1
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 PMCID: PMC11801303 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Wu T, Zhang X, Zeng X, Liu Y, Wang L, Huang Y. Wnt7a can upregulate cell adhesion and migration related genes expression and facilitate the repair of corneal epithelial cells after injury. Int Ophthalmol 2025; 45:149. [PMID: 40192882 DOI: 10.1007/s10792-025-03506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 03/09/2025] [Indexed: 05/17/2025]
Abstract
PURPOSE To investigate the role of Wnt7a in corneal epithelial repair and its underlying mechanisms. METHODS Immunohistochemistry and immunofluorescence were used to assess Wnt7a expression in mouse corneas under normal and injury conditions. Human corneal epithelial cells (HCECs) were treated with Wnt7a siRNA or recombinant human Wnt7a (rhWnt7a) to evaluate proliferation (CCK-8 assay) and migration (scratch assay). Transcriptome sequencing and western blotting were performed to identify Wnt7a-regulated pathways and proteins. RESULTS Under normal conditions, Wnt7a was predominantly localized to the corneal limbus basal cells. Following corneal injury, its expression significantly increased in central corneal epithelial cells and co-localized with nuclei during repair. Wnt7a siRNA suppressed HCEC proliferation and migration, while rhWnt7a enhanced proliferation. Transcriptome analysis revealed upregulation of cell adhesion-related genes (e.g., FN1, ITGBs, LAMs), particularly fibronectin (FN), validated by increased FN protein levels after rhWnt7a treatment. Pathway enrichment implicated PI3K/Akt, Wnt signaling, and ECM-receptor interactions. CONCLUSION Wnt7a promotes corneal epithelial repair by enhancing migration and proliferation, primarily through upregulating fibronectin and ECM-related pathways. These findings highlight Wnt7a as a potential therapeutic target for accelerating corneal wound healing.
Collapse
Affiliation(s)
- Tengyun Wu
- General Hospital of Chinese PLA, Beijing, 100038, China
- Air Force Medical Center of Chinese PLA, Beijing, 100142, China
| | - Xianxie Zhang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiangwen Zeng
- General Hospital of Chinese PLA, Beijing, 100038, China
| | - Yong Liu
- Air Force Medical Center of Chinese PLA, Beijing, 100142, China
| | - Liqiang Wang
- General Hospital of Chinese PLA, Beijing, 100038, China.
| | - Yifei Huang
- General Hospital of Chinese PLA, Beijing, 100038, China.
| |
Collapse
|
3
|
Bowen E, Waque A, Su F, Davies M, Ode G, Lansdown D, Feeley B, Bedi A. Muscle Health & Fatty Infiltration with Advanced Rotator Cuff Pathology. Curr Rev Musculoskelet Med 2025; 18:160-172. [PMID: 40009348 PMCID: PMC11965080 DOI: 10.1007/s12178-025-09955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW Fatty infiltration (FI) of the rotator cuff is a critical determinant of clinical outcomes following rotator cuff injuries and repairs. This review examines the natural history, pathophysiology, imaging evaluation, and treatment strategies for FI, highlighting recent insights into its cellular mechanisms and emerging therapeutic approaches. RECENT FINDINGS Animal models demonstrate that FI begins shortly after tendon injury, progresses with muscle retraction and denervation, and is largely irreversible despite repair. Key cellular drivers include fibroadipogenic progenitor cells (FAPs), influenced by mechanical loading and inflammatory signaling pathways. Clinical studies show that FI is associated with advanced age, female sex, and full-thickness tears. Higher degrees of preoperative FI correlate with poorer functional outcomes and increased re-tear rates. Novel therapeutic targets, including pathways regulating FAP activity, TGF-β, and cell-based therapies, show promise in preclinical studies. Emerging strategies such as leukocyte-poor platelet-rich plasma (PRP) may mitigate FI progression in clinical settings. Fatty infiltration remains a significant barrier to successful rotator cuff repair and functional recovery. While surgical repair may slow FI progression, it is not consistently effective in reversing established muscle degeneration. Improved understanding of the molecular mechanisms driving FI has identified potential therapeutic targets, but their clinical applicability requires further validation. Future advances in regenerative medicine, including cell-based therapies and modulation of fibroadipogenic progenitors, offer hope for mitigating FI and improving long-term outcomes.
Collapse
Affiliation(s)
- Edward Bowen
- Rush University Medical Center, Chicago, IL, USA.
| | - Aboubacar Waque
- University of California San Francisco, San Francisco, CA, USA
| | - Favian Su
- University of California San Francisco, San Francisco, CA, USA
| | - Michael Davies
- University of California San Francisco, San Francisco, CA, USA
| | | | - Drew Lansdown
- University of California San Francisco, San Francisco, CA, USA
| | - Brian Feeley
- University of California San Francisco, San Francisco, CA, USA
| | - Asheesh Bedi
- Northshore University Health System, Skokie, IL, USA
| |
Collapse
|
4
|
Welc SS, Brotto M, White KE, Bonewald LF. Aging: A struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev 2025; 224:112039. [PMID: 39952614 PMCID: PMC11893237 DOI: 10.1016/j.mad.2025.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal health is strongly influenced by regulatory interactions of bone and muscle. Recent discoveries have identified a number of key mechanisms through which soluble factors released during exercise by bone exert positive effects on muscle and by muscle on bone. Although exercise can delay the negative effects of aging, these beneficial effects are diminished with aging. The limited response of aged muscle and bone tissue to exercise are accompanied by a failure in bone and muscle communication. Here, we propose that exercise induced beneficial factors must battle changes in circulating endocrine and inflammatory factors that occur with aging. Furthermore, sedentary behavior results in the release of negative factors impacting the ability of bone and muscle to respond to physical activity especially with aging. In this review we report on exercise responsive factors and evidence of modification occurring with aging.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA.
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Wang W, Wang Z, Li R, Huang W, Ling Q, Li X, Li Z, Cao M, Zhang Z, Sun Q, Liang Z, Zhang HA, Jiang X, Lin C, Chen Y, Zhao B, Zhao Y, Pan JA, Peng X. RNF138 regulates skeletal muscle differentiation via the Wnt/β-catenin signaling pathway. Theranostics 2025; 15:4446-4464. [PMID: 40225576 PMCID: PMC11984406 DOI: 10.7150/thno.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: Myogenesis is a strictly regulated process driven by signaling pathways activating muscle-specific gene expression. During myogenesis, muscle stem cells exhibit DNA damage response (DDR) features, which are essential for myoblast differentiation and skeletal muscle regeneration. However, the specific roles of DDR-associated proteins in these processes are not yet fully understood. Methods: Gene knockdown and knockout were used in cell and animal models to study RNF138's function in myoblast differentiation and skeletal muscle regeneration. Multi-omics profiling, including transcriptomics and proteomics, was conducted to identify the key proteins regulated by RNF138 in myogenesis. Protein turnover assays were utilized to investigate RNF138's role in APC protein turnover. Immunofluorescence microscopy was performed to confirm the protein colocalization and subcellular localization. Results: RNF138 expression increases during myoblast differentiation and in regenerating myofibers following muscle injury. Knockdown of RNF138 in C2C12 myoblasts impairs myogenic differentiation and fusion. Additionally, Rnf138-deficient mice exhibit delayed muscle regeneration following cardiotoxin-induced injury. Multi-omics profiling, including transcriptomics and proteomics, reveals that Wnt/β-catenin signaling, a key driver of myogenic differentiation, is enhanced by RNF138. Mechanistically, RNF138 stabilizes β-catenin and enhances its nuclear localization by facilitating lysosomal degradation of APC, a component of the β-catenin degradation complex responsible for mediating the export of β-catenin from the nucleus to the cytoplasm for further ubiquitin-proteasome degradation. Conclusions: We reveal a noncanonical role for RNF138, an E3 ubiquitin ligase, as a positive regulator of myoblast differentiation and skeletal muscle regeneration via the Wnt/β-catenin pathway. This finding highlights the noncanonical function of RNF138 beyond its known roles in DDR and other cellular processes. Therefore, RNF138 provides a potential link between DDR and myoblast differentiation, offering new insights into the molecular regulation of muscle regeneration.
