1
|
Tracey LJ, El-Maklizi M, Sokolowski DJ, Gams MS, Brooke-Bisschop T, Ruston J, Taylor C, Khozin A, Rajakumar SA, Wilson MD, Guidos CJ, Justice MJ. Functional and molecular single-cell analyses implicate PRDM14 in the initiation of B cell leukemia in mice. Sci Rep 2025; 15:8827. [PMID: 40087379 PMCID: PMC11909259 DOI: 10.1038/s41598-025-93043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The transcription factor Prdm14 is a potent oncogene implicated in the initiation of many cancers. PRDM14 resets and maintains the pluripotent state in normal cells, but the molecular mechanisms through which PRDM14 drives oncogenesis are poorly understood. Here, we interrogated the heterogeneity of Prdm14-expressing cells in a T cell lymphoblastic leukemia/lymphoma mouse model. Using mass cytometry (CyTOF) of bone marrow at a pre-leukemic timepoint, an unexpected abnormal progenitor B cell population was identified. Prdm14-expressing progenitor B cells demonstrated short-term self-renewal and a block in differentiation when transferred to syngeneic hosts. Consistently, aged host mice succumb to a highly penetrant B-LL. Single-cell RNA-seq analyses suggests that the expression signature of these pre-leukemia cells is more consistent with that of B-1 cells than B-2 cells. B-1 cells are a self-renewing population of unconventional B cells established during embryonic development. Overlaying the chromatin binding of transcriptional marks H3K4me1 and H3K4me3 with PRDM14 suggests that PRDM14 initiates cancers through promiscuous DNA binding, activating oncogenic pathways and skewing development towards a self-renewing B-1-like phenotype. Together, our data show that Prdm14 can initiate premature T and B cell cancer programs when expressed in hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mahmoud El-Maklizi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Dustin J Sokolowski
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Miki S Gams
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Travis Brooke-Bisschop
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julie Ruston
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Christine Taylor
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alexandra Khozin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Sujeetha A Rajakumar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Ugalde-Morales E, Wilf R, Pluta J, Ploner A, Fan M, Damra M, Aben KK, Anson-Cartwright L, Chen C, Cortessis VK, Daneshmand S, Ferlin A, Gamulin M, Gietema JA, Gonzalez-Niera A, Grotmol T, Hamilton RJ, Harland M, Haugen TB, Hauser R, Hildebrandt MAT, Karlsson R, Kiemeney LA, Kim J, Lessel D, Lothe RA, Loveday C, Chanock SJ, McGlynn KA, Meijer C, Nead KT, Nsengimana J, Popovic M, Rafnar T, Richiardi L, Rocca MS, Schwartz SM, Skotheim RI, Stefansson K, Stewart DR, Turnbull C, Vaughn DJ, Winge SB, Zheng T, Monteiro AN, Almstrup K, Kanetsky PA, Nathanson KL, Wiklund F. Identification of genes associated with testicular germ cell tumor susceptibility through a transcriptome-wide association study. Am J Hum Genet 2025; 112:630-643. [PMID: 39999848 PMCID: PMC11947167 DOI: 10.1016/j.ajhg.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Transcriptome-wide association studies (TWASs) have the potential to identify susceptibility genes associated with testicular germ cell tumors (TGCTs). We conducted a comprehensive TGCT TWAS by integrating genome-wide association study (GWAS) summary data with predicted expression models from normal testis, TGCT tissues, and a cross-tissue panel that encompasses shared regulatory features across 22 normal tissues, including the testis. Gene associations were evaluated while accounting for variant-level effects from GWASs, followed by fine-mapping analyses in regions exhibiting multiple TWAS signals, and finally supplemented by colocalization analysis. Expression and protein patterns of identified TWAS genes were further examined in relevant tissues. Our analysis tested 19,805 gene-disease links, revealing 165 TGCT-associated genes with a false discovery rate of less than 0.01. We prioritized 46 candidate genes by considering GWAS-inflated signals, correlations between neighboring genes, and evidence of colocalization. Among these, 23 genes overlap with 22 GWAS loci, with 7 being associations not previously implicated in TGCT risk. Additionally, 23 genes located within 21 loci are at least 1 Mb away from published GWAS index variants. The 46 prioritized genes display expression levels consistent with expected expression levels in human gonadal cell types and precursor tumor cells and significant enrichment in TGCTs. Additionally, immunohistochemistry revealed protein-level accumulation of two candidate genes, ARID3B and GINM1, in both precursor and tumor cells. These findings enhance our understanding of the genetic predisposition to TGCTs and underscore the importance of further functional investigations into these candidate genes.
