1
|
Jo D, Choi SY, Ahn SY, Song J. IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling. Biomed Pharmacother 2025; 183:117846. [PMID: 39805192 DOI: 10.1016/j.biopha.2025.117846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders. In this study, we investigated the neuroprotective effects of IGF1 in two obesity models: diet-induced obesity (high-fat diet mice) and genetic obesity (ob/ob mice which is genetically deficient in leptin), and in vitro Neuro2A neuronal cells and primary cortical neurons under insulin resistance conditions. We performed RNA sequencing analysis using the cortex of high-fat diet mice injected with IGF1. Also, we detected cytokine levels in blood of high-fat diet mice injected with IGF1. In addition, we conducted the Barnes maze test as a spatial memory function test and open field test as an anxiety behavior test in ob/ob mice. We measured the levels of proteins and mRNAs related to insulin signaling, including synaptic density proteins in brain cortex of ob/ob mice. Our results showed that IGF1 injection enhanced spatial memory function and synaptic plasticity in obese mice. Furthermore, in vitro data demonstrated that IGF1 treated neurons revealed enhanced neural complexity and improved neurite outgrowth under insulin resistance condition through the AKT-GSK3β-BDNF pathway related to antidepressant, cognitive function and anti-apoptotic mechanisms. Therefore, our results provided that IGF1 have potential to alleviate cognitive impairment by promoting synaptic plasticity and neural complexity in the obese brain.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| | - Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Fan J, Wang D. Serum uric acid and nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1455132. [PMID: 39669496 PMCID: PMC11635646 DOI: 10.3389/fendo.2024.1455132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by over 5% hepatic fat accumulation without secondary causes. The prevalence of NAFLD has escalated in recent years due to shifts in dietary patterns and socioeconomic status, making it the most prevalent chronic liver disease and a significant public health concern globally. Serum uric acid (SUA) serves as the end product of purine metabolism in the body and is intricately linked to metabolic syndrome. Elevated SUA levels have been identified as an independent risk factor for the incidence and progression of NAFLD. This paper reviews the relationship between SUA and NAFLD, the underlying mechanisms of SUA involved in NAFLD, and the potential benefits of SUA-lowering therapy in treating NAFLD. The aim is to raise awareness of SUA management in patients with NAFLD, and to encourage further investigation into pharmacological interventions in this area.
Collapse
Affiliation(s)
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Masood A, Benabdelkamel H, Joy SS, Alhossan A, Alsuwayni B, Abdeen G, Aldhwayan M, Alfadda NA, Miras AD, Alfadda AA. Label-free quantitative proteomic profiling reveals differential plasma protein expression in patients with obesity after treatment with liraglutide. Front Mol Biosci 2024; 11:1458675. [PMID: 39324112 PMCID: PMC11422103 DOI: 10.3389/fmolb.2024.1458675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Treatment and management of obesity is clinically challenging. The inclusion of GLP-1 receptor agonists (GLP1RA) in the medical management of obesity has proven to be efficacious. However, mechanisms underlying the molecular changes arising from GLP1RA treatment in patients with obesity remain to be elucidated. Methods A single-center, prospective study was undertaken to evaluate the changes in the plasma proteins after liraglutide 3 mg therapy in twenty patients (M/F: 7/13) with obesity (mean BMI 40.65 ± 3.7 kg/m2). Anthropometric and laboratory parameters were measured, and blood samples were collected at two time points: baseline, before initiating treatment (pretreatment group, PT), and after three months of receiving the full dose liraglutide 3 mg (posttreatment group, PoT). An untargeted label-free LC MSMS mass spectrometric approach combined with bioinformatics and network pathway analysis was used to determine changes in the proteomic profiles. Results The mean age of the study participants was 36.0 ± 11.1 years. A statistically significant change was observed in weight, BMI and HbA1c levels between the PT and PoT groups (paired t-test, P < 0.001). A significant dysregulation was noted in the abundances of 151 proteins (31 up and 120 downregulated) between the two groups. The potential biomarkers were evaluated using receiver operating characteristic (ROC) curves. The top ten proteins (area under the curve (AUC) of 0.999 (95% CI)) were identified as potential biomarkers between PT and PoT groups and included Cystatin-B, major vault protein, and plastin-3, which were upregulated, whereas multimerin-2, large ribosomal P2, and proline-rich acidic protein 1 were downregulated in the PoT group compared with the PT group. The top network pathway identified using ingenuity pathway analysis (IPA), centered around dysregulation of MAPK, AKT, and PKc signaling pathways and related to cell-to-cell signaling and interaction, cellular assembly and organization, cellular compromise and a score of 46 with 25 focus proteins. Discussion Through label-free quantitative proteomic analysis, our study revealed significant dysregulation of plasma proteins after liraglutide 3 mg treatment in patients with obesity. The alterations in the proteomic profile between the PT and PoT groups demonstrated a decrease in levels of proteins involved in inflammation and oxidative stress pathways. On the other hand proteins involved in the glycolytic and lipolytic metabolic pathways as well as those participating in cytoskeletal and endothelial reorganization were observed to be increased. Understanding actions of liraglutide at a molecular and proteomic levels provides a holistic look into how liraglutide impacts metabolism, induces weight loss and improves overall metabolic health.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alhossan
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bashayr Alsuwayni
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ghalia Abdeen
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Madhawi Aldhwayan
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A. Alfadda
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alexander Dimitri Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolic Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
- School of Medicine, Ulster University, Derry, United Kingdom
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zhao YK, Zhu XD, Liu R, Yang X, Liang YL, Wang Y. The Role of PPARγ Gene Polymorphisms, Gut Microbiota in Type 2 Diabetes: Current Progress and Future Prospects. Diabetes Metab Syndr Obes 2023; 16:3557-3566. [PMID: 37954888 PMCID: PMC10638901 DOI: 10.2147/dmso.s429825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past decade, there has been a significant increase in studies investigating the relationship between the polymorphisms of the Peroxisome Proliferator-Activated Receptor gamma (PPARγ) gene and Type 2 Diabetes (T2D). PPARγ, a critical transcription factor, plays a central role in lipid metabolism, insulin resistance, and inflammatory response. Concurrently, the influence of gut microbiota on the development of T2D has gained increasing attention, especially their role in affecting host metabolism, such as lipid metabolism and the PPARγ signaling pathway. This review provides a comprehensive analysis of recent studies on PPARγ gene polymorphisms and their association with T2D, with a specific emphasis on the implications of gut microbiota and their interaction with PPARγ pathways. We also discuss the potential of manipulating gut microbiota and targeting PPARγ gene polymorphisms in T2D management. By deepening our understanding of these relationships, we aim to pave the way for novel preventative and therapeutic strategies for T2D.
Collapse
Affiliation(s)
- Yi-Kun Zhao
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Xiang-Dong Zhu
- Department of Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan city, People’s Republic of China
| | - Rong Liu
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Xia Yang
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Yong-Lin Liang
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Yan Wang
- Department of Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan city, People’s Republic of China
| |
Collapse
|
5
|
Kong F, Huang J, Xu C, Huang T, Wen G, Cheng W. System inflammation response index: a novel inflammatory indicator to predict all-cause and cardiovascular disease mortality in the obese population. Diabetol Metab Syndr 2023; 15:195. [PMID: 37821960 PMCID: PMC10566161 DOI: 10.1186/s13098-023-01178-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
AIM This study aims to investigate the relationship between two novel inflammatory markers, namely, the Systemic Inflammatory Response Index (SIRI) and the Systemic Immune Inflammatory Index (SII), as well as the all-cause and cardiovascular disease (CVD) mortality in the obese population. MATERIALS AND METHODS We conducted a prospective cohort study based on the data of 13,026 obese adults (age ≥ 18 years) from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2014 and followed until December 2019. SIRI was calculated by the formula: (neutrophil count × monocyte count) / lymphocyte count, while that of SII was: (platelet count × neutrophil count)/lymphocyte count. The association of SIRI and SII with all-cause and CVD mortality was evaluated using Cox regression. In addition, the nomogram was performed to predict 10-year survival probability. RESULTS During a median follow-up of 137 months, 1959 and 553 all-cause and CVD deaths were recorded, respectively. Spearman correlation analysis indicated that SIRI and SII were unrelated to almost all baseline characteristics (r < 0.15). Multivariate Cox regression models displayed that each standard deviation (SD) increase in SIRI was associated with a 16% (HR 1.16; 95% CI 1.09-1.24) and 22% (HR 1.22; 95% CI 1.10-1.36) increase in the risk of all-cause and CVD mortality, respectively. Likewise, every SD increase in SII was correlated with a 9% (HR 1.09; 95% CI 1.02-1.16) and 14% (HR 1.14; 95% CI 1.04-1.26) increase in the risk of all-cause and CVD mortality, respectively. The predictive value of SIRI for all-cause and CVD mortality (AUC = 0.601 and 0.624) exceeded that of SII (AUC = 0.528 and 0.539). Moreover, the nomogram displayed a substantial predictive value for 10-year survival (AUC = 0.847) with sensitivity and specificity exceeding 75%. CONCLUSIONS In the obese population, SIRI and SII are independent risk factors for all-cause and CVD mortality. Notably, the predictive ability of SIRI for both all-cause and CVD mortality significantly outperforms that of SII, suggesting that SIRI is a more valuable marker of inflammation.
