1
|
Yan S, Hou Y, Zhu Z, Li C, Ding Q, Sun X, Xia Z, Cao W, Wang Z. Bidirectional Spiral-Inspired Kirigami Mechanical Metamaterial for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40370209 DOI: 10.1021/acsami.5c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The rapid advancement of flexible electronics and wearable sensors has heightened demands for stretchable structures that excel in conformability, dynamic motion adaptability, stability under cyclic stretches, and antidistortion properties, holding significant commercial value. Traditional stretchable designs have often compromised the fill factor to achieve in-plane stretchability by incorporating electrodes with stretchable or prestrained architectures. In this article, we introduce a novel bidirectional spiral-hinge kirigami mechanical metamaterial (BSHK-MM) design with a remarkable fill factor of 77.3%. This design significantly enhances stretchability in both in-plane (80%) and out-of-plane (12496%) directions, providing exceptional conformability, dynamic motion adaptability, and resistance to distortion. The stress-strain curve of the BSHK-MM structure was analyzed through mechanical simulation, proving the potential for further manipulation. To demonstrate the potential of this design, we fabricated a 5 × 5 inorganic light-emitting diode (LED) display based on this concept. This device functions effectively under 80% in-plane stretching and can endure 10000 cyclic stretches while returning to its original state with negligible resistance variation. Furthermore, it demonstrates exceptional resistance to distortion under both in-plane and substantial out-of-plane stretching. This LED display exemplifies the broad applicability of our BSHK-MM design concept to various types of stretchable electronics, highlighting its vast potential across a wide range of applications.
Collapse
Affiliation(s)
- Sijia Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yue Hou
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zhu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Chang Li
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qianfeng Ding
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaolong Sun
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Zhanglong Xia
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Xu M, Song Z, Peng Q, Xu Q, Du Z, Ruan T, Yang B, Liu Q, Liu X, Hou X, Qin M, Liu J. Catheter-Integrated Fractal Microelectronics for Low-Voltage Ablation and Minimally Invasive Sensing. ACS Sens 2025; 10:2779-2789. [PMID: 40190250 DOI: 10.1021/acssensors.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pulse field ablation (PFA) has become a popular technique for treating tens of millions of patients with atrial fibrillation, as it avoids many complications associated with traditional radiofrequency ablation. However, currently, limited studies have used millimeter-scale rigid electrodes modified from radiofrequency ablation to apply electrical pulses of thousands of volts without integrated sensing capabilities. Herein, we combine fractal microelectronics with biomedical catheters for low-voltage PFA, detection of electrode-tissue contact, and interventional electrocardiogram recording. The fractal configuration increases the ratio of the microelectrode insulating edge to area, which facilitates the transfer of current from the microelectrode to the tissue, increasing the ablation depth by 38.6% at 300 V (a 10-fold reduction compared to current technology). In vivo ablation experiments on living beagles successfully block electrical conduction, as demonstrated by voltage mapping and electrical pacing. More impressively, this study provides the first evidence that microelectrodes can selectively ablate cardiomyocytes without damaging nerves and blood vessels, greatly improving the safety of PFA. These results are essential for the clinical translation of PFA in the field of cardiac electrophysiology.
Collapse
Affiliation(s)
- Mengfei Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Quan Peng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyuan Du
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Ruan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingkun Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhao D, Yan X. Ring-Toughened Polymer Networks: The Mighty Impact of Specially Designed Rings on Mechanical Properties. Chemistry 2025; 31:e202404780. [PMID: 39988556 DOI: 10.1002/chem.202404780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Polymer network materials are gaining significance in daily life and industrial applications. Improving polymer network materials' mechanical properties has long been a focus for chemists and materials scientists. Generally, rings in networks are viewed as adverse elements leading to reduced mechanical performance. In this conceptual article, recent advancements and related strategies in utilizing specially designed rings to enhance the mechanical properties of polymer networks are summarized and discussed. The article concludes by discussing current challenges and future prospects in this field. We aim for this article to offer readers an overview of ring-toughened polymer networks and to catalyze swift progress in this burgeoning area.
Collapse
Affiliation(s)
- Dong Zhao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Hou H, Xiang Z, Zhi C, Hu H, Zhu X, Bian B, Wu Y, Liu Y, Yi X, Shang J, Li RW. Optimized Magnetization Distribution in Body-Centered Cubic Lattice-Structured Magnetoelastomer for High-Performance 3D Force-Tactile Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:2312. [PMID: 40218827 PMCID: PMC11990970 DOI: 10.3390/s25072312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Flexible magnetic tactile sensors hold transformative potential in robotics and human-computer interactions by enabling precise force detection. However, existing sensors face challenges in balancing sensitivity, detection range, and structural adaptability for sensing force. This study proposed a pre-compressed magnetization method to address these limitations by amplifying the magnetoelastic effect through optimized magnetization direction distribution of the elastomer. A body-centered cubic lattice-structured magnetoelastomer featuring regular deformation under compression was fabricated via digital light processing (DLP) to validate this method. Finite element simulations and experimental analyses revealed that magnetizing the material under 60% compression strain optimized magnetization direction distribution, enhancing force-magnetic coupling. Integrating the magnetic elastomer with a hall sensor, the prepared tactile sensor demonstrated a low detection limit (1 mN), wide detection range (0.001-10 N), rapid response/recovery times (40 ms/50 ms), and durability (>1500 cycles). By using machine learning, the sensor enabled accurate 3D force prediction.
Collapse
Grants
- 2024YFB3814100, 2023YFC3603500 National Key R&D Program of China
- U24A6001, 52127803, U24A20228, U22A20248, U22A2075, 62174165, 52301256, 52401257, 52201236, 62204246, M-0152 National Natural Science Foundation of China
- 2018334 Chinese Academy of Sciences Youth Innovation Promotion Association
- 181GJHZ2024138GC International Partnership Program of Chinese Academy of Sciences
- CASSHB-QNPD-2023-022 Talent Plan of Shanghai Branch, Chinese Academy of Sciences
- 2022R52004 Project of Zhejiang Province
- LMS25F040007 Natural Science Foundation of Zhejiang Province
- LQ23F040004 Natural Science Foundation of Zhejiang Province
- 2022A-007-C Ningbo Technology Project
- 2022J288, 2023J049, 2023J326, 2023J345, 2024J068, 2024J241 Ningbo Natural Science Foundations
- 2023Z097, 2024Z148, 2024Z143, 2024Z199, 2024Z171 Ningbo Key Research and Development Program
- 2023S067 Ningbo Public Welfare Program
Collapse
Affiliation(s)
- Hongfei Hou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (H.H.); (X.Z.)
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chaonan Zhi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haodong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xingyu Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (H.H.); (X.Z.)
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Z.X.); (C.Z.); (H.H.); (B.B.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Calderón Moreno JM, Chelu M, Popa M. Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics. Gels 2025; 11:220. [PMID: 40277656 PMCID: PMC12026593 DOI: 10.3390/gels11040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The rapid advancement of wearable electronics has catalyzed the development of flexible, lightweight, and highly conductive materials. Among these, conductive hydrogels have emerged as promising candidates due to their tissue-like properties, which can minimize the mechanical mismatch between flexible devices and biological tissues and excellent electrical conductivity, stretchability and biocompatibility. However, the environmental impact of synthetic components and production processes in conventional conductive hydrogels poses significant challenges to their sustainable application. This review explores recent advances in eco-friendly conductive hydrogels used in healthcare, focusing on their design, fabrication, and applications in green wearable electronics. Emphasis is placed on the use of natural polymers, bio-based crosslinkers, and green synthesis methods to improve sustainability while maintaining high performance. We discuss the incorporation of conductive polymers and carbon-based nanomaterials into environmentally benign matrices. Additionally, the article highlights strategies for improving the biodegradability, recyclability, and energy efficiency of these materials. By addressing current limitations and future opportunities, this review aims to provide a comprehensive understanding of environmentally friendly conductive hydrogels as a basis for the next generation of sustainable wearable technologies.