Collapse
Affiliation(s)
- Emilio Ugalde-Morales
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Rona Wilf
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Mengyao Fan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammad Damra
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katja K Aben
- Netherlands Comprehensive Cancer Organization, Radboud University Medical Center, Utrecht, the Netherlands; Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Chu Chen
- Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K Cortessis
- Departments of Preventive Medicine and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siamak Daneshmand
- Departments of Urology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Department of Medicine, University of Padova, Padua, Italy
| | - Marija Gamulin
- Department of Oncology, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Gonzalez-Niera
- Human Genotyping Core Unit, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Tom Grotmol
- Cancer Registry of Norway, Oslo Metropolitan University, Oslo, Norway
| | | | - Mark Harland
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B Haugen
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michelle A T Hildebrandt
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Davor Lessel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK; William Harvey Research Institute, Queen Mary University, London, UK
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kevin T Nead
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | | | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Maria S Rocca
- Department of Medicine, University of Padova, Padua, Italy
| | - Stephen M Schwartz
- Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | | | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Clare Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - David J Vaughn
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofia B Winge
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Almeida AA, Wojt A, Metayer C, Kanetsky PA, Graubard BI, Alvarez CS, McGlynn KA. Racial/ethnic differences in trends of testicular germ cell tumor incidence in the United States, 1992-2021. Cancer 2025; 131:e35706. [PMID: 39760469 DOI: 10.1002/cncr.35706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) are the most common cancers among young men in the United States. Incidence rates among non-Hispanic White (NHW) men historically have been much higher than the rates among other men. To study whether this pattern had changed, the authors examined trends in TGCT incidence for the years 1992-2021. METHODS By using the Surveillance, Epidemiology, and End Results 12 registries database, age-standardized incidence rates per 100,000 person-years and 95% confidence intervals (CIs) were calculated overall and by histologic type (seminoma and nonseminoma), age, stage at diagnosis, and race/ethnicity. Trends in 5-year survival also were examined. RESULTS The age-standardized incidence rate of TGCT per 100,000 person-years increased from 4.71 (95% CI, 4.39-5.05) in 1992 to 6.22 (95% CI, 5.88-6.58) in 2021. The rates increased for both seminoma (average annual percent change [AAPC], 0.57%; 95% CI, 0.40%-0.75%) and nonseminoma (AAPC, 1.41%; 95% CI, 1.17%-1.64%) and among all race/ethnic groups, although the rates stabilized among NHW men. Increases in incidence were greatest among Hispanic men (AAPC, 3.03%; 95% CI, 2.66%-3.40%), who had one of the youngest median ages at diagnosis and were more likely to be diagnosed at advanced stages compared with NHW men. Seminoma and nonseminoma rates among Hispanic men converged over the study period, whereas seminoma rates remained higher among most other groups. CONCLUSIONS Hispanic men now have the highest TGCT incidence rates in the United States, although the rates increased among all groups between 1992 and 2021. Racial/ethnic differences in rates require further investigation.