Collapse
Affiliation(s)
- Fanliang Kong
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Junhao Huang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Chunhua Xu
- Department of Recuperation, Lintong Rehabilitation, and Recuperation Center, Xian, Shaanxi, China
| | - Tingyuan Huang
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Grace Wen
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Lee MK, Ryu H, Van JY, Kim MJ, Jeong HH, Jung WK, Jun JY, Lee B. The Role of Macrophage Populations in Skeletal Muscle Insulin Sensitivity: Current Understanding and Implications. Int J Mol Sci 2023; 24:11467. [PMID: 37511225 PMCID: PMC10380189 DOI: 10.3390/ijms241411467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance is a crucial factor in the development of type 2 diabetes mellitus (T2DM) and other metabolic disorders. Skeletal muscle, the body's largest insulin-responsive tissue, plays a significant role in the pathogenesis of T2DM due to defects in insulin signaling. Recently, there has been growing evidence that macrophages, immune cells essential for tissue homeostasis and injury response, also contribute to the development of skeletal muscle insulin resistance. This review aims to summarize the current understanding of the role of macrophages in skeletal muscle insulin resistance. Firstly, it provides an overview of the different macrophage populations present in skeletal muscle and their specific functions in the development of insulin resistance. Secondly, it examines the underlying mechanisms by which macrophages promote or alleviate insulin resistance in skeletal muscle, including inflammation, oxidative stress, and altered metabolism. Lastly, the review discusses potential therapeutic strategies targeting macrophages to improve skeletal muscle insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea;
| | - Joo Yun Jun
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA;
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| |
Collapse
|
7
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Liu XH, Zhang Y, Chang L, Wei Y, Huang N, Zhou JT, Cheng C, Zhang J, Xu J, Li Z, Li X. Apolipoprotein A-IV reduced metabolic inflammation in white adipose tissue by inhibiting IKK and JNK signaling in adipocytes. Mol Cell Endocrinol 2023; 559:111813. [PMID: 36341820 DOI: 10.1016/j.mce.2022.111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Apolipoprotein A-IV (ApoA-IV) plays a role in satiation and serum lipid transport. In diet-induced obesity (DIO) C57BL/6J mice, ApoA-IV deficiency induced in ApoA-IV-/-knock-out (KO mice) resulted in increased bodyweight, insulin resistance (IR) and plasma free fatty acid (FFA), which was partially reversed by stable ApoA-IV-green fluorescent protein (KO-A4-GFP) transfection in KO mice. DIO KO mice exhibited increased M1 macrophages in epididymal white adipose tissue (eWAT) as well as in the blood. Based on RNA-sequencing analyses, cytokine-cytokine receptor interactions, T cell and B cell receptors, and especially IL-17 and TNF-α, were up-regulated in eWAT of DIO ApoA-IV KO compared with WT mice. Supplemented ApoA-IV suppressed lipopolysaccharide (LPS)-induced IKK and JNK phosphorylation in Raw264.7 macrophage cell culture assays. When the culture medium was supplemented to 3T3-L1 adipocytes they exhibited an increased sensitivity to insulin. ApoA-IV protects against obesity-associated metabolic inflammation mainly through suppression in M1 macrophages of eWAT, IL17-IKK and IL17-JNK activity.
Collapse
Affiliation(s)
- Xiao-Huan Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Yupeng Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China; Department of Gastrointestinal Surgery, the Affiliated Taian City Central Hospital, Qingdao University, Taian, China
| | - Liao Chang
- Bio-evidence Science Academy, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Yang Wei
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Na Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Jin-Ting Zhou
- Bio-evidence Science Academy, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Cheng Cheng
- Bio-evidence Science Academy, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Jianbo Zhang
- Bio-evidence Science Academy, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Sciences, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Jing Xu
- Division of Endocrinology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China.
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China.
| |
Collapse
|
9
|
Palomäki VA, Koivukangas V, Meriläinen S, Lehenkari P, Karttunen TJ. A Straightforward Method for Adipocyte Size and Count Analysis Using Open-source Software QuPath. Adipocyte 2022; 11:99-107. [PMID: 35094637 PMCID: PMC8803053 DOI: 10.1080/21623945.2022.2027610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Changes in adipose tissue morphology, depicted by cell morphology alterations such as enlargement of fat cells, always accompany over-weight and obesity. The variables related to cell size have been shown to associate with low-grade inflammation of adipose tissue and common obesity-related comorbidities including metabolic syndrome and type 2 diabetes. Quantifying fat cell morphology from images of histological specimens can be tedious. Here, we present a straightforward method for the task using the free open-source software QuPath with its inbuilt tools only. Measurements of human adipose tissue samples with the described protocol showed an excellent correlation with those obtained with ImageJ software with Adipocyte Tools plugin combined with manual correction of misdetections. Intraclass correlation between the two methods was at good to excellent level. The method described here can be applied to considerably large tissue areas, even whole-slide analysis.
Collapse
Affiliation(s)
- Ville A Palomäki
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Vesa Koivukangas
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sanna Meriläinen
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Yadav S, Dwivedi A, Tripathi A. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biol Int 2022; 46:1539-1556. [PMID: 35842768 DOI: 10.1002/cbin.11854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
11
|
Li H, Jia Y, Weng D, Ju Z, Zhao Y, Liu S, Liu Y, Song M, Cui L, Sun S, Lin H. Clostridium butyricum Inhibits Fat Deposition via Increasing the Frequency of Adipose Tissue-Resident Regulatory T Cells. Mol Nutr Food Res 2022; 66:e2100884. [PMID: 35426245 DOI: 10.1002/mnfr.202100884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/17/2022] [Indexed: 12/13/2022]
Abstract
SCOPE Clostridium butyricum (CB) exerts beneficial actions in several disorders. However, the impact and molecular cues of CB in fat metabolism remain elusive. This study demonstrates the CB inhibition of fat deposition by increasing the relative number of adipose tissue-resident Treg cells (aTregs). METHODS AND RESULTS CB is administered orally to wild type (WT) mice fed with chow diet, which decrease fat deposition and adipogenic gene expression, associating with elevated serum levels of butyrate. Sodium butyrate (SB) feeding mimics the CB suppression of fat accumulation. Of note, the frequency of aTregs in both the CB and SB treatments, analyzed by flow cytometry, is markedly increased, accompanied by activated Wnt10b expression in white adipose tissues. However, CB and SB fail to inhibit fat deposition in Wnt10b-KO mice. Intriguingly, CB and SB are able to alleviate the obesity, fatty liver, and glucose abnormalities in high fat diet (HFD)-fed WT mice. CONCLUSIONS These findings suggest that CB, through its metabolite butyrate, inhibits fat deposition via potentiating aTreg cell generation, and support the option of CB and SB for therapeutic interventions in obesity and related disorders.
Collapse
Affiliation(s)
- Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Weng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zijing Ju
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yunfei Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Mengze Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Lulu Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuhong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
12
|
Christakoudi S, Riboli E, Evangelou E, Tsilidis KK. Associations of body shape index (ABSI) and hip index with liver, metabolic, and inflammatory biomarkers in the UK Biobank cohort. Sci Rep 2022; 12:8812. [PMID: 35614088 PMCID: PMC9133113 DOI: 10.1038/s41598-022-12284-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Associations of liver, metabolic, and inflammatory biomarkers in blood with body shape are unclear, because waist circumference (WC) and hip circumference (HC) are dependent on overall body size, resulting in bias. We have used the allometric "a body shape index" (ABSI = WC(mm)[Formula: see text]Weight(kg)-2/3[Formula: see text]Height(m)5/6) and hip index (HIwomen = HC(cm)[Formula: see text]Weight(kg)-0.482[Formula: see text]Height(cm)0.310, HImen = HC(cm)[Formula: see text]Weight(kg)-2/5[Formula: see text]Height(cm)1/5), which are independent of body mass index (BMI) by design, in multivariable linear regression models for 121,879 UK Biobank men and 135,559 women. Glucose, glycated haemoglobin (HbA1c), triglycerides, low-density-lipoprotein cholesterol, apolipoprotein-B, alanine aminotransferase (ALT), gamma-glutamyltransferase, and lymphocytes were associated positively with BMI and ABSI but inversely with HI. High-density-lipoprotein cholesterol and apolipoprotein-A1 were associated inversely with BMI and ABSI but positively with HI. Lipid-related biomarkers and ALT were associated only with HI in obese men. C-reactive protein, neutrophils, monocytes, and alkaline phosphatase were associated positively, while bilirubin was associated inversely, with BMI and ABSI but not with HI. Associations were consistent within the clinical reference ranges but were lost or changed direction for low or high biomarker levels. Our study confirms associations with waist and hip size, independent of BMI, for metabolic biomarkers but only with waist size for inflammatory biomarkers, suggesting different contribution of the mechanistic pathways related to body shape.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK. .,Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK.,Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK.,Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
13
|
Yang Y, Zhou X, Wang J, Zhang L, Hailati J, Wulasihan M, Liu Z. Metformin-Loaded Alginate Nanoparticles Inhibits Mouse Atherosclerosis by Regulating Macrophage Differentiation by Activating the Adenosine Monophosphate-Activated Protein Kinase/Signal Transducer and Activator of Transcription 3 Pathway. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: By modulating macrophage phenotype and the adenylate-activated protein kinase/signal transducer and activator of transcription 3 (STAT3) signaling pathway, metformin-loaded alginate nanoparticles may prevent atherosclerosis (As). Methods: Flow cytometry was
used to determine the percentage of macrophages with distinct phenotypes (CD86 and CD206). Analysis of protein expression levels of iNOS, arginase 1, AMPK, pAMPK, STAT3 and phosphorylated STAT3 were performed by Western Blot. To confirm the in vitro findings, ApoE−/− mice
were employed. Results: AMPK activity and the fraction of M2 macrophages dramatically increased in cells treated with Met, but STAT3 activity was considerably reduced. It was also shown that the Met group had much shorter aortas and lower levels of lipid deposition than that of the
control group; also, the fraction of M1 macrophages in the lipid plaques of the animals treated with Met was dramatically reduced by using immunofluorescence labeling. There was a considerable increase in AMPK activity in the Met group, but STAT3 activity was dramatically lowered. Conclusion:
According to the results of this study, STAT3 activity is regulated by activation of AMPK and macrophage development in plaques is prevented in mice by metformin-loaded alginate nanoparticles.