Collapse
Affiliation(s)
- José María Calderón Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | | |
Collapse
|
7
|
Rocha-Flores PE, Chitrakar C, Rodriguez-Lopez O, Ren Y, Joshi-Imre A, Parikh AR, Asan AS, McIntosh JR, Garcia-Sandoval A, Pancrazio JJ, Ecker M, Lu H, Carmel JB, Voit WE. Softening, Conformable, and Stretchable Conductors for Implantable Bioelectronics Interfaces. ADVANCED MATERIALS TECHNOLOGIES 2025; 10:2401047. [PMID: 40191463 PMCID: PMC11968089 DOI: 10.1002/admt.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 04/09/2025]
Abstract
Neural implantable devices serve as electronic interfaces facilitating communication between the body and external electronic systems. These bioelectronic systems ideally possess stable electrical conductivity, flexibility, and stretchability to accommodate dynamic movements within the body. However, achieving both high electrical conductivity and mechanical compatibility remains a challenge. Effective electrical conductors tend to be rigid and stiff, leading to a substantial mechanical mismatch with bodily tissues. On the other hand, highly stretchable polymers, while mechanically compatible, often suffer from limited compatibility with lithography techniques and reduced electrical stability. Therefore, there exists a pressing need to develop electromechanically stable neural interfaces that enable precise communication with biological tissues. In this study, a polymer that is softening, flexible, conformal, and compatible with lithography to microfabricate perforated thin-film architectures was utilized. These architectures offer stretchability and improved mechanical compatibility. Three distinct geometries were evaluated both mechanically and electrically under in-vitro conditions that simulate physiological environments. Notably, the Peano structure demonstrates minimal changes in resistance, varying less than 1.5× even when subjected to almost 150% strain. Furthermore, devices exhibit a maximum mechanical elongation before fracture, reaching 220%. Finally, the application of multi-electrode spinal cord leads employing titanium nitride for neural stimulation in rat models was demonstrated.
Collapse
Affiliation(s)
- Pedro E Rocha-Flores
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chandani Chitrakar
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Ovidio Rodriguez-Lopez
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yao Ren
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
| | - Alexandra Joshi-Imre
- The Office of Research and Innovation, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Ankit R Parikh
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
| | - Ahmet S Asan
- Departments of Neurology, Columbia University, New York, NY, USA
| | - James R McIntosh
- Departments of Neurology, Columbia University, New York, NY, USA
| | - Aldo Garcia-Sandoval
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- The Office of Research and Innovation, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
| | - Jason B Carmel
- Departments of Neurology, Columbia University, New York, NY, USA
| | - Walter E Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
8
|
Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces. Nat Commun 2025; 16:1861. [PMID: 39984447 PMCID: PMC11845577 DOI: 10.1038/s41467-025-57016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing 'biohybrid' and 'all-living' interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation.
Collapse
Affiliation(s)
- Dimitris Boufidis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raghav Garg
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugenia Angelopoulos
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Pan L, Xie Y, Yang H, Bao X, Chen J, Zou M, Li RW. Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance. ACS NANO 2025; 19:5699-5708. [PMID: 39883044 DOI: 10.1021/acsnano.4c15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations. Here, we demonstrate an omnidirectionally stretchable spin-valve sensor array with high stretchability and excellent performance. By integrating the modulus-distributed structure with liquid metal, the sensor can maintain its performance under complex deformations, enabling the overall system with omnidirectional stretchability. The fabricated spin-valve sensor exhibits a nearly unchanged giant magnetoresistance ratio of 8% and a maximum sensitivity of 0.93%/Oe upon omnidirectional strain up to 86% and can maintain stable performance without fatigue for over 1000 stretching cycles. Furthermore, this spin-valve sensor array is characterized by stable sensing performance for magnetic fields under complicated deformations and can be applied as a magnetosensitive electronic skin. Our results provide insights into the development of next-generation stretchable and wearable magnetoelectronics.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengting Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Mirbakht SS, Golparvar A, Umar M, Kuzubasoglu BA, Irani FS, Yapici MK. Highly Self-Adhesive and Biodegradable Silk Bioelectronics for All-In-One Imperceptible Long-Term Electrophysiological Biosignals Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405988. [PMID: 39792793 PMCID: PMC11848544 DOI: 10.1002/advs.202405988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process. By addressing these challenges, inkjet-patterned protein-based skin-like silk bioelectronics (Silk-BioE) are presented, that integrate all the desirable material features that have been individually present in existing devices but never combined into a single embodiment. The all-in-one solution possesses excellent self-adhesiveness (300 N m-1) without synthetic adhesives, high breathability (1263 g h-1 m-2) as well as swift biodegradability in soil within a mere 2 days. In addition, with an elastic modulus of ≈5 kPa and a stretchability surpassing 600%, the soft electronics seamlessly replicate the mechanics of epidermis and form a conformal skin/electrode interface even on hairy regions of the body under severe perspiration. Therefore, coupled with a flexible readout circuitry, Silk-BioE can non-invasively monitor biosignals (i.e., ECG, EEG, EOG) in real-time for up to 12 h with benchmarking results against Ag/AgCl electrodes.
Collapse
Affiliation(s)
- Seyed Sajjad Mirbakht
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
| | - Ata Golparvar
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- ICLabÉcole Polytechnique Fédérale de Lausanne (EPFL)Neuchâtel2002Switzerland
| | - Muhammad Umar
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Burcu Arman Kuzubasoglu
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Farid Sayar Irani
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Department of Electrical EngineeringUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
11
|
Huang S, Xiao R, Lin S, Wu Z, Lin C, Jang G, Hong E, Gupta S, Lu F, Chen B, Liu X, Sahasrabudhe A, Zhang Z, He Z, Crosby AJ, Sumaria K, Liu T, Wang Q, Rao S. Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo. Nat Commun 2025; 16:1127. [PMID: 39875371 PMCID: PMC11775234 DOI: 10.1038/s41467-025-56450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.5 ± 7.9% and low electrochemical impedance (33.20 ± 9.27 kΩ @ 1 kHz in 1 cm length). We observe the reconstructed nanofillers' axial alignment and a corresponding anisotropic impedance decrease along the direction of cyclic stretching. We fabricate fiber-shaped hydrogels into bioelectronic devices and implant them into wild-type and transgenic Thy1::ChR2-EYFP mice to record electromyographic signals from muscles in anesthetized and freely moving conditions. These hydrogel fibers effectively enable the simultaneous recording of electrical signals from ventral spinal cord neurons and the tibialis anterior muscles during optogenetic stimulation. Importantly, the devices maintain functionality in intraspinal electrophysiology recordings over eight months after implantation, demonstrating their durability and potential for long-term monitoring in neurophysiological studies.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Ruobai Xiao
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Zuer Wu
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Chen Lin
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Geunho Jang
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Eunji Hong
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shovit Gupta
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Fake Lu
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Bo Chen
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xinyue Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kaushal Sumaria
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Tingyi Liu
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
- Integrative Neuroscience Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| |
Collapse
|
12
|
Zhao Z, Wang W, Xiang G, Jiang L, Jiang X. Capillary-Assisted Confinement Assembly for Advanced Sensor Fabrication: From Superwetting Interfaces to Capillary Bridge Patterning. ACS NANO 2025; 19:3019-3036. [PMID: 39814369 DOI: 10.1021/acsnano.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted. The advantages of capillary bridge confined assembly technology include the ability to achieve high-resolution patterning, scalability, and material arrangement in long-range order. It is, therefore, an ideal processing platform for next-generation sensors. Finally, the broad prospects of this technology in the miniaturization and integration of high-performance multifunctional sensors are discussed.
