1
|
Zin EA, Desrosiers M, Ocari T, Labernede G, Robert C, Izabella C, Saubamea B, Ferrari U, Dalkara D. Impact of DNase digestion on titer measurements of engineered adeno-associated virus serotypes. Mol Ther Methods Clin Dev 2025; 33:101419. [PMID: 40160975 PMCID: PMC11951017 DOI: 10.1016/j.omtm.2025.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/22/2025] [Indexed: 04/02/2025]
Abstract
Determining the concentration of recombinant adeno-associated virus (AAV) productions, also known as titering, is crucial not only for quality control purposes but also for comparative studies of preclinical and clinical gene therapy trials. Recently, several AAVs were engineered by inserting seven amino acids in a protruding loop of the AAV capsid structure: variable region VIII (VR-VIII) loop. These variants have demonstrated increased transduction capabilities over naturally occurring AAV serotypes in several studies. However, they have also been shown to produce lower yields when titered using standard techniques, raising questions about their adequacy for clinical development and use. Here, we investigated why peptide insertion onto AAV capsids reduces their titer by examining viral stocks using electron microscopy and PCR-based titering. We reveal that the DNase digestion step, performed to eliminate free-floating DNA prior to qPCR or ddPCR, adversely impacts engineered capsid stability due to exposure to heat, artificially lowering viral titers of engineered serotypes. Titering without heating yields significantly higher titers for these variants which have melting temperatures (Tm) close to the DNase inactivation temperature, while titers for parental serotypes with higher Tm remain unchanged. Our findings provide an important perspective for titering engineered variants with lower thermostability, especially when comparing their effectiveness with their parental serotypes.
Collapse
Affiliation(s)
- Emilia A. Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Melissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Tommaso Ocari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Guillaume Labernede
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Charlotte Izabella
- Université Paris Cité, Inserm, CNRS, P-MIM, PICMO, F-75006 Paris, France
| | - Bruno Saubamea
- Université Paris Cité, Inserm, CNRS, P-MIM, PICMO, F-75006 Paris, France
| | - Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| |
Collapse
|
2
|
Mendelsohn AI, Nikoobakht L, Bikoff JB, Costa RM. Segregated basal ganglia output pathways correspond to genetically divergent neuronal subclasses. Cell Rep 2025; 44:115454. [PMID: 40146776 DOI: 10.1016/j.celrep.2025.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
The basal ganglia control multiple sensorimotor behaviors through anatomically segregated and topographically organized subcircuits with outputs to specific downstream circuits. However, it is unclear how the anatomical organization of basal ganglia output circuits relates to the molecular diversity of cell types. Here, we demonstrate that the major output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNr), is comprised of transcriptomically distinct subclasses that reflect its distinct progenitor lineages. We show that these subclasses are topographically organized within the SNr, project to distinct targets in the midbrain and hindbrain, and receive inputs from different striatal subregions. Finally, we show that these mouse subclasses are also identifiable in human SNr neurons, suggesting that the genetic organization of the SNr is evolutionarily conserved. These findings provide a unifying logic for how the developmental specification of diverse SNr neurons relates to the anatomical organization of basal ganglia circuits controlling specialized downstream brain regions.
Collapse
Affiliation(s)
- Alana I Mendelsohn
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Laudan Nikoobakht
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui M Costa
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Biber J, Gandor C, Becirovic E, Michalakis S. Retina-directed gene therapy: Achievements and remaining challenges. Pharmacol Ther 2025:108862. [PMID: 40268248 DOI: 10.1016/j.pharmthera.2025.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Gene therapy is an innovative medical approach that offers new treatment options for congenital and acquired diseases by transferring, correcting, inactivating or regulating genes to supplement, replace or modify a gene function. The approval of voretigene neparvovec (Luxturna), a gene therapy for RPE65-associated retinopathy, has marked a milestone for the field of retinal gene therapy, but has also helped to accelerate the development of gene therapies for genetic diseases affecting other organs. Voretigene neparvovec is a vector based on adeno-associated virus (AAV) that delivers a functional copy of RPE65 to supplement the missing function of this gene. The AAV-based gene delivery has proven to be versatile and safe for the transfer of genetic material to retinal cells. However, challenges remain in treating additional inherited as well as acquired retinopathies with this technology. Despite the high level of activity in this field, no other AAV gene therapy for retinal diseases has been approved since voretigene neparvovec. Ongoing research focuses on overcoming the current restraints through innovative strategies like AAV capsid engineering, dual-AAV vector systems, or CRISPR/Cas-mediated genome editing. Additionally, AAV gene therapy is being explored for the treatment of complex acquired diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR) by targeting molecules involved in the pathobiology of the degenerative processes. This review outlines the current state of retinal gene therapy, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Josef Biber
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Catharina Gandor
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
| |
Collapse
|
4
|
Min R, van Til NP, van der Knaap MS. Draining the brain: Gene therapy reverses brain edema in mice with the leukodystrophy MLC. Mol Ther 2025:S1525-0016(25)00285-0. [PMID: 40254020 DOI: 10.1016/j.ymthe.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Niek P van Til
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Iranfar S, Cornille M, Roldan MS, Plion B, Lecomte MJ, Safieddine S, Lahlou G. Cell tropism of adeno-associated viruses within the mouse inner ear in vivo: from embryonic to adult stages. Sci Rep 2025; 15:13479. [PMID: 40251388 PMCID: PMC12008179 DOI: 10.1038/s41598-025-98007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is emerging as a promising treatment for deafness and vestibular deficits, due to the variety of available serotypes that offer a large range of cell targeting capabilities. Nevertheless, the tropism of these AAV serotypes for sensory inner ear cells varies greatly as the cochlea matures, presenting a significant burden for successful preclinical trials. Therefore, identifying serotypes with strong tropism for cochlear and vestibular hair cells during key stages of development in mouse inner ear, the most widely used preclinical model, is essential for advancing clinical applications. We conducted a comparative analysis of the cellular tropism and hair-cell transduction rates of four AAV serotypes in the cochlea and vestibular organs during maturation. We used AAV2, AAV8, AAV9-PHP.eB, and Anc80L65 at the embryonic, neonatal, and adult stages. Our results indicate that the cell transduction rate of these four serotypes varies with age. Notably outer hair cells were mostly targeted during the embryonic stage, inner hair cells were primarily transduced principally at the mature stage, and vestibular hair cells were the most permissive at the neonatal stage. These results provide new insights for preclinical gene therapy studies for the inner ear with potential implications for therapeutic outcomes.
Collapse
Affiliation(s)
- Sepideh Iranfar
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
- Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Sorbonne Université, Paris, France
| | - Maxence Cornille
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
| | - Mauricio Saenz Roldan
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
- Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Sorbonne Université, Paris, France
| | - Baptiste Plion
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
| | - Marie-José Lecomte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France.
- Centre National de la Recherche Scientifique, Paris, 75016, France.
| | - Ghizlene Lahlou
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
- Département d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, GHU Pitié-Salpêtrière, APHP Sorbonne Université, Paris, 75013, France
- Centre de Références Maladies Rares «Surdités génétiques», GHU Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, 75013, France
| |
Collapse
|
6
|
Butterfield GL, Reisman SJ, Iglesias N, Gersbach CA. Gene regulation technologies for gene and cell therapy. Mol Ther 2025:S1525-0016(25)00278-3. [PMID: 40195118 DOI: 10.1016/j.ymthe.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Gene therapy stands at the forefront of medical innovation, offering unique potential to treat the underlying causes of genetic disorders and broadly enable regenerative medicine. However, unregulated production of therapeutic genes can lead to decreased clinical utility due to various complications. Thus, many technologies for controlled gene expression are under development, including regulated transgenes, modulation of endogenous genes to leverage native biological regulation, mapping and repurposing of transcriptional regulatory networks, and engineered systems that dynamically react to cell state changes. Transformative therapies enabled by advances in tissue-specific promoters, inducible systems, and targeted delivery have already entered clinical testing and demonstrated significantly improved specificity and efficacy. This review highlights next-generation technologies under development to expand the reach of gene therapies by enabling precise modulation of gene expression. These technologies, including epigenome editing, antisense oligonucleotides, RNA editing, transcription factor-mediated reprogramming, and synthetic genetic circuits, have the potential to provide powerful control over cellular functions. Despite these remarkable achievements, challenges remain in optimizing delivery, minimizing off-target effects, and addressing regulatory hurdles. However, the ongoing integration of biological insights with engineering innovations promises to expand the potential for gene therapy, offering hope for treating not only rare genetic disorders but also complex multifactorial diseases.
