1
|
Lewis MA, Lachgar-Ruiz M, Di Domenico F, Duddy G, Chen J, Fernandez S, Morin M, Williams G, Moreno Pelayo MA, Steel KP. Pathological mechanisms and candidate therapeutic approaches in the hearing loss of mice carrying human MIR96 mutations. Genome Med 2024; 16:121. [PMID: 39434156 PMCID: PMC11492784 DOI: 10.1186/s13073-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Progressive hearing loss is a common problem in the human population with no effective therapeutics currently available. However, it has a strong genetic contribution, and investigating the genes and regulatory interactions underlying hearing loss offers the possibility of identifying therapeutic candidates. Mutations in regulatory genes are particularly useful for this, and an example is the microRNA miR-96, a post-transcriptional regulator which controls hair cell maturation. Mice and humans carrying mutations in miR-96 all exhibit hearing impairment, in homozygosis if not in heterozygosis, but different mutations result in different physiological, structural and transcriptional phenotypes. METHODS Here we present our characterisation of two lines of mice carrying different human mutations knocked-in to Mir96. We have carried out auditory brainstem response tests to examine their hearing with age and after noise exposure and have used confocal and scanning electron microscopy to examine the ultrastructure of the organ of Corti and hair cell synapses. Bulk RNA-seq was carried out on the organs of Corti of postnatal mice, followed by bioinformatic analyses to identify candidate targets. RESULTS While mice homozygous for either mutation are profoundly deaf from 2 weeks old, the heterozygous phenotypes differ markedly, with only one mutation resulting in hearing impairment in heterozygosis. Investigations of the structural phenotype showed that one mutation appears to lead to synaptic defects, while the other has a much more severe effect on the hair cell stereociliary bundles. Transcriptome analyses revealed a wide range of misregulated genes in both mutants which were notably dissimilar. We used the transcriptome analyses to investigate candidate therapeutics, and tested one, finding that it delayed the progression of hearing loss in heterozygous mice. CONCLUSIONS Our work adds further support for the importance of the gain of novel targets in microRNA mutants and offers a proof of concept for the identification of pharmacological interventions to maintain hearing.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Maria Lachgar-Ruiz
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Francesca Di Domenico
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sergio Fernandez
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Matias Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Gareth Williams
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Miguel Angel Moreno Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
2
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Swahari V, Nakamura A, Hollville E, Hung YH, Kanke M, Kurtz CL, Caravia XM, Roiz-Valle D, He S, Krishnamurthy J, Kapoor S, Prasad V, Flowers C, Beck M, Baran-Gale J, Sharpless N, López-Otín C, Sethupathy P, Deshmukh M. miR-29 is an important driver of aging-related phenotypes. Commun Biol 2024; 7:1055. [PMID: 39191864 PMCID: PMC11349983 DOI: 10.1038/s42003-024-06735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Aging is a consequence of complex molecular changes, but whether a single microRNA (miRNA) can drive aging remains unclear. A miRNA known to be upregulated during both normal and premature aging is miR-29. We find miR-29 to also be among the top miRNAs predicted to drive aging-related gene expression changes. We show that partial loss of miR-29 extends the lifespan of Zmpste24-/- mice, an established model of progeria, indicating that miR-29 is functionally important in this accelerated aging model. To examine whether miR-29 alone is sufficient to promote aging-related phenotypes, we generated mice in which miR-29 can be conditionally overexpressed (miR-29TG). miR-29 overexpression is sufficient to drive many aging-related phenotypes and led to early lethality. Transcriptomic analysis of both young miR-29TG and old WT mice reveals shared downregulation of genes associated with extracellular matrix organization and fatty acid metabolism, and shared upregulation of genes in pathways linked to inflammation. These results highlight the functional importance of miR-29 in controlling a gene expression program that drives aging-related phenotypes.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Ayumi Nakamura
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
- Neurobiology Curriculum; University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C Lisa Kurtz
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
| | - Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Shenghui He
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Janakiraman Krishnamurthy
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Sahil Kapoor
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Varun Prasad
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Cornelius Flowers
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Matt Beck
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette Baran-Gale
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- Bioinformatics and Computational Biology Curriculum; University of North Carolina, Chapel Hill, NC, USA
| | - Norman Sharpless
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Praveen Sethupathy
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Mohanish Deshmukh
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA.
- Neurobiology Curriculum; University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Kaller M, Hünten S, Siemens H, Hermeking H. Analysis of the p53/microRNA Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:187-228. [DOI: 10.1007/978-3-031-08356-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Erener S, Ellis CE, Ramzy A, Glavas MM, O’Dwyer S, Pereira S, Wang T, Pang J, Bruin JE, Riedel MJ, Baker RK, Webber TD, Lesina M, Blüher M, Algül H, Kopp JL, Herzig S, Kieffer TJ. Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice. Cell Rep Med 2021; 2:100434. [PMID: 34841287 PMCID: PMC8606901 DOI: 10.1016/j.xcrm.2021.100434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/08/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, β-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of β-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-β signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how β-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.
Collapse
Affiliation(s)
- Suheda Erener
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Cara E. Ellis
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Adam Ramzy
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Maria M. Glavas
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shannon O’Dwyer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Pereira
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tom Wang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Janice Pang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer E. Bruin
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Michael J. Riedel
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Robert K. Baker
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Travis D. Webber
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marina Lesina
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Hana Algül
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Janel L. Kopp
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Technical University Munich, 85764 Neuherberg, Germany
- Deutsches Zentrum für Diabetesforschung, 85764 Neuherberg, Germany
| | - Timothy J. Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Krohs C, Körber C, Ebbers L, Altaf F, Hollje G, Hoppe S, Dörflinger Y, Prosser HM, Nothwang HG. Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse. J Neurosci 2021; 41:6796-6811. [PMID: 34193555 PMCID: PMC8360680 DOI: 10.1523/jneurosci.0139-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
A point mutation in miR-96 causes non-syndromic progressive peripheral hearing loss and alters structure and physiology of the central auditory system. To gain further insight into the functions of microRNAs (miRNAs) within the central auditory system, we investigated constitutive Mir-183/96dko mice of both sexes. In this mouse model, the genomically clustered miR-183 and miR-96 are constitutively deleted. It shows significantly and specifically reduced volumes of auditory hindbrain nuclei, because of decreases in cell number and soma size. Electrophysiological analysis of the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) demonstrated strongly altered synaptic transmission in young-adult mice. We observed an increase in quantal content and readily releasable vesicle pool size in the presynapse while the overall morphology of the calyx was unchanged. Detailed analysis of the active zones (AZs) revealed differences in its molecular composition and synaptic vesicle (SV) distribution. Postsynaptically, altered clustering and increased synaptic abundancy of the AMPA receptor subunit GluA1 was observed resulting in an increase in quantal amplitude. Together, these presynaptic and postsynaptic alterations led to a 2-fold increase of the evoked excitatory postsynaptic currents in MNTB neurons. None of these changes were observed in deaf Cldn14ko mice, confirming an on-site role of miR-183 and miR-96 in the auditory hindbrain. Our data suggest that the Mir-183/96 cluster plays a key role for proper synaptic transmission at the calyx of Held and for the development of the auditory hindbrain.SIGNIFICANCE STATEMENT The calyx of Held is the outstanding model system to study basic synaptic physiology. Yet, genetic factors driving its morphologic and functional maturation are largely unknown. Here, we identify the Mir-183/96 cluster as an important factor to regulate its synaptic strength. Presynaptically, Mir-183/96dko calyces show an increase in release-ready synaptic vesicles (SVs), quantal content and abundance of the proteins Bassoon and Piccolo. Postsynaptically, the quantal size as well as number and size of GluA1 puncta were increased. The two microRNAs (miRNAs) are thus attractive candidates for regulation of synaptic maturation and long-term adaptations to sound levels. Moreover, the different phenotypic outcomes of different types of mutations in the Mir-183 cluster corroborate the requirement of mutation-tailored therapies in patients with hearing loss.