Collapse
Affiliation(s)
- Zhihao Zhao
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijie Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Gongmo Xiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Truong TA, Huang X, Barton M, Ashok A, Al Abed A, Almasri R, Shivdasanic MN, Reshamwala R, Ingles J, Thai MT, Nguyen CC, Zhao S, Zhang X, Gu Z, Vasanth A, Peng S, Nguyen TK, Do N, Nguyen NT, Zhao H, Phan HP. Flexible Electrode Arrays Based on a Wide Bandgap Semiconductors for Chronic Implantable Multiplexed Sensing and Heart Pacemakers. ACS NANO 2025; 19:1642-1659. [PMID: 39752298 DOI: 10.1021/acsnano.4c15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals. This study introduces a multielectrode array featuring a wide bandgap (WBG) material as electrodes, demonstrating its suitability for chronic implantable applications. Our devices exhibit excellent flexibility and longevity, taking advantage of the low bending stiffness and chemical inertness in WBG nanomembranes and multimodalities for physical health monitoring, including temperature, strain, and impedance sensing. Our top-down manufacturing process enables the formation of distributed electrode arrays that can be seamlessly integrated onto the curvilinear surfaces of skins. As proof of concept for chronic cardiac pacing applications, we demonstrate the effective pacing functionality of our devices on rabbit hearts through a set of ex vivo experiments. The engineering approach proposed in this study overcomes the drawbacks of prior WBG material fabrication techniques, resulting in an implantable system with high bendability, effective pacing, and high-performance sensing.
Collapse
Affiliation(s)
- Thanh An Truong
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Barton
- School of Nursing & Midwifery, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Reem Almasri
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohit N Shivdasanic
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ronak Reshamwala
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Joshua Ingles
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- College of Engineering and Computer Science and VinUni-Illinois Smart Health Center, Vin University, Hanoi 100000, Vietnam
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Arya Vasanth
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Nho Do
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Qi T, Liu X, Zheng N, Huang J, Xiang W, Nie Y, Guo Z, Cai B. Self-Healable, Antimicrobial and Conductive Hydrogels Based on Dynamic Covalent Bonding with Silver Nanoparticles for Flexible Sensor. Polymers (Basel) 2024; 17:54. [PMID: 39795457 PMCID: PMC11723201 DOI: 10.3390/polym17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups. The hybrid hydrogels exhibited sol-gel transition, self-healable, injectable and thermo-responsive abilities. The self-healing efficiency was over 92%. Moreover, the hydrogel displayed antimicrobial properties and high conductivity (6.85 S/m). Notably, the fabricated hydrogel-based sensors exhibited strain and temperature sensing (22.05%/°C) and could detect human motion and speech, and electrocardiographic (ECG) and electromyography (EMG) signals. Overall, this work provides a simple strategy to synthesize AgNPs-based dynamic hydrogels with multi-functions, and the hydrogels may find potential applications in antibacterial wearable electronics, health monitoring and speech recognition.
Collapse
Affiliation(s)
- Te Qi
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Xuefeng Liu
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Nan Zheng
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Jie Huang
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Wenlong Xiang
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Yujin Nie
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Zanru Guo
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University, Zhangzhou 363000, China (J.H.); (W.X.)
| | - Baixue Cai
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China
| |
Collapse
|
15
|
Kassanos P, Hourdakis E. Implantable Passive Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 25:133. [PMID: 39796923 PMCID: PMC11723123 DOI: 10.3390/s25010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant). They allow unobtrusive and potentially continuous sensing, enabling greater specificity, early warning capabilities, and thus timely clinical intervention. Wireless remote interrogation of the implanted sensor is typically achieved using radio frequency (RF), inductive coupling or ultrasound through an external device. Two categories of implantable sensors are available, namely active and passive. Active sensors offer greater capabilities, such as on-node signal and data processing, multiplexing and multimodal sensing, while also allowing lower detection limits, the possibility to encode patient sensitive information and bidirectional communication. However, they require an energy source to operate. Battery implantation, and maintenance, remains a very important constraint in many implantable applications even though energy can be provided wirelessly through the external device, in some cases. On the other hand, passive sensors offer the possibility of detection without the need for a local energy source or active electronics. They also offer significant advantages in the areas of system complexity, cost and size. In this review, implantable passive sensor technologies will be discussed along with their communication and readout schemes. Materials, detection strategies and clinical applications of passive sensors will be described. Advantages over active sensor technologies will be highlighted, as well as critical aspects related to packaging and biocompatibility.
Collapse
Affiliation(s)
| | - Emmanouel Hourdakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece;
| |
Collapse
|
16
|
Janczak D, Wójkowska K, Raczyński T, Zych M, Lepak-Kuc S, Szałapak J, Nelo M, Kądziela A, Wróblewski G, Jantunen H, Jakubowska M. Development of Highly Stretchable Ag-MWCNT Composite for Screen-Printed Textile Electronics with Improved Mechanical and Electrical Properties. Nanotechnol Sci Appl 2024; 17:289-302. [PMID: 39723410 PMCID: PMC11669482 DOI: 10.2147/nsa.s493579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges. Methods Silver flakes dispersed in a thermoplastic polyurethane (TPU) matrix formed the base composite, which was initially evaluated under tensile and cyclic stretching conditions. Resistance drift observed in these tests prompted the incorporation of multi-walled carbon nanotubes (MWCNTs). Leveraging their high aspect ratio and conductivity, MWCNTs were homogenized into the composite at varying concentrations. The resulting Ag-MWCNT composites were assessed through cyclic stretching and thermal shock tests to evaluate electrical and mechanical performance. Results Incorporating MWCNTs improved composite performance, reducing resistance change amplitude by 40% and stabilizing resistance within 2-8 Ohms under mechanical stress. These materials demonstrated superior electrical stability and durability, maintaining consistent performance over extended use compared to Ag/TPU alone. Discussion This study highlights the critical role of MWCNTs in enhancing the reliability of conductive composites for textile electronics. By addressing resistance drift and stabilizing electrical properties, these advancements enable more robust and long-lasting wearable technologies. The demonstrated feasibility of combining screen-printing and heat-transfer techniques provides a scalable approach for manufacturing flexible electronics, paving the way for further innovation in industrial applications.