Collapse
Affiliation(s)
- Gabriel L Butterfield
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Samuel J Reisman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Henshey B, Carneiro A, Lei K, Schaffer D, Boulis NM. Adeno-associated viral vector targeted evolution for neurofibromatosis gene delivery. Trends Mol Med 2025; 31:388-398. [PMID: 39890493 PMCID: PMC11985305 DOI: 10.1016/j.molmed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Neurofibromatosis type 1 (NF1) is an inherited genetic disease resulting from pathogenic mutations in NF1 that drive tumor formation along peripheral nerves, leading to many functional consequences. Tumor removal or treatment often results in regrowth and/or nerve damage. Addressing NF1 pathogenic variations at the cellular level through gene therapy holds great potential for long-term treatment of patients with NF1. Adeno-associated viruses (AAVs) are broadly used gene delivery vehicles for gene therapies because of their low pathogenicity, ability to transduce nondividing cells, and potential for long-term gene expression. This article explores the landscape of AAV-mediated gene delivery strategies for NF1, discusses the challenges of efficient delivery to relevant cell types, and highlights the progress in vector design strategies.
Collapse
Affiliation(s)
- Brett Henshey
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - David Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Nisanov AM, Rivera de Jesús JA, Schaffer DV. Advances in AAV capsid engineering: Integrating rational design, directed evolution and machine learning. Mol Ther 2025:S1525-0016(25)00265-5. [PMID: 40176349 DOI: 10.1016/j.ymthe.2025.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
Adeno-associated virus (AAV) has emerged as a highly promising vector for human gene therapy due to its favorable safety profile, versatility, and ability to transduce a wide range of tissues. However, natural AAV serotypes have shortcomings, including suboptimal transduction efficiency, pre-existing immunity, and a lack of tissue specificity, that hinder their therapeutic potential. To address these challenges, significant efforts are being applied to engineer novel AAV capsids. Rational design leverages structural insights to enhance capsid properties, directed evolution enables unbiased selection of superior variants, and machine learning accelerates discovery by computational analysis of high-throughput screening results to enable predictive algorithms. These strategies have yielded novel capsids with improved transduction efficiency, reduced immunogenicity, and enhanced tissue targeting. Future advances that continue to integrate such multi-disciplinary approaches will further drive the clinical translation of AAV-based therapies.
Collapse
Affiliation(s)
- Alan M Nisanov
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720, USA
| | - Julio A Rivera de Jesús
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, Berkeley, San Francisco and University of California, Berkeley, CA 94720, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Shen J, Wang Y, Liu Y, Lan J, Long S, Li Y, Chen D, Yu P, Zhao J, Wang Y, Wang S, Yang F. Behavioral Abnormalities, Cognitive Impairments, Synaptic Deficits, and Gene Replacement Therapy in a CRISPR Engineered Rat Model of 5p15.2 Deletion Associated With Cri du Chat Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415224. [PMID: 39965128 PMCID: PMC11984882 DOI: 10.1002/advs.202415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The Cri du Chat Syndrome (CdCS), a devastating genetic disorder caused by a deletion on chromosome 5p, faces challenges in finding effective treatments and accurate animal models. Using CRISPR-Cas9, a novel CdCS rat model with a 2q22 deletion is developed, mirroring a common genetic alteration in CdCS patients. This model exhibits pronounced deficits in social behavior, cognition, and anxiety, accompanied by neuronal abnormalities and immune dysregulation in key brain regions such as the hippocampus and medial prefrontal cortex (mPFC). The immunostaining and RNA-seq analyses provide new insights into CdCS pathogenesis, revealing inflammatory and immune processes. Importantly, it is demonstrated that early gene replacement therapy with AAV-Ctnnd2 alleviates cognitive impairments in CdCS rats, highlighting the potential for early intervention. However, the effectiveness of this therapy is confined to the early developmental stages and does not fully restore all CdCS symptoms. The findings deepen the understanding of CdCS pathogenesis and suggest promising therapeutic directions.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yan Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yang Liu
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Junying Lan
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| | - Shuang Long
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yingbo Li
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Di Chen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Peng Yu
- Chinese Institutes for Medical ResearchCapital Medical UniversityBeijing100069China
| | - Jing Zhao
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Clinical Center for Precision Medicine in StrokeCapital Medical UniversityBeijing100070China
- Center of Excellence for Omics Research (CORe)Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Shali Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Feng Yang
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
10
|
Hoffmann M, Sorensen RJ, Extross A, He Y, Schmidt D. Protein Carrier Adeno-Associated Virus. ACS NANO 2025; 19:12308-12322. [PMID: 40117458 PMCID: PMC11966780 DOI: 10.1021/acsnano.5c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for gene therapy, enabling the delivery of therapeutic DNA to target cells. However, the potential of AAV to deliver protein payloads has been unexplored. In this study, we engineered a protein carrier AAV (pcAAV) to package and deliver proteins by inserting binding domains on the interior capsid surface. These binding domains mediate the packaging of specific target proteins through interaction with cognate peptides or protein tags during the capsid assembly process. We demonstrate the packaging of multiple proteins, including green fluorescent protein, Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. Packaging efficiency is modulated by the binding domain insertion site, the viral protein isoform containing the binding domain, and the subcellular localization of the target protein. We show that pcAAV can enter cells and deliver the protein payload and that enzymes retain their activity after packaging. Importantly, this protein packaging capability can be translated to multiple AAV serotypes. Our work establishes AAV as a protein delivery vehicle, significantly expanding the utility of this viral vector for biomedical applications.
Collapse
Affiliation(s)
- Mareike
Daniela Hoffmann
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan James Sorensen
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ajay Extross
- Department
of Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yungui He
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel Schmidt
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Szunyogh S, Carroll E, Wade-Martins R. Recent developments in gene therapy for Parkinson's disease. Mol Ther 2025:S1525-0016(25)00204-7. [PMID: 40121531 DOI: 10.1016/j.ymthe.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder for which there is currently no cure. Gene therapy has emerged as a novel approach offering renewed hope for the development of treatments that meaningfully alter the course of the disease. In this review, we explore various gene therapy strategies currently being developed targeting key aspects of PD pathogenesis: the restoration of the dopamine system by delivering genes involved in dopamine biosynthesis, reinforcing the inhibitory signaling pathways through glutamic acid decarboxylase (GAD) delivery to increase GABA production, enhancing neuronal survival and development by introducing various neurotrophic factors, delivery of genes to complement recessive familial PD mutations to correct mitochondrial dysfunction, restoring lysosomal function through delivery of GBA1 to increase glucocerebrosidase (GCase) activity, and reducing α-synuclein levels by reducing or silencing SNCA expression. Despite promising early work, challenges remain in developing safe, effective, and long-lasting gene therapies. Key considerations include optimizing viral vectors for targeted delivery, achieving controlled and sustained gene expression using different promoters, minimizing immune responses, and increasing transgene delivery capacity. Future prospects may involve combinatory strategies targeting multiple pathways, such as multi-gene constructs delivered via high-capacity viral systems.
Collapse
Affiliation(s)
- Sandor Szunyogh
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Emily Carroll
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Coughlin GM, Borsos M, Barcelona BH, Appling N, Mayfield AMH, Mackey ED, Eser RA, Jackson CR, Chen X, Kumar SR, Gradinaru V. Spatial genomics of AAV vectors reveals mechanism of transcriptional crosstalk that enables targeted delivery of large genetic cargo. Nat Biotechnol 2025:10.1038/s41587-025-02565-4. [PMID: 40113953 DOI: 10.1038/s41587-025-02565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Cell-type-specific regulatory elements such as enhancers can direct expression of recombinant adeno-associated viruses (AAVs) to specific cell types, but this approach is limited by the relatively small packaging capacity of AAVs. In this study, we used spatial genomics to show that transcriptional crosstalk between individual AAV genomes provides a general method for cell-type-specific expression of large cargo by separating distally acting regulatory elements into a second AAV genome. We identified and profiled transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. We developed spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue, and we demonstrate here that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leveraged transcriptional crosstalk to drive expression of a 3.2-kb Cas9 cargo in a cell-type-specific manner with systemically administered engineered AAVs, and we demonstrate AAV-delivered, minimally invasive, cell-type-specific gene editing in wild-type mice that recapitulates known disease phenotypes.