Collapse
Affiliation(s)
- Wenhao Wang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhuohua Wang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Rourong Li
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Weiyi Huang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Qiao Ling
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Xiaoxiao Li
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zan Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Manqi Cao
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhihui Zhang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Qingrong Sun
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhijuan Liang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Hua-an Zhang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Xuan Jiang
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Chuwen Lin
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yaoqing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Bo Zhao
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yu Zhao
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Ji-An Pan
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
- The Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Xiaoxue Peng
- The Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
- The Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Rejas MT, Rudnicki MA. Wnt7a is required for regeneration of dystrophic skeletal muscle. Skelet Muscle 2024; 14:34. [PMID: 39702274 DOI: 10.1186/s13395-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice lacking Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury. Unlike WT, deletion of Wnt7a in mdx resulted in decreased force generation prior to CTX injury. However, both WT and mdx muscle lacking Wnt7a displayed decreased force generation following CTX injection. Notably the regeneration deficit in mdx mice was rescued by a single tail vein injection of extracellular vesicles containing Wnt7a (Wnt7a-EVs). Therefore, we conclude that the regenerative capacity of muscle in mdx mice is highly dependant on the upregulation of endogenous Wnt7a following injury, and that systemic delivery of Wnt7a-EVs represents a therapeutic strategy for treating DMD.
Collapse
MESH Headings
- Animals
- Regeneration
- Mice, Inbred mdx
- Wnt Proteins/metabolism
- Wnt Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/drug effects
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/pathology
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain
| | - Kasun Kodippili
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maria Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular, Severo Ochoa. CSIC, Madrid, Spain
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Javandoost E, Xiao F, Ming H, Fisher S, Marina A, De Repentigny Y, Kothary R, Azkargorta M, Elortza F, Rojas AL, Serrano L, Hierro A, Rudnicki MA. Identification of the Wnt signal peptide that directs secretion on extracellular vesicles. SCIENCE ADVANCES 2024; 10:eado5914. [PMID: 39661666 PMCID: PMC11633749 DOI: 10.1126/sciadv.ado5914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Wnt proteins are hydrophobic glycoproteins that are nevertheless capable of long-range signaling. We found that Wnt7a is secreted long distance on the surface of extracellular vesicles (EVs) following muscle injury. We defined a signal peptide region in Wnts required for secretion on EVs, termed exosome-binding peptide (EBP). Addition of EBP to an unrelated protein directed secretion on EVs. Palmitoylation and the signal peptide were not required for Wnt7a-EV secretion. Coatomer was identified as the EV-binding protein for the EBP. Analysis of cocrystal structures, binding thermodynamics, and mutagenesis found that a dilysine motif mediates EBP binding to coatomer with a conserved function across the Wnt family. We showed that EBP is required for Wnt7a bioactivity when expressed in vivo during regeneration. Overall, our study has elucidated the structural basis and singularity of Wnt secretion on EVs, alternatively to canonical secretion, opening avenues for innovative therapeutic targeting strategies and systemic protein delivery.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leandro G. Radusky
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Marie Esper
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Hong Ming
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Solomon Fisher
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alberto Marina
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Adriana L. Rojas
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael A. Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Ye H, Li ZQ, Yang JM, Long Y, Zhong YB, Wu Y, Wang MY. A network pharmacology-based study to investigate the mechanism of curcumin-regulated regenerative repair of quadriceps femoris muscle in KOA rats. Eur J Pharmacol 2024; 982:176910. [PMID: 39154821 DOI: 10.1016/j.ejphar.2024.176910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a very common musculoskeletal disorder, and patients with KOA often exhibit significant quadriceps femoris muscle atrophy. It is well established that curcumin (CUR) exerts protective effects on skeletal muscle. However, the efficacy of CUR in treating KOA-induced quadriceps femoris muscle atrophy and its underlying mechanisms remain uncertain. In this study, we employed network pharmacology to investigate the mechanism by which CUR promotes regenerative repair of the quadriceps femoris muscle in rats with KOA. METHODS The potential targets of CUR were obtained from Swiss Target Prediction. The targets of skeletal muscle regeneration were identified from GeneCard and OMIM. A Venn diagram was generated to visualize the intersection of CUR targets and skeletal muscle regeneration targets, and the core targets were identified using STRING. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted using DAVID. Finally, the network pharmacology results were further validated by establishing a KOA rat model using the Hulth method. RESULTS Network pharmacology analysis and molecular docking results revealed that CUR affects skeletal muscle regeneration through multiple targets and pathways. In vivo experimental results were validated by demonstrating that KOA causes atrophy and induces apoptosis in the quadriceps femoris muscle. Furthermore, CUR was shown to inhibit apoptosis in the quadriceps femoris muscle by regulating STAT3 and FOS, as well as the PI3K/AKT signaling pathway. CONCLUSIONS Our study revealed the apoptosis-inhibiting effects of CUR and its underlying mechanisms. Consequently, CUR has the potential to improve quadriceps femoris muscle atrophy caused by KOA.
Collapse
Affiliation(s)
- Hua Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Ze-Qin Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Jia-Ming Yang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yi Long
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, Jiangxi, China
| | - Yi Wu
- Gannan Medical University, Ganzhou City, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering (2024SSY06291), School of Pharmacy, Gannan Medical University, Gouzhou, Jiangxi, China.