Collapse
Affiliation(s)
- Daniel Janczak
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Wójkowska
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Tomasz Raczyński
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Zych
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Sandra Lepak-Kuc
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jerzy Szałapak
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Mikko Nelo
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Aleksandra Kądziela
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Grzegorz Wróblewski
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Heli Jantunen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Małgorzata Jakubowska
- Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland
- The Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
17
|
Bin F, Meng J, Chen W, Lou R, Li X, Sun J, Jing S, Xiao D. Online reprogramming electronic bits for N dimension fractal soft deformable structures. SOFT MATTER 2024; 21:148-156. [PMID: 39633607 DOI: 10.1039/d4sm01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Inspired by the complex fractal morphologies and deformations observed in animals and plants, an N-dimensional soft structure composed of stretchable electronic bits has been developed. This soft structure, capable of independent and cooperative motion, can be manipulated through the programming of bits using a machine language based on instruction encoding. This method simplifies the process of changing the bit's step temperature to control its binary state. Theoretical analysis demonstrates that the fractal dimensions and deformation morphologies of the soft structure achieve stability and extremity when the total number of programming bits exceeds eighteen. Considering strip-shaped soft structures as a case study, their ultimate deformation morphologies, covering the reachable regions of all bits, can achieve complexity comparable to that of dandelion tufts and tree crowns. Moreover, the deformation process exhibits agility akin to that of an octopus. We have prepared samples that include strip-shaped soft structures, each containing multiple pairs of bits, and a hand-shaped soft structure equipped with five pairs of bits, intended for conducting deformation programming experiments. These experimental results validated the correctness of the online reprogramming method for soft structures, showing their capability to perform a range of complex deformations, such as the "OK" gesture, and highlighting potential applications in surgical contexts. This design strategy contributes to the development of soft structures, offering contributions from both theoretical and practical perspectives.
Collapse
Affiliation(s)
- Fengjiao Bin
- Beijing Institute of Technology, Beijing 100021, P. R. China.
| | - Jiaxu Meng
- Beijing Institute of Technology, Beijing 100021, P. R. China.
| | - Wei Chen
- Beijing University of Technology, Beijing 100124, P. R. China
- Beijing Aire Intech Eye Hospital, Beijing 100041, P. R. China
| | - Ruishen Lou
- Beijing Institute of Technology, Beijing 100021, P. R. China.
| | - Xu Li
- Beijing Institute of Technology, Beijing 100021, P. R. China.
| | - Jiangman Sun
- Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shikai Jing
- Beijing Institute of Technology, Beijing 100021, P. R. China.
| | - Dengbao Xiao
- Beijing Institute of Technology, Beijing 100021, P. R. China.
| |
Collapse
|
18
|
Chen W, Lin J, Ye Z, Wang X, Shen J, Wang B. Customized surface adhesive and wettability properties of conformal electronic devices. MATERIALS HORIZONS 2024; 11:6289-6325. [PMID: 39315507 DOI: 10.1039/d4mh00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems. Successful development of a conformal and body-adaptive electronic device requires comprehensive consideration of all three aspects. This review starts with the design strategies of conformal electronics with different surface adhesive and wettability properties. A series of conformal and body-adaptive electronics used in the human body under both dry and wet conditions are systematically discussed. Finally, the current challenges and critical perspectives are summarized, focusing on promising directions such as telemedicine, mobile health, point-of-care diagnostics, and human-machine interface applications.
Collapse
Affiliation(s)
- Wenfu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Xiangyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
19
|
Wang S, Fan P, Liu W, Hu B, Guo J, Wang Z, Zhu S, Zhao Y, Fan J, Li G, Xu L. Research Progress of Flexible Electronic Devices Based on Electrospun Nanofibers. ACS NANO 2024; 18:31737-31772. [PMID: 39499656 DOI: 10.1021/acsnano.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Electrospun nanofibers have become an important component in fabricating flexible electronic devices because of their permeability, flexibility, stretchability, and conformability to three-dimensional curved surfaces. This review delves into the advancements in adaptable and flexible electronic devices using electrospun nanofibers as the substrates and explores their diverse and innovative applications. The primary development of key substrates for flexible devices is summarized. After briefly discussing the principle of electrospinning, process parameters that affect electrospinning, and two major electrospinning techniques (i.e., single-fluid electrospinning and multifluid electrospinning), the review shines a spotlight on the recent breakthroughs in multifunctional and stretchable electronic devices that are based on electrospun substrates. These advancements include flexible sensors, flexible energy harvesting and storage devices, flexible accessories for electronic devices, and flexible environmental monitoring devices. In particular, the review outlines the challenges and potential solutions of developing electrospun nanofibers for flexible electronic devices, including overcoming the incompatibility of multiple interfaces, developing 3D microstructure sensor arrays with gradient geometry for various imperceptible on-skin devices, etc. This review may provide a comprehensive understanding of the rational design of application-oriented flexible electronic devices based on electrospun nanofibers.
Collapse
Affiliation(s)
- Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Wenbo Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Jiaxuan Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zizhao Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Shengke Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yipu Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, P. R. China
| |
Collapse
|
20
|
Geramifard N, Khajehzadeh M, Dousti B, Abbott JR, Nguyen CK, Hernandez-Reynoso AG, Joshi-Imre A, Varner VD, Cogan SF. Flexible and Extensible Ribbon-Cable Interconnects for Implantable Electrical Neural Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61621-61632. [PMID: 39476818 DOI: 10.1021/acsami.4c11773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The design and characterization of thin-film ribbon cables as electrical interconnects for implanted neural stimulation and recording devices are reported. Our goal is to develop flexible and extensible ribbon cables that integrate with thin-film, cortical penetrating microelectrode arrays (MEAs). Amorphous silicon carbide (a-SiC) and polyimide were employed as the structural elements of the ribbon cables and multilayer titanium/gold thin films as electrical traces. Using photolithography and thin-film processing, ribbon cables with linear and serpentine electrical traces were investigated. A cable design with an open lattice geometry was also investigated as a means of achieving high levels of extensibility while preserving the electrical function of the cables. Multichannel ribbon cables were fabricated with 50 mm lengths and metallization trace widths of 2-12 μm. The ribbon cables tolerate flexural bending to a radius of 50 μm with no change in trace impedance but tolerate less than 5% tensile elongation without trace failure. Ribbon cables with a lattice structure exhibit 300% elongation without failure. The high elongation tolerance is attributed to a lattice design that results in an out-of-plane displacement that avoids fracture or plastic deformation. Extensible ribbon cables underwent up to 50,000 tensile elongation cycles to 45% extension without failure. An electrical interconnect process using through-holes in the distal gold bond pads of the ribbon cables was used to connect to an a-SiC-based MEA. The electrical connection was created by stenciling a conductive epoxy into the through-holes, bridging metallization between the traces, and MEA. The interconnect was tested using a ribbon cable connected to an a-SiC MEA implanted acutely in rat cortex and used to record neuronal activity. These highly flexible and extensible ribbon cables are expected to accommodate large extensions and facilitate cable routing during surgical implantation. They may also reduce tethering forces on implanted electrode arrays, potentially improving chronic neural recording performance.
Collapse
Affiliation(s)
- Negar Geramifard
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mahasty Khajehzadeh
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Behnoush Dousti
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Justin R Abbott
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christopher K Nguyen
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ana G Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Alexandra Joshi-Imre
- Office of Research and Innovation, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Victor D Varner
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
21
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
22
|
Han WB, Jang TM, Shin B, Naganaboina VR, Yeo WH, Hwang SW. Recent advances in soft, implantable electronics for dynamic organs. Biosens Bioelectron 2024; 261:116472. [PMID: 38878696 DOI: 10.1016/j.bios.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Unlike conventional rigid counterparts, soft and stretchable electronics forms crack- or defect-free conformal interfaces with biological tissues, enabling precise and reliable interventions in diagnosis and treatment of human diseases. Intrinsically soft and elastic materials, and device designs of innovative configurations and structures leads to the emergence of such features, particularly, the mechanical compliance provides seamless integration into continuous movements and deformations of dynamic organs such as the bladder and heart, without disrupting natural physiological functions. This review introduces the development of soft, implantable electronics tailored for dynamic organs, covering various materials, mechanical design strategies, and representative applications for the bladder and heart, and concludes with insights into future directions toward clinically relevant tools.