Collapse
Affiliation(s)
- Gerard M Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Máté Borsos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bre'Anna H Barcelona
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nathan Appling
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Acacia M H Mayfield
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elisha D Mackey
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rana A Eser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cameron R Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Spetz MR, Kim H, Chavarria D, Conger DJ, Shattuck-Brandt R, Shekharan SR, Shostak A, Ligocki AP, Brien HJ, Embalabala RJ, Mobley BC, Schrag MS, Lippmann ES, Brunger JM. Amyloid-β-regulated gene circuits for programmable Alzheimer's disease therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642808. [PMID: 40161792 PMCID: PMC11952467 DOI: 10.1101/2025.03.12.642808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized in part by the accumulation of the protein amyloid-β (Aβ). Monoclonal antibodies (mAbs) that target Aβ for clearance from the brain have received FDA approval; however, these therapies are accompanied by serious side effects, and their cognitive benefit for patients remains of tremendous debate. Here, we present a potential engineered cell therapy for AD in which we enlist cells of the central nervous system as programmable agents for sculpting the neurodegenerative niche toward one that mitigates glial reactivity and neuronal loss. We constructed a suite of Aβ-sensitive synthetic Notch (synNotch) receptors from clinically tested anti-Aβ mAbs and show that cells expressing these receptors can recognize synthetic Aβ42 and Aβ40 with differential sensitivity. We express these receptors in astrocytes, cells native to the brain that are known to become dysfunctional in AD. These synNotch astrocytes, which upregulate selected transgenes upon exposure to synthetic and human brain-derived amyloid, were engineered to express potential therapeutic transgenes in response to Aβ, including brain-derived neurotrophic factor and antagonists of the cytokines tumor necrosis factor and interleukin-1. SynNotch astrocytes that express such antagonists in response to Aβ partially attenuate a cytokine-induced reactive astrocyte phenotype and promote barrier properties in brain microvascular endothelial cells. Additionally, engineered Aβ-synNotch cells potently upregulate transgene expression in response to Aβ deposited in the 5xFAD mouse brain, demonstrating the capacity to recognize Aβ in situ. Overall, our work supports Aβ-synNotch receptors as promising tools to generate a cell-based therapy for AD with targeted functionalities to positively influence the AD niche.
Collapse
Affiliation(s)
- Madeline R Spetz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Dylan J Conger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | | | - Swathi R Shekharan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Alena Shostak
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Alexander P Ligocki
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Hannah J Brien
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Rebecca J Embalabala
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Bret C Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew S Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
14
|
Sadakata M, Konno A, Takase A, Kasamatsu T, Iijima T, Hirai H, Sadakata T. Critical factors for flow cytometry analysis of the brain. FEBS J 2025. [PMID: 40087869 DOI: 10.1111/febs.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The brain is difficult to analyze using flow cytometry due to its complex interactions with cells, high lipid content, and high autofluorescence. In this study, we investigated methods to isolate various types of brain cells with high yield and viability. The results showed that protease selection significantly affected the viability of various cell types in the brain. Differences in the developmental stage also affected cell yield and viability. Furthermore, the intensity of autofluorescence differs greatly between various regions of the brain. Additionally, we searched for neuronal indicators capable of identifying a diverse range of neurons. The ratios of various exosomes contained in neurons differ depending on the type of neuronal marker. These results revealed critical factors that must be considered when analyzing various types of brain cells using flow cytometry.
Collapse
Affiliation(s)
- Mizuki Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Akinori Takase
- Department of Life Science Support, Research Innovation Center, University Hospitals Sector, Tokai University, Isehara, Kanagawa, Japan
| | - Tetsuhiro Kasamatsu
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi, Gunma, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
15
|
Fang K, Yang X, Liu Y, Xia J, Wu R, Yang F, Feng C, Liu X, Shi L, Geng G, Yang H. A comprehensive study of AAV tropism across C57BL/6 mice, BALB/c mice, and crab-eating macaques. Mol Ther Methods Clin Dev 2025; 33:101434. [PMID: 40104150 PMCID: PMC11919325 DOI: 10.1016/j.omtm.2025.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
Recombinant adeno-associated viruses (AAVs) have been widely used for gene delivery and gene therapy. However, certain AAV serotypes exhibited distinct transduction patterns among different mouse strains or between mice and non-human primates (NHPs). These variations prompted us to investigate the AAV tropism of 21 capsid variants using barcoded AAV libraries among different tissues in C57BL/6 and BALB/c mice, as well as in crab-eating macaques. Our study unveiled that AAV tropisms varied significantly among different mouse strains and species, particularly in capsid variants such as AAV4, AAV9, PHP.B, and CAP-B10. Notably, AAV4 exhibited liver-detargeting properties in both mice and NHPs, and was remarkably efficient in transducing the lung, glomerulus, and pancreatic islet. These findings furnish crucial insights into the variations of AAV tropism among different mouse strains and species and facilitate the selection of appropriate AAV capsids for target tissues among different mouse strains and in NHPs.
Collapse
Affiliation(s)
- Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiali Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junhui Xia
- Huidagene Therapeutics Inc., Shanghai 200131, China
| | - Ruoxi Wu
- Huidagene Therapeutics Inc., Shanghai 200131, China
| | - Fan Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Canbin Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Linyu Shi
- Huidagene Therapeutics Inc., Shanghai 200131, China
| | - Guannan Geng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Huidagene Therapeutics Inc., Shanghai 200131, China
| |
Collapse
|
16
|
Wang JH, Cui M, Liu H, Guo P, McGowan J, Cheng SY, Gessler DJ, Xie J, Punzo C, Tai PW, Gao G. Cell-penetrating peptide-grafted AAV2 capsids for improved retinal delivery via intravitreal injection. Mol Ther Methods Clin Dev 2025; 33:101426. [PMID: 40027263 PMCID: PMC11872077 DOI: 10.1016/j.omtm.2025.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a leading vector for retinal gene therapy due to its favorable safety profile demonstrated by the FDA-approved Luxturna for Leber congenital amaurosis. However, challenges with low transduction efficiency and immunogenicity, coupled with the invasiveness of subretinal injections, have driven efforts to engineer AAV capsids for minimally invasive intravitreal delivery. Intravitreal injections face the barrier of the inner limiting membrane (ILM), particularly with AAV2-based vectors. In this study, we displayed cell-penetrating peptides (CPPs) on AAV2 capsids to enhance retinal cell transduction via intravitreal injection. Through in vivo capsid screening, we identified AAV2.CPP1, which showed significantly improved pan-retinal expression and photoreceptor transduction in mice as well as a reduced immune response compared to the AAV2.7m8 vector. We also revealed that the CPP1 insertion reduced heparan sulfate binding, improving ILM penetration. These findings highlight AAV2.CPP1 as a promising candidate for retinal gene therapy via intravitreal injection, offering enhanced efficiency and a minimized immune response.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Mengtian Cui
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hao Liu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dominic J. Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Cavazza A, Molina-Estévez FJ, Reyes ÁP, Ronco V, Naseem A, Malenšek Š, Pečan P, Santini A, Heredia P, Aguilar-González A, Boulaiz H, Ni Q, Cortijo-Gutierrez M, Pavlovic K, Herrera I, de la Cerda B, Garcia-Tenorio EM, Richard E, Granados-Principal S, López-Márquez A, Köber M, Stojanovic M, Vidaković M, Santos-Garcia I, Blázquez L, Haughton E, Yan D, Sánchez-Martín RM, Mazini L, Aseguinolaza GG, Miccio A, Rio P, Desviat LR, Gonçalves MA, Peng L, Jiménez-Mallebrera C, Molina FM, Gupta D, Lainšček D, Luo Y, Benabdellah K. Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102457. [PMID: 39991472 PMCID: PMC11847086 DOI: 10.1016/j.omtn.2025.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In the past decade, precise targeting through genome editing has emerged as a promising alternative to traditional therapeutic approaches. Genome editing can be performed using various platforms, where programmable DNA nucleases create permanent genetic changes at specific genomic locations due to their ability to recognize precise DNA sequences. Clinical application of this technology requires the delivery of the editing reagents to transplantable cells ex vivo or to tissues and organs for in vivo approaches, often representing a barrier to achieving the desired editing efficiency and safety. In this review, authored by members of the GenE-HumDi European Cooperation in Science and Technology (COST) Action, we described the plethora of delivery systems available for genome-editing components, including viral and non-viral systems, highlighting their advantages, limitations, and potential application in a clinical setting.