Collapse
Affiliation(s)
- Andrea A Almeida
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Aika Wojt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine Metayer
- Department of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian S Alvarez
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
5
|
Dou X, Ma X, Meng W, Zhang W, Yang S, Niu F, Xiong Y, Jin T. HEATR3 involved in the cell proliferation, metastasis and cell cycle development of bladder cancer acts as a tumor suppressor. Mol Genet Genomics 2023; 298:1353-1364. [PMID: 37518364 DOI: 10.1007/s00438-023-02046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/04/2023] [Indexed: 08/01/2023]
Abstract
The study was designed to detect the expression and clinical significance of the HEATR3 gene in bladder cancer (BCa) and to preliminarily explore whether this gene can affect the occurrence and development of BCa through the AKT/ERK signaling pathway. The expression and prognostic value of HEATR3 were explored based on The Cancer Genome Atlas (TCGA) and Genotypic Tissue Expression (GTEx) databases. Microarray immunohistochemical analysis was performed in 30 BCa cases to investigate the level of HEATR3 protein and to explore the relationship between HEATR3 and the clinicopathological features of BCa. Western Blot and qRT-PCR were used to detect HEATR3 protein and mRNA in BCa cell lines (5637, TCCSUP, SW780) and fallopian tube epithelial cell (SV-HUC-1). CCK8 method was employed to study the proliferation of BCa cells after heat treatment. Transwell assay was conducted to analyze the effect of HEATR3 on cell migration and invasion. And cell cycle and apoptosis were detected by flow cytometry. Furthermore, Western Blot assay was used to probe the effects of down-regulation of HEATR3 expression on the expression and phosphorylation levels of AKT and ERK proteins in BCa cells. Bioinformatics analysis showed that HEATR3 was significantly up-regulated in BCa, and high HEATR3 expression was associated with poor prognosis of BCa patients. In vitro experiments demonstrated that HEATR3 expression was up-regulated in BCa tissues compared with that in adjacent tissues. HEATR3 protein was also up-regulated in malignant cell lines. HEATR3 knockdown in BCa cells could inhibit cell proliferation, invasion and migration, block cell cycle and promote cell apoptosis. At the same time, HEATR3 knockdowns reduced the expression levels of p-AKT and p-ERK proteins. HEATR3 knockdown inhibits the development of BCa cells through the AKT/ERK signaling pathway. and it may become one of the most promising molecular targets for BCa treatment.
Collapse
Affiliation(s)
- Xia Dou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenting Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenjie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Shuangyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
6
|
Yazici S, Del Biondo D, Napodano G, Grillo M, Calace FP, Prezioso D, Crocetto F, Barone B. Risk Factors for Testicular Cancer: Environment, Genes and Infections-Is It All? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040724. [PMID: 37109682 PMCID: PMC10145700 DOI: 10.3390/medicina59040724] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
The incidence of testicular cancer is steadily increasing over the past several decades in different developed countries. If on one side better diagnosis and treatment have shone a light on this disease, on the other side, differently from other malignant diseases, few risk factors have been identified. The reasons for the increase in testicular cancer are however unknown while risk factors are still poorly understood. Several studies have suggested that exposure to various factors in adolescence as well as in adulthood could be linked to the development of testicular cancer. Nevertheless, the role of environment, infections, and occupational exposure are undoubtedly associated with an increase or a decrease in this risk. The aim of this narrative review is to summarize the most recent evidence regarding the risk factors associated with testicular cancer, starting from the most commonly evaluated (cryptorchidism, family history, infections) to the newer identified and hypothesized risk factors.
Collapse
Affiliation(s)
- Sertac Yazici
- Department of Urology, Hacettepe University School of Medicine, 06230 Ankara, Turkey
| | - Dario Del Biondo
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
| | - Giorgio Napodano
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
| | - Marco Grillo
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Paolo Calace
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Domenico Prezioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
7
|
Burmeister A, Stephan A, Alves Avelar LA, Müller MR, Seiwert A, Höfmann S, Fischer F, Torres-Gomez H, Hoffmann MJ, Niegisch G, Bremmer F, Petzsch P, Köhrer K, Albers P, Kurz T, Skowron MA, Nettersheim D. Establishment and Evaluation of Dual HDAC/BET Inhibitors as Therapeutic Options for Germ Cell Tumors and Other Urological Malignancies. Mol Cancer Ther 2022; 21:1674-1688. [PMID: 35999659 PMCID: PMC9630828 DOI: 10.1158/1535-7163.mct-22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Urological malignancies represent major challenges for clinicians, with annually rising incidences. In addition, cisplatin treatment induced long-term toxicities and the development of therapy resistance emphasize the need for novel therapeutics. In this study, we analyzed the effects of novel histone deacetylase (HDAC) and bromodomain and extraterminal domain-containing (BET) inhibitors to combine them into a potent HDAC-BET-fusion molecule and to understand their molecular mode-of-action. Treatment of (cisplatin-resistant) germ cell tumors (GCT), urothelial, renal, and prostate carcinoma cells with the HDAC, BET, and dual inhibitors decreased cell viability, induced apoptosis, and affected the cell cycle. Furthermore, a dual inhibitor considerably decreased tumor burden in GCT xenograft models. On a molecular level, correlating RNA- to ATAC-sequencing data indicated a considerable induction of gene expression, accompanied by site-specific changes of chromatin accessibility after HDAC inhibitor application. Upregulated genes could be linked to intra- and extra-cellular trafficking, cellular organization, and neuronal processes, including neuroendocrine differentiation. Regarding chromatin accessibility on a global level, an equal distribution of active or repressed DNA accessibility has been detected after HDAC inhibitor treatment, questioning the current understanding of HDAC inhibitor function. In summary, our HDAC, BET, and dual inhibitors represent a new treatment alternative for urological malignancies. Furthermore, we shed light on new molecular and epigenetic mechanisms of the tested epi-drugs, allowing for a better understanding of the underlying modes-of-action and risk assessment for the patient.