Collapse
Affiliation(s)
- Won Bae Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Beomjune Shin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Venkata Ramesh Naganaboina
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
23
|
Hong JH, Lee JY, Dutta A, Yoon SL, Cho YU, Kim K, Kang K, Kim HW, Kim DH, Park J, Cho M, Kim K, An JB, Lee HL, Hwang D, Kim HJ, Ha Y, Lee HY, Cheng H, Yu KJ. Monolayer, open-mesh, pristine PEDOT:PSS-based conformal brain implants for fully MRI-compatible neural interfaces. Biosens Bioelectron 2024; 260:116446. [PMID: 38820722 PMCID: PMC11216815 DOI: 10.1016/j.bios.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Understanding brain function is essential for advancing our comprehension of human cognition, behavior, and neurological disorders. Magnetic resonance imaging (MRI) stands out as a powerful tool for exploring brain function, providing detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording system can enhance the comprehension of brain functionality through synergistic effects. However, the integration of neural implants with MRI technology presents challenges because of its strong electromagnetic (EM) energy during MRI scans. Therefore, MRI-compatible neural implants should facilitate detailed investigation of neural activities and brain functions in real-time in high resolution, without compromising patient safety and imaging quality. Here, we introduce the fully MRI-compatible monolayer open-mesh pristine PEDOT:PSS neural interface. This approach addresses the challenges encountered while using traditional metal-based electrodes in the MRI environment such as induced heat or imaging artifacts. PEDOT:PSS has a diamagnetic property with low electrical conductivity and negative magnetic susceptibility similar to human tissues. Furthermore, by adopting the optimized open-mesh structure, the induced currents generated by EM energy are significantly diminished, leading to optimized MRI compatibility. Through simulations and experiments, our PEDOT:PSS-based open-mesh electrodes showed improved performance in reducing heat generation and eliminating imaging artifacts in an MRI environment. The electrophysiological recording capability was also validated by measuring the local field potential (LFP) from the somatosensory cortex with an in vivo experiment. The development of neural implants with maximized MRI compatibility indicates the possibility of potential tools for future neural diagnostics.
Collapse
Affiliation(s)
- Jung-Hoon Hong
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Ju Young Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, State College, PA, USA; Center for Neural Engineering, The Pennsylvania State University, University Park, 16802, State College, PA, USA
| | - Sol Lip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 03722, Seoul, Republic of Korea
| | - Young Uk Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea; Center for Emergent Matter Science (CEMS), RIKEN, The Institute of Physical and Chemical Research, 351-0198, Saitama, Japan
| | - Kyubeen Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Kyowon Kang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Hyun Woo Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Dae-Hee Kim
- Avison Biomedical Research Center, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Myeongki Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Kiho Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Jong Bin An
- Electronic Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 03722, Seoul, Republic of Korea
| | - Dosik Hwang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Hyun Jae Kim
- Electronic Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 03722, Seoul, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Republic of Korea
| | - Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 03722, Seoul, Republic of Korea.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, State College, PA, USA; Center for Neural Engineering, The Pennsylvania State University, University Park, 16802, State College, PA, USA.
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea; Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Ryu J, Qiang Y, Chen L, Li G, Han X, Woon E, Bai T, Qi Y, Zhang S, Liou JY, Seo KJ, Feng B, Fang H. Multifunctional Nanomesh Enables Cellular-Resolution, Elastic Neuroelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403141. [PMID: 39011796 PMCID: PMC11410539 DOI: 10.1002/adma.202403141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single-unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self-conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high-fidelity recording of single-unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single-cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.
Collapse
Affiliation(s)
- Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xun Han
- Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, China
| | - Eric Woon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jyun-You Liou
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Science Corporation, 300 Wind River Way, Alameda, CA, 94501, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
25
|
Li B, Luo Z, Gong L, Ge R, Wang M, Zhu Y, Cheng Y, Li S, Peng T, Chang Y. Stretchable Iontronic Tactile Sensing Fabric. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42905-42916. [PMID: 39023228 DOI: 10.1021/acsami.4c07887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The iontronic tactile sensing modality has garnered significant attention due to its exceptional sensitivity, immunity to noise, and versatility in materials. Recently, various formats of iontronic tactile sensors have been developed, including droplets, polymer films, paper, ionic gels, and fabrics. However, the stretchability of the current iontronic pressure sensing fabric is inadequate, hindered by the limited stretchiness of the ionic functional fabric. Incorporating a stretchable tactile sensing implement could enhance the wear comfortability by preventing relative movement and ensuring intimate contact between the sensor and the skin. The research focuses on the development of a stretchable iontronic pressure sensing (SIPS) fabric for monitoring diverse aspects of body health and movement in wearable applications. The tactile sensing structure is generated at the iontronic interface between highly stretchable ionic and conductive fabrics. In particular, the ionic fabric is prepared by coating a layer of polyurethane/ionic liquid gel onto a Spandex fabric. To showcase its remarkable sensitivity, stretchability, and ability to detect diverse body information, several application scenarios have been demonstrated including an elastic wristband for precise pulse wave detection, a flexible belt with multitactile sensing channels for respiration and motion tracking purposes, and a stretchable fabric cuff equipped with a high-resolution sensing array comprising 32 × 32 units for accurate gesture recognition.
Collapse
Affiliation(s)
- Bin Li
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- TacSense Technology (Shenzhen) Co., Ltd., Shenzhen, Guangdong 518000, P. R. China
| | - Zihao Luo
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lanqing Gong
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Ruiqing Ge
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Meilan Wang
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Yimin Zhu
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Yu Cheng
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Sen Li
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Tao Peng
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
- Shenzhen Shaanxi Coal High Technology Research Institute Co., Ltd., Shenzhen, Guangdong 518000, China
| | - Yu Chang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
26
|
Li Y, Veronica A, Ma J, Nyein HYY. Materials, Structure, and Interface of Stretchable Interconnects for Wearable Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408456. [PMID: 39139019 DOI: 10.1002/adma.202408456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Since wearable technologies for telemedicine have emerged to tackle global health concerns, the demand for well-attested wearable healthcare devices with high user comfort also arises. Skin-wearables for health monitoring require mechanical flexibility and stretchability for not only high compatibility with the skin's dynamic nature but also a robust collection of fine health signals from within. Stretchable electrical interconnects, which determine the device's overall integrity, are one of the fundamental units being understated in wearable bioelectronics. In this review, a broad class of materials and engineering methodologies recently researched and developed are presented, and their respective attributes, limitations, and opportunities in designing stretchable interconnects for wearable bioelectronics are offered. Specifically, the electrical and mechanical characteristics of various materials (metals, polymers, carbons, and their composites) are highlighted, along with their compatibility with diverse geometric configurations. Detailed insights into fabrication techniques that are compatible with soft substrates are also provided. Importantly, successful examples of establishing reliable interfacial connections between soft and rigid elements using novel interconnects are reviewed. Lastly, some perspectives and prospects of remaining research challenges and potential pathways for practical utilization of interconnects in wearables are laid out.