Collapse
Affiliation(s)
- Constanze Krohs
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Christoph Körber
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Lena Ebbers
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Faiza Altaf
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Giulia Hollje
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Simone Hoppe
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Yvette Dörflinger
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Hans Gerd Nothwang
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
- Excellence Cluster Hearing4all, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
7
|
Xue B, Chuang CH, Prosser HM, Fuziwara CS, Chan C, Sahasrabudhe N, Kühn M, Wu Y, Chen J, Biton A, Chen C, Wilkinson JE, McManus MT, Bradley A, Winslow MM, Su B, He L. miR-200 deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes Dev 2021; 35:1109-1122. [PMID: 34301766 PMCID: PMC8336896 DOI: 10.1101/gad.347344.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
In this study, Xue et al. identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. They show that miR-200 regulates the functional interaction between cancer cells and CAFs at least in part by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs, providing new insight into the interaction between cancer cells and CAFs as a mechanism to promote metastatic potential. Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.
Collapse
Affiliation(s)
- Bin Xue
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Cesar Seigi Fuziwara
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA.,Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Claudia Chan
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Neil Sahasrabudhe
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Maximilian Kühn
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Yalei Wu
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - Jingqi Chen
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | - Anne Biton
- Department of Statistics, University of California at Berkeley, Berkeley, California 94705, USA.,Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756, Centre National de la Recherche Scientifique, Institut Pasteur, Paris 01 45 68 80 00, France
| | - Caifu Chen
- Thermo Fisher Scientific, South San Francisco, California 94080, USA
| | - John Erby Wilkinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California at San Francisco Diabetes Center, W.M. Keck Center for Noncoding RNAs, University of California at San Francisco, San Francisco, California 94143, USA
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| |
Collapse
|
8
|
Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny JL, Fontana P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb Haemost 2021; 121:409-421. [PMID: 33124028 PMCID: PMC8263142 DOI: 10.1055/s-0040-1718730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Wu J, Venkata Subbaiah KC, Jiang F, Hedaya O, Mohan A, Yang T, Welle K, Ghaemmaghami S, Tang WHW, Small E, Yan C, Yao P. MicroRNA-574 regulates FAM210A expression and influences pathological cardiac remodeling. EMBO Mol Med 2021; 13:e12710. [PMID: 33369227 PMCID: PMC7863409 DOI: 10.15252/emmm.202012710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression of mitochondrial proteins impairs cardiac function and causes heart disease. The mechanism of regulation of mitochondria encoded protein expression during cardiac disease, however, remains underexplored. Here, we show that multiple pathogenic cardiac stressors induce the expression of miR-574 guide and passenger strands (miR-574-5p/3p) in both humans and mice. miR-574 knockout mice exhibit severe cardiac disorder under different pathogenic cardiac stresses while miR-574-5p/3p mimics that are delivered systematically using nanoparticles reduce cardiac pathogenesis under disease insults. Transcriptomic analysis of miR-574-null hearts uncovers family with sequence similarity 210 member A (FAM210A) as a common target mRNA of miR-574-5p and miR-574-3p. The interactome capture analysis suggests that FAM210A interacts with mitochondrial translation elongation factor EF-Tu. Manipulating miR-574-5p/3p or FAM210A expression changes the protein expression of mitochondrial-encoded electron transport chain (ETC) genes but not nuclear-encoded mitochondrial ETC genes in both human AC16 cardiomyocyte cells and miR-574-null murine hearts. Together, we discovered that miR-574 regulates FAM210A expression and modulates mitochondrial-encoded protein expression, which may influence cardiac remodeling in heart failure.
Collapse
Affiliation(s)
- Jiangbin Wu
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Kadiam C Venkata Subbaiah
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Feng Jiang
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Omar Hedaya
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Amy Mohan
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Tingting Yang
- Department of OphthalmologyColumbia UniversityNew YorkNYUSA
| | - Kevin Welle
- Mass Spectrometry Resource LabUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource LabUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | | | - Eric Small
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Chen Yan
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Peng Yao
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- The Center for RNA BiologyUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- The Center for Biomedical InformaticsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| |
Collapse
|
10
|
Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, Albuayjan HHH, Nakatsuka A, Eguchi J, Hiyama TY, Kamiya A, Wada J. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne) 2021; 12:727915. [PMID: 34526970 PMCID: PMC8437242 DOI: 10.3389/fendo.2021.727915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
In obesity and type 2 diabetes, numerous genes are differentially expressed, and microRNAs are involved in transcriptional regulation of target mRNAs, but miRNAs critically involved in the appetite control are not known. Here, we identified upregulation of miR-342-3p and its host gene Evl in brain and adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. Mir342 (-/-) mice fed with HFHS chow were protected from obesity and diabetes. The hypothalamic arcuate nucleus neurons co-express Mir342 and EVL. The percentage of activated NPY+pSTAT3+ neurons were reduced, while POMC+pSTAT3+ neurons increased in Mir342 (-/-) mice, and they demonstrated the reduction of food intake and amelioration of metabolic phenotypes. Snap25 was identified as a major target gene of miR-342-3p and the reduced expression of Snap25 may link to functional impairment hypothalamic neurons and excess of food intake. The inhibition of miR-342-3p may be a potential candidate for miRNA-based therapy.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Xinhao Zhang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Boxuan Yang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoko Kurooka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryosuke Sugawara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haya Hamed H. Albuayjan
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Y. Hiyama
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsunori Kamiya
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Jun Wada,
| |
Collapse
|
11
|
MicroRNAs Regulating Autophagy in Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:191-264. [PMID: 34260028 DOI: 10.1007/978-981-16-2830-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Social and economic impacts of neurodegenerative diseases (NDs) become more prominent in our constantly aging population. Currently, due to the lack of knowledge about the aetiology of most NDs, only symptomatic treatment is available for patients. Hence, researchers and clinicians are in need of solid studies on pathological mechanisms of NDs. Autophagy promotes degradation of pathogenic proteins in NDs, while microRNAs post-transcriptionally regulate multiple signalling networks including autophagy. This chapter will critically discuss current research advancements in the area of microRNAs regulating autophagy in NDs. Moreover, we will introduce basic strategies and techniques used in microRNA research. Delineation of the mechanisms contributing to NDs will result in development of better approaches for their early diagnosis and effective treatment.