Collapse
Affiliation(s)
- Aaron Burmeister
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leandro A. Alves Avelar
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie R. Müller
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Seiwert
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Höfmann
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabian Fischer
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hector Torres-Gomez
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Urological Research Laboratory, Bladder Cancer Group, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Guenter Niegisch
- Department of Urology, Urological Research Laboratory, Bladder Cancer Group, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory (GTL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory (GTL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Kurz
- Department of Pharmaceutical and Medical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Corresponding Authors: Daniel Nettersheim, University Hospital Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany. Phone: 49-021-1811-5844; E-mail: ; and Margaretha A. Skowron,
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Corresponding Authors: Daniel Nettersheim, University Hospital Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany. Phone: 49-021-1811-5844; E-mail: ; and Margaretha A. Skowron,
| |
Collapse
|
8
|
Yan A, Xiong J, Zhu J, Li X, Xu S, Feng X, Ke X, Wang Z, Chen Y, Wang HW, Zhang MQ, Kee K. DAZL regulates proliferation of human primordial germ cells by direct binding to precursor miRNAs and enhances DICER processing activity. Nucleic Acids Res 2022; 50:11255-11272. [PMID: 36273819 PMCID: PMC9638919 DOI: 10.1093/nar/gkac856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 03/20/2025] Open
Abstract
Understanding the molecular and cellular mechanisms of human primordial germ cells (hPGCs) is essential in studying infertility and germ cell tumorigenesis. Many RNA-binding proteins (RBPs) and non-coding RNAs are specifically expressed and functional during hPGC developments. However, the roles and regulatory mechanisms of these RBPs and non-coding RNAs, such as microRNAs (miRNAs), in hPGCs remain elusive. In this study, we reported a new regulatory function of DAZL, a germ cell-specific RBP, in miRNA biogenesis and cell proliferation. First, DAZL co-localized with miRNA let-7a in human PGCs and up-regulated the levels of >100 mature miRNAs, including eight out of nine let-7 family, miR21, miR22, miR125, miR10 and miR199. Purified DAZL directly bound to the loops of precursor miRNAs with sequence specificity of GUU. The binding of DAZL to the precursor miRNA increased the maturation of miRNA by enhancing the cleavage activity of DICER. Furthermore, cell proliferation assay and cell cycle analysis confirmed that DAZL inhibited the proliferation of in vitro PGCs by promoting the maturation of these miRNAs. Evidently, the mature miRNAs up-regulated by DAZL silenced cell proliferation regulators including TRIM71. Moreover, DAZL inhibited germline tumor cell proliferation and teratoma formation. These results demonstrate that DAZL regulates hPGC proliferation by enhancing miRNA processing.
Collapse
Affiliation(s)
- An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Xiong
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiadong Zhu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shuting Xu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin Ke
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,China
| | - Zhenyi Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, RL11, Richardson, TX 75080-3021, USA
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Corpas M, Megy K, Metastasio A, Lehmann E. Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Med Genomics 2022; 15:207. [PMID: 36192731 PMCID: PMC9531350 DOI: 10.1186/s12920-022-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. CASE PRESENTATION We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. CONCLUSIONS Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK.
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja, Madrid, Spain.