Collapse
Affiliation(s)
- Yue Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Asmita Veronica
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Jiahao Ma
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Hnin Yin Yin Nyein
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| |
Collapse
|
27
|
Jeon J, Park JW. Stretchable Electrodes for Interconnects in Soft Electronics. NANO LETTERS 2024; 24:9553-9560. [PMID: 39041723 DOI: 10.1021/acs.nanolett.4c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Soft electronics have significantly enhanced user convenience and data accuracy in wearable devices, implantable devices, and human-machine interfaces. However, a persistent challenge in their development has been the disconnection between the rigid and soft components of devices due to the substantial difference in modulus and stretchability. To address this issue, establishing a durable and flexible connection that smoothly links components of varying stiffness to signal-capturing sections with a lower stiffness is essential. In this study, we developed a novel stretchable interconnect that strongly adheres to various materials, facilitating electrical connections effortlessly by applying minimal finger pressure. Capable of stretching up to 1000% while maintaining electrical integrity, this interconnect proves its applicability across multiple domains, including electrocardiogram (ECG), electromyography (EMG), and stretchable light-emitting diode (LED) circuits. Its versatility is further demonstrated through its compatibility with various manufacturing techniques such as 3D printing, painting, and spin coating, highlighting its adaptability in soft electronics.
Collapse
Affiliation(s)
- Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
28
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
29
|
Koo JH, Lee YJ, Kim HJ, Matusik W, Kim DH, Jeong H. Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning. Annu Rev Biomed Eng 2024; 26:331-355. [PMID: 38959390 DOI: 10.1146/annurev-bioeng-103122-032652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.
Collapse
Affiliation(s)
- Ja Hoon Koo
- Department of Semiconductor Systems Engineering and Institute of Semiconductor and System IC, Sejong University, Seoul, Republic of Korea
| | - Young Joong Lee
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Wojciech Matusik
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea;
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California, Davis, California, USA;
| |
Collapse
|
30
|
Chen X, He Y, Tian M, Qu L, Fan T, Miao J. Core-Sheath Heterogeneous Interlocked Conductive Fiber Enables Smart Textile for Personalized Healthcare and Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308404. [PMID: 38148325 DOI: 10.1002/smll.202308404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.
Collapse
Affiliation(s)
- Xiyu Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yifan He
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingwei Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Lijun Qu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Tingting Fan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Jinlei Miao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
31
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Lee DH, Yea J, Ha J, Kim D, Kim S, Lee J, Park JU, Park T, Jang KI. Rugged Island-Bridge Inorganic Electronics Mounted on Locally Strain-Isolated Substrates. ACS NANO 2024; 18:13061-13072. [PMID: 38721824 DOI: 10.1021/acsnano.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.
Collapse
Affiliation(s)
- Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Dohyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sungryong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
- ENSIDE Corporation, Daegu 42988, Republic of Korea
| |
Collapse
|
33
|
Zhou L, Guess M, Kim KR, Yeo WH. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. COMMUNICATIONS MATERIALS 2024; 5:72. [PMID: 38737724 PMCID: PMC11081930 DOI: 10.1038/s43246-024-00511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Health monitoring of infant patients in intensive care can be especially strenuous for both the patient and their caregiver, as testing setups involve a tangle of electrodes, probes, and catheters that keep the patient bedridden. This has typically involved expensive and imposing machines, to track physiological metrics such as heart rate, respiration rate, temperature, blood oxygen saturation, blood pressure, and ion concentrations. However, in the past couple of decades, research advancements have propelled a world of soft, wearable, and non-invasive systems to supersede current practices. This paper summarizes the latest advancements in neonatal wearable systems and the different approaches to each branch of physiological monitoring, with an emphasis on smart skin-interfaced wearables. Weaknesses and shortfalls are also addressed, with some guidelines provided to help drive the further research needed.
Collapse
Affiliation(s)
- Lauren Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
34
|
Zhang T, Zhu J, Xie M, Meng K, Yao G, Pan T, Gao M, Cheng H, Lin Y. Highly Sensitive Wearable Sensor Based on (001)-Orientated TiO 2 for Real-Time Electrochemical Detection of Dopamine, Tyrosine, and Paracetamol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312238. [PMID: 38319031 DOI: 10.1002/smll.202312238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real-time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost-effective method to prepare high-quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)-facets. The as-fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2-CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM-1 cm-2), Tyr (0.126 µA µM-1 cm-2), and PA (0.0841 µA µM-1 cm-2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2-CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin-interfaced patch with microfluidic sampling and wireless transmission units for real-time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2-CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.
Collapse
Affiliation(s)
- Tianyao Zhang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Maowen Xie
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guang Yao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
35
|
Zhao H, Liu M, Guo Q. Silicon-based transient electronics: principles, devices and applications. NANOTECHNOLOGY 2024; 35:292002. [PMID: 38599177 DOI: 10.1088/1361-6528/ad3ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Recent advances in materials science, device designs and advanced fabrication technologies have enabled the rapid development of transient electronics, which represents a class of devices or systems that their functionalities and constitutions can be partially/completely degraded via chemical reaction or physical disintegration over a stable operation. Therefore, numerous potentials, including zero/reduced waste electronics, bioresorbable electronic implants, hardware security, and others, are expected. In particular, transient electronics with biocompatible and bioresorbable properties could completely eliminate the secondary retrieval surgical procedure after their in-body operation, thus offering significant potentials for biomedical applications. In terms of material strategies for the manufacturing of transient electronics, silicon nanomembranes (SiNMs) are of great interest because of their good physical/chemical properties, modest mechanical flexibility (depending on their dimensions), robust and outstanding device performances, and state-of-the-art manufacturing technologies. As a result, continuous efforts have been made to develop silicon-based transient electronics, mainly focusing on designing manufacturing strategies, fabricating various devices with different functionalities, investigating degradation or failure mechanisms, and exploring their applications. In this review, we will summarize the recent progresses of silicon-based transient electronics, with an emphasis on the manufacturing of SiNMs, devices, as well as their applications. After a brief introduction, strategies and basics for utilizing SiNMs for transient electronics will be discussed. Then, various silicon-based transient electronic devices with different functionalities are described. After that, several examples regarding on the applications, with an emphasis on the biomedical engineering, of silicon-based transient electronics are presented. Finally, summary and perspectives on transient electronics are exhibited.
Collapse
Affiliation(s)
- Haonan Zhao
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Min Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Qinglei Guo
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
36
|
Kim SH, Basir A, Avila R, Lim J, Hong SW, Choe G, Shin JH, Hwang JH, Park SY, Joo J, Lee C, Choi J, Lee B, Choi KS, Jung S, Kim TI, Yoo H, Jung YH. Strain-invariant stretchable radio-frequency electronics. Nature 2024; 629:1047-1054. [PMID: 38778108 DOI: 10.1038/s41586-024-07383-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.
Collapse
Affiliation(s)
- Sun Hong Kim
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Abdul Basir
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Jaeman Lim
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seong Woo Hong
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Geonoh Choe
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Jin Hee Hwang
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Young Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jiho Joo
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Chanmi Lee
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Jaehoon Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Byunghun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kwang-Seong Choi
- Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Sungmook Jung
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Hyoungsuk Yoo
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Liu K, Russo M, Ellis JS, Capua JD, Wu D, Smolinski-Zhao S, Kalva S, Arellano RS, Irani Z, Uppot R, Linderman SW, Gupta R, Aizenberg J, Srinivasan S, Som A. Transient, Image-Guided Gel-Dissection for Percutaneous Thermal Ablation. Adv Healthc Mater 2024:e2400272. [PMID: 38678431 DOI: 10.1002/adhm.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Indexed: 04/30/2024]
Abstract
Image-guided tumor ablative therapies are mainstay cancer treatment options but often require intra-procedural protective tissue displacement to reduce the risk of collateral damage to neighboring organs. Standard of care strategies, such as hydrodissection (fluidic injection), are limited by rapid diffusion of fluid and poor retention time, risking injury to adjacent organs, increasing cancer recurrence rates from incomplete tumor ablations, and limiting patient qualification. Herein, a "gel-dissection" technique is developed, leveraging injectable hydrogels for longer-lasting, shapeable, and transient tissue separation to empower clinicans with improved ablation operation windows and greater control. A rheological model is designed to understand and tune gel-dissection parameters. In swine models, gel-dissection achieves 24 times longer-lasting tissue separation dynamics compared to saline, with 40% less injected volume. Gel-dissection achieves anti-dependent dissection between free-floating organs in the peritoneal cavity and clinically significant thermal protection, with the potential to expand minimally invasive therapeutic techniques, especially across locoregional therapies including radiation, cryoablation, endoscopy, and surgery.