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China; Ganzhou Key Laboratory of Rehabilitation Medicine, GanZhou City, Jiangxi, China.
| |
Collapse
|
9
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
11
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
12
|
Zhang Y, Dos Santos M, Huang H, Chen K, Iyengar P, Infante R, Polanco PM, Brekken RA, Cai C, Caijgas A, Cano Hernandez K, Xu L, Bassel-Duby R, Liu N, Olson EN. A molecular pathway for cancer cachexia-induced muscle atrophy revealed at single-nucleus resolution. Cell Rep 2024; 43:114587. [PMID: 39116208 PMCID: PMC11472345 DOI: 10.1016/j.celrep.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthieu Dos Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rodney Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Patricio M Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ambar Caijgas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karla Cano Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
14
|
Lin W, Chow SKH, Cui C, Liu C, Wang Q, Chai S, Wong RMY, Zhang N, Cheung WH. Wnt/β-catenin signaling pathway as an important mediator in muscle and bone crosstalk: A systematic review. J Orthop Translat 2024; 47:63-73. [PMID: 39007034 PMCID: PMC11245956 DOI: 10.1016/j.jot.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/21/2024] [Accepted: 06/02/2024] [Indexed: 07/16/2024] Open
Abstract
Background The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/β-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/β-catenin signaling pathways in muscle-bone crosstalk. Methods We conducted a literature search on the Web of Science, PubMed, EBSCO and Embase with keywords "Wnt*", "bone*" and "muscle*". A systematic review was completed according to the guideline of preferred reporting items of systematic reviews and meta-analyses (PRISMA). Data synthesis included species (human, animal or cell type used), treatments involved, outcome measures and key findings with respect to Wnts. Results Seventeen papers were published from 2007 to 2021 and were extracted from a total of 1529 search results in the databases of Web of Science (468 papers), PubMed (457 papers), EBSCO (371) and Embase (233). 12 Wnt family members were investigated in the papers, including Wnt1, Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt8a, Wnt8b, Wnt9a, Wnt10a, Wnt10b and Wnt16. Many studies showed that muscles were able to increase or decrease osteogenesis of bone, while bone increased myogenesis of muscle through Wnt/β-catenin signaling pathways. Wnt3a, Wnt4 and Wnt10b were shown to play important roles in the crosstalk between muscle and bone. Conclusions Wnt3a, Wnt4 and Wnt10b are found to play important mediatory roles in muscle-bone crosstalk. The role of Wnt4 was mostly found to regulate muscle from the bone side. Whilst the role of Wnt10b during muscle ageing was proposed, current evidence is insufficient to clarify the specific role of Wnt/β-catenin signaling in the interplay between sarcopenia and osteoporosis. More future studies are required to investigate the exact regulatory roles of Wnts in muscle-bone crosstalk in musculoskeletal disease models such as sarcopenia and osteoporosis. Translational potential of this article The systematic review provides an extensive overview to reveal the roles of Wnt/β-catenin signaling pathways in muscle-bone crosstalk. These results provide novel research directions to further understand the underlying mechanism of sarcopenia, osteoporosis, and their crosstalk, finally helping the future development of new therapeutic interventions.
Collapse
Affiliation(s)
- Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Chaoran Liu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| |
Collapse
|
15
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
16
|
Stoikos J, Kurgan N, Kottaras S, Fajardo VA, Gittings W, Klentrou P. Effects of sclerostin injection on soleus and extensor digitorum longus muscle tissue in male mice. Can J Physiol Pharmacol 2024; 102:293-304. [PMID: 37976473 DOI: 10.1139/cjpp-2023-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Sclerostin, a potent inhibitor of the Wnt signaling pathway, plays a critical role in bone homeostasis. Evidence suggests that sclerostin may also be involved in crosstalk between other tissues, including muscle. This pilot study attempted to examine the effects of sclerostin on soleus and extensor digitorum longus (EDL) muscle tissue from male mice that were given continuous recombinant sclerostin injections for 4 weeks. A total of 48 10-week-old male C57BL/6J mice were assigned to be sedentary or perform 1 h treadmill running per day for 4 weeks and administered subcutaneous injections of either saline or recombinant sclerostin 5 days/week. Sclerostin injection led to a reduction in the soleus myosin heavy chain (MHC) I, MHC I/IIA, MHC IIA/X, and MHC IIB cross-sectional area (p < 0.05) with no exercise effects on these reductions. In contrast, there were no effects of sclerostin injections or exercise on the fast-twitch EDL muscle in terms of size, MHC protein, or markers of Wnt signaling. These findings provide preliminary evidence of sclerostin's endocrine role in muscle via decreases in myofiber cross-sectional area, which seems to be independent of fiber type but muscle type-specific. More studies, however, are needed to confirm these preliminary results.
Collapse
Affiliation(s)
- Joshua Stoikos
- Centre for Bone and Muscle Health, Department of Kinesiology, Brock University, ON, Canada
| | - Nigel Kurgan
- Centre for Bone and Muscle Health, Department of Kinesiology, Brock University, ON, Canada
| | - Steven Kottaras
- Centre for Bone and Muscle Health, Department of Kinesiology, Brock University, ON, Canada
| | - Val A Fajardo
- Centre for Bone and Muscle Health, Department of Kinesiology, Brock University, ON, Canada
| | - William Gittings
- Centre for Bone and Muscle Health, Department of Kinesiology, Brock University, ON, Canada
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Department of Kinesiology, Brock University, ON, Canada
| |
Collapse
|
17
|
Kinsolving J, Bous J, Kozielewicz P, Košenina S, Shekhani R, Grätz L, Masuyer G, Wang Y, Stenmark P, Dong M, Schulte G. Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD 7. Cell Rep 2024; 43:113727. [PMID: 38308843 DOI: 10.1016/j.celrep.2024.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
The G protein-coupled receptors of the Frizzled (FZD) family, in particular FZD1,2,7, are receptors that are exploited by Clostridioides difficile toxin B (TcdB), the major virulence factor responsible for pathogenesis associated with Clostridioides difficile infection. We employ a live-cell assay examining the affinity between full-length FZDs and TcdB. Moreover, we present cryoelectron microscopy structures of TcdB alone and in complex with full-length FZD7, which reveal that large structural rearrangements of the combined repetitive polypeptide domain are required for interaction with FZDs and other TcdB receptors, constituting a first step for receptor recognition. Furthermore, we show that bezlotoxumab, an FDA-approved monoclonal antibody to treat Clostridioides difficile infection, favors the apo-TcdB structure and thus disrupts binding with FZD7. The dynamic transition between the two conformations of TcdB also governs the stability of the pore-forming region. Thus, our work provides structural and functional insight into how conformational dynamics of TcdB determine receptor binding.