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Department of Haematology, University of Cambridge & NHS Blood and Transplant, Cambridge, UK
| | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumours (TGCTs) are the most common solid malignant cancer diagnosed in young males and the incidence is increasing. Understanding the genetic basis of this disease will help us to navigate the challenges of early detection, diagnosis, treatment, surveillance, and long-term outcomes for patients. RECENT FINDINGS TGCTs are highly heritable. Current understanding of germline risk includes the identification of one moderate-penetrance predisposition gene, checkpoint kinase 2 (CHEK2), and 78 low-to-moderate-risk single nucleotide polymorphisms identified in genome-wide-associated studies, which account for 44% of familial risk. Biomarker research in TGCTs has been challenging for multiple reasons: oncogenesis is complex, actionable mutations are uncommon, clonal evolution unpredictable and tumours can be histologically and molecularly heterogeneous. Three somatic mutations have thus far been identified by DNA exome sequencing, exclusively in seminomas: KIT, KRAS and NRAS. Several genetic markers appear to be associated with risk of TGCT and treatment resistance. TP53 mutations appear to be associated with platinum resistance. MicroRNA expression may be a useful biomarker of residual disease and relapse in future. SUMMARY The biology of testicular germ cells tumours is complex, and further research is needed to fully explain the high heritability of these cancers, as well as the molecular signatures which may drive their biological behaviour.
Collapse
|
11
|
Cigan SS, Meredith JJ, Kelley AC, Yang T, Langer EK, Hooten AJ, Lane JA, Cole BR, Krailo M, Frazier AL, Pankratz N, Poynter JN. Predicted leukocyte telomere length and risk of germ cell tumours. Br J Cancer 2022; 127:301-312. [PMID: 35368045 PMCID: PMC9296514 DOI: 10.1038/s41416-022-01798-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Genetically predicted leukocyte telomere length (LTL) has been evaluated in several studies of childhood and adult cancer. We test whether genetically predicted longer LTL is associated with germ cell tumours (GCT) in children and adults. METHODS Paediatric GCT samples were obtained from a Children's Oncology Group study and state biobank programs in California and Michigan (N = 1413 cases, 1220 biological parents and 1022 unrelated controls). Replication analysis included 396 adult testicular GCTs (TGCT) and 1589 matched controls from the UK Biobank. Mendelian randomisation was used to look at the association between genetically predicted LTL and GCTs and TERT variants were evaluated within GCT subgroups. RESULTS We identified significant associations between TERT variants reported in previous adult TGCT GWAS in paediatric GCT: TERT/rs2736100-C (OR = 0.82; P = 0.0003), TERT/rs2853677-G (OR = 0.80; P = 0.001), and TERT/rs7705526-A (OR = 0.81; P = 0.003). We also extended these findings to females and tumours outside the testes. In contrast, we did not observe strong evidence for an association between genetically predicted LTL by other variants and GCT risk in children or adults. CONCLUSION While TERT is a known susceptibility locus for GCT, our results suggest that LTL predicted by other variants is not strongly associated with risk in either children or adults.
Collapse
Affiliation(s)
- Shannon S Cigan
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - John J Meredith
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ava C Kelley
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tianzhong Yang
- Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erica K Langer
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony J Hooten
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John A Lane
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Benjamin R Cole
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark Krailo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Nathan Pankratz
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny N Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
12
|
O'Donohue MF, Da Costa L, Lezzerini M, Unal S, Joret C, Bartels M, Brilstra E, Scheijde-Vermeulen M, Wacheul L, De Keersmaecker K, Vereecke S, Labarque V, Saby M, Lefevre SD, Platon J, Montel-Lehry N, Laugero N, Lacazette E, van Gassen K, Houtkooper RH, Simsek-Kiper PO, Leblanc T, Yarali N, Cetinkaya A, Akarsu NA, Gleizes PE, Lafontaine DLJ, MacInnes AW. HEATR3 variants impair nuclear import of uL18 (RPL5) and drive Diamond-Blackfan anemia. Blood 2022; 139:3111-3126. [PMID: 35213692 PMCID: PMC9136880 DOI: 10.1182/blood.2021011846] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.
