15.0, highlighting the presence of Fe-binding organic complexes of different stabilities. Principal component analysis (PCA) allowed us to point out that Terra Nova Bay and the neighboring area of Aviator and Mariner Glaciers were different in terms of chemical, physical, and biological parameters. A qualitative investigation on the nature of the organic ligands was carried out by HPLC-ESI-MS/MS. Results showed that siderophores represented a heterogeneous class of organic ligands pool.
Collapse
Affiliation(s)
- Davide Vivado
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Paola Rivaro
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146, Genoa, Italy.
| |
Collapse
|
49
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
50
|
Fitzsimmons JN, Conway TM. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:383-406. [PMID: 36100217 DOI: 10.1146/annurev-marine-032822-103431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The micronutrient iron plays a major role in setting the magnitude and distribution of primary production across the global ocean. As such, an understanding of the sources, sinks, and internal cycling processes that drive the oceanic distribution of iron is key to unlocking iron's role in the global carbon cycle and climate, both today and in the geologic past. Iron isotopic analyses of seawater have emerged as a transformative tool for diagnosing iron sources to the ocean and tracing biogeochemical processes. In this review, we summarize the end-member isotope signatures of different iron source fluxes and highlight the novel insights into iron provenance gained using this tracer. We also review ways in which iron isotope fractionation might be used to understand internal oceanic cycling of iron, including speciation changes, biological uptake, and particle scavenging. We conclude with an overview of future research needed to expand the utilization of this cutting-edge tracer.
Collapse
Affiliation(s)
| | - Tim M Conway
- College of Marine Science, University of South Florida, St. Petersburg, Florida, USA;
| |
Collapse
|