Collapse
|
12
|
Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech 2020; 14:dmm.047225. [PMID: 33318051 PMCID: PMC7903918 DOI: 10.1242/dmm.047225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023] Open
Abstract
The microRNA miR-96 is important for hearing, as point mutations in humans and mice result in dominant progressive hearing loss. Mir96 is expressed in sensory cells along with Mir182 and Mir183, but the roles of these closely-linked microRNAs are as yet unknown. Here we analyse mice carrying null alleles of Mir182, and of Mir183 and Mir96 together to investigate their roles in hearing. We found that Mir183/96 heterozygous mice had normal hearing and homozygotes were completely deaf with abnormal hair cell stereocilia bundles and reduced numbers of inner hair cell synapses at four weeks old. Mir182 knockout mice developed normal hearing then exhibited progressive hearing loss. Our transcriptional analyses revealed significant changes in a range of other genes, but surprisingly there were fewer genes with altered expression in the organ of Corti of Mir183/96 null mice compared with our previous findings in Mir96 Dmdo mutants, which have a point mutation in the miR-96 seed region. This suggests the more severe phenotype of Mir96 Dmdo mutants compared with Mir183/96 mutants, including progressive hearing loss in Mir96 Dmdo heterozygotes, is likely to be mediated by the gain of novel target genes in addition to the loss of its normal targets. We propose three mechanisms of action of mutant miRNAs; loss of targets that are normally completely repressed, loss of targets whose transcription is normally buffered by the miRNA, and gain of novel targets. Any of these mechanisms could lead to a partial loss of a robust cellular identity and consequent dysfunction.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
13
|
Hammerle CM, Sandovici I, Brierley GV, Smith NM, Zimmer WE, Zvetkova I, Prosser HM, Sekita Y, Lam BYH, Ma M, Cooper WN, Vidal-Puig A, Ozanne SE, Medina-Gómez G, Constância M. Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genet 2020; 16:e1009069. [PMID: 33057429 PMCID: PMC7678979 DOI: 10.1371/journal.pgen.1009069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/20/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023] Open
Abstract
The genetic mechanisms that determine the size of the adult pancreas are poorly understood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are known to have important roles in development, growth and metabolism. However, our knowledge regarding their roles in the control of pancreatic growth and function remains limited. Here we show that many imprinted genes are highly expressed in pancreatic mesenchyme-derived cells and explore the role of the paternally-expressed insulin-like growth factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly developed conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exogenous IGF2 activates AKT, a key signalling node, and increases their number and amylase production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function.
Collapse
Affiliation(s)
- Constanze M. Hammerle
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gemma V. Brierley
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Nicola M. Smith
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Warren E. Zimmer
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Ilona Zvetkova
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Haydn M. Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Yoichi Sekita
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Brian Y. H. Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Wendy N. Cooper
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922-Alcorcón, Madrid, Spain
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
A mouse model that is immunologically tolerant to reporter and modifier proteins. Commun Biol 2020; 3:273. [PMID: 32472011 PMCID: PMC7260180 DOI: 10.1038/s42003-020-0979-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Reporter proteins have become an indispensable tool in biomedical research. However, exogenous introduction of these reporters into mice poses a risk of rejection by the immune system. Here, we describe the generation, validation and application of a multiple reporter protein tolerant ‘Tol' mouse model that constitutively expresses an assembly of shuffled reporter proteins from a single open reading frame. We demonstrate that expression of the Tol transgene results in the deletion of CD8+ T cells specific for a model epitope, and substantially improves engraftment of reporter-gene transduced T cells. The Tol strain provides a valuable mouse model for cell transfer and viral-mediated gene transfer studies, and serves as a methodological example for the generation of poly-tolerant mouse strains. Bresser and Dijkgraaf et al. develop the ‘Tol’ strain, a genetically modified mouse model that expresses a range of shuffled reporter and modifier proteins from a single open reading frame. This strain is immunologically tolerant to these reporter and modifier proteins, providing a valuable model system for cell transfer studies and virus-mediated gene transfer studies.
Collapse
|
15
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
16
|
Xiong Y, Chen L, Yan C, Zhou W, Endo Y, Liu J, Hu L, Hu Y, Mi B, Liu G. Circulating Exosomal miR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904044. [PMID: 31867895 DOI: 10.1002/smll.201904044] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/19/2019] [Indexed: 06/10/2023]
Abstract
At present, developing therapeutic strategies to improve wound healing in individuals with diabetes remains challenging. Exosomes represent a promising nanomaterial from which microRNAs (miRNAs) can be isolated. These miRNAs have the potential to exert therapeutic effects, and thus, determining the potential therapeutic contributions of specific miRNAs circulating in exosomes is of great importance. In the present study, circulating exosomal miRNAs are identified in diabetic patients and assessed for their roles in the context of diabetic wound healing. A significant upregulation of miR-20b-5p is observed in exosomes isolated from patients with type 2 diabetes mellitus (T2DM), and this miRNA is able to suppress human umbilical vein endothelial cell angiogenesis via regulation of Wnt9b/β-catenin signaling. It is found that the application of either miR-20b-5p or diabetic exosomes to wound sites is sufficient to slow wound healing and angiogenesis. In diabetic mice, it is found that knocking out miR-20b-5p significantly enhances wound healing and promotes wound angiogenesis. Together, these findings thus provide strong evidence that miR-20b-5p is highly enriched in exosomes from patients with T2DM and can be transferred to cells of the vascular endothelium, where it targets Wnt9b signaling to negatively regulate cell functionality and angiogenesis.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yori Endo
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| |
Collapse
|
17
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
18
|
Shu Y, Wu K, Zeng Z, Huang S, Ji X, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Luu HH, Reid RR, Wolf JM, Lee MJ, He TC. A Simplified System to Express Circularized Inhibitors of miRNA for Stable and Potent Suppression of miRNA Functions. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:556-567. [PMID: 30414569 PMCID: PMC6226557 DOI: 10.1016/j.omtn.2018.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 12/09/2022]
Abstract
MicroRNAs (miRNAs) are an evolutionarily conserved class of small regulatory noncoding RNAs, binding to complementary target mRNAs and resulting in mRNA translational inhibition or degradation, and they play an important role in regulating many aspects of physiologic and pathologic processes in mammalian cells. Thus, efficient manipulations of miRNA functions may be exploited as promising therapeutics for human diseases. Two commonly used strategies to inhibit miRNA functions include direct transfection of chemically synthesized miRNA inhibitors and delivery of a gene vector that instructs intracellular transcription of miRNA inhibitors. While most miRNA inhibitors are based on antisense molecules to bind and sequester miRNAs from their natural targets, it is challenging to achieve effective and stable miRNA inhibition. Here we develop a user-friendly system to express circular inhibitors of miRNA (CimiRs) by exploiting the noncanonical head-to-tail backsplicing mechanism for generating endogenous circular RNA sponges. In our proof-of-principle experiments, we demonstrate that the circular forms of the hsa-miR223-binding site of human β-arrestin1 (ARRB1) 3' UTR sponge RNA (BUTR), the bulged anti-miR223 (cirBulg223) and bulged anti-miR21 (cirBulg21), exhibit more potent suppression of miRNA functions than their linear counterparts. Therefore, the engineered CimiR expression system should be a valuable tool to target miRNAs for basic and translational research.