Collapse
Affiliation(s)
- Marie-Françoise O'Donohue
- MCD, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), UT3, Toulouse, France
| | - Lydie Da Costa
- University of Paris Cité, Paris, France
- Hematim EA4666, Amiens, France
- Laboratory of Excellence for Red Cells, LABEX GR-Ex, Paris, France
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Marco Lezzerini
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, The Netherlands
| | - Sule Unal
- Pediatric Hematology Unit, Department of Pediatrics, Medical Faculty, and
- Research Center on Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Hacettepe University, Ankara, Turkey
| | - Clément Joret
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | | | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, Katholieke Universiteit Leuven (KU Leuven) and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Stijn Vereecke
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, Katholieke Universiteit Leuven (KU Leuven) and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Veerle Labarque
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Sophie D Lefevre
- Laboratory of Excellence for Red Cells, LABEX GR-Ex, Paris, France
- UMR S1134, INSERM, Paris, France
| | | | - Nathalie Montel-Lehry
- MCD, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), UT3, Toulouse, France
| | | | - Eric Lacazette
- UMR 1297-I2MC, INSERM, Université de Toulouse, Toulouse, France
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Riekelt H Houtkooper
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, The Netherlands
| | - Pelin Ozlem Simsek-Kiper
- Pediatric Genetics Unit, Department of Pediatrics, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Thierry Leblanc
- Immuno-Hematology Department, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
- EA-3518, Université Paris Cité, Paris, France
| | - Nese Yarali
- Pediatric Hematology Unit, Department of Pediatrics, Medical Faculty, Yildirim Beyazit University, Ankara, Turkey; and
| | - Arda Cetinkaya
- Department of Medical Genetics, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Nurten A Akarsu
- Department of Medical Genetics, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Pierre-Emmanuel Gleizes
- MCD, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), UT3, Toulouse, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Alyson W MacInnes
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Kim M, Ly SH, Xie Y, Duronio GN, Ford-Roshon D, Hwang JH, Sulahian R, Rennhack JP, So J, Gjoerup O, Talamas JA, Grandclaudon M, Long HW, Doench JG, Sethi NS, Giannakis M, Hahn WC. YAP1 and PRDM14 converge to promote cell survival and tumorigenesis. Dev Cell 2022; 57:212-227.e8. [PMID: 34990589 PMCID: PMC8827663 DOI: 10.1016/j.devcel.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/15/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023]
Abstract
The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.
Collapse
Affiliation(s)
- Miju Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Seav Huong Ly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gina N Duronio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dane Ford-Roshon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Justin H Hwang
- Masonic Cancer Center and Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Rita Sulahian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan P Rennhack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan So
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica A Talamas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Yi X, Liao Y, Wen B, Li K, Dou Y, Savage SR, Zhang B. caAtlas: An immunopeptidome atlas of human cancer. iScience 2021; 24:103107. [PMID: 34622160 PMCID: PMC8479791 DOI: 10.1016/j.isci.2021.103107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Comprehensive characterization of tumor antigens is essential for the design of cancer immunotherapies, and mass spectrometry (MS)-based immunopeptidomics enables high-throughput identification of major histocompatibility complex (MHC)-bound peptide antigens in vivo. Here we construct an immunopeptidome atlas of human cancer through an extensive collection of 43 published immunopeptidomic datasets and standardized analysis of 81.6 million MS/MS spectra using an open search engine. Our analysis greatly expands the current knowledge of MHC-bound antigens, including an unprecedented characterization of post-translationally modified antigens and their cancer-association. We also perform systematic analysis of cancer-testis antigens, cancer-associated antigens, and neoantigens. We make all these data together with annotated MS/MS spectra supporting identification of each antigen in an easily browsable web portal named cancer antigen atlas (caAtlas). caAtlas provides a central resource for the selection and prioritization of MHC-bound peptides for in vitro HLA binding assay and immunogenicity testing, which will pave the way to eventual development of cancer immunotherapies. Extensive collection of 43 immunopeptidomic datasets with 1018 samples Standardized and rigorous identification of HLA-bound peptides, including PTM peptides Comprehensive annotation of CT antigens and cancer-associated antigens User-friendly data dissemination through the caAtlas web portal
Collapse
Affiliation(s)
- Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Karimian M, Parvaresh L, Behjati M. Genetic variations as molecular diagnostic factors for idiopathic male infertility: current knowledge and future perspectives. Expert Rev Mol Diagn 2021; 21:1191-1210. [PMID: 34555965 DOI: 10.1080/14737159.2021.1985469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Infertility is a major health problem, worldwide, which affects 10-15% of couples. About half a percent of infertility cases are related to male-related factors. Male infertility is a complex disease that is the result of various insults as lifestyle issues, genetics, and epigenetic factors. Idiopathic infertility is responsible for 30% of total cases. The genetic factors responsible for male infertility include chromosomal abnormalities, deletions of chromosome Y, and mutations and genetic variations of key genes. AREAS COVERED In this review article, we aim to narrate performed studies on polymorphisms of essential genes involved in male infertility including folate metabolizing genes, oxidative stress-related genes, inflammation, and cellular pathways related to spermatogenesis. Moreover, possible pathophysiologic mechanisms responsible for genetic polymorphisms are discussed. EXPERT OPINION Analysis and assessment of these genetic variations could help in screening, diagnosis, and treatment of idiopathic male infertility.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Leila Parvaresh
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Pluta J, Pyle LC, Nead KT, Wilf R, Li M, Mitra N, Weathers B, D'Andrea K, Almstrup K, Anson-Cartwright L, Benitez J, Brown CD, Chanock S, Chen C, Cortessis VK, Ferlin A, Foresta C, Gamulin M, Gietema JA, Grasso C, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Hildebrandt MAT, Johnson ME, Karlsson R, Kiemeney LA, Lessel D, Lothe RA, Loud JT, Loveday C, Martin-Gimeno P, Meijer C, Nsengimana J, Quinn DI, Rafnar T, Ramdas S, Richiardi L, Skotheim RI, Stefansson K, Turnbull C, Vaughn DJ, Wiklund F, Wu X, Yang D, Zheng T, Wells AD, Grant SFA, Rajpert-De Meyts E, Schwartz SM, Bishop DT, McGlynn KA, Kanetsky PA, Nathanson KL. Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nat Commun 2021; 12:4487. [PMID: 34301922 PMCID: PMC8302763 DOI: 10.1038/s41467-021-24334-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.