Collapse
Affiliation(s)
- Julia Kinsolving
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Julien Bous
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Pawel Kozielewicz
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rawan Shekhani
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Lukas Grätz
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Yuankai Wang
- Department of Urology, Boston Children's Hospital, Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Gunnar Schulte
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden.
| |
Collapse
|
18
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Gurriaran-Rodriguez U, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using Tangential Flow Filtration and Size Exclusion Chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580358. [PMID: 38405765 PMCID: PMC10888854 DOI: 10.1101/2024.02.14.580358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
|
20
|
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Rejas MT, Rudnicki MA. Wnt7a is Required for Regeneration of Dystrophic Skeletal Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577041. [PMID: 38328077 PMCID: PMC10849716 DOI: 10.1101/2024.01.24.577041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). However, loss-of-function studies to investigate the requirement for Wnt7a in muscle regeneration has not been evaluated. Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was specifically deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice with deletion of Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury. Unlike WT, deletion of Wnt7a in mdx resulted in a marked decrease in specific force generation prior to CTX injury. However, both WT and mdx muscle lacking Wnt7a displayed decreased specific force generation following CTX injection. Notably the regeneration deficit observed in mdx mice lacking Wnt7a in muscle was rescued by a single tail vein injection of an extracellular vesicle preparation containing Wnt7a (Wnt7a-EVs). Therefore, we conclude that the regenerative capacity of muscle in mdx mice is due to the upregulation of endogenous Wnt7a following injury, and that systemic delivery of Wnt7a-EVs represents a therapeutic strategy for treating DMD.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasun Kodippili
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular, Severo Ochoa. CSIC, Madrid, Spain
| | - Michael A. Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Huang Q, Xiao Y, Lan T, Lu Y, Huang L, Zheng D. WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling. Int J Oral Sci 2024; 16:7. [PMID: 38246919 PMCID: PMC10800352 DOI: 10.1038/s41368-024-00279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression. These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
Collapse
Affiliation(s)
- Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Xiao
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
22
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
24
|
Kayamori K, Katsube KI, Hirai H, Harada H, Ikeda T. Role of Stromal Fibroblast-Induced WNT7A Associated with Cancer Cell Migration Through the AKT/CLDN1 Signaling Axis in Oral Squamous Cell Carcinoma. J Transl Med 2023; 103:100228. [PMID: 37541622 DOI: 10.1016/j.labinv.2023.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Wnt signaling plays a crucial role in the progression of various cancers, including oral squamous cell carcinoma (OSCC). However, the tumor microenvironment (TME) regulating Wnt signaling has not yet been fully elucidated. In this study, we investigated whether cancer-associated fibroblasts (CAFs), the primary components of the TME, activate Wnt signaling and promote tumor progression in OSCC. We conducted a Transwell coculture assay using human OSCC cell lines and normal human dermal fibroblasts (NHDFs). NHDFs stimulated WNT7A expression in several OSCC cell lines, especially HO-1-N-1 and HSC-5. An immunohistochemical study using 122 human OSCC samples indicated that high WNT7A expression in tumor cells was significantly associated with invasion depth and poor prognosis. Moreover, WNT7A expression in OSCC cells was positively correlated with α-smooth muscle actin expression in CAFs. WNT7A knockdown in OSCC cells demonstrated that OSCC cells cocultured with NHDFs significantly promoted tumor cell migration and invasion, which was dependent on WNT7A expression in OSCC cells. We also isolated HSC-5 cells from the coculture and conducted microarray analysis to investigate the factors that promote tumor progression induced by WNT7A. Among the various differentially expressed genes, we identified a downregulated gene encoding CLDN1 and confirmed that WNT7A negatively regulated CLDN1 expression in OSCC cells and CLDN1 knockdown in OSCC cells promoted their migration. Phosphokinase array analysis showed that WNT7A activates protein kinase B (AKT) phosphorylation. Activating AKT signaling using the SC79 agonist induced CLDN1 downregulation in OSCC cells. In the coculture assay, the AKT inhibitor MK2206 significantly recovered CLDN1 expression downregulated by WNT7A, resulting in OSCC cell migration suppression. These results suggest that CAFs stimulate OSCC cells to produce WNT7A, following CLDN1 expression downregulation by activating AKT signaling, promoting cancer cell migration. These findings highlight the importance of molecular therapies targeting the TME in OSCC.
Collapse
Affiliation(s)
- Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Ken-Ichi Katsube
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Faculty of Human Care, Tohto University, Saitama, Japan
| | - Hideaki Hirai
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
25
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Skelet Muscle 2023; 13:15. [PMID: 37705115 PMCID: PMC10498607 DOI: 10.1186/s13395-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nick Baumann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Sun
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
26
|
Taye N, Singh M, Baldock C, Hubmacher D. Secreted ADAMTS-like 2 promotes myoblast differentiation by potentiating WNT signaling. Matrix Biol 2023; 120:24-42. [PMID: 37187448 PMCID: PMC10238107 DOI: 10.1016/j.matbio.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Myogenesis is the process that generates multinucleated contractile myofibers from muscle stem cells during skeletal muscle development and regeneration. Myogenesis is governed by myogenic regulatory transcription factors, including MYOD1. Here, we identified the secreted matricellular protein ADAMTS-like 2 (ADAMTSL2) as part of a Wnt-dependent positive feedback loop, which augmented or sustained MYOD1 expression and thus promoted myoblast differentiation. ADAMTSL2 depletion resulted in severe retardation of myoblast differentiation in vitro and its ablation in myogenic precursor cells resulted in aberrant skeletal muscle architecture. Mechanistically, ADAMTSL2 potentiated WNT signaling by binding to WNT ligands and WNT receptors. We identified the WNT-binding ADAMTSL2 peptide, which was sufficient to promote myogenesis in vitro. Since ADAMTSL2 was previously described as a negative regulator of TGFβ signaling in fibroblasts, ADAMTSL2 now emerges as a signaling hub that could integrate WNT, TGFβ and potentially other signaling pathways within the dynamic microenvironment of differentiating myoblasts during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mukti Singh
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
27
|
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Xiao F, Ming H, Fisher S, Rojas MA, De Repentigny Y, Kothary R, Rojas AL, Serrano L, Hierro A, Rudnicki MA. Wnt binding to Coatomer proteins directs secretion on exosomes independently of palmitoylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542914. [PMID: 37398399 PMCID: PMC10312507 DOI: 10.1101/2023.05.30.542914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wnt proteins are secreted hydrophobic glycoproteins that act over long distances through poorly understood mechanisms. We discovered that Wnt7a is secreted on extracellular vesicles (EVs) following muscle injury. Structural analysis identified the motif responsible for Wnt7a secretion on EVs that we term the Exosome Binding Peptide (EBP). Addition of the EBP to an unrelated protein directed secretion on EVs. Disruption of palmitoylation, knockdown of WLS, or deletion of the N-terminal signal peptide did not affect Wnt7a secretion on purified EVs. Bio-ID analysis identified Coatomer proteins as candidates responsible for loading Wnt7a onto EVs. The crystal structure of EBP bound to the COPB2 coatomer subunit, the binding thermodynamics, and mutagenesis experiments, together demonstrate that a dilysine motif in the EBP mediates binding to COPB2. Other Wnts contain functionally analogous structural motifs. Mutation of the EBP results in a significant impairment in the ability of Wnt7a to stimulate regeneration, indicating that secretion of Wnt7a on exosomes is critical for normal regeneration in vivo . Our studies have defined the structural mechanism that mediates binding of Wnt7a to exosomes and elucidated the singularity of long-range Wnt signalling.