Collapse
Affiliation(s)
- Alessia Cavazza
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via del Pozzo 71, 41125 Modena, Italy
| | - Francisco J. Molina-Estévez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental, Alejandro Otero (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Victor Ronco
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Asma Naseem
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Annalisa Santini
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Heredia
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Araceli Aguilar-González
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Marina Cortijo-Gutierrez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Kristina Pavlovic
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Inmaculada Herrera
- Department of Hematology, Reina Sofía University Hospital, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cell Therapy, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Emilio M. Garcia-Tenorio
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Sergio Granados-Principal
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Arístides López-Márquez
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Gran Via de les Corts Catalanes, 585, L'Eixample, 08007 Barcelona, Spain
| | - Mariana Köber
- Biomedical Research Network on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marijana Stojanovic
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Irene Santos-Garcia
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
- CIBERNED, ISCIII CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Av. de Monforte de Lemos, 5, Fuencarral-El Pardo, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Pl., 5, Abando, 48009 Bilbao, Biscay, Spain
| | - Emily Haughton
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Dongnan Yan
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rosario María Sánchez-Martín
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Loubna Mazini
- Technological, Medical and Academic Park (TMAP), N°109, Abdelkrim Elkhatabi, Bd Abdelkrim Al Khattabi, Marrakech 40000, Morocco
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Av. de Pío XII, 55, 31008 Pamplona, Navarra, Spain
- Vivet Therapeutics, Av. de Pío XII 31, 31008 Pamplona, Navarra, Spain
| | - Annarita Miccio
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Rio
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Division of Hematopoietic Innovative Therapies, CIEMAT, Av. Complutense, 40, Moncloa - Aravaca, 28040 Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Av. de los Reyes Católicos, 2, Moncloa - Aravaca, 28040 Madrid, Spain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Manuel A.F.V. Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, “Equipe Labellisee Ligue Ćontre le Cancer”, Campus de Luminy, case 913, 13009 Marseille, France
| | - Cecilia Jiménez-Mallebrera
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Francisco Martin Molina
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Dhanu Gupta
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Huddinge, Sweden
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| |
Collapse
|
18
|
Zhou X, Ma CY, Zhang X, Xu X, Duan F, Kou M, Liu H, Zeng L, Guo L, Chen S, Chen L, Li Z, Luo J, Wu J, Li Z, Li Z, Sui T, Yuan P, Lin Z, Chen H, Lai L, Lian Q. Development of a rabbit model for adrenoleukodystrophy: A pilot study on gene therapy using rAAV9. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102469. [PMID: 40027885 PMCID: PMC11872110 DOI: 10.1016/j.omtn.2025.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a common peroxisomal disorder caused by mutations in the ABCD1 gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This progressive neurodegenerative disease manifests in three primary forms: childhood-acquired cerebral demyelination (CALD), adult myelopathy (AMN), and primary adrenal cortical insufficiency. Bone marrow transplantation effectively halts disease progression only in the early stages of CALD. A thorough investigation of the pathophysiology of X-ALD has been hampered by the lack of a reliable animal model. Valid animal models of X-ALD are urgently needed. To address this, we used CRISPR-Cas9 technology to knock out the ABCD1 gene and established a novel rabbit model of X-ALD. The mutants exhibited elevated serum levels of hexacosanoic acid (C26:0), lignoceric acid (C24:0), and an increased C26:0/C22:0 ratio, as well as significant white matter demyelination in the brain and spinal cord. We also investigated rAAV9-based gene therapy in this model and found a significant reduction in VLCFAs. This study introduces CRISPR-Cas9-mediated ABCD1 gene knockout rabbits as a novel animal model. It comprehensively evaluates the short-term outcomes and safety of rAAV-based gene therapy for X-ALD, providing a promising approach to explore the molecular and pharmacological mechanisms of the disease.
Collapse
Affiliation(s)
- Xiaoya Zhou
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China; HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong 999077, China
| | - Xiaoxian Zhang
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Xianchuan Xu
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Meng Kou
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Liyan Guo
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Shaoxiang Chen
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Li Chen
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Ziyue Li
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Jie Luo
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Jieying Wu
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhejin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qizhou Lian
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- CAS Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- Center for Translational Stem Cell Biology, Hong Kong, China; HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
19
|
Luo N, Lin K, Cai Y, Zhang Z, Sui X, Han Z, Yuan W, Xing J, Gui Z, Liu G, Wang J, Xu F. An engineered adeno-associated virus mediates efficient blood-brain barrier penetration with enhanced neurotropism and reduced hepatotropism. J Control Release 2025; 379:303-315. [PMID: 39798705 DOI: 10.1016/j.jconrel.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The blood-brain barrier (BBB) is a formidable barrier that restricts the entry of substances into the brain, complicating the study of brain function and the treatment of neurological conditions. Traditional methods of delivering genes from the periphery to the central nervous system (CNS) using adeno-associated viruses (AAVs) often require high doses, which can trigger immune responses and hepatotoxicity. Here, we developed a new AAV variant named AAVhu.32-PLUS based on a rational strategy. Following intravenous injection, AAVhu.32-PLUS can cross the BBB and exhibits higher efficiency and specificity in transducing neurons and significantly reduced hepatotropism compared to the extensively used AAV-PHP.eB. Furthermore, through in vitro cell experiments, we identified that AAVhu.32-PLUS may rely on the LY6A receptor for crossing the BBB. Finally, our research indicates that AAVhu.32-PLUS, while having lower transduction efficiency in astrocytes compared to AAV-PHP.eB, is still capable of efficiently transducing glioblastoma after intravenous injection. These properties make AAVhu.32-PLUS a promising tool for neuroscience research and targeted therapies of brain disease.
Collapse
Affiliation(s)
- Nengsong Luo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China
| | - Kunzhang Lin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China.
| | - Yuxiang Cai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Zilian Zhang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China
| | - Xiaokai Sui
- Zhongnan Hospital, Wuhan University, 430072 Wuhan, PR China
| | - Zengpeng Han
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenjia Yuan
- Brain Case Biotechnology Co., Ltd., 518107 Shenzhen, PR China
| | - Jiayong Xing
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Gangning Liu
- College of Life Sciences, Wuhan University, 430072 Wuhan, PR China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, PR China.
| |
Collapse
|
20
|
Walkey CJ, Snow KJ, Bulcha J, Cox AR, Martinez AE, Ljungberg MC, Lanza DG, De Giorgi M, Chuecos MA, Alves-Bezerra M, Suarez CF, Hartig SM, Hilsenbeck SG, Hsu CW, Saville E, Gaitan Y, Duryea J, Hannigan S, Dickinson ME, Mirochnitchenko O, Wang D, Lutz CM, Heaney JD, Gao G, Murray SA, Lagor WR. A comprehensive atlas of AAV tropism in the mouse. Mol Ther 2025; 33:1282-1299. [PMID: 39863928 PMCID: PMC11897767 DOI: 10.1016/j.ymthe.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of 10 naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10, and AAVrh74) following systemic delivery into male and female mice. A transgene-expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence. Cre-driven activation of tdTomato fluorescence offered superior sensitivity for transduced cells. All serotypes except AAV3B and AAV4 had high liver tropism. Fluorescence activation revealed transduction of unexpected tissues, including adrenals, testes, and ovaries. Rare transduced cells within tissues were also readily visualized. Biodistribution of AAV genomes correlated with fluorescence, except in immune tissues. AAV4 was found to have a pan-endothelial tropism while also targeting pancreatic beta cells. This public resource enables selection of the best AAV serotypes for basic science and preclinical applications in mice.
Collapse
Affiliation(s)
- Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathy J Snow
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jote Bulcha
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aaron R Cox
- Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexa E Martinez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marcel A Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michele Alves-Bezerra
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carlos Flores Suarez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Saville
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Yaned Gaitan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jeff Duryea
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Seth Hannigan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oleg Mirochnitchenko
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD USA
| | - Dan Wang
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Tan F, Dong Y, Qi J, Yu W, Chai R. Artificial Intelligence-Based Approaches for AAV Vector Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411062. [PMID: 39932449 PMCID: PMC11884542 DOI: 10.1002/advs.202411062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/31/2024] [Indexed: 03/08/2025]
Abstract
Adeno-associated virus (AAV) has emerged as a leading vector for gene therapy due to its broad host range, low pathogenicity, and ability to facilitate long-term gene expression. However, AAV vectors face limitations, including immunogenicity and insufficient targeting specificity. To enhance the efficacy of gene therapy, researchers have been modifying the AAV vector using various methods. Traditional experimental approaches for optimizing AAV vector are often time-consuming, resource-intensive, and difficult to replicate. The advancement of artificial intelligence (AI), particularly machine learning, offers significant potential to accelerate capsid optimization while reducing development time and manufacturing costs. This review compares traditional and AI-based methods of AAV vector engineering and highlights recent research in AAV engineering using AI algorithms.