Collapse
Affiliation(s)
- John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louise C Pyle
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin T Nead
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rona Wilf
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K Cortessis
- Departments of Preventive Medicine and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Endocrinology and Metabolism, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Marija Gamulin
- Department of Oncology, Division of Medical Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B Haugen
- Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Matthew E Johnson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jennifer T Loud
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - David I Quinn
- Division of Oncology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | | | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Clare Turnbull
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- William Harvey Research Institute, Queen Mary University, London, UK
| | - David J Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xifeng Wu
- School of Public Health, Zhejiang University, Zhejiang, China
| | - Daphne Yang
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Stephen M Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - D Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Integrated Analysis of the Roles of RNA Binding Proteins and Their Prognostic Value in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5568411. [PMID: 34306592 PMCID: PMC8263288 DOI: 10.1155/2021/5568411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Methods We downloaded the RNA sequencing data of ccRCC from the Cancer Genome Atlas (TCGA) database and identified differently expressed RBPs in different tissues. In this study, we used bioinformatics to analyze the expression and prognostic value of RBPs; then, we performed functional analysis and constructed a protein interaction network for them. We also screened out some RBPs related to the prognosis of ccRCC. Finally, based on the identified RBPs, we constructed a prognostic model that can predict patients' risk of illness and survival time. Also, the data in the HPA database were used for verification. Results In our experiment, we obtained 539 ccRCC samples and 72 normal controls. In the subsequent analysis, 87 upregulated RBPs and 38 downregulated RBPs were obtained. In addition, 9 genes related to the prognosis of patients were selected, namely, RPL36A, THOC6, RNASE2, NOVA2, TLR3, PPARGC1A, DARS, LARS2, and U2AF1L4. We further constructed a prognostic model based on these genes and plotted the ROC curve. This ROC curve performed well in judgement and evaluation. A nomogram that can judge the patient's life span is also made. Conclusion In conclusion, we have identified differentially expressed RBPs in ccRCC and carried out a series of in-depth research studies, the results of which may provide ideas for the diagnosis of ccRCC and the research of new targeted drugs.
Collapse
|
18
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
19
|
Between a Rock and a Hard Place: An Epigenetic-Centric View of Testicular Germ Cell Tumors. Cancers (Basel) 2021; 13:cancers13071506. [PMID: 33805941 PMCID: PMC8036638 DOI: 10.3390/cancers13071506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This minireview focuses on the role of epigenetics in testicular cancer. A working model is developed that postulates that epigenetic features that drive testicular cancer malignancy also enable these tumors to be cured at a high rate with chemotherapy. Chemoresistance may occur by epigenetic uncoupling of malignancy and chemosensitivity, a scenario that may be amenable to epigenetic-based therapies. Abstract Compared to many common solid tumors, the main genetic drivers of most testicular germ cell tumors (TGCTs) are unknown. Decades of focus on genomic alterations in TGCTs including awareness of a near universal increase in copies of chromosome 12p have failed to uncover exceptional driver genes, especially in genes that can be targeted therapeutically. Thus far, TGCT patients have missed out on the benefits of targeted therapies available to treat most other malignancies. In the past decade there has been a greater appreciation that epigenetics may play an especially prominent role in TGCT etiology, progression, and hypersensitivity to conventional chemotherapy. While genetics undoubtedly plays a role in TGCT biology, this mini-review will focus on the epigenetic “states” or features of testicular cancer, with an emphasis on DNA methylation, histone modifications, and miRNAs associated with TGCT susceptibility, initiation, progression, and response to chemotherapy. In addition, we comment on the current status of epigenetic-based therapy and epigenetic biomarker development for TGCTs. Finally, we suggest a unifying “rock and a hard place” or “differentiate or die” model where the tumorigenicity and curability of TGCTs are both dependent on common but still ill-defined epigenetic states.