Collapse
|
28
|
Ursini G, Di Carlo P, Mukherjee S, Chen Q, Han S, Kim J, Deyssenroth M, Marsit CJ, Chen J, Hao K, Punzi G, Weinberger DR. Prioritization of potential causative genes for schizophrenia in placenta. Nat Commun 2023; 14:2613. [PMID: 37188697 PMCID: PMC10185564 DOI: 10.1038/s41467-023-38140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Our earlier work has shown that genomic risk for schizophrenia converges with early life complications in affecting risk for the disorder and sex-biased neurodevelopmental trajectories. Here, we identify specific genes and potential mechanisms that, in placenta, may mediate such outcomes. We performed TWAS in healthy term placentae (N = 147) to derive candidate placental causal genes that we confirmed with SMR; to search for placenta and schizophrenia-specific associations, we performed an analogous analysis in fetal brain (N = 166) and additional placenta TWAS for other disorders/traits. The analyses in the whole sample and stratifying by sex ultimately highlight 139 placenta and schizophrenia-specific risk genes, many being sex-biased; the candidate molecular mechanisms converge on the nutrient-sensing capabilities of placenta and trophoblast invasiveness. These genes also implicate the Coronavirus-pathogenesis pathway and showed increased expression in placentae from a small sample of SARS-CoV-2-positive pregnancies. Investigating placental risk genes for schizophrenia and candidate mechanisms may lead to opportunities for prevention that would not be suggested by study of the brain alone.
Collapse
Affiliation(s)
- Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Sreya Mukherjee
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Jiyoung Kim
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Maya Deyssenroth
- Departments of Environmental Medicine and Public Health, Icahn School of Public Health at Mount Sinai, New York, NY, USA
| | - Carmen J Marsit
- Departments of Environmental Health and Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jia Chen
- Departments of Environmental Medicine and Public Health, Icahn School of Public Health at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giovanna Punzi
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Sawano S, Fukushima M, Akasaka T, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Up- and Downregulated Genes after Long-Term Muscle Atrophy Induced by Denervation in Mice Detected Using RNA-Seq. Life (Basel) 2023; 13:life13051111. [PMID: 37240756 DOI: 10.3390/life13051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle atrophy occurs rapidly as a result of inactivity. Although there are many reports on changes in gene expression during the early phase of muscle atrophy, the patterns of up-and downregulated gene expression after long-term and equilibrated muscle atrophy are poorly understood. In this study, we comprehensively examined the changes in gene expression in long-term denervated mouse muscles using RNA-Seq. The murine right sciatic nerve was denervated, and the mice were housed for five weeks. The cross-sectional areas of the hind limb muscles were measured using an X-ray CT system 35 days after denervation. After 28 d of denervation, the cross-sectional area of the muscle decreased to approximately 65% of that of the intact left muscle and reached a plateau. Gene expression in the soleus and extensor digitorum longus (EDL) muscles on the 36th day was analyzed using RNA-Seq and validated using RT-qPCR. RNA-Seq analysis revealed that three genes-Adora1, E230016M11Rik, and Gm10718-were upregulated and one gene-Gm20515-was downregulated in the soleus muscle; additionally, four genes-Adora1, E230016M11Rik, Pigh, and Gm15557-were upregulated and one gene-Fzd7-was downregulated in the EDL muscle (FDR < 0.05). Among these genes, E230016M11Rik, one of the long non-coding RNAs, was significantly upregulated in both the muscles. These findings indicate that E230016M11Rik could be a candidate gene for the maintenance of atrophied skeletal muscle size and an atrophic state.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan
| | - Misaki Fukushima
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Taiki Akasaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
31
|
Fu C, Chin-Young B, Park G, Guzmán-Seda M, Laudier D, Han WM. WNT7A suppresses adipogenesis of skeletal muscle mesenchymal stem cells and fatty infiltration through the alternative Wnt-Rho-YAP/TAZ signaling axis. Stem Cell Reports 2023; 18:999-1014. [PMID: 37001514 PMCID: PMC10147829 DOI: 10.1016/j.stemcr.2023.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Intramuscular fatty infiltration in muscle injuries and diseases, caused by aberrant adipogenesis of fibro-adipogenic progenitors, negatively impacts function. Intramuscular delivery of wingless-type MMTV integration site family 7a (WNT7A) offers a promising strategy to stimulate muscle regeneration, but its effects on adipogenic conversion of fibro-adipogenic progenitors remain unknown. Here, we show that WNT7A decreases adipogenesis of fibro-adipogenic progenitors (FAPs) by inducing nuclear localization of Yes-associated protein (YAP) through Rho in a β-CATENIN-independent manner and by promoting nuclear retention of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) in differentiating FAPs. Furthermore, intramuscular injection of WNT7A in vivo effectively suppresses fatty infiltration in mice following glycerol-induced injury. Our results collectively suggest WNT7A as a potential protein-based therapeutic for diminishing adipogenesis of FAPs and intramuscular fatty infiltration in pathological muscle injuries or diseases.
Collapse
Affiliation(s)
- Chengcheng Fu
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Britney Chin-Young
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - GaYoung Park
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana Guzmán-Seda
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biomedical Engineering, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Damien Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Woojin M Han
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
33
|
Cao R, Chen P, Wang H, Jing H, Zhang H, Xing G, Luo B, Pan J, Yu Z, Xiong WC, Mei L. Intrafusal-fiber LRP4 for muscle spindle formation and maintenance in adult and aged animals. Nat Commun 2023; 14:744. [PMID: 36765071 PMCID: PMC9918736 DOI: 10.1038/s41467-023-36454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Collapse
Affiliation(s)
- Rangjuan Cao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
34
|
Tigue ML, Loberg MA, Goettel JA, Weiss WA, Lee E, Weiss VL. Wnt Signaling in the Phenotype and Function of Tumor-Associated Macrophages. Cancer Res 2023; 83:3-11. [PMID: 36214645 PMCID: PMC9812914 DOI: 10.1158/0008-5472.can-22-1403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
Tumor-associated macrophages (TAM) play an important role in supporting tumor growth and suppressing antitumor immune responses, and TAM infiltration has been associated with poor patient prognosis in various cancers. TAMs can be classified as pro-inflammatory, M1-like, or anti-inflammatory, M2-like. While multiple factors within the tumor microenvironment affect the recruitment, polarization, and functions of TAMs, accumulating evidence suggests that Wnt signaling represents an important, targetable driver of an immunosuppressive, M2-like TAM phenotype. TAM production of Wnt ligands mediates TAM-tumor cross-talk to support cancer cell proliferation, invasion, and metastasis. Targeting TAM polarization and the protumorigenic functions of TAMs through inhibitors of Wnt signaling may prove a beneficial treatment strategy in cancers where macrophages are prevalent in the microenvironment.