Collapse
Affiliation(s)
- Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China.
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Xiaojuan Ji
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China; Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Key Laboratory of Orthopaedic Surgery of Gansu Province, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China; Departments of Orthopaedic Surgery and Obstetrics and Gynecology, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Key Laboratory of Orthopaedic Surgery of Gansu Province, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China; Departments of Orthopaedic Surgery and Obstetrics and Gynecology, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Clinical Laboratory Medicine, Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function. PLoS Biol 2018; 16:e2006247. [PMID: 30346946 PMCID: PMC6211751 DOI: 10.1371/journal.pbio.2006247] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/01/2018] [Accepted: 10/09/2018] [Indexed: 01/10/2023] Open
Abstract
Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29–mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions. To combat diseases, we first need to gain knowledge on how cells function at the molecular level to maintain normal physiology. One great scientific achievement of the last decade was the identification of thousands of small regulatory RNA molecules, called microRNAs. Strikingly, each microRNA has the potential to fine-tune the expression of hundreds of target genes depending on the spatiotemporal context. Therefore, defects in key microRNAs can contribute to the development of diseases. In the present work, we characterize the role for miR-29 in cardiac function in a mouse model. We found that mice deficient for miR-29 develop life-threatening cardiometabolic alterations that subsequently cause heart failure with diastolic dysfunction and systemic hypertension. We also demonstrate that these pathological phenotypes originate in part by the anomalous up-regulation of the transcriptional coactivator PGC1α, which can lead to mitochondrial hyperplasia in the heart. Genetic removal of one copy of PGC1α significantly attenuated the severity of the cardiovascular phenotype observed in miR-29–deficient mice. In addition, we show that PGC1α expression is misregulated in heart failure patients, suggesting that the implementation of miR-29 replacement therapy could potentially be used to treat these fatal pathologies.
Collapse
|
20
|
Hypoxia-Induced MicroRNA-210 Targets Neurodegenerative Pathways. Noncoding RNA 2018; 4:ncrna4020010. [PMID: 29657306 PMCID: PMC6027187 DOI: 10.3390/ncrna4020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-regulated microRNA-210 (miR-210) is a highly conserved microRNA, known to regulate various processes under hypoxic conditions. Previously we found that miR-210 is also involved in honeybee learning and memory, raising the questions of how neural activity may induce hypoxia-regulated genes and how miR-210 may regulate plasticity in more complex mammalian systems. Using a pull-down approach, we identified 620 unique target genes of miR-210 in humans, among which there was a significant enrichment of age-related neurodegenerative pathways, including Huntington's, Alzheimer's, and Parkinson's diseases. We have also validated that miR-210 directly regulates various identified target genes of interest involved with neuronal plasticity, neurodegenerative diseases, and miR-210-associated cancers. This data suggests a potentially novel mechanism for how metabolic changes may couple plasticity to neuronal activity through hypoxia-regulated genes such as miR-210.
Collapse
|
21
|
Barbato S, Marrocco E, Intartaglia D, Pizzo M, Asteriti S, Naso F, Falanga D, Bhat RS, Meola N, Carissimo A, Karali M, Prosser HM, Cangiano L, Surace EM, Banfi S, Conte I. MiR-211 is essential for adult cone photoreceptor maintenance and visual function. Sci Rep 2017; 7:17004. [PMID: 29209045 PMCID: PMC5717140 DOI: 10.1038/s41598-017-17331-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/16/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that play an important role in the control of fundamental biological processes in both physiological and pathological conditions. Their function in retinal cells is just beginning to be elucidated, and a few have been found to play a role in photoreceptor maintenance and function. MiR-211 is one of the most abundant miRNAs in the developing and adult eye. However, its role in controlling vertebrate visual system development, maintenance and function so far remain incompletely unexplored. Here, by targeted inactivation in a mouse model, we identify a critical role of miR-211 in cone photoreceptor function and survival. MiR-211 knockout (-/-) mice exhibited a progressive cone dystrophy accompanied by significant alterations in visual function. Transcriptome analysis of the retina from miR-211-/- mice during cone degeneration revealed significant alteration of pathways related to cell metabolism. Collectively, this study highlights for the first time the impact of miR-211 function in the retina and significantly contributes to unravelling the role of specific miRNAs in cone photoreceptor function and survival.
Collapse
Affiliation(s)
- Sara Barbato
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Sabrina Asteriti
- Department of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - Federica Naso
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Danila Falanga
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Rajeshwari S Bhat
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Nicola Meola
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Aarhus University, Department of Molecular Biology and Genetics, C.F. Møllers Allé 3 building 1130, 422-8000, Aarhus C, Denmark
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy.
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy.