Collapse
Affiliation(s)
- Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yue Dong
- Immunowake, Inc.Shanghai201210China
| | - Jieyu Qi
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- State Key Laboratory of Hearing and Balance ScienceBeijing Institute of TechnologyBeijing100081China
- School of Medical EngineeringAffiliated Zhuhai People's HospitalBeijing Institute of TechnologyZhuhai519088China
- Advanced Technology Research InstituteBeijing Institute of TechnologyJinan250300China
| | - Wenwu Yu
- School of MathematicsSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| |
Collapse
|
22
|
Han S, Yang EM, Hur EM. A brief guide for gene delivery to the brain using adeno-associated viral vectors. Mol Cells 2025; 48:100189. [PMID: 39904462 PMCID: PMC11879685 DOI: 10.1016/j.mocell.2025.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
The advent of recombinant adeno-associated viral (rAAV) vector-mediated gene delivery has accelerated the comprehensive analysis and manipulation of the nervous system owing to its ability to regulate gene expression in a spatiotemporal manner, thereby facilitating the study of brain physiology and the investigation of the pathophysiology of neurological disorders. Here, we provide a concise guide to stereotaxic gene delivery into the mouse brain using rAAV vectors. Key considerations for designing a customized rAAV vector are discussed, along with an overview of the surgical procedures of intracranial stereotaxic injection. This article aims to assist neuroscientists in establishing experimental setups for genetic manipulation in the mouse brain.
Collapse
Affiliation(s)
- Seungwan Han
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun Mo Yang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Science Research Center, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
23
|
Carisi MC, Shamber C, Bishop M, Sangster M, Chandrachud U, Meyerink B, Pilaz LJ, Grishchuk Y. AAV-Mediated Gene Transfer of WDR45 Corrects Neurological Deficits in the Mouse Model of Beta-Propeller Protein-Associated Neurodegeneration. Hum Gene Ther 2025; 36:637-652. [PMID: 39978419 DOI: 10.1089/hum.2024.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is an ultra-rare, X-linked dominant, neurodevelopmental, and neurodegenerative disease caused by loss-of-function mutations in the WDR45 gene. It manifests in neurodevelopmental delay and seizures followed by secondary neurological decline with dystonia/parkinsonism and dementia in adolescence and early adulthood and is characterized by progressive accumulation of iron in the basal ganglia. WDR45 encodes β-propeller-shaped scaffold protein, or WD repeat domain phosphoinositide-interacting protein 4 (WIPI4), which plays an important role in autophagosome formation. While the mechanisms of how WIPI4 loss of function results in neurological decline and brain pathology have not yet been established, findings of lower autophagic activity provide a direct link between impaired autophagy and neurological disease in BPAN. Here we performed phenotypical characterization of a novel mouse model of BPAN, Wdr45_ex9+1g>a mouse. We identified hyperactive behavior and reduction of autophagy markers in brain tissue in Wdr45_ex9+1g>a hemizygous males as early as at 2 months of age. Given the early onset and spectrum of neurological symptoms such as hyper-arousal and attention deficits in human patients, this model presents a disease-relevant phenotype and can be used in preclinical studies. We used this mouse model for a proof-of-concept study to evaluate whether adeno-associated virus (AAV)-mediated central nervous system (CNS)-targeted gene transfer of WDR45 can provide therapeutic benefit and be considered a therapeutic paradigm for BPAN. We observed successful expression of human WDR45 transcripts and WIPI4 protein in the brain tissue, rescue of hyperactive behavior, and correction of autophagy markers. These data demonstrate that WDR45 gene transfer can be a promising therapeutic strategy for BPAN.
Collapse
Affiliation(s)
- Maria Carla Carisi
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Shamber
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Martha Bishop
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madison Sangster
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Uma Chandrachud
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research Institute, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis Jean Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research Institute, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Schröder LC, Hüttermann L, Kliesow Remes A, Voran JC, Hille S, Sommer W, Lutter G, Warnecke G, Frank D, Schade D, Müller OJ. AAV library screening identifies novel vector for efficient transduction of human aorta. Gene Ther 2025; 32:154-162. [PMID: 39695327 PMCID: PMC11946879 DOI: 10.1038/s41434-024-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Targeted gene delivery to vascular smooth muscle cells (VSMCs) could prevent or improve a variety of diseases affecting the vasculature and particularly the aorta. Thus, we aimed to develop a delivery vector that efficiently targets VSMCs. We selected engineered adeno-associated virus (AAV) capsids from a random AAV capsid library and tested the top enriched motifs in parallel screening through individual barcoding. This approach allowed us to distinguish capsids that only transduce cells based on genomic DNA (gDNA) from those also mediating transgene expression based on transcribed cDNA reads. After three rounds of selection on primary murine VSMCs (mVSMCs), we identified a novel targeting motif (RFTEKPA) that significantly improved transduction and gene expression efficiency over AAV9-wild type (WT) and increased expression in mVSMCs by 70% compared to the previously identified SLRSPPS peptide. Further analysis showed that the novel motif also improved expression in human aortic smooth muscle cells (HAoSMCs) and human aortic tissue ex vivo up to threefold compared to SLRSPPS and approximately 70-fold to AAV9-WT. This high cross-species transduction efficiency makes the novel capsid motif a potential candidate for future clinical application in vascular diseases.
Collapse
Affiliation(s)
- Lena C Schröder
- Department of Internal Medicine V, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Leonard Hüttermann
- Department of Internal Medicine V, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Anca Kliesow Remes
- Department of Internal Medicine V, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jakob C Voran
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Susanne Hille
- Department of Internal Medicine V, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Wiebke Sommer
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Georg Lutter
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Gregor Warnecke
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Dennis Schade
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, University of Kiel, Kiel, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University of Kiel, Kiel, Germany.
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.
| |
Collapse
|
25
|
Wang S, Xiao L. Progress in AAV-Mediated In Vivo Gene Therapy and Its Applications in Central Nervous System Diseases. Int J Mol Sci 2025; 26:2213. [PMID: 40076831 PMCID: PMC11899905 DOI: 10.3390/ijms26052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
As the blood-brain barrier (BBB) prevents molecules from accessing the central nervous system (CNS), the traditional systemic delivery of chemical drugs limits the development of neurological drugs. However, in recent years, innovative therapeutic strategies have tried to bypass the restriction of traditional drug delivery methods. In vivo gene therapy refers to emerging biopharma vectors that carry the specific genes and target and infect specific tissues; these infected cells and tissues then undergo fundamental changes at the genetic level and produce therapeutic proteins or substances, thus providing therapeutic benefits. Clinical and preclinical trials mainly utilize adeno-associated viruses (AAVs), lentiviruses (LVs), and other viruses as gene vectors for disease investigation. Although LVs have a higher gene-carrying capacity, the vector of choice for many neurological diseases is the AAV vector due to its safety and long-term transgene expression in neurons. Here, we review the basic biology of AAVs and summarize some key issues in recombinant AAV (rAAV) engineering in gene therapy research; then, we summarize recent clinical trials using rAAV treatment for neurological diseases and provide translational perspectives and future challenges on target selection.
Collapse
Affiliation(s)
- Shuming Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
26
|
Mnyandu NZ, Limani SW, Ely A, Wadee R, Arbuthnot P, Maepa MB. Long-term inhibition of Hepatitis B virus gene expression by a primary microrna expressing ancestral adeno-associated viral vector. Virol J 2025; 22:41. [PMID: 39962472 PMCID: PMC11834259 DOI: 10.1186/s12985-025-02662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Current treatments for chronic infection with the hepatitis B virus (HBV) rarely cure carriers from the disease. Previously reported use of serotype 8 adeno-associated viral (AAV8) vectors to deliver expression cassettes encoding anti-HBV artificial primary microRNAs (apri-miRs) has shown promise in preclinical studies. A recently designed synthetic ancestral AAV (Anc80L65) with high liver transduction efficiency is a promising new addition to the anti-HBV vector toolbox. This study engineered Anc80L65 to express HBx-targeting apri-miRs. Single dose administration of the vectors to cultured cells and HBV transgenic mice effected reductions of secreted HBV surface antigen (HBsAg). Circulating HBV particles and HBV core antigen (HBcAg) were also significantly diminished in mice receiving the anti-HBV apri-miR-expressing ancestral AAVs. Downregulation of HBV biomarkers occurred over a period of 12 months. Absence of inflammatory responses or liver toxicity indicated that the vectors had a good safety profile. These data suggest that a single dose of apri-miR-expressing Anc80L65 is safe and capable of mediating durable suppression of HBV gene expression. Targeting HBx, which is required for transcriptional activity of covalently closed circular DNA of HBV, makes this Anc80L65-derived vector a promising candidate for functional cure from chronic HBV infection.
Collapse
Affiliation(s)
- Njabulo Ziphezinhle Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Shonisani Wendy Limani
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa.
| |
Collapse
|
27
|
Saunders RA, Allen WE, Pan X, Sandhu J, Lu J, Lau TK, Smolyar K, Sullivan ZA, Dulac C, Weissman JS, Zhuang X. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.624217. [PMID: 39605605 PMCID: PMC11601512 DOI: 10.1101/2024.11.18.624217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and provides crucial training data for emerging machine-learning models of cellular function.