Collapse
Affiliation(s)
- Megan L Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William A Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
35
|
Schmidt M, Poser C, Janster C, von Maltzahn J. The hairpin region of WNT7A is sufficient for binding to the Frizzled7 receptor and to elicit signaling in myogenic cells. Comput Struct Biotechnol J 2022; 20:6348-6359. [PMID: 36420144 PMCID: PMC9678774 DOI: 10.1016/j.csbj.2022.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling is essential for embryonic development and tissue homeostasis. So far, little is known about the importance and functional relevance of the different regions in WNT proteins including regions in their C-terminus identified as hairpin and linker. However, it was shown that the C-terminus of WNT7A comprising the linker and the hairpin region is sufficient to elicit signaling. Here, we demonstrate that actually the hairpin region of WNT7A in its C-terminus is fully sufficient to induce non-canonical signaling in myogenic cells while the linker region alone did not show biological activity. Of note, all known non-canonical signaling branches of WNT7A signaling in skeletal muscle were activated by the hairpin region of WNT7A thereby inducing hypertrophy in myotubes, symmetric expansion of satellite stem cells and migration of myoblasts. Furthermore, we demonstrate that the linker region in the C-terminus of WNT7A binds to the FZD7 receptor while it does not activate non-canonical Wnt signaling. However, the hairpin and the linker region of WNT7A can activate canonical Wnt signaling independent of each other suggesting that specificity of downstream signaling might be depending on those specific regions in the C-terminus.
Collapse
Affiliation(s)
- Manuel Schmidt
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christine Poser
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christina Janster
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technoogy Cottbus-Senftenberg, Germany
- Corresponding author.
| |
Collapse
|
36
|
Zeng SQ, Liu CL, Huang CN, Si WJ, Liu CB, Ren LX, Zhang WY, He YM, Yuan Y, Zhang HY, Han YG, Na RS, E GX, Huang YF. Identification of the Differential Expression Profile of miRNAs in Longissimus dorsi Muscle of Dazu Black Goat. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542211014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Decrotonylation of AKT1 promotes AKT1 phosphorylation and activation during myogenic differentiation. J Adv Res 2022:S2090-1232(22)00235-1. [PMID: 36265762 PMCID: PMC10403674 DOI: 10.1016/j.jare.2022.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/13/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Myogenic differentiation plays an important role in pathophysiological processes including muscle injury and regeneration, as well as muscle atrophy. A novel type of posttranslational modification, crotonylation, has been reported to play a role in stem cell differentiation and disease. However, the role of crotonylation in myogenic differentiation has not been clarified. OBJECTIVES This study aims to find the role of crotonylation during myogenic differentiation and explore whether it is a potential target in myogenic dysfunction disease. METHODS C2C12 cell line and skeletal muscle mesenchymal progenitors of Mus musculus were used for myogenic process study in vitro, while muscle injury model of mice was used for in vivo muscle regeneration study. Mass spectrometry favored in discovery of potential target protein of crotonylation and its specific sites. RESULTS We confirmed the gradual decrease in total protein crotonylation level during muscle differentiation and found decreased crotonylation of AKT1, which facilitated an increase in AKT1 phosphorylation. Then we verified that crotonylation of AKT1 at specific sites weakened its binding with PDK1 and impaired its phosphorylation. In addition, we found that increased expression of the crotonylation eraser HDAC3 decreased AKT1 crotonylation levels during myogenic differentiation, jointly promoting myogenic differentiation. CONCLUSION Our study highlights the important role of decrotonylation of AKT1 in the process of muscle differentiation, where it aids the phosphorylation and activation of AKT1 and promotes myogenic differentiation. This is of great significance for exploring the pathophysiological process of muscle injury repair and sarcopenia.
Collapse
|
38
|
Li C, Yoshimura T, Tian M, Wang Y, Kondo T, Yamamoto KI, Fujisawa M, Ohara T, Sakaguchi M, Matsukawa A. Exosomal Wnt7a from a low metastatic subclone promotes lung metastasis of a highly metastatic subclone in the murine 4t1 breast cancer. BREAST CANCER RESEARCH : BCR 2022; 24:60. [PMID: 36096830 PMCID: PMC9469633 DOI: 10.1186/s13058-022-01557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022]
Abstract
Background Patients with triple-negative breast cancer (TNBC) often have poorer prognosis than those with other subtypes because of its aggressive behaviors. Cancer cells are heterogeneous, and only a few highly metastatic subclones metastasize. Although the majority of subclones may not metastasize, they could contribute by releasing factors that increase the capacity of highly metastatic cells and/or provide a favorable tumor microenvironment (TME). Here, we analyzed the interclonal communication in TNBC which leads to efficient cancer progression, particularly lung metastasis, using the polyclonal murine 4T1 BC model. Methods We isolated two 4T1 subclones, LM.4T1 and HM.4T1 cells with a low and a high metastatic potential, respectively, and examined the effects of LM.4T1 cells on the behaviors of HM.4T1 cells using the cell scratch assay, sphere-forming assay, sphere invasion assay, RT-qPCR, and western blotting in vitro. We also examined the contribution of LM.4T1 cells to the lung metastasis of HM.4T1 cells and TME in vivo. To identify a critical factor which may be responsible for the effects by LM.4T1 cells, we analyzed the data obtained from the GEO database. Results Co-injection of LM.4T1 cells significantly augmented lung metastases by HM.4T1 cells. LM.4T1-derived exosomes promoted the migration and invasion of HM.4T1 cells in vitro, and blocking the secretion of exosome abrogated their effects on HM.4T1 cells. Analyses of data obtained from the GEO database suggested that Wnt7a might be a critical factor responsible for the enhancing effects. In fact, a higher level of Wnt7a was detected in LM.4T1 cells, especially in exosomes, than in HM.4T1 cells, and deletion of Wnt7a in LM.4T1 cells significantly decreased the lung metastasis of HM.4T1 cells. Further, treatment with Wnt7a increased the spheroid formation by HM.4T1 cells via activation of the PI3K/Akt/mTOR signaling pathway. Finally, infiltration of αSMA-positive fibroblasts and angiogenesis was more prominent in tumors of LM.4T1 cells and deletion of Wnt7a in LM.4T1 cells markedly reduced angiogenesis. Conclusions We demonstrated, for the first time, that a low metastatic subclone can enhance lung metastasis of highly metastatic subclone via exosomal Wnt7a and propose Wnt7a as a molecular target to treat TNBC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01557-5.