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy.
| |
Collapse
|
22
|
Dooley J, Lagou V, Pasciuto E, Linterman MA, Prosser HM, Himmelreich U, Liston A. No Functional Role for microRNA-342 in a Mouse Model of Pancreatic Acinar Carcinoma. Front Oncol 2017; 7:101. [PMID: 28573106 PMCID: PMC5435746 DOI: 10.3389/fonc.2017.00101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022] Open
Abstract
The intronic microRNA (miR)-342 has been proposed as a potent tumor-suppressor gene. miR-342 is found to be downregulated or epigenetically silenced in multiple different tumor sites, and this loss of expression permits the upregulation of several key oncogenic pathways. In several different cell lines, lower miR-342 expression results in enhanced proliferation and metastasis potential, both in vitro and in xenogenic transplant conditions. Here, we sought to determine the function of miR-342 in an in vivo spontaneous cancer model, using the Ela1-TAg transgenic model of pancreatic acinar carcinoma. Through longitudinal magnetic resonance imaging monitoring of Ela1-TAg transgenic mice, either wild-type or knockout for miR-342, we found no role for miR-342 in the development, growth rate, or pathogenicity of pancreatic acinar carcinoma. These results indicate the importance of assessing miR function in the complex physiology of in vivo model systems and indicate that further functional testing of miR-342 is required before concluding it is a bona fide tumor-suppressor-miR.
Collapse
Affiliation(s)
- James Dooley
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Vasiliki Lagou
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Emanuela Pasciuto
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Zhang Y, Shen K, Bai Y, Lv X, Huang R, Zhang W, Chao J, Nguyen LK, Hua J, Gan G, Hu G, Yao H. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity. Autophagy 2016; 12:1538-59. [PMID: 27464000 PMCID: PMC5082785 DOI: 10.1080/15548627.2016.1191723] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023] Open
Abstract
BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143(+/-) mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Kai Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xuan Lv
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lan K. Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria Australia
| | - Jun Hua
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangming Gan
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Pua HH, Steiner DF, Patel S, Gonzalez JR, Ortiz-Carpena JF, Kageyama R, Chiou NT, Gallman A, de Kouchkovsky D, Jeker LT, McManus MT, Erle DJ, Ansel KM. MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production. Immunity 2016; 44:821-32. [PMID: 26850657 PMCID: PMC4838571 DOI: 10.1016/j.immuni.2016.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of cell fate decisions in immune responses. They act by coordinate repression of multiple target genes, a property that we exploited to uncover regulatory networks that govern T helper-2 (Th2) cells. A functional screen of individual miRNAs in primary T cells uncovered multiple miRNAs that inhibited Th2 cell differentiation. Among these were miR-24 and miR-27, miRNAs coexpressed from two genomic clusters, which each functioned independently to limit interleukin-4 (IL-4) production. Mice lacking both clusters in T cells displayed increased Th2 cell responses and tissue pathology in a mouse model of asthma. Gene expression and pathway analyses placed miR-27 upstream of genes known to regulate Th2 cells. They also identified targets not previously associated with Th2 cell biology which regulated IL-4 production in unbiased functional testing. Thus, elucidating the biological function and target repertoire of miR-24 and miR-27 reveals regulators of Th2 cell biology.
Collapse
Affiliation(s)
- Heather H Pua
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - David F Steiner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Sana Patel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeanmarie R Gonzalez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jorge F Ortiz-Carpena
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Robin Kageyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Ni-Ting Chiou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Antonia Gallman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lukas T Jeker
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - David J Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco CA, USA.
| |
Collapse
|
26
|
Sundermeier TR, Palczewski K. The impact of microRNA gene regulation on the survival and function of mature cell types in the eye. FASEB J 2015; 30:23-33. [PMID: 26399786 DOI: 10.1096/fj.15-279745] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple genes, often within the same pathway, fine-tuning expression of key factors and stabilizing gene networks against aberrant fluctuations. The demanding physiologic functions of photoreceptor cells and the retinal pigmented epithelium necessitate precise gene regulation to maintain their homeostasis and function, thus rendering these postmitotic cells vulnerable to premature death in retinal degenerative disorders. Recent studies of the physiologic impact of miRNAs in these cells clearly demonstrate that miRNAs are an essential component of that gene regulation. These important advances provide the foundation for future exploration of miRNA-regulated gene networks in the eye to facilitate the development of miRNA-targeted therapeutics to combat blinding diseases.
Collapse
Affiliation(s)
- Thomas R Sundermeier
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs. Proc Natl Acad Sci U S A 2015; 112:E4884-93. [PMID: 26283362 DOI: 10.1073/pnas.1512655112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3' UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae.
Collapse
|
28
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
29
|
White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, Hemann C, Opotowsky AR, Vargas SO, Rosas I, Perrella MA, Osorio JC, Haley KJ, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Khan OF, Bader A, Gochuico BR, Matar M, Polach K, Johannessen NM, Prosser HM, Anderson DG, Langer R, Zweier JL, Bindoff LA, Systrom D, Waxman AB, Jin RC, Chan SY. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 2015; 7:695-713. [PMID: 25825391 PMCID: PMC4459813 DOI: 10.15252/emmm.201404511] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.
Collapse
Affiliation(s)
- Kevin White
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Lu
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Annis
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew E Hale
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James E Dahlman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander R Opotowsky
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan C Osorio
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen J Haley
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajeev Saggar
- Department of Cardiothoracic Surgery, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Bader
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay L Zweier
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - David Systrom
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard C Jin
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Diverse Phenotypes and Specific Transcription Patterns in Twenty Mouse Lines with Ablated LincRNAs. PLoS One 2015; 10:e0125522. [PMID: 25909911 PMCID: PMC4409293 DOI: 10.1371/journal.pone.0125522] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/14/2015] [Indexed: 11/19/2022] Open
Abstract
In a survey of 20 knockout mouse lines designed to examine the biological functions of large intergenic non-coding RNAs (lincRNAs), we have found a variety of phenotypes, ranging from perinatal lethality to defects associated with premature aging and morphological and functional abnormalities in the lungs, skeleton, and muscle. Each mutant allele carried a lacZ reporter whose expression profile highlighted a wide spectrum of spatiotemporal and tissue-specific transcription patterns in embryos and adults that informed our phenotypic analyses and will serve as a guide for future investigations of these genes. Our study shows that lincRNAs are a new class of encoded molecules that, like proteins, serve essential and important functional roles in embryonic development, physiology, and homeostasis of a broad array of tissues and organs in mammals.