Collapse
Affiliation(s)
- Kathy Liu
- Materials Science & Mechanical Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA
| | - Mario Russo
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joshua S Ellis
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - John Di Capua
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Dufan Wu
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Sara Smolinski-Zhao
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Sanjeeva Kalva
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ronald S Arellano
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Zubin Irani
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Raul Uppot
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Stephen W Linderman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Rajiv Gupta
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joanna Aizenberg
- Materials Science & Mechanical Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Shriya Srinivasan
- Materials Science & Mechanical Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA
| | - Avik Som
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
38
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
39
|
Matthews J, Soltis I, Villegas‐Downs M, Peters TA, Fink AM, Kim J, Zhou L, Romero L, McFarlin BL, Yeo W. Cloud-Integrated Smart Nanomembrane Wearables for Remote Wireless Continuous Health Monitoring of Postpartum Women. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307609. [PMID: 38279514 PMCID: PMC10987106 DOI: 10.1002/advs.202307609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Noncommunicable diseases (NCD), such as obesity, diabetes, and cardiovascular disease, are defining healthcare challenges of the 21st century. Medical infrastructure, which for decades sought to reduce the incidence and severity of communicable diseases, has proven insufficient in meeting the intensive, long-term monitoring needs of many NCD disease patient groups. In addition, existing portable devices with rigid electronics are still limited in clinical use due to unreliable data, limited functionality, and lack of continuous measurement ability. Here, a wearable system for at-home cardiovascular monitoring of postpartum women-a group with urgently unmet NCD needs in the United States-using a cloud-integrated soft sternal device with conformal nanomembrane sensors is introduced. A supporting mobile application provides device data to a custom cloud architecture for real-time waveform analytics, including medical device-grade blood pressure prediction via deep learning, and shares the results with both patient and clinician to complete a robust and highly scalable remote monitoring ecosystem. Validated in a month-long clinical study with 20 postpartum Black women, the system demonstrates its ability to remotely monitor existing disease progression, stratify patient risk, and augment clinical decision-making by informing interventions for groups whose healthcare needs otherwise remain unmet in standard clinical practice.
Collapse
Affiliation(s)
- Jared Matthews
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Ira Soltis
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Michelle Villegas‐Downs
- Department of Human Development Nursing ScienceCollege of NursingUniversity of Illinois Chicago845 S. Damen Ave., MC 802ChicagoIL60612USA
| | - Tara A. Peters
- Department of Human Development Nursing ScienceCollege of NursingUniversity of Illinois Chicago845 S. Damen Ave., MC 802ChicagoIL60612USA
| | - Anne M. Fink
- Department of Biobehavioral Nursing ScienceCollege of NursingUniversity of Illinois Chicago845 S. Damen Ave., MC 802ChicagoIL60612USA
| | - Jihoon Kim
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Lauren Zhou
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Lissette Romero
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Barbara L. McFarlin
- Department of Human Development Nursing ScienceCollege of NursingUniversity of Illinois Chicago845 S. Damen Ave., MC 802ChicagoIL60612USA
| | - Woon‐Hong Yeo
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech and Emory University School of MedicineAtlantaGA30332USA
- Parker H. Petit Institute for Bioengineering and BiosciencesInstitute for MaterialsInstitute for Robotics and Intelligent MachinesGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
40
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
42
|
Chang S, Kong DJ, Song YM. Advanced visual components inspired by animal eyes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:859-879. [PMID: 39634370 PMCID: PMC11501362 DOI: 10.1515/nanoph-2024-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 12/07/2024]
Abstract
Artificial vision systems pervade our daily lives as a foremost sensing apparatus in various digital technologies, from smartphones to autonomous cars and robotics. The broad range of applications for conventional vision systems requires facile adaptation under extreme and dynamic visual environments. However, these current needs have complicated individual visual components for high-quality image acquisition and processing, which indeed leads to a decline in efficiency in the overall system. Here, we review recent advancements in visual components for high-performance visual processing based on strategies of biological eyes that execute diverse imaging functionalities and sophisticated visual processes with simple and concise ocular structures. This review first covers the structures and functions of biological eyes (i.e., single-lens eyes and compound eyes), which contain micro-optic components and nanophotonic structures. After that, we focus on their inspirations in imaging optics/photonics, light-trapping and filtering components, and retinomorphic devices. We discuss the remaining challenges and notable biological structures waiting to be implemented.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Duk-Jo Kong
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
43
|
Shin JH, Choi JY, June K, Choi H, Kim TI. Polymeric Conductive Adhesive-Based Ultrathin Epidermal Electrodes for Long-Term Monitoring of Electrophysiological Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313157. [PMID: 38421078 DOI: 10.1002/adma.202313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Electrophysiology, exploring vital electrical phenomena in living organisms, anticipates broader integration into daily life through wearable devices and epidermal electrodes. However, addressing the challenges of the electrode durability and motion artifacts is essential to enable continuous and long-term biopotential signal monitoring, presenting a hurdle for its seamless implementation in daily life. To address these challenges, an ultrathin polymeric conductive adhesive, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/polyvinyl alcohol/d-sorbitol (PPd) electrode with enhanced adhesion, stretchability, and skin conformability, is presented. The skin conformability and stability of electrodes is designed by theoretical criteria obtained by mechanical analysis. Thus, impedance stability is obtained over 1-week of daily life, and the PPd electrode addresses the challenges related to durability during prolonged usage. Proving stability in electromyography (EMG) signals during high-intensity exercise, the wireless PPd measurement system exhibits high signal-to-noise ratio (SNR) signals even in situations involving significant and repetitive skin deformation. Throughout continuous 1 week-long electrocardiogram (ECG) monitoring in daily life, the system consistently preserves signal quality, underscoring the heightened durability and applicability of the PPd measurement system.