Collapse
Affiliation(s)
- Yuchun Yang
- Comprehensive Heart Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xiaohuan Zhou
- High Blood Pressure Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jiao Wang
- Comprehensive Heart Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Lei Zhang
- Comprehensive Heart Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Juledezi Hailati
- Comprehensive Heart Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Muhuyati Wulasihan
- Comprehensive Heart Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Zhiqiang Liu
- Comprehensive Heart Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| |
Collapse
|
14
|
Du Y, Li DX, Lu DY, Zhang R, Zhao YL, Zhong QQ, Ji S, Wang L, Tang DQ. Lipid metabolism disorders and lipid mediator changes of mice in response to long-term exposure to high-fat and high sucrose diets and ameliorative effects of mulberry leaves. Food Funct 2022; 13:4576-4591. [PMID: 35355025 DOI: 10.1039/d1fo04146k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry leaves exhibit anti-lipogenic and lipid-lowering effects. However, the lipid biomarkers and underlying mechanisms for the improvement of the action of mulberry leaves on obesity and lipid metabolism disorders have not been sufficiently investigated yet. Herein, biochemical analysis combined with metabolomics targeting serum lipid mediators (oxylipins) were used to explore the efficacy and underlying mechanisms of mulberry leaf water extract (MLWE) in high-fat and high-sucrose diet (HFHSD)-fed mice. Our results showed that MLWE supplementation not only decreased body weight gain, serum total triglycerides, low-density lipoprotein cholesterol, alanine transaminase and aspartate transaminase levels, but also increased the serum level of high-density lipoprotein cholesterol. In addition, MLWE supplementation also ameliorated hepatic steatosis and lipid accumulation. These beneficial effects were associated with down-regulating genes involved in oxidative stress, inflammation, and lipogenesis such as acetyl-CoA carboxylase and fatty acid synthase, and up-regulating genes related to lipolysis that encoded peroxisome proliferator-activated receptor α, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, adenosine monophosphate-activated protein kinase (AMPK) and hormone-sensitive lipase. Moreover, a total of 54 serum lipid mediators were differentially changed in HFHSD-fed mice, among which 11 lipid mediators from n-3 polyunsaturated fatty acids (PUFAs) were apparently reversed by MLWE. These findings indicated that the ADPN/AMPK pathway, anti-inflammation, anti-oxidation, and n-3 PUFA metabolism played important roles in anti-obesity and improvement of lipid metabolism disorders modulated by MLWE supplementation.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Qiao-Qiao Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 221204, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| |
Collapse
|
15
|
Investigation of the association between HLA-G polymorphisms and obesity. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.930690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Adamowski M, Wołodko K, Oliveira J, Castillo-Fernandez J, Murta D, Kelsey G, Galvão AM. Leptin Signaling in the Ovary of Diet-Induced Obese Mice Regulates Activation of NOD-Like Receptor Protein 3 Inflammasome. Front Cell Dev Biol 2021; 9:738731. [PMID: 34805147 PMCID: PMC8595835 DOI: 10.3389/fcell.2021.738731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Obesity leads to ovarian dysfunction and the establishment of local leptin resistance. The aim of our study was to characterize the levels of NOD-like receptor protein 3 (NLRP3) inflammasome activation in ovaries and liver of mice during obesity progression. Furthermore, we tested the putative role of leptin on NLRP3 regulation in those organs. C57BL/6J female mice were treated with equine chorionic gonadotropin (eCG) or human chorionic gonadotropin (hCG) for estrous cycle synchronization and ovary collection. In diet-induced obesity (DIO) protocol, mice were fed chow diet (CD) or high-fat diet (HFD) for 4 or 16 weeks, whereas in the hyperleptinemic model (LEPT), mice were injected with leptin for 16 days (16 L) or saline (16 C). Finally, the genetic obese leptin-deficient ob/ob (+/? and −/−) mice were fed CD for 4 week. Either ovaries and liver were collected, as well as cumulus cells (CCs) after superovulation from DIO and LEPT. The estrus cycle synchronization protocol showed increased protein levels of NLRP3 and interleukin (IL)-18 in diestrus, with this stage used for further sample collections. In DIO, protein expression of NLRP3 inflammasome components was increased in 4 week HFD, but decreased in 16 week HFD. Moreover, NLRP3 and IL-1β were upregulated in 16 L and downregulated in ob/ob. Transcriptome analysis of CC showed common genes between LEPT and 4 week HFD modulating NLRP3 inflammasome. Liver analysis showed NLRP3 protein upregulation after 16 week HFD in DIO, but also its downregulation in ob/ob−/−. We showed the link between leptin signaling and NLRP3 inflammasome activation in the ovary throughout obesity progression in mice, elucidating the molecular mechanisms underpinning ovarian failure in maternal obesity.
Collapse
Affiliation(s)
- Marek Adamowski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Joana Oliveira
- Centro de Investigação em Ciências Veterinárias, Lusófona University, Lisbon, Portugal
| | | | - Daniel Murta
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Escola Superior de Saúde Egas Moniz, Campus Universitário, Monte de Caparica, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (C.I.I.S.A.), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Wu W, Diao J, Yang J, Sun D, Wang Y, Ni Z, Yang F, Tan X, Li L, Li L. Impact of Sociodemographic Characteristics, Lifestyle, and Obesity on Coexistence of Diabetes and Hypertension: A Structural Equation Model Analysis amongst Chinese Adults. Int J Hypertens 2021; 2021:4514871. [PMID: 34733558 PMCID: PMC8560290 DOI: 10.1155/2021/4514871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In general, given the insufficient sample size, considerable literature has been found on single studies of diabetes and hypertension and few studies have been found on the coexistence of diabetes and hypertension (CDH) and its influencing factors with a large range of samples. This study aimed to establish a structural equation model for exploring the direct and indirect relationships amongst sociodemographic characteristics, lifestyle, obesity, and CDH amongst Chinese adults. METHODS A cross-sectional study was conducted in a representative sample of 25356 adults between June 1, 2015, and September 30, 2018, in Hubei province, China. Confirmatory factor analysis was initially conducted to test the latent variables. A structural equation model was then performed to analyse the association between latent variables and CDH. RESULTS The total prevalence of CDH was 2.8%. The model paths indicated that sociodemographic characteristics, lifestyle, and obesity were directly associated with CDH, and the effects were 0.187, 0.739, and 0.353, respectively. Sociodemographic characteristics and lifestyle were also indirectly associated with CDH, and the effects were 0.128 and 0.045, respectively. Lifestyle had the strongest effect on CDH (β = 0.784, P < 0.001), followed by obesity (β = 0.353, P < 0.001) and sociodemographic characteristics (β = 0.315, P < 0.001). All paths of the model were significant (P < 0.001). CONCLUSION CDH was significantly associated with sociodemographic characteristics, lifestyle, and obesity amongst Chinese adults. The dominant predictor of CDH was lifestyle. Targeting these results might develop lifestyle and weight loss intervention to prevent CDH according to the characteristics of the population.
Collapse
Affiliation(s)
- Wenwen Wu
- Institute for Evidence-Based Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, Shiyan 442000, China
| | - Jie Diao
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jinru Yang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Donghan Sun
- Institute for Evidence-Based Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Wang
- Department of Nosocomial Infection Management, Wuhan University Zhongnan Hospital, Wuhan 430071, Hubei, China
| | - Ziling Ni
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Fen Yang
- College of Nursing, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaodong Tan
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Ling Li
- Nursing Department, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Li Li
- Institute for Evidence-Based Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
18
|
Sakama S, Kurusu K, Morita M, Oizumi T, Masugata S, Oka S, Yokomizo S, Nishimura M, Morioka T, Kakinuma S, Shimada Y, Nakamura AJ. An Enriched Environment Alters DNA Repair and Inflammatory Responses After Radiation Exposure. Front Immunol 2021; 12:760322. [PMID: 34745135 PMCID: PMC8570081 DOI: 10.3389/fimmu.2021.760322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
After the Fukushima Daiichi Nuclear Power Plant accident, there is growing concern about radiation-induced carcinogenesis. In addition, living in a long-term shelter or temporary housing due to disasters might cause unpleasant stress, which adversely affects physical and mental health. It's been experimentally demonstrated that "eustress", which is rich and comfortable, has beneficial effects for health using mouse models. In a previous study, mice raised in the enriched environment (EE) has shown effects such as suppression of tumor growth and enhancement of drug sensitivity during cancer treatment. However, it's not yet been evaluated whether EE affects radiation-induced carcinogenesis. Therefore, to evaluate whether EE suppresses a radiation-induced carcinogenesis after radiation exposure, in this study, we assessed the serum leptin levels, radiation-induced DNA damage response and inflammatory response using the mouse model. In brief, serum and tissues were collected and analyzed over time in irradiated mice after manipulating the raising environment during the juvenile or adult stage. To assess the radiation-induced DNA damage response, we performed immunostaining for phosphorylated H2AX which is a marker of DNA double-strand break. Focusing on the polarization of macrophages in the inflammatory reaction that has an important role in carcinogenesis, we performed analysis using tissue immunofluorescence staining and RT-qPCR. Our data confirmed that EE breeding before radiation exposure improved the responsiveness to radiation-induced DNA damage and basal immunity, further suppressing the chronic inflammatory response, and that might lead to a reduction of the risk of radiation-induced carcinogenesis.