Collapse
Affiliation(s)
- Reuben A. Saunders
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Society of Fellows, Harvard University, MA 02138, USA
- These authors contributed equally
| | - William E. Allen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; Arc Institute, Palo Alto, CA 94304
- These authors contributed equally
- Lead contact
| | - Xingjie Pan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Lead AI Scientist
| | - Jaspreet Sandhu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jiaqi Lu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K. Lau
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Karina Smolyar
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Zuri A. Sullivan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Zheng X, Thompson PC, White CM, Jin X. Massively parallel in vivo Perturb-seq screening. Nat Protoc 2025:10.1038/s41596-024-01119-3. [PMID: 39939709 DOI: 10.1038/s41596-024-01119-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 02/14/2025]
Abstract
Advances in genomics have identified thousands of risk genes impacting human health and diseases, but the functions of these genes and their mechanistic contribution to disease are often unclear. Moving beyond identification to actionable biological pathways requires dissecting risk gene function and cell type-specific action in intact tissues. This gap can in part be addressed by in vivo Perturb-seq, a method that combines state-of-the-art gene editing tools for programmable perturbation of genes with high-content, high-resolution single-cell genomic assays as phenotypic readouts. Here we describe a detailed protocol to perform massively parallel in vivo Perturb-seq using several versatile adeno-associated virus (AAV) vectors and provide guidance for conducting successful downstream analyses. Expertise in mouse work, AAV production and single-cell genomics is required. We discuss key parameters for designing in vivo Perturb-seq experiments across diverse biological questions and contexts. We further detail the step-by-step procedure, from designing a perturbation library to producing and administering AAV, highlighting where quality control checks can offer critical go-no-go points for this time- and cost-expensive method. Finally, we discuss data analysis options and available software. In vivo Perturb-seq has the potential to greatly accelerate functional genomics studies in mammalian systems, and this protocol will help others adopt it to answer a broad array of biological questions. From guide RNA design to tissue collection and data collection, this protocol is expected to take 9-15 weeks to complete, followed by data analysis.
Collapse
Affiliation(s)
- Xinhe Zheng
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Patrick C Thompson
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Cassandra M White
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Xin Jin
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
29
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
30
|
Chesnokova E, Bal N, Alhalabi G, Balaban P. Regulatory Elements for Gene Therapy of Epilepsy. Cells 2025; 14:236. [PMID: 39937026 PMCID: PMC11816724 DOI: 10.3390/cells14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The problem of drug resistance in epilepsy means that in many cases, a surgical treatment may be advised. But this is only possible if there is an epileptic focus, and resective brain surgery may have adverse side effects. One of the promising alternatives is gene therapy, which allows the targeted expression of therapeutic genes in different brain regions, and even in specific cell types. In this review, we provide detailed explanations of some key terms related to genetic engineering, and describe various regulatory elements that have already been used in the development of different approaches to treating epilepsy using viral vectors. We compare a few universal promoters for their strength and duration of transgene expression, and in our description of cell-specific promoters, we focus on elements driving expression in glutamatergic neurons, GABAergic neurons and astrocytes. We also explore enhancers and some other cis-regulatory elements currently used in viral vectors for gene therapy, and consider future perspectives of state-of-the-art technologies for designing new, stronger and more specific regulatory elements. Gene therapy has multiple advantages and should become more common in the future, but there is still a lot to study and invent in this field.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Natalia Bal
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Ghofran Alhalabi
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia;
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| |
Collapse
|
31
|
Hao X, Hu Z, Li M, Zhang S, Tang M, Hao C, Qi S, Liang Y, Almeida MF, Smith K, Zuo C, Feng Y, Guo M, Ma D, Li S, Wang Z, Sun Y, Deng Z, Mao C, Xia Z, Jiang Y, Gao Y, Xu Y, Schisler JC, Shi C. E3 ubiquitin ligase CHIP facilitates cAMP and cGMP signalling cross-talk by polyubiquitinating PDE9A. EMBO J 2025; 44:1249-1273. [PMID: 39806097 PMCID: PMC11833080 DOI: 10.1038/s44318-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation. Conversely, dysfunctional CHIP disrupts this process, resulting in PDE9A accumulation, increased cGMP hydrolysis, and impaired PKG phosphorylation of CHIP at serine 19. This cascade further amplifies PDE9A accumulation, ultimately disrupting mitophagy and triggering neuronal apoptosis. Elevated PKA levels inhibit PDE9A degradation, further exacerbating this neuronal dysfunction. Notably, pharmacological inhibition of PDE9A via Bay 73-6691 or virus-mediated CHIP expression restored the balance of cGMP/cAMP signalling. These interventions protect against cerebellar neuropathologies, particularly Purkinje neuron mitophagy dysfunction. Thus, PDE9A upregulation considerably exacerbates ataxia associated with CHIP mutations, and targeting the interaction between PDE9A and CHIP is an innovative therapeutic strategy for CHIP-related ataxia.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenwei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shasha Qi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Michael F Almeida
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaitlan Smith
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yanmei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuangjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhiyun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuemeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhifen Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yong Jiang
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Yanxia Gao
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Medical Key Laboratory of Poisoning Diseases of Henan Province, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Jonathan C Schisler
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
32
|
Hüttermann L, Schröder LC, Shetty PMV, Jonker T, Hille SS, Kliesow Remes A, Matzen A, Boender AR, Grimm D, Frank D, Boink GJJ, Eschenhagen T, Schade D, Müller OJ. Directed Evolution of AAV9 for Efficient Gene Expression in Cardiomyocytes In Vitro and In Vivo. Hum Gene Ther 2025; 36:101-115. [PMID: 39850991 DOI: 10.1089/hum.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency in vitro and in vivo. For example, AAV9 vectors work well in rodent heart muscle cells in vivo but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for in vitro studies. Therefore, we aimed to develop an AAV that could efficiently express genes in NRVCMs, human engineered heart tissue (hEHT), and mammalian hearts. The production of AAV6 vectors results in lower yields compared with AAV9. Hence, we used random AAV9 peptide libraries and selected variants on NRVCMs at the vector genome and RNA levels in parallel. The enriched library variants were characterized using high-throughput analysis of barcoded variants, followed by individual validation of the most promising candidates. Interestingly, we found striking differences in NRVCM transduction and gene expression patterns of the AAV capsid variants depending on the selection strategy. AAV variants selected based on the vector genome level enabled the highest transduction but were outperformed by AAVs selected on the RNA level in terms of expression efficiency. In addition, we identified a new AAV9 capsid variant that not only allowed significantly higher gene expression in NRVCMs compared with AAV6 but also enabled similar gene expression in murine hearts as AAV9 wild-type vectors after being intravenously injected into mice. Moreover, the novel variant facilitated significantly higher gene expression in hEHT compared with AAV9. Therefore, this AAV variant could streamline preclinical gene therapy studies of myocardial diseases by eliminating the need for using different AAVs for NRVCMs, hEHT, and mice.
Collapse
Affiliation(s)
- Leonard Hüttermann
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Lena C Schröder
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj M V Shetty
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Timo Jonker
- Department of Medical Biology and Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne S Hille
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Anca Kliesow Remes
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Andrea Matzen
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Arie R Boender
- Department of Medical Biology and Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- PacingCure B.V., Amsterdam, The Netherlands
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, BioQuant, German Centre for Infection Research (DZIF) and German Centre for Cardiovascular Research (DZHK), Heidelberg University, Heidelberg, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Gerard J J Boink
- Department of Medical Biology and Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Eschenhagen
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Dennis Schade
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
- Department of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| |
Collapse
|
33
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
34
|
Yang ZF, Jiang XC, Gao JQ. Present insights into the progress in gene therapy delivery systems for central nervous system diseases. Int J Pharm 2025; 669:125069. [PMID: 39662855 DOI: 10.1016/j.ijpharm.2024.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Central nervous system (CNS) diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), spinal cord injury (SCI), and ischemic strokes and certain rare diseases, such as amyotrophic lateral sclerosis (ALS) and ataxia, present significant obstacles to treatment using conventional molecular pharmaceuticals. Gene therapy, with its ability to target previously "undruggable" proteins with high specificity and safety, is increasingly utilized in both preclinical and clinical research for CNS ailments. As our comprehension of the pathophysiology of these conditions deepens, gene therapy stands out as a versatile and promising strategy with the potential to both prevent and treat these diseases. Despite the remarkable progress in refining and enhancing the structural design of gene therapy agents, substantial obstacles persist in their effective and safe delivery within living systems. To surmount these obstacles, a diverse array of gene delivery systems has been devised and continuously improved. Notably, Adeno-Associated Virus (AAVs)-based viral gene vectors and lipid-based nanocarriers have each advanced the in vivo delivery of gene therapies to various extents. This review aims to concisely summarize the pathophysiological foundations of CNS diseases and to shed light on the latest advancements in gene delivery vector technologies. It discusses the primary categories of these vectors, their respective advantages and limitations, and their specialized uses in the context of gene therapy delivery.