Collapse
|
31
|
Zhu P, Liu Q, Liu S, Su X, Feng W, Lei X, Liu J, Cui K, Huang B, Shi D. Generation of Foxo3-targeted Mice by Injection of mRNAs Encoding Transcription Activator-like Effector Nucleases (TALENs) into Zygotes. Reprod Domest Anim 2015; 50:474-83. [PMID: 25800339 DOI: 10.1111/rda.12515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
In this study, for exploring the mechanism of forkhead box O3(Foxo3) participating in regulation of the activation of primordial oocytes, Foxo3-targeted mice were generated by injection of mRNAs encoding transcription activator-like effector nucleases (TALENs) into mouse zygotes. The TALEN sites were designed with high conservative homologous region among pig, bovine, buffalo and mouse by commercial bio-companies. The TALENs mutagenic non-homologous end-joining (NHEJ) repair activity were determined to be 31.3% in human embryonic kidney 293T (HEK-293T) cells by dual luciferase reporter assay system. Then, we firstly injected TALEN-mRNAs into the cytoplasm of mouse zygotes by micromanipulation, and four of 48 mouse blastocysts were identified as mutation by sequencing. Subsequently, by the method of TALEN-mRNAs injected into the zygotes with pronucleus micromanipulation technique, we obtained seven Foxo3 mutants of 20 FVB/NJ backgrounds mice which were Foxo3-independent alleles with frameshift and deletion mutations. It was very interesting that all seven were heterozygous mutants (Foxo3(-/+) ), and the gene mutagenesis rates of the mice reached 35%. The five Foxo3 mutant females were all infertile in the following 6 months after birth. The histological examination results showed that there were rare primordial follicles and primary follicles in the ovary of Foxo3 mutant compared to that of wide-type female mice. Moreover, one of two mutant males was subfertile and another was fertile normally. Those results suggested that the mutant of Foxo3 severely affected the fertile ability of female and perhaps male in some degree; furthermore, an even more efficient TALENs-based gene mutation method has been established to be poised to revolutionize the study of mouse and other species genetics.
Collapse
Affiliation(s)
- P Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
33
|
Abstract
Wilms' tumor, or nephroblastoma, is the most common pediatric renal cancer. The tumors morphologically resemble embryonic kidneys with a disrupted architecture and are associated with undifferentiated metanephric precursors. Here, we discuss genetic and epigenetic findings in Wilms' tumor in the context of renal development. Many of the genes implicated in Wilms' tumorigenesis are involved in the control of nephron progenitors or the microRNA (miRNA) processing pathway. Whereas the first group of genes has been extensively studied in normal development, the second finding suggests important roles for miRNAs in general-and specific miRNAs in particular-in normal kidney development that still await further analysis. The recent identification of Wilms' tumor cancer stem cells could provide a framework to integrate these pathways and translate them into new or improved therapeutic interventions.
Collapse
Affiliation(s)
- Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom;
| | - Kathy Pritchard-Jones
- UCL Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Jocelyn Charlton
- UCL Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|
34
|
Abstract
Endogenously expressed small noncoding microRNAs (miRNAs) play an important role in posttranscriptionally regulating gene expression by binding to mRNAs with complementary sequences. miRNA-mRNA interactions allow for cellular flexibility to fine-tune gene expression by controlling translation in response to a multitude of signaling events. Disease states or perturbations in cellular homeostasis can lead to aberrant miRNA expression. The discovery of stable miRNAs in circulation generated enormous interest in exploring their utility as potential noninvasive biomarkers. Additionally, selectively inhibiting or supplementing an miRNA contributing to pathogenesis is being pursued as a therapeutic strategy for a variety of disorders. Studies from rodent models of pain and patients have now implicated a role for miRNAs in mediating various aspects of pain processing. These noncoding RNAs can provide mechanistic insights into the pathways modulated and could serve as therapeutic targets. Here, we discuss the challenges associated with miRNA research and the promises ahead in this vastly unexplored avenue in pain biology.
Collapse
Affiliation(s)
- Marguerite K McDonald
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
35
|
Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout Mutations. Dev Cell 2014; 31:784-800. [DOI: 10.1016/j.devcel.2014.11.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 08/30/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
|
36
|
Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med 2014; 20:437-48. [PMID: 24986063 PMCID: PMC4123187 DOI: 10.1016/j.molmed.2014.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
A comprehensive understanding of diverse ncRNAs in modulating pain is lacking. Among ncRNAs, miRNAs have been relatively well studied in pain regulation. lncRNAs also hold large potential for pain regulation. ncRNAs offer potential therapeutic options for treating chronic pain.
Although noncoding RNAs (ncRNAs) were initially considered to be transcriptional byproducts, recent technological advances have led to a steady increase in our understanding of their importance in gene regulation and disease pathogenesis. In keeping with these developments, pain research is also experiencing rapid growth in the investigation of links between ncRNAs and pathological pain. Although the initial focus was on analyzing expression and dysregulation of candidate miRNAs, elucidation of other ncRNAs and ncRNA-mediated functional mechanisms in pain modulation has just commenced. Here we review the major ncRNA literature available to date with respect to pain modulation and discuss tools and opportunities available for testing the impact of other types of ncRNA on pain.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Institute for Pharmacology, Im Neuenheimer Feld 366, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit with European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | - Rohini Kuner
- Institute for Pharmacology, Im Neuenheimer Feld 366, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit with European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
37
|
Abstract
The use of model organisms as tools for the investigation of human genetic variation has significantly and rapidly advanced our understanding of the aetiologies underlying hereditary traits. However, while equivalences in the DNA sequence of two species may be readily inferred through evolutionary models, the identification of equivalence in the phenotypic consequences resulting from comparable genetic variation is far from straightforward, limiting the value of the modelling paradigm. In this review, we provide an overview of the emerging statistical and computational approaches to objectively identify phenotypic equivalence between human and model organisms with examples from the vertebrate models, mouse and zebrafish. Firstly, we discuss enrichment approaches, which deem the most frequent phenotype among the orthologues of a set of genes associated with a common human phenotype as the orthologous phenotype, or phenolog, in the model species. Secondly, we introduce and discuss computational reasoning approaches to identify phenotypic equivalences made possible through the development of intra- and interspecies ontologies. Finally, we consider the particular challenges involved in modelling neuropsychiatric disorders, which illustrate many of the remaining difficulties in developing comprehensive and unequivocal interspecies phenotype mappings.