Collapse
Affiliation(s)
- Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Miao Tian
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Takamasa Kondo
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
39
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
40
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Thermal stress and selection for growth affect myogenic satellite cell lipid accumulation and adipogenic gene expression through mechanistic target of rapamycin pathway. J Anim Sci 2022; 100:6652327. [PMID: 35908789 PMCID: PMC9339274 DOI: 10.1093/jas/skac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Satellite cells (SCs) are multipotential stem cells having the plasticity to convert to an adipogenic lineage in response to thermal stress during the period of peak mitotic activity (the first week after hatch in poultry). The mechanistic target of rapamycin (mTOR) pathway, which regulates cellular function and fate of SCs, is greatly altered by thermal stress in turkey pectoralis major muscle SCs. The objective of the present study was to determine the effects of thermal stress, selection for growth, and the role of the mTOR pathway on SC intracellular lipid accumulation and expression of adipogenic regulatory genes. These effects were analyzed using SCs isolated from the pectoralis major muscle of 1-wk-old modern faster-growing commercial turkey line (NC) selected for increased growth and breast muscle yield as compared with SCs of a historic slower-growing Randombred Control Line 2 (RBC2) turkey. Heat stress (43 °C) of SCs during proliferation increased intracellular lipid accumulation (P < 0.001), whereas cold stress (33 °C) showed an inhibitory effect (P < 0.001) in both lines. Knockdown of mTOR reduced the intracellular lipid accumulation (P < 0.001) and suppressed the expression of several adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ (PPARγ; P < 0.001), CCAAT/enhancer-binding protein-β (C/EBPβ; P < 0.001), and neuropeptide-Y (NPY; P < 0.001) during both proliferation and differentiation. The NC line SCs showed fewer reductions in lipid accumulation compared with the RBC2 line independent of temperature. Both intracellular lipid accumulation (P < 0.001) and PPARγ expression (P < 0.001) were greater at 72 h of proliferation than at 48 h of differentiation in both the RBC2 and NC lines independent of temperature. Thus, hot and cold thermal stress affected intracellular lipid accumulation in the pectoralis major muscle SCs, in part, through the mTOR pathway in wea growth-dependent manner. Altered intracellular lipid accumulation could eventually affect intramuscular fat deposition, resulting in a long-lasting effect on the structure and protein to fat ratio of the poultry pectoralis major muscle.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
41
|
Cirillo F, Mangiavini L, La Rocca P, Piccoli M, Ghiroldi A, Rota P, Tarantino A, Canciani B, Coviello S, Messina C, Ciconte G, Pappone C, Peretti GM, Anastasia L. Human Sarcopenic Myoblasts Can Be Rescued by Pharmacological Reactivation of HIF-1α. Int J Mol Sci 2022; 23:ijms23137114. [PMID: 35806119 PMCID: PMC9267002 DOI: 10.3390/ijms23137114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia, an age-related decline in muscle mass and strength, is associated with metabolic disease and increased risk of cardiovascular morbidity and mortality. It is associated with decreased tissue vascularization and muscle atrophy. In this work, we investigated the role of the hypoxia inducible factor HIF-1α in sarcopenia. To this end, we obtained skeletal muscle biopsies from elderly sarcopenic patients and compared them with those from young individuals. We found a decrease in the expression of HIF-1α and its target genes in sarcopenia, as well as of PAX7, the major stem cell marker of satellite cells, whereas the atrophy marker MURF1 was increased. We also isolated satellite cells from muscle biopsies and cultured them in vitro. We found that a pharmacological activation of HIF-1α and its target genes caused a reduction in skeletal muscle atrophy and activation of PAX7 gene expression. In conclusion, in this work we found that HIF-1α plays a role in sarcopenia and is involved in satellite cell homeostasis. These results support further studies to test whether pharmacological reactivation of HIF-1α could prevent and counteract sarcopenia.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; (F.C.); (M.P.); (A.G.); (A.T.); (S.C.)
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (L.M.); (C.M.); (G.M.P.)
- IRCCS Istituto Ortopedico Galeazzi, 20100 Milan, Italy;
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (L.M.); (C.M.); (G.M.P.)
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; (F.C.); (M.P.); (A.G.); (A.T.); (S.C.)
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; (F.C.); (M.P.); (A.G.); (A.T.); (S.C.)
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; (F.C.); (M.P.); (A.G.); (A.T.); (S.C.)
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
| | | | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; (F.C.); (M.P.); (A.G.); (A.T.); (S.C.)
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
| | - Carmelo Messina
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (L.M.); (C.M.); (G.M.P.)
- IRCCS Istituto Ortopedico Galeazzi, 20100 Milan, Italy;
| | - Giuseppe Ciconte
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (L.M.); (C.M.); (G.M.P.)
- IRCCS Istituto Ortopedico Galeazzi, 20100 Milan, Italy;
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; (F.C.); (M.P.); (A.G.); (A.T.); (S.C.)
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy; (P.L.R.); (P.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-7756
| |
Collapse
|
42
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Temperature and Growth Selection Effects on Proliferation, Differentiation, and Adipogenic Potential of Turkey Myogenic Satellite Cells Through Frizzled-7-Mediated Wnt Planar Cell Polarity Pathway. Front Physiol 2022; 13:892887. [PMID: 35677087 PMCID: PMC9167958 DOI: 10.3389/fphys.2022.892887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
Satellite cells (SCs) are a heterogeneous population of multipotential stem cells. During the first week after hatch, satellite cell function and fate are sensitive to temperature. Wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) signaling pathway is significantly affected by thermal stress in turkey pectoralis major (p. major) muscle SCs. This pathway regulates the activity of SCs through a frizzled-7 (Fzd7) cell surface receptor and two intracellular effectors, rho-associated protein kinase (ROCK) and c-Jun. The objective of the present study was to determine the effects of thermal stress, growth selection, and the Fzd7-mediated Wnt/PCP pathway on proliferation, myogenic differentiation, lipid accumulation, and expression of myogenic and adipogenic regulatory genes. These effects were evaluated in SCs isolated from the p. major muscle of 1-week faster-growing modern commercial (NC) line of turkeys as compared to SCs of a slower-growing historic Randombred Control Line 2 (RBC2) turkey line. Heat stress (43°C) increased phosphorylation of both ROCK and c-Jun with greater increases observed in the RBC2 line. Cold stress (33°C) had an inhibitory effect on both ROCK and c-Jun phosphorylation with the NC line showing greater reductions. Knockdown of the expression of Fzd7 decreased proliferation, differentiation, and expression of myogenic regulatory genes: myoblast determination factor-1 and myogenin in both lines. Both lipid accumulation and expression of adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-β, and neuropeptide-Y were suppressed with the Fzd7 knockdown. The RBC2 line was more dependent on the Fzd7-mediated Wnt/PCP pathway for proliferation, differentiation, and lipid accumulation compared to the NC line. Thus, thermal stress may affect poultry breast muscle growth potential and protein to fat ratio by altering function and fate of SCs through the Fzd7-mediated Wnt/PCP pathway in a growth-dependent manner.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
43
|
Jin CL, Ye M, Song ZW, Zhang ZM, Gao CQ, Yan HC, Wang XQ. Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3745-3756. [PMID: 35312309 DOI: 10.1021/acs.jafc.2c01027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work provided an interesting finding of lysine (Lys) control on skeletal muscle growth besides protein synthesis. According to the isobaric tag for relative and absolute quantitation and molecular docking analyses, we found both in in vivo skeletal muscle and in vitro muscle satellite cells (MuSCs) that the frizzled7 (FZD7) expression level was positively correlated with Lys levels and this was consistent with the activation of the Wnt/β-catenin pathway. On the other hand, FZD7 inhibition suppressed the Lys-rescued Wnt/β-catenin pathway, FZD7 knockdown caused cell proliferation, and Wnt/β-catenin pathway restrictions could not be compensated for by Lys or Wnt3a. Furthermore, the combination between Lys and recombinant pig frizzled7 (rpFZD7) protein was confirmed by isothermal titration calorimetry. This finding displayed concrete evidence that Lys is not only a molecular block of protein synthesis but is also a ligand for FZD7 to activate β-catenin to stimulate MuSCs in promoting skeletal muscle growth.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Mao Ye
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Zong-Ming Zhang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| |
Collapse
|
44
|
Thermal stress affects proliferation and differentiation of turkey satellite cells through the mTOR/S6K pathway in a growth-dependent manner. PLoS One 2022; 17:e0262576. [PMID: 35025965 PMCID: PMC8758067 DOI: 10.1371/journal.pone.0262576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.