Collapse
Affiliation(s)
- Ze-Feng Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| |
Collapse
|
35
|
Luo J, Molbay M, Chen Y, Horvath I, Kadletz K, Kick B, Zhao S, Al-Maskari R, Singh I, Ali M, Bhatia HS, Minde DP, Negwer M, Hoeher L, Calandra GM, Groschup B, Su J, Kimna C, Rong Z, Galensowske N, Todorov MI, Jeridi D, Ohn TL, Roth S, Simats A, Singh V, Khalin I, Pan C, Arús BA, Bruns OT, Zeidler R, Liesz A, Protzer U, Plesnila N, Ussar S, Hellal F, Paetzold J, Elsner M, Dietz H, Erturk A. Nanocarrier imaging at single-cell resolution across entire mouse bodies with deep learning. Nat Biotechnol 2025:10.1038/s41587-024-02528-1. [PMID: 39809933 DOI: 10.1038/s41587-024-02528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.0005 mg kg-1-far below the detection limits of conventional whole body imaging techniques. We demonstrate that intramuscularly injected LNPs carrying SARS-CoV-2 spike mRNA reach heart tissue, leading to proteome changes, suggesting immune activation and blood vessel damage. SCP-Nano generalizes to various types of nanocarriers, including liposomes, polyplexes, DNA origami and adeno-associated viruses (AAVs), revealing that an AAV2 variant transduces adipocytes throughout the body. SCP-Nano enables comprehensive three-dimensional mapping of nanocarrier distribution throughout mouse bodies with high sensitivity and should accelerate the development of precise and safe nanocarrier-based therapeutics.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - Muge Molbay
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ying Chen
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Izabela Horvath
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Karoline Kadletz
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - Benjamin Kick
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Shan Zhao
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- ETH Zurich, Institute for Molecular Health Sciences, Zurich, Switzerland
| | - Rami Al-Maskari
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Inderjeet Singh
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| | - Mayar Ali
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Graduate School of Neuroscience (GSN), Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
| | - Harsharan Singh Bhatia
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - David-Paul Minde
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
| | - Moritz Negwer
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
| | - Luciano Hoeher
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
| | - Gian Marco Calandra
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Ceren Kimna
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - Zhouyi Rong
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
| | - Nikolas Galensowske
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
| | - Mihail Ivilinov Todorov
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Deep Piction, Munich, Germany
| | - Denise Jeridi
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
| | - Tzu-Lun Ohn
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alba Simats
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Vikramjeet Singh
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), Caen, France
| | - Chenchen Pan
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bernardo A Arús
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver T Bruns
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Reinhard Zeidler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Structural Biology, Munich, Germany
- Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Farida Hellal
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Paetzold
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
- Department of Computing, Imperial College London, London, UK
| | - Markus Elsner
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| | - Ali Erturk
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Deep Piction, Munich, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
| |
Collapse
|
36
|
Hu Z, Yang J, Zhang S, Li M, Zuo C, Mao C, Zhang Z, Tang M, Shi C, Xu Y. AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice. Neural Regen Res 2025; 20:253-264. [PMID: 38767490 PMCID: PMC11246129 DOI: 10.4103/nrr.nrr-d-23-01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-β plaques, and decreased the expression of both amyloid-β and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited β-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mibo Tang
- Department of Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
37
|
Qi J, Fu X, Zhang L, Tan F, Li N, Sun Q, Hu X, He Z, Xia M, Chai R. Current AAV-mediated gene therapy in sensorineural hearing loss. FUNDAMENTAL RESEARCH 2025; 5:192-202. [PMID: 40166123 PMCID: PMC11955060 DOI: 10.1016/j.fmre.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The number of patients with hearing loss is on the rise due to congenital abnormalities, degenerative changes in old age, and acquired injuries such as virus or ototoxic drug-induced diseases. Hearing loss is a refractory and disabling disease that has serious negative effects on quality of life. The pathology of hearing loss in the inner ear is characterized by varying degrees of damage to the cochlear sensory epithelium cells (such as hair cells and supporting cells), stria vascularis (including marginal, intermediate and basal cells) and spiral ganglion neurons. Regeneration or direct repair of damaged cells in the inner ear is an effective way to treat sensorineural deafness. It is currently possible to regenerate hair cells to treat sensorineural hearing loss by FX-322, a small molecule drug in clinical trials. With the development of genetic engineering technology, gene therapy has brought a promising treatment strategy for many previously intractable diseases. Gene therapy has been regarded as a promising method in the treatment and rehabilitation of sensorineural hearing loss, and recombinant adeno-associated virus gene therapy has been widely used in fundamental research into hearing loss treatments. At present, gene therapy for hearing loss is transitioning from feasibility studies to explorations of its safety and its therapeutic potential. The present article reviews the concepts, strategies, and applications of gene therapy mediated by recombinant adeno-associated viruses in the field of hearing loss treatment.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Hearing and Balance Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaojie Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen 518063, China
| |
Collapse
|
38
|
Natale D, Holt M. Retro-Orbital Delivery of AAVs for CNS Wide Astrocyte Targeting. Methods Mol Biol 2025; 2896:13-31. [PMID: 40111594 DOI: 10.1007/978-1-0716-4366-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Viral vector-mediated astrocyte targeting in live mice is a popular and valuable method to investigate astrocyte function in the context of intact neural circuits and complex brain physiology. Targeted genetic manipulation and functional investigation of this cell population can be accomplished by utilizing cell type-specific promoters to drive adeno-associated virus (AAV)-mediated transgene expression specifically in astrocytes. Here, we provide a comprehensive protocol for non-invasive retro-orbital (RO) administration of blood-brain barrier (BBB)-crossing AAVs in neonatal and adult mice, such as AAV-PHP.B, AAV-PHP.eB, and AAV.CAP-B22, which results in central nervous system (CNS)-wide transduction. Key procedures outlined include the preparation of AAV solutions for injection, a modified two-handed injection technique for precise and consistent RO injections, and a training strategy to practice mock RO injections using non-toxic dyes. This protocol serves as a valuable resource for researchers interested in exploring the roles of astrocytes in brain functions and neurological disorders.
Collapse
Affiliation(s)
- Domenico Natale
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Matthew Holt
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
39
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
40
|
Ramani B, Rose IVL, Teyssier N, Pan A, Danner-Bocks S, Sanghal T, Yadanar L, Tian R, Ma K, Palop JJ, Kampmann M. CRISPR screening by AAV episome-sequencing (CrAAVe-seq) is a highly scalable cell type-specific in vivo screening platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.13.544831. [PMID: 37398301 PMCID: PMC10312723 DOI: 10.1101/2023.06.13.544831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
There is a significant need for scalable CRISPR-based genetic screening methods that can be applied directly in mammalian tissues in vivo while enabling cell type-specific analysis. To address this, we developed an adeno-associated virus (AAV)-based CRISPR screening platform, CrAAVe-seq, that incorporates a Cre-sensitive sgRNA construct for pooled screening within targeted cell populations in mouse tissues. We demonstrate the utility of this approach by screening two distinct large sgRNA libraries, together targeting over 5,000 genes, in mouse brains to create a robust profile of neuron-essential genes. We validate two genes as strongly neuron-essential in both primary mouse neurons and in vivo, confirming the predictive power of our platform. By comparing results from individual mice and across different cell populations, we highlight the reproducibility and scalability of the platform and show that it is highly sensitive even for screening smaller neuronal subpopulations. We systematically characterize the impact of sgRNA library size, mouse cohort size, the size of the targeted cell population, viral titer, and multiplicity of infection on screen performance to establish general guidelines for large-scale in vivo screens.