Collapse
Affiliation(s)
- Sae Sakama
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Keisuke Kurusu
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Mayu Morita
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Takashi Oizumi
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Shinya Masugata
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Shohei Oka
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Shinya Yokomizo
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yoshiya Shimada
- Executive Director, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Asako J. Nakamura
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| |
Collapse
|
19
|
Henning RJ. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: a review of the pathophysiology and treatment of obesity. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2021; 11:504-529. [PMID: 34548951 PMCID: PMC8449192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Two billion people worldwide older than 18 years of age, or approximately 30% of the world population, are overweight or obese. In addition, more than 43 million children under the age of 5 are overweight or obese. Among the population in the United States aged 20 and greater, 32.8 percent are overweight and 39.8 percent are obese. Blacks in the United States have the highest age-adjusted prevalence of obesity (49.6%), followed by Hispanics (44.8%), whites (42.2%) and Asians (17.4%). The impact of being overweight or obese on the US economy exceeds $1.7 trillion dollars, which is equivalent to approximately eight percent of the nation's gross domestic product. Obesity causes chronic inflammation that contributes to atherosclerosis and causes >3.4 million deaths/year. The pathophysiologic mechanisms in obesity that contribute to inflammation and atherosclerosis include activation of adipokines/cytokines and increases in aldosterone in the circulation. The adipokines leptin, resistin, IL-6, and monocyte chemoattractant protein activate and chemoattract monocytes/macrophages into adipose tissue that promote visceral adipose and systemic tissue inflammation, oxidative stress, abnormal lipid metabolism, insulin resistance, endothelial dysfunction, and hypercoagulability that contribute to atherosclerosis. In addition in obesity, the adipokines/cytokines IL-1β, IL-18, and TNF are activated and cause endothelial cell dysfunction and hyperpermeability of vascular endothelial junctions. Increased aldosterone in the circulation not only expands the blood volume but also promotes platelet aggregation, vascular endothelial dysfunction, thrombosis, and fibrosis. In order to reduce obesity and obesity-induced inflammation, therapies including diet, medications, and bariatric surgery are discussed that should be considered in patients with BMIs>35-40 kg/m2 if diet and lifestyle interventions fail to achieve weight loss. In addition, antihypertensive therapy, plasma lipid reduction and glucose lowering therapy should be prescribed in obese patients with hypertension, a 10-year CVD risk >7.5%, or prediabetes or diabetes.
Collapse
Affiliation(s)
- Robert J Henning
- James A. Haley Hospital, University of South Florida Tampa, Florida 33612-3805, USA
| |
Collapse
|
20
|
Sehgal A, Behl T, Kaur I, Singh S, Sharma N, Aleya L. Targeting NLRP3 inflammasome as a chief instigator of obesity, contributing to local adipose tissue inflammation and insulin resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43102-43113. [PMID: 34145545 DOI: 10.1007/s11356-021-14904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Inflammasome activity plays a vital role in various non-microbial disease states correlated with prolonged inflammation. NLRP3 inflammasome function and IL-1β formation are augmented in obesity and several obesity-linked metabolic disorders (i.e. diabetes mellitus, hypertension, hepatic steatosis, cancer, arthritis, and sleep apnea). Also, several factors are associated with the progression of diseases viz. increased plasma glucose, fatty acids, and β-amyloid are augmented during obesity and activate NLRP3 inflammasome expression. Prolonged NLRP3 stimulation seems to play significant role in various disorders, though better knowledge of inflammasome regulation and action might result in improved therapeutic tactics. Numerous compounds that mitigate NLRP3 inflammasome expression and suppress its chief effector, IL-1β are presently studied in clinical phases as therapeutics to manage or prevent these common disorders. A deep research on the literature available till date for inflammasome in obesity was conducted using various medical sites like PubMed, HINARI, MEDLINE from the internet, and data was collected simultaneously. The present review aims to examine the prospects of inflammasome as a major progenitor in the progression of obesity via directing their role in regulating appetite.
Collapse
Affiliation(s)
- Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besancon, France
| |
Collapse
|
21
|
Li J, Mao YS, Chen F, Xia DX, Zhao TQ. Palmitic acid up regulates Gal-3 and induces insulin resistance in macrophages by mediating the balance between KLF4 and NF-κB. Exp Ther Med 2021; 22:1028. [PMID: 34373714 PMCID: PMC8343820 DOI: 10.3892/etm.2021.10460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance is the main sign of type 2 diabetes mellitus and is often accompanied by the infiltration of inflammatory factors. These inflammatory factors are mainly produced and secreted by macrophages. The purpose of the current study was to explore the relationship between macrophages and insulin resistance, and to determine its underlying mechanism. The insulin resistance of macrophages was induced by palmitic acid (PA) in vitro. The glucose uptake rate of macrophages, the expression levels of inflammatory cytokines and the expression levels of insulin resistance-related proteins were detected. The protein expression levels of Krüppel-like factor 4 (KLF4), toll-like receptor 4 (TLR4), NF-κB and Galectin-3 (Gal-3) were detected via western blotting and recovery experiments were performed by combining the Gal-3 and TLR4 inhibitors GB1107 and TAK242. The results revealed that PA-induced macrophages demonstrated insulin resistance. Additionally, KLF4 protein was inhibited and the sugar uptake rate was significantly lower than that of the control group. Western blotting and immunofluorescence assays revealed that the expression of Gal-3 in PA-induced macrophages was significantly upregulated. The addition of the Gal-3 inhibitor GB1107 significantly increased glucose utilization and reduced insulin resistance in PA-treated cells. Inhibitor of TLR4 inhibited the protein expression level of the TLR4/NF-κB pathway. In conclusion, PA promoted the TLR4/phosphorylated-NF-κB signaling pathway by inhibiting KLF4, promoted the upregulation of Gal-3 expression and improved the insulin resistance of macrophages.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yu-Shan Mao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Fen Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Dong-Xia Xia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Tin-Qi Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
22
|
Wang Z, Zhu M, Wang M, Gao Y, Zhang C, Liu S, Qu S, Liu Z, Zhang C. Integrated Multiomic Analysis Reveals the High-Fat Diet Induced Activation of the MAPK Signaling and Inflammation Associated Metabolic Cascades via Histone Modification in Adipose Tissues. Front Genet 2021; 12:650863. [PMID: 34262592 PMCID: PMC8273343 DOI: 10.3389/fgene.2021.650863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background The number of diet induced obese population is increasing every year, and the incidence of type 2 diabetes is also on the rise. Histone methylation and acetylation have been shown to be associated with lipogenesis and obesity by manipulating gene expression via the formation of repression or activation domains on chromosomes. Objective In this study, we aimed to explore gene activation or repression and related biological processes by histone modification across the whole genome on a high-fat diet (HFD) condition. We also aimed to elucidate the correlation of these genes that modulated by histone modification with energy metabolism and inflammation under both short-term and long-term HFD conditions. Method We performed ChIP-seq analysis of H3K9me2 and H3K9me3 in brown and white adipose tissues (WATs; subcutaneous adipose tissue) from mice fed with a standard chow diet (SCD) or HFD and a composite analysis of the histone modification of H3K9me2, H3K9me3, H3K4me1 and H3K27ac throughout the whole genome. We also employed and integrated two bulk RNA-seq and a single-nuclei RNA sequencing dataset and performed western blotting (WB) to confirm the gene expression levels in adipose tissue of the SCD and HFD groups. Results The ChIP-seq and transcriptome analysis of mouse adipose tissues demonstrated that a series of genes were activated by the histone modification of H3K9me2, H3K9me3, H3K4me1, and H3K27ac in response to HFD condition. These genes were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in lipogenesis, energy metabolism and inflammation. Several genes in the activated mitogen-activated protein kinase (MAPK) pathway might be related to both inflammation and energy metabolism in mice, rats and humans fed with HFD for a short or long term, as showed by bulk RNA-seq and single nuclei RNA-seq datasets. Western blot analyses further confirmed the increased expression of MET, VEGFA and the enhanced phosphorylation ratio of p44/42 MAPK upon HFD treatment. Conclusion This study expanded our understanding of the influence of eating behavior on obesity and could assist the identification of putative therapeutic targets for the prevention and treatment of metabolic disorders in the future.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yihui Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyun Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Cardiac Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Cui J, Shan K, Yang Q, Qi Y, Qu H, Li J, Wang R, Jia L, Chen W, Feng N, Chen YQ. Prostaglandin E 3 attenuates macrophage-associated inflammation and prostate tumour growth by modulating polarization. J Cell Mol Med 2021; 25:5586-5601. [PMID: 33982835 PMCID: PMC8184682 DOI: 10.1111/jcmm.16570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/29/2022] Open
Abstract
Alternative polarization of macrophages regulates multiple biological processes. While M1‐polarized macrophages generally mediate rapid immune responses, M2‐polarized macrophages induce chronic and mild immune responses. In either case, polyunsaturated fatty acid (PUFA)‐derived lipid mediators act as both products and regulators of macrophages. Prostaglandin E3 (PGE3) is an eicosanoid derived from eicosapentaenoic acid, which is converted by cyclooxygenase, followed by prostaglandin E synthase successively. We found that PGE3 played an anti‐inflammatory role by inhibiting LPS and interferon‐γ‐induced M1 polarization and promoting interleukin‐4‐mediated M2 polarization (M2a). Further, we found that although PGE3 had no direct effect on the growth of prostate cancer cells in vitro, PGE3 could inhibit prostate cancer in vivo in a nude mouse model of neoplasia. Notably, we found that PGE3 significantly inhibited prostate cancer cell growth in a cancer cell‐macrophage co‐culture system. Experimental results showed that PGE3 inhibited the polarization of tumour‐associated M2 macrophages (TAM), consequently producing indirect anti‐tumour activity. Mechanistically, we identified that PGE3 regulated the expression and activation of protein kinase A, which is critical for macrophage polarization. In summary, this study indicates that PGE3 can selectively promote M2a polarization, while inhibiting M1 and TAM polarization, thus exerting an anti‐inflammatory effect and anti‐tumour effect in prostate cancer.
Collapse
Affiliation(s)
- Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Wang X, Li H, Chen S, He J, Chen W, Ding Y, Huang J. P300/CBP-associated factor (PCAF) attenuated M1 macrophage inflammatory responses possibly through KLF2 and KLF4. Immunol Cell Biol 2021; 99:724-736. [PMID: 33768642 DOI: 10.1111/imcb.12455] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/27/2020] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Macrophages exhibit distinct phenotypes in response to environmental signals. The polarization of M1 macrophages plays an essential role in the inflammatory response. However, the specific molecular mechanisms regulating the inflammatory response during M1 macrophage polarization remain to be further understood. Here, we found that the histone acetyltransferase P300/CBP-associated factor (PCAF) was a potential negative regulator of the M1 macrophage inflammatory response. During M1 macrophage polarization, the inflammatory response gradually reduced, but PCAF expression increased. Furthermore, the overexpression of PCAF significantly inhibited the expression of the M1 macrophage-related pro-inflammatory genes TNF-α, IL-6 and CXCL10, while PCAF deficiency enhanced the expression of these genes. Furthermore, we found that PCAF overexpression suppressed the NF-κB signaling pathway and promoted the expression of the Krüppel-like factors (KLF) KLF2 and KLF4 through regulating their transcriptional levels. In addition, KLF2 and KLF4 deficiency reversed the PCAF-induced inhibition of the expression of pro-inflammatory genes in M1 macrophages. Collectively, the present results demonstrate a potential negative regulatory mechanism of the inflammatory response during M1 macrophage polarization and propose a novel mechanism of inflammation resolution for maintaining homeostasis.