Collapse
|
45
|
Huang CN, Liu CL, Zeng SQ, Liu CB, Si WJ, Yuan Y, Ren LX, He YM, Zhang WY, Zhang HY, Zeng Y, Han YG, Na RS, Ee GX, Huang YF. Identification of differentially expressed long non-coding RNAs and messenger RNAs involved with muscle development in Dazu black goats through RNA sequencing. Anim Biotechnol 2022:1-9. [PMID: 34985384 DOI: 10.1080/10495398.2021.2020804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to explore the genetic basis of muscle development in goats. The transcriptome dataset for differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs) of goat muscle at different developmental stages were obtained using RNA-Seq. A total of 447,806,481 and 587,559,465 clean reads in the longissimus dorsi muscle of Dazu black goats between 75d embryonic stage and 1d after birth were generated through Illumina paired-end sequencing, and their mapping rates were 89.82 and 90.99%, respectively. Moreover, 4517 DEGs and 648 DELs were identified, and 4784 lncRNA-mRNA targeting relationships were predicted. Gene function annotation results showed that 4101 DEGs were significantly enriched to 1098 GO terms, and 2014 DEGs were significantly enriched to 40 KEGG pathways, including many GO terms and pathways related to muscle development, such as cell differentiation and Wnt signaling pathway. Then, 10 DELs and 20 DEGs were randomly selected for RT-qPCR verification, and the agreement rate between the verification and RNA-Seq results was 90%, indicating the high reliability of the RNA-Seq data analysis. In conclusion, this study obtained several mRNAs and lncRNAs related to the muscle development of Dazu black goats and identified several targeted regulatory pairs of lncRNA-mRNA. This study may serve as a reference to understand the genetic basis and molecular mechanism of muscle development in goats.
Collapse
Affiliation(s)
- Chao-Nan Huang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shi-Qi Zeng
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chang-Bao Liu
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wei-Jiang Si
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ying Yuan
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Li-Xin Ren
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wei-Yi Zhang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hao-Yuan Zhang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin Ee
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
46
|
Larasati Y, Boudou C, Koval A, Katanaev VL. Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD 7 in cancer. Drug Discov Today 2021; 27:777-792. [PMID: 34915171 DOI: 10.1016/j.drudis.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The Wnt signaling is of paramount pathophysiological importance. Despite showing promising anticancer activities in pre-clinical studies, current Wnt pathway inhibitors face complications in clinical trials resulting from on-target toxicity. Hence, the targeting of pathway component(s) that are essential for cancer but dispensable for normal physiology is key to the development of a safe Wnt signaling inhibitor. Frizzled7 (FZD7) is a Wnt pathway receptor that is redundant in healthy tissues but crucial in various cancers. FZD7 modulates diverse aspects of carcinogenesis, including cancer growth, metastasis, maintenance of cancer stem cells, and chemoresistance. In this review, we describe state-of-the-art knowledge of the functions of FZD7 in carcinogenesis and adult tissue homeostasis. Next, we overview the development of small molecules and biomolecules that target FZD7. Finally, we discuss challenges and possibilities in developing FZD7-selective antagonists.
Collapse
Affiliation(s)
- Yonika Larasati
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia.
| |
Collapse
|
47
|
Xu L, Chen B, Schihada H, Wright SC, Turku A, Wu Y, Han GW, Kowalski-Jahn M, Kozielewicz P, Bowin CF, Zhang X, Li C, Bouvier M, Schulte G, Xu F. Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric G s. Cell Res 2021; 31:1311-1314. [PMID: 34239071 PMCID: PMC8648716 DOI: 10.1038/s41422-021-00525-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Grants
- 32071194 National Natural Science Foundation of China (National Science Foundation of China)
- P18-0098 Svenska Sällskapet för Medicinsk Forskning (Swedish Society for Medical Research)
- FDN-148431 CIHR
- Karolinska Institutet, the Swedish Research Council (2017-04676; 2019-01190), the Swedish Cancer Society (CAN2017/561, 20 1102 PjF, 20 0264P), the Novo Nordisk Foundation (NNF17OC0026940; NNF20OC0063168), The Swedish Society of Medical Research (SSMF; P19-0055), the Lars Hierta Memorial Foundation (FO2019-0086, FO2020-0304), The Alex and Eva Wallström Foundation for Scientific Research and Education (2020-00228). and the German Research Foundation (DFG, 427840891; KO 5463/1-1)
- CIHR (FDN-148431)
Collapse
Affiliation(s)
- Lu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Shane C Wright
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ainoleena Turku
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Orion Pharma R&D, Espoo, Finland
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Gye-Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Maria Kowalski-Jahn
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl-Fredrik Bowin
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xianjun Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Chao Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Fu C, Huang AH, Galatz LM, Han WM. Cellular and molecular modulation of rotator cuff muscle pathophysiology. J Orthop Res 2021; 39:2310-2322. [PMID: 34553789 DOI: 10.1002/jor.25179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff (RC) tendon tears are common shoulder injuries that result in irreversible and persistent degeneration of the associated muscles, which is characterized by severe inflammation, atrophy, fibrosis, and fatty infiltration. Although RC muscle degeneration strongly dictates the overall clinical outcomes, strategies to stimulate RC muscle regeneration have largely been overlooked to date. In this review, we highlight the current understanding of the cellular processes that coordinate muscle regeneration, and the roles of muscle resident cells, including immune cells, fibroadipogenic progenitors, and muscle satellite cells in the pathophysiologic regulation of RC muscles following injury. This review also provides perspectives for potential therapies to alleviate the hallmarks of RC muscle degeneration to address current limitations in postsurgical recovery.
Collapse
Affiliation(s)
- Chengcheng Fu
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Department of Orthopedic Surgery, Columbia University, New York City, New York, USA
| | - Leesa M Galatz
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Woojin M Han
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
49
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Frizzled 7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handb Exp Pharmacol 2021. [PMID: 34455486 DOI: 10.1007/164_2021_524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Frizzled7 activates β-catenin-dependent and β-catenin-independent Wnt signalling pathways, is highly conserved through evolution from the ancient phylum hydra to man, plays essential roles in stem cells, tissue homeostasis and regeneration in the adult, and is upregulated in diverse cancers. Much of what is known about the core components of the Wnt signalling pathways was derived from studying the function of Frizzled7 orthologues in the development of lower organism. As we interrogate Frizzled7 signalling and function for therapeutic targeting in cancer, it is timely to revisit lower organisms to gain insight into the context dependent and dynamic nature of Wnt signalling for effective drug design.
Collapse
|