Collapse
Affiliation(s)
- Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ji Yeong Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Keonuk June
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyesu Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
44
|
Shinn EH, Garden AS, Peterson SK, Leupi DJ, Chen M, Blau R, Becerra L, Rafeedi T, Ramirez J, Rodriquez D, VanFossen F, Zehner S, Mercier PP, Wang J, Hutcheson K, Hanna E, Lipomi DJ. Iterative Patient Testing of a Stimuli-Responsive Swallowing Activity Sensor to Promote Extended User Engagement During the First Year After Radiation: Multiphase Remote and In-Person Observational Cohort Study. JMIR Cancer 2024; 10:e47359. [PMID: 38416544 PMCID: PMC10938225 DOI: 10.2196/47359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Frequent sensor-assisted monitoring of changes in swallowing function may help improve detection of radiation-associated dysphagia before it becomes permanent. While our group has prototyped an epidermal strain/surface electromyography sensor that can detect minute changes in swallowing muscle movement, it is unknown whether patients with head and neck cancer would be willing to wear such a device at home after radiation for several months. OBJECTIVE We iteratively assessed patients' design preferences and perceived barriers to long-term use of the prototype sensor. METHODS In study 1 (questionnaire only), survivors of pharyngeal cancer who were 3-5 years post treatment and part of a larger prospective study were asked their design preferences for a hypothetical throat sensor and rated their willingness to use the sensor at home during the first year after radiation. In studies 2 and 3 (iterative user testing), patients with and survivors of head and neck cancer attending visits at MD Anderson's Head and Neck Cancer Center were recruited for two rounds of on-throat testing with prototype sensors while completing a series of swallowing tasks. Afterward, participants were asked about their willingness to use the sensor during the first year post radiation. In study 2, patients also rated the sensor's ease of use and comfort, whereas in study 3, preferences were elicited regarding haptic feedback. RESULTS The majority of respondents in study 1 (116/138, 84%) were willing to wear the sensor 9 months after radiation, and participant willingness rates were similar in studies 2 (10/14, 71.4%) and 3 (12/14, 85.7%). The most prevalent reasons for participants' unwillingness to wear the sensor were 9 months being excessive, unwanted increase in responsibility, and feeling self-conscious. Across all three studies, the sensor's ability to detect developing dysphagia increased willingness the most compared to its appearance and ability to increase adherence to preventive speech pathology exercises. Direct haptic signaling was also rated highly, especially to indicate correct sensor placement and swallowing exercise performance. CONCLUSIONS Patients and survivors were receptive to the idea of wearing a personalized risk sensor for an extended period during the first year after radiation, although this may have been limited to well-educated non-Hispanic participants. A significant minority of patients expressed concern with various aspects of the sensor's burden and its appearance. TRIAL REGISTRATION ClinicalTrials.gov NCT03010150; https://clinicaltrials.gov/study/NCT03010150.
Collapse
Affiliation(s)
- Eileen H Shinn
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Adam S Garden
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Susan K Peterson
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Dylan J Leupi
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, South Bend, IN, United States
| | - Minxing Chen
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Rachel Blau
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Laura Becerra
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Tarek Rafeedi
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Julian Ramirez
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Daniel Rodriquez
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Finley VanFossen
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Sydney Zehner
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Patrick P Mercier
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Joseph Wang
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| | - Kate Hutcheson
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Ehab Hanna
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, CA, United States
| |
Collapse
|
45
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
46
|
Luo Y, Fan H, Lai X, Zeng Z, Lan X, Lin P, Tang L, Wang W, Chen Y, Tang Y. Flexible liquid metal-based microfluidic strain sensors with fractal-designed microchannels for monitoring human motion and physiological signals. Biosens Bioelectron 2024; 246:115905. [PMID: 38056340 DOI: 10.1016/j.bios.2023.115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
With the rapid advancement of wearable electronics, there is an increasing demand for high-performance flexible strain sensors. In this work, a flexible strain sensor based on liquid metal (LM)-integrated into a microfluidic device is developed with Peano-type fractal structure design. Compared with the microfluidic sensors with straight and wavy microchannels, the sensor with Peano-shaped channels shows lower hysteresis and improved stretchability. Furthermore, the increase of the fractal order can further improve the sensing performances. The third-order Peano sensor exhibits excellent mechanical and electrical properties, including high tensile capability (490.3%), minimal hysteresis (DH = 0.86%), ultra-low detection limit (0.1%), low overshoot, rapid response time (117 ms), as well as good stability and durability. By adding two independent and perpendicular straight channels to the Peano sensing unit, the feasibility of multi-directional strain recognition is demonstrated. To further improve the sensitivity of the Peano-shaped sensor, a multi-layer Peano sensor is developed, exhibiting remarkably enhanced sensitivity while maintaining low hysteresis. Overall, the developed LM-based microfluidic strain sensors enrolling Peano fractal geometry hold high potential for various wearable electronics applications.
Collapse
Affiliation(s)
- Yuli Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zu'an Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xingzi Lan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Linjun Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
48
|
Lee J, Kim SH, Zhang H, Min S, Choe G, Ma Z, Jung YH. Design and Fabrication of Stretchable Microwave Transmission Lines Based on a Quasi-Microstrip Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4896-4903. [PMID: 38252593 DOI: 10.1021/acsami.3c14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radio frequency (RF) electronics are vital components of stretchable electronics that require wireless capabilities, ranging from skin-interfaced wearable systems to implantable devices to soft robotics. One of the key challenges in stretchable electronics is achieving near-lossless transmission line technology that can carry high-frequency electrical signals between various RF components. Almost all existing stretchable interconnection strategies only demonstrate direct current or low-frequency electrical properties, limiting their use in high frequencies, especially in the MHz to GHz range. Here, we describe the design and fabrication of a simple stretchable RF transmission line strategy that integrates a quasi-microstrip structure into a stretchable serpentine microscale interconnection. We show the effects of quasi-microstrip structural dimensions on the RF performance based on detailed quantitative analysis and experimentally demonstrate the optimized device capable of carrying RF signals with frequencies of up to 40 GHz with near-lossless characteristics. To show the potential application of our transmission line in stretchable microwave electronics, we designed a single-stage power amplifier system with a gain of 9.8 dB at 9 GHz that fully utilizes our quasi-microstrip transmission line technology.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sun Hong Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Huilong Zhang
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Geonoh Choe
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
49
|
Gao L, Lv S, Shang Y, Guan S, Tian H, Fang Y, Wang J, Li H. Free-Standing Carbon Nanotube Embroidered Graphene Film Electrode Array for Stable Neural Interfacing. NANO LETTERS 2024; 24:829-835. [PMID: 38117186 DOI: 10.1021/acs.nanolett.3c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Implantable neural probes that are mechanically flexible yet robust are attractive candidates for achieving stable neural interfacing in the brain. Current flexible neural probes consist mainly of metal thin-film electrodes integrated on micrometer-thick polymer substrates, making it challenging to achieve electrode-tissue interfacing on the cellular scale. Here, we describe implantable neural probes that consist of robust carbon nanotube network embroidered graphene (CeG) films as free-standing recording microelectrodes. Our CeG film microelectrode arrays (CeG_MEAs) are ultraflexible yet mechanically robust, thus enabling cellular-scale electrode-tissue interfacing. Chronically implanted CeG_MEAs can stably track the activities of the same population of neurons over two months. Our results highlight the potential of ultraflexible and free-standing carbon nanofilms for stable neural interfacing in the brain.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Suye Lv
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Shang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shouliang Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huihui Tian
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ying Fang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Chinese Institute for Brain Research, Beijing 102206, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinfen Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hongbian Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
50
|
Moslehi S, Rowland C, Smith JH, Watterson WJ, Griffiths W, Montgomery RD, Philliber S, Marlow CA, Perez MT, Taylor RP. Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties. ADVANCES IN NEUROBIOLOGY 2024; 36:849-875. [PMID: 38468067 DOI: 10.1007/978-3-031-47606-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.
Collapse
Affiliation(s)
- S Moslehi
- Physics Department, University of Oregon, Eugene, OR, USA
| | - C Rowland
- Physics Department, University of Oregon, Eugene, OR, USA
| | - J H Smith
- Physics Department, University of Oregon, Eugene, OR, USA
| | - W J Watterson
- Physics Department, University of Oregon, Eugene, OR, USA
| | - W Griffiths
- Physics Department, University of Oregon, Eugene, OR, USA
| | - R D Montgomery
- Physics Department, University of Oregon, Eugene, OR, USA
| | - S Philliber
- Physics Department, University of Oregon, Eugene, OR, USA
| | - C A Marlow
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - M-T Perez
- Department of Clinical Sciences Lund, Division of Ophthalmology, Lund University, Lund, Sweden
| | - R P Taylor
- Physics Department, University of Oregon, Eugene, OR, USA.
| |
Collapse
|