Collapse
Affiliation(s)
- Peter N. Robinson
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- * E-mail: (PNR); (CW)
| | - Caleb Webber
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (PNR); (CW)
| |
Collapse
|
38
|
MicroRNAs: master regulators of drug resistance, stemness, and metastasis. J Mol Med (Berl) 2014; 92:321-36. [PMID: 24509937 DOI: 10.1007/s00109-014-1129-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long small non-coding RNAs that regulate gene expression post-transcriptionally. Last decade has witnessed emerging evidences of active roles of miRNAs in tumor development, progression, metastasis, and drug resistance. Many factors contribute to their dysregulation in cancer, such as chromosomal aberrations, differential methylation of their own or host genes' promoters and alterations in miRNA biogenesis pathways. miRNAs have been shown to act as tumor suppressors or oncogenes depending on the targets they regulate and the tissue where they are expressed. Because miRNAs can regulate dozens of genes simultaneously and they can function as tumor suppressors or oncogenes, they have been proposed as promising targets for cancer therapy. In this review, we focus on the role of miRNAs in driving drug resistance and metastasis which are associated with stem cell properties of cancer cells. Furthermore, we discuss systems biology approaches to combine experimental and computational methods to study effects of miRNAs on gene or protein networks regulating these processes. Finally, we describe methods to target oncogenic or replace tumor suppressor miRNAs and current delivery strategies to sensitize refractory cells and to prevent metastasis. A holistic understanding of miRNAs' functions in drug resistance and metastasis, which are major causes of cancer-related deaths, and the development of novel strategies to target them efficiently will pave the way towards better translation of miRNAs into clinics and management of cancer therapy.
Collapse
|
39
|
TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol 2013; 20:1458-64. [PMID: 24213537 DOI: 10.1038/nsmb.2701] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022]
Abstract
Various technical tools have been developed to probe the functions of microRNAs (miRNAs), yet their application has been limited by low efficacy and specificity. To overcome the limitations, we used transcription activator-like effector nucleases (TALENs) to knock out human miRNA genes. We designed and produced a library of 540 pairs of TALENs for 274 miRNA loci, focusing on potentially important miRNAs. The knockout procedure takes only 2-4 weeks and can be applied to any cell type. As a case study, we generated knockout cells for two related miRNAs, miR-141 and miR-200c, which belong to the highly conserved miR-200 family. Interestingly, miR-141 and miR-200c, despite their overall similarity, suppress largely nonoverlapping groups of targets, thus suggesting that functional miRNA-target interaction requires strict seed-pairing. Our study illustrates the potency of TALEN technology and provides useful resources for miRNA research.
Collapse
|
40
|
Sánchez-Mora C, Ramos-Quiroga JA, Garcia-Martínez I, Fernàndez-Castillo N, Bosch R, Richarte V, Palomar G, Nogueira M, Corrales M, Daigre C, Martínez-Luna N, Grau-Lopez L, Toma C, Cormand B, Roncero C, Casas M, Ribasés M. Evaluation of single nucleotide polymorphisms in the miR-183-96-182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). Eur Neuropsychopharmacol 2013; 23:1463-73. [PMID: 23906647 DOI: 10.1016/j.euroneuro.2013.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/28/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Attention deficit-hyperactivity disorder (ADHD) is a neuropsychiatric disorder characterized by inappropriate and impaired levels of hyperactivity, impulsivity and inattention. Around 75% of adults with ADHD show comorbidity with other psychiatric disorders such as disruptive behavior disorders or substance use disorders (SUDs). Recently, there has been growing interest in studying the role of microRNAs (miRNAs) in the susceptibility to complex disorders. Interestingly, converging evidence suggests that single nucleotide polymorphisms (SNPs) within miRNAs or miRNA target sites may modulate the miRNA-mediated regulation of gene expression through the alteration of the miRNA maturation, structure or expression pattern as well as the silencing mechanisms of target genes. Genetic studies and animal models support the involvement of the serotonin receptor (HTR1B) in ADHD. We evaluated the contribution of one SNP in the miR-96 target site at HTR1B and eight tagSNPs within the genomic region containing this miRNA in 695 adults with ADHD (266 and 396 subjects with and without comorbid SUD, respectively), 403 subjects with SUD without life-time diagnosis of ADHD and 485 sex-matched controls from Spain. Single and multiple marker analyses revealed association between two SNPs located at the 3' region of miR-96 (rs2402959 and rs6965643) and ADHD without SUD. Our results provide preliminary evidence for the contribution of two sequence variants at the miR-183-96-182 cluster to ADHD without comorbid SUD, and emphasize the need to take comorbidities into account in genetic studies to minimize the effect of heterogeneity and to clarify these complex phenotypes.
Collapse
Affiliation(s)
- Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 2013; 154:452-64. [PMID: 23870131 PMCID: PMC3717207 DOI: 10.1016/j.cell.2013.06.022] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/10/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023]
Abstract
Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PaperClip
Large openly available resource of targeted mouse mutants and phenotypic data Screen for broad range of disease features and traits Many novel phenotypes suggest functions for both studied and unstudied genes Haploinsufficiency and pleiotropy are common
Collapse
|
42
|
Takada S, Sato T, Ito Y, Yamashita S, Kato T, Kawasumi M, Kanai-Azuma M, Igarashi A, Kato T, Tamano M, Asahara H. Targeted gene deletion of miRNAs in mice by TALEN system. PLoS One 2013; 8:e76004. [PMID: 24146809 PMCID: PMC3797721 DOI: 10.1371/journal.pone.0076004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/17/2013] [Indexed: 12/20/2022] Open
Abstract
Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.
Collapse
Affiliation(s)
- Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- * E-mail: (ST); (HA)
| | - Tempei Sato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Yamashita
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Kato
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miyuri Kawasumi
- Center for Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arisa Igarashi
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomomi Kato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Moe Tamano
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (ST); (HA)
| |
Collapse
|
43
|
Jeker LT, Bluestone JA. MicroRNA regulation of T-cell differentiation and function. Immunol Rev 2013; 253:65-81. [PMID: 23550639 DOI: 10.1111/imr.12061] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. In this study, we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small post-transcriptional regulators are indispensable for proper functioning of the immune system.
Collapse
Affiliation(s)
- Lukas T Jeker
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
44
|
Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 2013; 13:666-78. [PMID: 23907446 PMCID: PMC3980848 DOI: 10.1038/nri3494] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T helper (TH) cells regulate appropriate cellular and humoral immune responses to a wide range of pathogens and are central to the success of vaccines. However, their dysregulation can cause allergies and autoimmune diseases. The CD4(+) T cell population is characterized not only by a range of distinct cell subsets, such as TH1, TH2 and TH17 cells, regulatory T cells and T follicular helper cells--each with specific functions and gene expression programmes--but also by plasticity between the different TH cell subsets. In this Review, we discuss recent advances and emerging ideas about how microRNAs--small endogenously expressed oligonucleotides that modulate gene expression--are involved in the regulatory networks that determine TH cell fate decisions and that regulate their effector functions.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
45
|
Abstract
microRNAs are small non-coding RNAs that in the last decade have emerged as overarching regulators of gene expression. Their abundance, ability to repress a large number of target genes and overlapping target specificity indicate a complex network of interactions that is still being defined. A number of studies focused on the role of microRNAs in cartilage have identified a small number, including miR-140 and -675 as playing important roles in regulation of cartilage homeostasis and together with the broader description of the activity of microRNAs in other tissues are beginning to define the function of microRNAs in cartilage development and homeostasis.