Collapse
Affiliation(s)
- Xiuling Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Li
- Department of Obstetrics and Gynecology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Ko C, Lo YM, Xu J, Chang W, Huang D, Wu JS, Yang C, Huang W, Shen S. Alpha-lipoic acid alleviates NAFLD and triglyceride accumulation in liver via modulating hepatic NLRP3 inflammasome activation pathway in type 2 diabetic rats. Food Sci Nutr 2021; 9:2733-2742. [PMID: 34026086 PMCID: PMC8116866 DOI: 10.1002/fsn3.2235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with type 2 diabetes mellitus (T2DM). The activation of nucleotide-binding domain and leucine-rich-containing family, pyrin domain-containing 3 (NLRP3) inflammasome in the liver may lead to hepatic fat accumulation. Alpha-lipoic acid (ALA) has been reported to improve IR in a T2DM rodent model. We investigated the effects of ALA on NLRP3 inflammasome activation and fat accumulation in the liver of a high-fat diet (HFD) plus streptozotocin (STZ)-induced T2DM rats. The HFD/STZ-induced T2DM rats were orally administered ALA (50, 100, or 200 mg/kg BW) once a day for 13 weeks. The results showed that the liver triglyceride contents of T2DM rats were 11.35 ± 1.84%, whereas the administration of 50, 100, and 200 mg/kg BW ALA significantly reduced the liver triglyceride contents of T2DM rats to 4.14 ± 0.59%, 4.02 ± 0.41%, and 3.01 ± 1.07%, respectively. Moreover, 200 mg/kg BW ALA significantly decreased the hepatic levels of NLRP3 inflammasome activation-related proteins NLRP3, caspase-1, and interleukin-1β expression by 40.0%, 60.1%, and 24.5%, respectively, in T2DM rats. Furthermore, the expression levels of hepatic fat synthesis-related proteins decreased, namely a 45.4% decrease in sterol regulatory element-binding protein-1c, whereas the expression of hepatic lipid oxidation-related proteins increased, including a 27.5% increase in carnitine palmitoyltransferase, in T2DM rats after 200 mg/kg BW ALA treatment. We concluded that ALA treatment may suppress hepatic NLRP3 inflammasome activation, consequently alleviating NAFLD and excess hepatic lipid accumulation in HFD/STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Chih‐Yuan Ko
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
- Department of Clinical NutritionThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
- School of Public HealthFujian Medical UniversityFuzhouChina
- Respiratory Medicine Center of Fujian ProvinceQuanzhouChina
| | | | - Jian‐Hua Xu
- Department of Tumor SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Wen‐Chang Chang
- Department of Food ScienceNational Chiayi UniversityChiayi CityTaiwan
| | - Da‐Wei Huang
- Department of Biotechnology and Food TechnologySouthern Taiwan University of Science and TechnologyTainan CityTaiwan
| | - James Swi‐Bea Wu
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cho‐Hua Yang
- Graduate Program of Nutrition ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐Chung Huang
- Graduate Institute of Health Industry TechnologyChang Gung University of Science and TechnologyTaoyuanTaiwan
| | - Szu‐Chuan Shen
- Graduate Program of Nutrition ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
26
|
van Dierendonck XAMH, Sancerni T, Alves-Guerra MC, Stienstra R. The role of uncoupling protein 2 in macrophages and its impact on obesity-induced adipose tissue inflammation and insulin resistance. J Biol Chem 2021; 295:17535-17548. [PMID: 33453996 DOI: 10.1074/jbc.ra120.014868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Xanthe A M H van Dierendonck
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | - Rinke Stienstra
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Kim J, Moon J, Park CH, Lee J, Cheng H, Floyd ZE, Chang JS. NT-PGC-1α deficiency attenuates high-fat diet-induced obesity by modulating food intake, fecal fat excretion and intestinal fat absorption. Sci Rep 2021; 11:1323. [PMID: 33446719 PMCID: PMC7809341 DOI: 10.1038/s41598-020-79823-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional coactivator PGC-1α and its splice variant NT-PGC-1α regulate metabolic adaptation by modulating many gene programs. Selective ablation of PGC-1α attenuates diet-induced obesity through enhancing fatty acid oxidation and thermogenesis by upregulation of NT-PGC-1α in brown adipose tissue (BAT). Recently, we have shown that selective ablation of NT-PGC-1α reduces fatty acid oxidation in BAT. Thus, the objective of this study was to test our hypothesis that NT-PGC-1α−/− mice would be more prone to diet-induced obesity. Male and female NT-PGC-1α+/+ (WT) and NT-PGC-1α−/− mice were fed a regular chow or 60% high-fat (HF) diet for 16 weeks. Contrary to our expectations, both male and female NT-PGC-1α−/− mice fed HFD were protected from diet-induced obesity, with more pronounced effects in females. This lean phenotype was primarily driven by reduced dietary fat intake. Intriguingly, HFD-fed female, but not male, NT-PGC-1α−/− mice further exhibited decreased feed efficiency, which was closely associated with increased fecal fat excretion and decreased uptake of fatty acids by the intestinal enterocytes and adipocytes with a concomitant decrease in fatty acid transporter gene expression. Collectively, our results highlight the role for NT-PGC-1α in regulating whole body lipid homeostasis under HFD conditions.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Jiyoung Moon
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Chul-Hong Park
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Jisu Lee
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Helia Cheng
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Z Elizabeth Floyd
- Laboratory of Ubiquitin Biology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ji Suk Chang
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
28
|
Al-Jaber H, Al-Mansoori L, Elrayess MA. GATA-3 as a Potential Therapeutic Target for Insulin Resistance and Type 2 Diabetes Mellitus. Curr Diabetes Rev 2021; 17:169-179. [PMID: 32628587 DOI: 10.2174/1573399816666200705210417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Impaired adipogenesis plays an important role in the development of obesity-associated insulin resistance and type 2 diabetes as it leads to ectopic fat deposition. The anti-adipogenic transcription factor GATA-3 was identified as one of the potential molecular targets responsible for the impairment of adipogenesis. The expression of GATA-3 is higher in insulinresistant obese individuals compared to BMI-matched insulin-sensitive counterparts. Adipose tissue inflammation is a crucial mediator of this process. Hyperglycemia mediates the activation of the immune system, partially through upregulation of GATA- 3, causing exacerbation of the inflammatory state associated with obesity. This review discusses the evidence supporting the inhibition of GATA-3 as a useful therapeutic strategy in obesity-associated insulin resistance and type 2 diabetes, through up-regulation adipogenesis and amelioration of the immune response.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | |
Collapse
|
29
|
Alipoor E, Hosseinzadeh-Attar MJ, Rezaei M, Jazayeri S, Chapman M. White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes Rev 2020; 21:e13085. [PMID: 32608573 DOI: 10.1111/obr.13085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Observational studies suggest better clinical outcomes following critical illness in patients with overweight and obesity (obesity paradox). An understanding of the morphologic, physiologic and metabolic changes in adipose tissue in critical illness may provide an explanation. Recent studies have demonstrated the transformation of white to brown-like adipocytes due to the "browning process," which has been of interest as a potential novel therapy in obesity during the last decade. The characteristics of the browning of white adipose tissue (WAT) include the appearance of smaller, multilocular adipocytes, increased UCP1 mRNA expression, mitochondrial density and respiratory capacity. These changes have been identified in some critical illnesses, which specifically refers to burns, sepsis and cancer cachexia in this study. The pathophysiological nature of WAT browning, underlying mechanisms, main regulators and potential benefits and harms of this process are interesting new areas that warrants further investigations. In this review, we discuss emerging scientific discipline of adipose tissue physiology in metabolic stress, available data, gaps of knowledge and future perspectives. Future investigations in this field may provide insights into the underlying mechanisms and clinical aspects of browning that may further our understanding of the proposed obesity paradox following critical illness, which may in turn open up opportunities for novel therapies to save lives and improve recovery.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marianne Chapman
- Discipline of Acute Care Medicine, School of Medicine, University of Adelaide, Adelaide, Australia.,Intensive Care Research Unit, Royal Adelaide Hospital, Adelaide, Australia.,National Health and Medical Research Council of Australia Centre for Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Vila-Bedmar R, Cruces-Sande M, Arcones AC, Willemen HLDM, Prieto P, Moreno-Indias I, Díaz-Rodríguez D, Francisco S, Jaén RI, Gutiérrez-Repiso C, Heijnen CJ, Boscá L, Fresno M, Kavelaars A, Mayor F, Murga C. GRK2 levels in myeloid cells modulate adipose-liver crosstalk in high fat diet-induced obesity. Cell Mol Life Sci 2020; 77:4957-4976. [PMID: 31927610 PMCID: PMC11105060 DOI: 10.1007/s00018-019-03442-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are key effector cells in obesity-associated inflammation. G protein-coupled receptor kinase 2 (GRK2) is highly expressed in different immune cell types. Using LysM-GRK2+/- mice, we uncover that a reduction of GRK2 levels in myeloid cells prevents the development of glucose intolerance and hyperglycemia after a high fat diet (HFD) through modulation of the macrophage pro-inflammatory profile. Low levels of myeloid GRK2 confer protection against hepatic insulin resistance, steatosis and inflammation. In adipose tissue, pro-inflammatory cytokines are reduced and insulin signaling is preserved. Macrophages from LysM-GRK2+/- mice secrete less pro-inflammatory cytokines when stimulated with lipopolysaccharide (LPS) and their conditioned media has a reduced pathological influence in cultured adipocytes or naïve bone marrow-derived macrophages. Our data indicate that reducing GRK2 levels in myeloid cells, by attenuating pro-inflammatory features of macrophages, has a relevant impact in adipose-liver crosstalk, thus preventing high fat diet-induced metabolic alterations.