Collapse
Affiliation(s)
- Biswarathan Ramani
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Noam Teyssier
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Pan
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Spencer Danner-Bocks
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tanya Sanghal
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lin Yadanar
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Keran Ma
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Snyder B, Bailey RM. Toward a translational gene therapy for mucolipidosis IV. Mol Ther Methods Clin Dev 2024; 32:101345. [PMID: 39434921 PMCID: PMC11492579 DOI: 10.1016/j.omtm.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Affiliation(s)
- Brina Snyder
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75235, USA
| | - Rachel M. Bailey
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75235, USA
| |
Collapse
|
42
|
Pacesa M, Nickel L, Schellhaas C, Schmidt J, Pyatova E, Kissling L, Barendse P, Choudhury J, Kapoor S, Alcaraz-Serna A, Cho Y, Ghamary KH, Vinué L, Yachnin BJ, Wollacott AM, Buckley S, Westphal AH, Lindhoud S, Georgeon S, Goverde CA, Hatzopoulos GN, Gönczy P, Muller YD, Schwank G, Swarts DC, Vecchio AJ, Schneider BL, Ovchinnikov S, Correia BE. BindCraft: one-shot design of functional protein binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615802. [PMID: 39677777 PMCID: PMC11642741 DOI: 10.1101/2024.09.30.615802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Protein-protein interactions (PPIs) are at the core of all key biological processes. However, the complexity of the structural features that determine PPIs makes their design challenging. We present BindCraft, an open-source and automated pipeline for de novo protein binder design with experimental success rates of 10-100%. BindCraft leverages the weights of AlphaFold2 1 to generate binders with nanomolar affinity without the need for high-throughput screening or experimental optimization, even in the absence of known binding sites. We successfully designed binders against a diverse set of challenging targets, including cell-surface receptors, common allergens, de novo designed proteins, and multi-domain nucleases, such as CRISPR-Cas9. We showcase the functional and therapeutic potential of designed binders by reducing IgE binding to birch allergen in patient-derived samples, modulating Cas9 gene editing activity, and reducing the cytotoxicity of a foodborne bacterial enterotoxin. Lastly, we utilize cell surface receptor-specific binders to redirect AAV capsids for targeted gene delivery. This work represents a significant advancement towards a "one design-one binder" approach in computational design, with immense potential in therapeutics, diagnostics, and biotechnology.
Collapse
|
43
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
44
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
45
|
Carneiro AD, Schaffer DV. Engineering novel adeno-associated viruses (AAVs) for improved delivery in the nervous system. Curr Opin Chem Biol 2024; 83:102532. [PMID: 39342684 DOI: 10.1016/j.cbpa.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Harnessing adeno-associated virus (AAV) vectors for therapeutic gene delivery has emerged as a progressively promising strategy to treat disorders of both the central nervous system (CNS) and peripheral nervous system (PNS), and there are many ongoing clinical trials. However, unique physiological and molecular characteristics of the CNS and PNS pose obstacles to efficient vector delivery, ranging from the blood-brain barrier to the diverse nature of nervous system disorders. Engineering novel AAV capsids may help overcome these ongoing challenges and maximize therapeutic transgene delivery. This article discusses strategies for innovative AAV capsid development, highlighting recent advances. Notably, advances in next generation sequencing and machine learning have sparked new approaches for capsid investigation and engineering. Furthermore, we outline future directions and additional challenges in AAV-mediated gene therapy in the CNS and PNS.
Collapse
Affiliation(s)
- Ana D Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
46
|
Andrews JP, Geng J, Voitiuk K, Elliott MAT, Shin D, Robbins A, Spaeth A, Wang A, Li L, Solis D, Keefe MG, Sevetson JL, Rivera de Jesús JA, Donohue KC, Larson HH, Ehrlich D, Auguste KI, Salama S, Sohal V, Sharf T, Haussler D, Cadwell CR, Schaffer DV, Chang EF, Teodorescu M, Nowakowski TJ. Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices. Nat Neurosci 2024; 27:2487-2499. [PMID: 39548326 DOI: 10.1038/s41593-024-01782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2024] [Indexed: 11/17/2024]
Abstract
Seizures are made up of the coordinated activity of networks of neurons, suggesting that control of neurons in the pathologic circuits of epilepsy could allow for control of the disease. Optogenetics has been effective at stopping seizure-like activity in non-human disease models by increasing inhibitory tone or decreasing excitation, although this effect has not been shown in human brain tissue. Many of the genetic means for achieving channelrhodopsin expression in non-human models are not possible in humans, and vector-mediated methods are susceptible to species-specific tropism that may affect translational potential. Here we demonstrate adeno-associated virus-mediated, optogenetic reductions in network firing rates of human hippocampal slices recorded on high-density microelectrode arrays under several hyperactivity-provoking conditions. This platform can serve to bridge the gap between human and animal studies by exploring genetic interventions on network activity in human brain tissue.
Collapse
Affiliation(s)
- John P Andrews
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jinghui Geng
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kateryna Voitiuk
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Matthew A T Elliott
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Shin
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ash Robbins
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alex Spaeth
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lin Li
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Solis
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Matthew G Keefe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica L Sevetson
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
| | | | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - H Hanh Larson
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Drew Ehrlich
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Computational Media, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kurtis I Auguste
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sofie Salama
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
| | - Vikaas Sohal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tal Sharf
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, California, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, Berkeley, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Tomasz Jan Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Ren H, Jin Y, Huang H, Wu W, Dai X, Fang W, Qin J, Li H, Zhao P. In vivo engineering chimeric antigen receptor immune cells with emerging nanotechnologies. NANO TODAY 2024; 59:102517. [DOI: 10.1016/j.nantod.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Liu D, Li T, Liu L, Che X, Li X, Liu C, Wu G. Adeno-associated virus therapies: Pioneering solutions for human genetic diseases. Cytokine Growth Factor Rev 2024; 80:109-120. [PMID: 39322487 DOI: 10.1016/j.cytogfr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a fundamental component in the gene therapy landscape, widely acknowledged for its effectiveness in therapeutic gene delivery. The success of AAV-based therapies, such as Luxturna and Zolgensma, underscores their potential as a leading vector in gene therapy. This article provides an in-depth review of the development and mechanisms of AAV vector-based therapies, offering a comprehensive analysis of the latest clinical trial outcomes in central nervous system (CNS) diseases, ocular conditions, and hemophilia, where AAV therapies have shown promising results. Additionally, we discusse the selection of administration methods and serotypes tailored to specific diseases. Our objective is to showcase the innovative applications and future potential of AAV-based gene therapy, laying the groundwork for continued clinical advancements.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
| | - Chang Liu
- Department of thoracic surgery, Shenyang Tenth People's Hospital, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
49
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
50
|
Powell SK, McCown TJ. Adeno-associated virus 9 (AAV9) viral proteins VP1, VP2, and membrane-associated accessory protein (MAAP) differentially influence in vivo transgene expression. J Virol 2024; 98:e0168124. [PMID: 39475275 PMCID: PMC11575147 DOI: 10.1128/jvi.01681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Adeno-associated virus (AAV) is a Dependoparvovirus with a ssDNA ~4.7 kb genome in a ~25 nm icosahedral capsid structure. AAV genomes encode nine known functional proteins from two open reading frames between two inverted terminal repeats (ITRs). In recombinant AAV vectors for gene therapy use, the AAV genome is replaced with a transgene of interest flanked by ITRs and subsequently packaged within an AAV capsid made up of three viral structural proteins (VP1, VP2, and VP3) in an approximate 1:1:10 ratio, respectively. The AAV capsid, particularly VP3, has traditionally been ascribed to capsid-cellular receptor binding. However, AAV9 VP1/VP2 exhibits a capsid-promoter interaction that can alter neuronal cellular tropism in the rat and non-human primate central nervous system. This capsid-promoter interaction is altered by AAV9EU (AAV9 with six glutamates inserted at aa139) which exhibits a significant reduction in nuclear transgene DNA, a decrease in neuronal transduction, and a reduction in vivo relative transgene mRNA levels. AAV9EU has six amino acid insertions in VP1, VP2, and MAAP (membrane-associated accessory protein), but no combination of VP with MAAP recapitulated the AAV9EU in vivo phenotype. Surprisingly, AAV9 produced in the absence of MAAP9 exhibits an increase in relative transgene levels. While co-infusing two AAV9 vectors, differing only in transgene and MAAP9 presence during production, exhibit a significantly increased in vivo transgene fluorescence intensity by fivefold of both transgenes. Together, an MAAP9-related activity acts both in cis and in trans to increase AAV9 transgene mRNA levels and AAV9 transgene protein levels in vivo. IMPORTANCE Recombinant adeno-associated viruses (AAVs) are used extensively in clinical gene therapy for treating a range of tissues and pathologies in humans. In particular, AAV9 occupies a prominent position in central nervous system (CNS) gene therapy given its central role in ongoing clinical trials and an FDA-approved therapeutic. Despite its widespread use, recent studies have identified unique roles for the AAV capsid in in vivo transgene expression; for example, interior-facing capsid residues of AAV VP1 and VP2 modulate cellular transgene expression in vivo. The following experiments identified that the AAV9 MAAP protein exerts a significant influence on in vivo transgene expression. This finding could further explain how AAV can remain latent after infection in vivo. Together, these studies provide novel functional insights that highlight the importance of further understanding basic AAV biology.
Collapse
Affiliation(s)
- Sara K Powell
- Department of Pediatrics-Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of North Carolina Gene Therapy Center, Chapel Hill, North Carolina, USA
| | - Thomas J McCown
- University of North Carolina Gene Therapy Center, Chapel Hill, North Carolina, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|