Collapse
Affiliation(s)
- Gary Gibson
- Bone and Joint Center, Henry Ford Hospital, Detroit, Michigan, USA
| | | |
Collapse
|
46
|
Mok Y, Schwierzeck V, Thomas DC, Vigorito E, Rayner TF, Jarvis LB, Prosser HM, Bradley A, Withers DR, Mårtensson IL, Corcoran LM, Blenkiron C, Miska EA, Lyons PA, Smith KGC. MiR-210 is induced by Oct-2, regulates B cells, and inhibits autoantibody production. THE JOURNAL OF IMMUNOLOGY 2013; 191:3037-3048. [PMID: 23960236 DOI: 10.4049/jimmunol.1301289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (MiRs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. In this study, we show that MiR-210 is induced by Oct-2, a key transcriptional mediator of B cell activation. Germline deletion of MiR-210 results in the development of autoantibodies from 5 mo of age. Overexpression of MiR-210 in vivo resulted in cell autonomous expansion of the B1 lineage and impaired fitness of B2 cells. Mice overexpressing MiR-210 exhibited impaired class-switched Ab responses, a finding confirmed in wild-type B cells transfected with a MiR-210 mimic. In vitro studies demonstrated defects in cellular proliferation and cell cycle entry, which were consistent with the transcriptomic analysis demonstrating downregulation of genes involved in cellular proliferation and B cell activation. These findings indicate that Oct-2 induction of MiR-210 provides a novel inhibitory mechanism for the control of B cells and autoantibody production.
Collapse
Affiliation(s)
- Yingting Mok
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Vera Schwierzeck
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - David C Thomas
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tim F Rayner
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lorna B Jarvis
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - David R Withers
- MRC Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, B15 2TT, UK
| | - Inga-Lill Mårtensson
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Cherie Blenkiron
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Paul A Lyons
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
47
|
Ryder E, Gleeson D, Sethi D, Vyas S, Miklejewska E, Dalvi P, Habib B, Cook R, Hardy M, Jhaveri K, Bottomley J, Wardle-Jones H, Bussell JN, Houghton R, Salisbury J, Skarnes WC, Ramirez-Solis R. Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm Genome 2013; 24:286-94. [PMID: 23912999 PMCID: PMC3745610 DOI: 10.1007/s00335-013-9467-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/03/2023]
Abstract
The Sanger Mouse Genetics Project generates knockout mice strains using the EUCOMM/KOMP-CSD embryonic stem (ES) cell collection and characterizes the consequences of the mutations using a high-throughput primary phenotyping screen. Upon achieving germline transmission, new strains are subject to a panel of quality control (QC) PCR- and qPCR-based assays to confirm the correct targeting, cassette structure, and the presence of the 3' LoxP site (required for the potential conditionality of the allele). We report that over 86 % of the 731 strains studied showed the correct targeting and cassette structure, of which 97 % retained the 3' LoxP site. We discuss the characteristics of the lines that failed QC and postulate that the majority of these may be due to mixed ES cell populations which were not detectable with the original screening techniques employed when creating the ES cell resource.
Collapse
Affiliation(s)
- Edward Ryder
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
MicroRNAs (miRNAs) are ~22 nt RNAs that coordinate vast regulatory networks in animals and thereby influence myriad processes. This Review examines evidence that miRNAs have continuous roles in adults in ways that are separable from developmental control. Adult-specific activities for miRNAs have been described in various stem cell populations, in the context of neural function and cardiovascular biology, in metabolism and ageing, and during cancer. In addition to reviewing recent results, we also discuss methods for studying miRNA activities specifically in adults and evaluate their relative strengths and weaknesses. A fuller understanding of continuous functions of miRNAs in adults has bearing on efforts and opportunities to manipulate miRNAs for therapeutic purposes.
Collapse
Affiliation(s)
- Kailiang Sun
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| |
Collapse
|
49
|
Bak RO, Hollensen AK, Mikkelsen JG. Managing microRNAs with vector-encoded decoy-type inhibitors. Mol Ther 2013; 21:1478-85. [PMID: 23752312 DOI: 10.1038/mt.2013.113] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/26/2013] [Indexed: 01/16/2023] Open
Abstract
A rapidly growing understanding of the complex circuitry of microRNA (miRNA)-mediated gene regulation is attracting attention to miRNAs as new drug targets. Targeted miRNA suppression is achieved in a sequence-specific manner by antisense RNA "decoy" molecules. Such synthetic miRNA inhibitors have reached the clinic with remarkable pace and may soon appear as new therapeutic modalities in several diseases. Shortcomings, however, include high production costs, the requirement for repeated administration, and difficulty achieving tissue-specific delivery. With the many recent landmark achievements in clinical gene therapy, new and refined vector-encoded miRNA suppression technologies are attractive for many applications, not least as tools in innumerable daily studies of miRNA biology in laboratories worldwide. Here, we provide an overview of the strategies that have been used to adapt vector-encoded inhibitors for miRNA suppression and discuss advantages related to spatiotemporal and long-term miRNA attenuation. With the remarkable new discovery of miRNA management by naturally occurring circular RNAs, RNA circles generated by trans-splicing mechanisms may prove to be well-suited carriers of decoy-type miRNA inhibitors. The community will aspire to combine circles with high-affinity miRNA decoy methodologies, and such "vectorized" RNA circles may represent new solid ways to deliver miRNA inhibitors, perhaps even with therapeutic applications.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
50
|
Jeker LT, Zhou X, Blelloch R, Bluestone JA. DGCR8-mediated production of canonical microRNAs is critical for regulatory T cell function and stability. PLoS One 2013; 8:e66282. [PMID: 23741528 PMCID: PMC3669207 DOI: 10.1371/journal.pone.0066282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 05/08/2013] [Indexed: 02/01/2023] Open
Abstract
Regulatory T cells (Treg) are integral for immune homeostasis. Here we demonstrate that canonical microRNAs (miRNAs) are required for Treg function because mice with DGCR8-deficient Treg cells spontaneously develop a scurfy-like disease. Using genetic lineage marking we show that absence of miRNAs leads to reduced FoxP3 expression in Treg cells in vivo. In vitro culture of purified DGCR8-deficient Treg leads to a loss of FoxP3 expression. We conclude that canonical miRNAs are essential to maintain stable FoxP3 expression and Treg function. Thus, signals interfering with miRNA homeostasis might contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Lukas T. Jeker
- Diabetes Center and the Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Xuyu Zhou
- Diabetes Center and the Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America,
| | - Jeffrey A. Bluestone
- Diabetes Center and the Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|