Collapse
Affiliation(s)
- Rocío Vila-Bedmar
- Departamento de ciencias básicas de la salud, área de Bioquímica y Biología Molecular, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hanneke L D M Willemen
- Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Patricia Prieto
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Isabel Moreno-Indias
- CIBER de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Endocrinología y Nutrición, Hospital Universitario Virgen de Victoria de Malaga, Universidad de Málaga, Málaga, Spain
| | - Daniel Díaz-Rodríguez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Sara Francisco
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Rafael I Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Carolina Gutiérrez-Repiso
- CIBER de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Endocrinología y Nutrición, Hospital Universitario Virgen de Victoria de Malaga, Universidad de Málaga, Málaga, Spain
| | - Cobi J Heijnen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisardo Boscá
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
31
|
Huizinga GP, Singer BH, Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology 2020; 161:bqaa154. [PMID: 32880654 PMCID: PMC7499583 DOI: 10.1210/endocr/bqaa154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight, and diabetes status. Numerous endocrine changes might drive these varied responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in the development of severe COVID-19 and impair viral clearance.
Collapse
Affiliation(s)
- Gabrielle P Huizinga
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Integrative Research in Critical Care, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kanakadurga Singer
- Department of Pediatrics and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
32
|
Wang L, Sinnott-Armstrong N, Wagschal A, Wark AR, Camporez JP, Perry RJ, Ji F, Sohn Y, Oh J, Wu S, Chery J, Moud BN, Saadat A, Dankel SN, Mellgren G, Tallapragada DSP, Strobel SM, Lee MJ, Tewhey R, Sabeti PC, Schaefer A, Petri A, Kauppinen S, Chung RT, Soukas A, Avruch J, Fried SK, Hauner H, Sadreyev RI, Shulman GI, Claussnitzer M, Näär AM. A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell 2020; 183:684-701.e14. [PMID: 33058756 PMCID: PMC8092355 DOI: 10.1016/j.cell.2020.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.
Collapse
Affiliation(s)
- Lifeng Wang
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,These authors contributed equally,Present address: Cardiovascular & Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477, USA
| | - Nasa Sinnott-Armstrong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Alexandre Wagschal
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vertex Pharmaceuticals, Watertown, MA 02472, USA
| | - Abigail R. Wark
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao-Paulo Camporez
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA,Present address: Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo 14049-90, Brazil
| | - Rachel J. Perry
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yoojin Sohn
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vanderbilt University, Nashville, TN 37235, USA
| | - Justin Oh
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vertex Pharmaceuticals, Watertown, MA 02472, USA
| | - Su Wu
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Chery
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bahareh Nemati Moud
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alham Saadat
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Simon N. Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Divya Sri Priyanka Tallapragada
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Sophie Madlen Strobel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Mi-Jeong Lee
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Present address: Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Ryan Tewhey
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Present address: The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School ofMedicine atMount Sinai, New York, New York 10029, USA
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Raymond T. Chung
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Soukas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Susan K. Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Present address: Diabetes, Obesity and Metabolism Institute, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Hans Hauner
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gerald I. Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA,Lead Contact,Correspondence: https://doi.org/10.1016/j.cell.2020.09.017
| |
Collapse
|
33
|
Welc SS, Wehling-Henricks M, Antoun J, Ha TT, Tous I, Tidball JG. Differential Effects of Myeloid Cell PPARδ and IL-10 in Regulating Macrophage Recruitment, Phenotype, and Regeneration following Acute Muscle Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1664-1677. [PMID: 32817369 PMCID: PMC7484367 DOI: 10.4049/jimmunol.2000247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Changes in macrophage phenotype in injured muscle profoundly influence regeneration. In particular, the shift of macrophages from a proinflammatory (M1 biased) phenotype to a proregenerative (M2 biased) phenotype characterized by expression of CD206 and CD163 is essential for normal repair. According to the current canonical mechanism regulating for M1/M2 phenotype transition, signaling through PPARδ is necessary for obtaining the M2-biased phenotype. Our findings confirm that the murine myeloid cell-targeted deletion of Ppard reduces expression in vitro of genes that are activated in M2-biased macrophages; however, the mutation in mice in vivo increased numbers of CD206+ M2-biased macrophages and did not reduce the expression of phenotypic markers of M2-biased macrophages in regenerating muscle. Nevertheless, the mutation impaired CCL2-mediated chemotaxis of macrophages and slowed revascularization of injured muscle. In contrast, null mutation of IL-10 diminished M2-biased macrophages but produced no defects in muscle revascularization. Our results provide two significant findings. First, they illustrate that mechanisms that regulate macrophage phenotype transitions in vitro are not always predictive of mechanisms that are most important in vivo. Second, they show that mechanisms that regulate macrophage phenotype transitions differ in different in vivo environments.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jacqueline Antoun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Tracey T Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Isabella Tous
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095;
- Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095; and
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
34
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
35
|
Hsieh SW, Huang LC, Chang YP, Hung CH, Yang YH. M2b macrophage subset decrement as an indicator of cognitive function in Alzheimer's disease. Psychiatry Clin Neurosci 2020; 74:383-391. [PMID: 32170772 DOI: 10.1111/pcn.13000] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
AIM Alzheimer's disease (AD) is a chronic neurodegenerative disease. Various inflammatory processes account for the pathology of AD, and macrophages in particular have a distinct polarization phenotype related to M1/M2 classification. We aimed to investigate macrophage polarization patterns as an indicator of cognitive function in AD. METHODS We recruited 54 non-demented individuals as control and 105 AD patients as experimental groups respectively. Percentages of macrophage (PM2K+ CD14+ and PM2K+ CD14- ) and macrophage polarization subsets (M1, M2a, M2b, and M2c) were assessed using flow cytometry. All AD patients were classified by dementia severity using clinical Dementia Rating scale (CDR) as CDR 0.5, 1 and ≧2. AD patients had cognitive function evaluation using Mini-Mental State Examination (MMSE) and Cognitive Assessment Screening Instrument (CASI). We compared the macrophage polarization patterns between control and patient groups. Cognitive function was evaluated in association with macrophage polarization patterns in AD patients. RESULTS The percentages of PM2K+ CD14+ and PM2K+ CD14- macrophages were higher in AD patients than in controls. M2b macrophage subset decrement and M1 macrophage subset increment of PM2K+ CD14+ and PM2K+ CD14- macrophages were observed in AD patients compared with controls. Although percentages of macrophage subsets were not consistent with CDR staging, PM2K+ CD14+ M2b macrophage subset decrement was correlated with worse cognitive functioning by MMSE and CASI in AD patients. CONCLUSION M2b macrophage subset decrement and M1 macrophage subset increment were noted in AD patients, while PM2K+ CD14+ M2b macrophage subset decrement indicated worse cognitive function in such patients.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yang-Pei Chang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Chinese Mentality Protection Association, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Zhang L, Wang J, Wang J, Yang B, He Q, Weng Q. Role of DJ-1 in Immune and Inflammatory Diseases. Front Immunol 2020; 11:994. [PMID: 32612601 PMCID: PMC7308417 DOI: 10.3389/fimmu.2020.00994] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
The DJ-1 protein, known as an oxidative stress sensor, participates in the onset of oxidative stress-related diseases such as cancer, neurodegenerative disorders, type 2 diabetes, and male infertility. Although DJ-1 has been extensively studied for more than two decades, evidence has only recently emerged that it plays a key role in immune and inflammatory disorders. The immune regulatory function of DJ-1 is achieved by modulating the activation of several immune cells including macrophages, mast cells, and T cells via reactive oxygen species (ROS)-dependent and/or ROS-independent mechanisms. This review describes the current knowledge on DJ-1, focusing on its immune and inflammatory regulatory roles, and highlights the significance of DJ-1 as a novel therapeutic target for immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lulu Zhang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Castegna A, Gissi R, Menga A, Montopoli M, Favia M, Viola A, Canton M. Pharmacological targets of metabolism in disease: Opportunities from macrophages. Pharmacol Ther 2020; 210:107521. [PMID: 32151665 DOI: 10.1016/j.pharmthera.2020.107521] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
From advances in the knowledge of the immune system, it is emerging that the specialized functions displayed by macrophages during the course of an immune response are supported by specific and dynamically-connected metabolic programs. The study of immunometabolism is demonstrating that metabolic adaptations play a critical role in modulating inflammation and, conversely, inflammation deeply influences the acquisition of specific metabolic settings.This strict connection has been proven to be crucial for the execution of defined immune functional programs and it is now under investigation with respect to several human disorders, such as diabetes, sepsis, cancer, and autoimmunity. The abnormal remodelling of the metabolic pathways in macrophages is now emerging as both marker of disease and potential target of therapeutic intervention. By focusing on key pathological conditions, namely obesity and diabetes, rheumatoid arthritis, atherosclerosis and cancer, we will review the metabolic targets suitable for therapeutic intervention in macrophages. In addition, we will discuss the major obstacles and challenges related to the development of therapeutic strategies for a pharmacological targeting of macrophage's metabolism.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alessio Menga
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Marcella Canton
- Department of Biomedical Sciences, University of Padua, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| |
Collapse
|
38
|
Davis FM, Gallagher KA. Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Arterioscler Thromb Vasc Biol 2020; 39:623-634. [PMID: 30760015 DOI: 10.1161/atvbaha.118.312135] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiometabolic and vascular disease, with their associated secondary complications, are the leading cause of morbidity and mortality in Western society. Chronic inflammation is a common theme that underlies initiation and progression of cardiovascular disease. In this regard, monocytes/macrophages are key players in the development of a chronic inflammatory state. Over the past decade, epigenetic modifications, such as DNA methylation and posttranslational histone processing, have emerged as important regulators of immune cell phenotypes. Accumulating studies reveal the importance of epigenetic enzymes in the dynamic regulation of key signaling pathways that alter monocyte/macrophage phenotypes in response to environmental stimuli. In this review, we highlight the current paradigms of monocyte/macrophage polarization and the emerging role of epigenetic modification in the regulation of monocyte/macrophage phenotype in obesity, diabetes mellitus, atherosclerosis, and abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Frank M Davis
- From the Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor
| | - Katherine A Gallagher
- From the Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor
| |
Collapse
|
39
|
Abstract
Obesity is characterized by a state of chronic inflammation in adipose tissue mediated by the secretion of a range of inflammatory cytokines. In comparison to WAT, relatively little is known about the inflammatory status of brown adipose tissue (BAT) in physiology and pathophysiology. Because BAT and brown/beige adipocytes are specialized in energy expenditure they have protective roles against obesity and associated metabolic diseases. BAT appears to be is less susceptible to developing inflammation than WAT. However, there is increasing evidence that inflammation directly alters the thermogenic activity of brown fat by impairing its capacity for energy expenditure and glucose uptake. The inflammatory microenvironment can be affected by cytokines secreted by immune cells as well as by the brown adipocytes themselves. Therefore, pro-inflammatory signals represent an important component of the thermogenic potential of brown and beige adipocytes and may contribute their dysfunction in obesity.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Mark Christian
| |
Collapse
|
40
|
Iwase T, Sangai T, Fujimoto H, Sawabe Y, Matsushita K, Nagashima K, Sato Y, Nakagawa A, Masuda T, Nagashima T, Ohtsuka M. Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with breast cancer. Breast Cancer Res Treat 2020; 179:435-443. [PMID: 31620935 DOI: 10.1007/s10549-019-05467-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Recent studies suggest that the quality and quantity of visceral adipose tissue (VAT) play significant roles in adipocyte function, and are related to insulin resistance. We tested the hypothesis that high amounts of upper VAT (aVAT) and low-quality VAT worsen treatment outcomes via altered insulin metabolism. METHODS Cohort 1 included 106 women with breast cancer who were undergoing surgery. Homeostasis model assessment of insulin resistance (HOMA-R), insulin-like growth factor (IGF)-1, and IGF-binding protein 3 (IGFBP3) were measured before the initiation of treatment. aVAT was measured via computed tomography (CT). VAT quality was assessed using CT-determined Hounsfield units (VAT-HU). Associations between the variables investigated and VAT quality and quantity were analyzed. Cohort 2 included 271 patients who underwent chemotherapy. Associations between the variables investigated and survival outcomes after chemotherapy were analyzed via retrospective chart review. RESULTS In cohort 1, aVAT was significantly correlated with insulin and HOMA-R levels. As body mass index (BMI) class increased, mean IGF-1 increased and mean IGFBP3 decreased, but these trends were not statistically significant. In cohort 2, aVAT was significantly positively correlated with BMI. The patients in the third aVAT tertiles had significantly shorter distant disease-free survival (dDFS) after neoadjuvant chemotherapy setting. In multivariate analysis, aVAT and VAT-HU were significantly associated with shorter dDFS. CONCLUSIONS High aVAT and low-quality VAT were associated with poor survival outcome, increased insulin levels, and insulin resistance. The present study suggests the importance of evaluating the quality and quantity of VAT when estimating insulin resistance and treatment outcomes.
Collapse
Affiliation(s)
- Toshiaki Iwase
- Department of Breast Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Takafumi Sangai
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hiroshi Fujimoto
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Yuji Sawabe
- Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kengo Nagashima
- Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Yasunori Sato
- Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Ayako Nakagawa
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Takahito Masuda
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Takeshi Nagashima
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
41
|
Zhang W, Tang XH, Zhang JJ, He Q. miR145 Regulates the Proliferation and Apoptosis of Rat Vascular Endothelial Cells under Hyperglycemia by Targeting the ANGPT2 Gene and Involving the NFκB Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:4435-4446. [PMID: 33239896 PMCID: PMC7680677 DOI: 10.2147/dmso.s273451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE A majority of diabetes mellitus patients with disturbances of glucose metabolism present with vascular complications. This study aimed to explore regulatory mechanisms of miR145 and its potential target gene ANGPT2 on diabetic vasculopathy under hyperglycemia. METHODS Based on the fact that miR145 is detected in rat aortic endothelial cells (RAECs) under hyperglycemia, RAECs were transfected with miR145 mimics/inhibitor for further confirmation. RAEC proliferation was detected with CCK8 assays, and cell apoptosis and CD34+-cell population with annexinV-PI staining and anti-CD34FITC on flow cytometry, respectively. Then, qPCR and Western blot were applied to detect mRNA and protein expression of ANGPT2 and involved pathway factor NFκB p65. Subsequently, dual luciferase-reporter gene analysis was utilized to verify whether miR145 acted directly upon the 3'UTR of ANGPT2 mRNA. RESULTS The ANGPT2 gene was confirmed to be a direct target of miR145. miR145 mimics markedly downregulated the expression of ANGPT2 and NFκB p65, boosted the percentage of the CD34+ phenotype, and promoted proliferation and suppressed apoptosis of RAECs under hyperglycemia. CONCLUSION miR145 might regulate the viability of RAECs via targeting ANGPT2 and involving NFκB signaling to exert a protective effect on diabetic vasculature.
Collapse
Affiliation(s)
- Wen Zhang
- Clinical Medical Research Center and Yunnan Provincial Key Laboratory of Clinical Virology (2018DG010), First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan650032, People’s Republic of China
| | - Xin-Hua Tang
- Center of Genetic Diagnosis, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan650032, People’s Republic of China
| | - Jin-Juan Zhang
- Kunming Institute of Zoology, Chinese Academy of Science (CAS), Kunming, Yunnan, 650223, People’s Republic of China
| | - Quan He
- Emergency Department, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
- Correspondence: Quan He Emergency Department, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming650032, Yunnan Province, People’s Republic of ChinaTel +86 871 6363 9921Fax +86 871 6362 7731 Email
| |
Collapse
|
42
|
Ma MM, Jin CC, Huang XL, Sun L, Zhou H, Wen XJ, Huang XQ, Du JY, Sun HS, Ren ZX, Liu J, Guan YY, Zhao XM, Wang GL. Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin 2019; 40:1532-1543. [PMID: 31165783 PMCID: PMC7470880 DOI: 10.1038/s41401-019-0229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs) and ATM-driven inflammatory responses that promote the development of glucose and lipid metabolism disorders. ClC-3 chloride channel/antiporter, encoded by the Clcn3, is critical for some basic cellular functions. Our previous work has shown significant alleviation of type 2 diabetes in Clcn3 knockout (Clcn3−/−) mice. In the present study we investigated the role of Clcn3 in high-fat diet (HFD)-induced obesity and ATM inflammation. To establish the mouse obesity model, both Clcn3−/− mice and wild-type mice were fed a HFD for 4 or 16 weeks. The metabolic parameters were assessed and the abdominal total adipose tissue was scanned using computed tomography. Their epididymal fat pad tissue and adipose tissue stromal vascular fraction (SVF) cells were isolated for analyses. We found that the HFD-fed Clcn3−/− mice displayed a significant decrease in obesity-induced body weight gain and abdominal visceral fat accumulation as well as an improvement of glucose and lipid metabolism as compared with HFD-fed wild-type mice. Furthermore, the Clcn3 deficiency significantly attenuated HFD-induced ATM accumulation, HFD-increased F4/80+ CD11c+ CD206− SVF cells as well as HFD-activated TLR-4/NF-κB signaling in epididymal fat tissue. In cultured human THP-1 macrophages, adenovirus-mediated transfer of Clcn3 specific shRNA inhibited, whereas adenovirus-mediated cDNA overexpression of Clcn3 enhanced lipopolysaccharide-induced activation of NF-κB and TLR-4. These results demonstrate a novel role for Clcn3 in HFD-induced obesity and ATM inflammation.
Collapse
|
43
|
Song SB, Park JS, Chung GJ, Lee IH, Hwang ES. Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics 2019; 15:137. [PMID: 31587111 DOI: 10.1007/s11306-019-1604-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nicotinamide (NAM) is a form of vitamin B3 that, when administered at near-gram doses, has been shown or suggested to be therapeutically effective against many diseases and conditions. The target conditions are incredibly diverse ranging from skin disorders such as bullous pemphigoid to schizophrenia and depression and even AIDS. Similar diversity is expected for the underlying mechanisms. In a large portion of the conditions, NAM conversion to nicotinamide adenine dinucleotide (NAD+) may be a major factor in its efficacy. The augmentation of cellular NAD+ level not only modulates mitochondrial production of ATP and superoxide, but also activates many enzymes. Activated sirtuin proteins, a family of NAD+-dependent deacetylases, play important roles in many of NAM's effects such as an increase in mitochondrial quality and cell viability countering neuronal damages and metabolic diseases. Meanwhile, certain observed effects are mediated by NAM itself. However, our understanding on the mechanisms of NAM's effects is limited to those involving certain key proteins and may even be inaccurate in some proposed cases. AIM OF REVIEW This review details the conditions that NAM has been shown to or is expected to effectively treat in humans and animals and evaluates the proposed underlying molecular mechanisms, with the intention of promoting wider, safe therapeutic application of NAM. KEY SCIENTIFIC CONCEPTS OF REVIEW NAM, by itself or through altering metabolic balance of NAD+ and tryptophan, modulates mitochondrial function and activities of many molecules and thereby positively affects cell viability and metabolic functions. And, NAM administration appears to be quite safe with limited possibility of side effects which are related to NAM's metabolites.
Collapse
Affiliation(s)
- Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Jin Sung Park
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Gu June Chung
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seoul, Republic of Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Li N, Ding H, Zhang P, Li Z, Liu Y, Wang P. Attenuated BK channel function promotes overactive bladder in a rat model of obesity. Aging (Albany NY) 2019; 11:6199-6216. [PMID: 31480021 PMCID: PMC6738405 DOI: 10.18632/aging.102182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022]
Abstract
Overactive bladder (OAB) is mostly observed in obese individuals, and is associated with enhanced excitability and contractility of the detrusor smooth muscle (DSM). Large-conductance voltage- and Ca2+-activated K+ (BK) channels reduce the excitability and contractility of the DSM. We tested whether obesity-induced OAB is associated with altered BK channel expression and activity in the DSM. Seven-week-old female Sprague-Dawley rats (N=80) were fed a normal or high-fat diet (HFD) for 12 weeks. HFD-fed rats exhibited a higher average bodyweight and urodynamically established detrusor overactivity. mRNA levels of the Kcnma1 (BKα subunit) and Kcnmb1 (BKβ1 subunit) in whole tissues and cells from the DSM were reduced in HFD-fed rats. A selective BK channel opener, NS1619, was then applied to DSM cells from the two groups of rats. Patch-clamp techniques revealed that spontaneous transient outward currents, NS1619-induced activation of spontaneous transient outward currents, and whole-cell BK currents, as well as NS1619-induced membrane hyperpolarization, were attenuated in DSM cells from HFD-fed rats. The relaxation effect of NS1619 on contractility was reduced in DSM strips from HFD-fed rats. Thus, impaired expression of Kcnma1 and Kcnmb1 in the DSM contributes to obesity-induced OAB, suggesting that BK channels could be a useful treatment targets in OAB.
Collapse
Affiliation(s)
- Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Honglin Ding
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.,Department of Urology, Affiliated Hospital, Chifeng University, Chifeng, Neimeng, China
| | - Peng Zhang
- Department of General Surgery, Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Zizheng Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yili Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
45
|
Association of IL-10 to coronary disease severity in patients with metabolic syndrome. Clin Chim Acta 2019; 495:394-398. [DOI: 10.1016/j.cca.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/27/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
|
46
|
Rubinow KB, Houston B, Wang S, Goodspeed L, Ogimoto K, Morton GJ, McCarty C, Braun RE, Page ST. Androgen receptor deficiency in monocytes/macrophages does not alter adiposity or glucose homeostasis in male mice. Asian J Androl 2019; 20:276-283. [PMID: 29205180 PMCID: PMC5952483 DOI: 10.4103/aja.aja_54_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Androgen deprivation in men leads to increased adiposity, but the mechanisms underlying androgen regulation of fat mass have not been fully defined. Androgen receptor (AR) is expressed in monocytes/macrophages, which are resident in key metabolic tissues and influence energy metabolism in surrounding cells. Male mice bearing a cell-specific knockout of the AR in monocytes/macrophages (M-ARKO) were generated to determine whether selective loss of androgen signaling in these cells would lead to altered body composition. Wild-type (WT) and M-ARKO mice (12–22 weeks of age, n = 12 per group) were maintained on a regular chow diet for 8 weeks and then switched to a high-fat diet for 8 additional weeks. At baseline and on both the regular chow and high-fat diets, no differences in lean mass or fat mass were observed between groups. Consistent with the absence of differential body weight or adiposity, no differences in food intake (3.0 ± 0.5 g per day for WT mice vs 2.8 ± 0.4 g per day for M-ARKO mice) or total energy expenditure (0.6 ± 0.1 Kcal h−1 for WT mice vs 0.5 ± 0.1 Kcal h−1 for M-ARKO mice) were evident between groups during high-fat feeding. Liver weight was greater in M-ARKO than that in WT mice (1.5 ± 0.1 g vs 1.3 ± 0.0 g, respectively, P = 0.02). Finally, M-ARKO mice did not exhibit impairments in glucose tolerance or insulin sensitivity relative to WT mice at any study time point. In aggregate, these findings suggest that AR signaling specifically in monocytes/macrophages does not contribute to the regulation of systemic energy balance, adiposity, or insulin sensitivity in male mice.
Collapse
Affiliation(s)
- Katya B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Barbara Houston
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Leela Goodspeed
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kayoko Ogimoto
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gregory J Morton
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | - Stephanie T Page
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Dietary supplementation with blueberry partially restores T-cell-mediated function in high-fat-diet-induced obese mice. Br J Nutr 2019; 119:1393-1399. [PMID: 29845904 DOI: 10.1017/s0007114518001034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blueberry, rich in antioxidant and anti-inflammatory phytochemicals, has been demonstrated to lower inflammatory status in adipose induced by high-fat diet (HFD) and obesity. The effect of blueberry on systemic immune functions has not been examined. C57BL/6 mice were randomised to one of three diets - low-fat diet (LFD), HFD and HFD plus 4 % (w/w) blueberry (HFD+B) - for 8 or 12 weeks. Ex vivo T-cell mitogens (concanavalin A (Con A); phytohaemagglutinin), T-cell antibody (anti-CD3; anti-CD3/CD28)-stimulated T-cell proliferation and cytokine production were assessed. After 8 weeks, both HFD groups weighed more (>4 g) than the LFD group; after 12 weeks, HFD+B-fed mice weighed more (>6 g) and had 41 % more adipose tissue than HFD-fed mice (P<0·05). After 12 weeks, T-cell proliferation was less in both HFD groups, compared with the LFD group. HFD-associated decrements in T-cell proliferation were partially (10-50 %) prevented by blueberry supplementation. At 12 weeks, splenocytes from HFD mice, but not from HFD+B mice, produced 51 % less IL-4 (CD3/CD28) and 57 % less interferon-γ (Con A) compared with splenocytes from LFD mice (P<0·05). In response to lipopolysaccharide challenge, splenocytes from both HFD groups produced 24-30 % less IL-6 and 27-33 % less TNF-α compared with splenocytes from LFD mice (P<0·05), indicating impaired acute innate immune response. By demonstrating deleterious impacts of HFD feeding on T-cell proliferation and splenocyte immune responses, our results provide insights into how HFD/obesity can disrupt systemic immune function. The protective effects of blueberry suggest that dietary blueberry can buttress T-cell and systemic immune function against HFD-obesity-associated insults.
Collapse
|
48
|
Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR. Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem 2019; 68:16-32. [PMID: 31005847 DOI: 10.1016/j.jnutbio.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic and tissue-specific inflammation has a profound influence on regulation of metabolism, and therefore, strategies to reduce inflammation are of special interest in prevention and treatment of obesity and type 2 diabetes (T2D). Antiobesity and antidiabetic properties of Momordica charantia (bitter melon, BM) have been linked to its protective effects on inflammation and gut microbial dysbiosis. We investigated the mechanisms by which freeze-dried BM juice reduces adipose inflammation in mice fed a 60% high-fat diet (HFD) for 16 weeks. Although earlier studies indicated that BM inhibited recruitment of macrophages (Mφ) infiltration in adipose tissue of rodents and reduced NF-kB and IL-1β secretions, the mechanisms remain unknown. We demonstrate that freeze-dried BM juice inhibits recruitment of Mφ into adipose tissue and its polarization to inflammatory phenotype possibly due to reduction of sphingokinase 1 (SPK1) mRNA in HFD-fed mice. Furthermore, reduction of IL-1β secretion by freeze-dried BM juice in the adipose tissue of HFD-fed mice is correlated to alleviation of NLRP3 inflammasome components and their downstream signaling targets. We confirm previous observations that BM inhibited inflammation of colon and gut microbial dysbiosis in HFD-fed mice, which in part may be associated with the observed anti-inflammatory effects in adipose tissue if HFD-fed mice. Overall, functional foods such as BM may offer potential dietary interventions that may impact sterile inflammatory diseases such as obesity and T2D.
Collapse
Affiliation(s)
- Pratibha V Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Daniella Orias
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Natasha Soares
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology; Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
49
|
Wan S, Sun H. Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp Ther Med 2019; 17:3573-3579. [PMID: 30988739 PMCID: PMC6447820 DOI: 10.3892/etm.2019.7347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance and metabolic disorders are closely associated with low-grade chronic inflammation. Aberrant macrophage activation to M1 or M2 is characterized by a deleterious state of chronic inflammation and loss of positive trophic signals. Glucagon-like peptide-1 (GLP-1) is used to treat diabetes due to its beneficial role against insulin resistance. The present study examined the effect of GLP-1 on macrophage activation, which contributed to M2 polarization and secretion of anti-inflammatory factors. In addition, the present study demonstrated that GLP-1 was able to reduce M1 polarization and inflammatory response by using the murine monocyte/macrophage cell line RAW264.7 and detecting M1/M2-specific genes. RAW264.7 cells were incubated with GLP-1 in the presence or absence of lipopolysaccharide or interleukin-4, the c-Jun N-terminal kinase (JNK) and signal transduction and transcriptional activation factor 3 (STAT3) activity was assessed by quantification of phosphorylation expression and macrophage polarization was determined by detecting M1/M2-specific genes expression. The results demonstrated that GLP-1/GLP-1 receptor attenuated the phosphorylation of JNK and its signal transduction through the cyclic adenosine monophosphate/protein kinase A signaling pathway, while the phosphorylation of STAT3 increased through following treatment with GLP-1. The present study observed that GLP-1 exerts its beneficial effects on macrophage polarization by modulating the JNK/STAT3 signaling pathway. The present results also suggested that the effects of GLP-1 on endocrine and metabolic diseases are possibly mediated by modulation of signaling pathways, and provide a basis for pharmacologic targeting of macrophage activation and an insight into the molecular mechanisms involved in the progression of metabolic diseases.
Collapse
Affiliation(s)
- Shan Wan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
50
|
Rached MT, Millership SJ, Pedroni SMA, Choudhury AI, Costa ASH, Hardy DG, Glegola JA, Irvine EE, Selman C, Woodberry MC, Yadav VK, Khadayate S, Vidal-Puig A, Virtue S, Frezza C, Withers DJ. Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Mol Metab 2019; 20:38-50. [PMID: 30553769 PMCID: PMC6358539 DOI: 10.1016/j.molmet.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.
Collapse
Affiliation(s)
- Marie-Therese Rached
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Silvia M A Pedroni
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Darran G Hardy
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Justyna A Glegola
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Megan C Woodberry
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Vijay K Yadav
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; Department of Genetics and Development, Columbia University, New York, 10032, USA
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|