Collapse
|
20
|
Bharti D, Tikka M, Lee SY, Bok EY, Lee HJ, Rho GJ. Female Germ Cell Development, Functioning and Associated Adversities under Unfavorable Circumstances. Int J Mol Sci 2021; 22:1979. [PMID: 33671303 PMCID: PMC7922109 DOI: 10.3390/ijms22041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
In the present era, infertility is one of the major issues which restricts many couples to have their own children. Infertility is the inability to achieve a clinical pregnancy after regular unprotected sexual intercourse for the period of one year or more. Various factors including defective male or female germ cell development, unhealthy and improper lifestyles, diseases like cancer and associated chemo-or-radiation therapies, congenital disorders, etc., may be responsible for infertility. Therefore, it is highly important to understand the basic concepts of germ cell development including primordial germ cell (PGC) formation, specification, migration, entry to genital ridges and their molecular mechanisms, activated pathways, paracrine and autocrine signaling, along with possible alteration which can hamper germ cell development and can cause adversities like cancer progression and infertility. Knowing all these aspects in a proper way can be very much helpful in improving our understanding about gametogenesis and finding possible ways to cure related disorders. Here in this review, various aspects of gametogenesis especially female gametes and relevant factors causing functional impairment have been thoroughly discussed.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Manisha Tikka
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala 147002, India;
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Hyeon-Jeong Lee
- Department of Medicine, University of California, San Diego, CA 92093-0021, USA;
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| |
Collapse
|
21
|
Lakpour N, Saliminejad K, Ghods R, Reza Sadeghi M, Pilatz A, Khosravi F, Madjd Z. Potential biomarkers for testicular germ cell tumour: Risk assessment, diagnostic, prognostic and monitoring of recurrence. Andrologia 2021; 53:e13998. [PMID: 33534171 DOI: 10.1111/and.13998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is considered a relatively rare malignancy usually occurring in young men between 15 and 35 years of age, and both genetic and environmental factors contribute to its development. The majority of patients are diagnosed in an early-stage of TGCTs with an elevated 5-year survival rate after therapy. However, approximately 25% of patients show an incomplete response to chemotherapy or tumours relapse. The current therapies are accompanied by several adverse effects, including infertility. Aside from classical serum biomarker, many studies reported novel biomarkers for TGCTs, but without proper validation. Cancer cells share many similarities with embryonic stem cells (ESCs), and since ESC genes are not transcribed in most adult tissues, they could be considered ideal candidate targets for cancer-specific diagnosis and treatment. Added to this, several microRNAs (miRNA) including miRNA-371-3p can be further investigated as a molecular biomarker for diagnosis and monitoring of TGCTs. In this review, we will illustrate the findings of recent investigations in novel TGCTs biomarkers applicable for risk assessment, screening, diagnosis, prognosis, prediction and monitoring of the relapse.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Wu Y, Wei X, Feng H, Hu B, Liu B, Luan Y, Ruan Y, Liu X, Liu Z, Wang S, Liu J, Wang T. Transcriptome Analyses Identify an RNA Binding Protein Related Prognostic Model for Clear Cell Renal Cell Carcinoma. Front Genet 2021; 11:617872. [PMID: 33488680 PMCID: PMC7817999 DOI: 10.3389/fgene.2020.617872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023] Open
Abstract
RNA binding proteins (RBPs) play a key role in post-transcriptional gene regulation. They have been shown to be dysfunctional in a variety of cancers and are closely related to the occurrence and progression of cancers. However, the biological function and clinical significance of RBPs in clear cell renal carcinoma (ccRCC) are unclear. In our current study, we downloaded the transcriptome data of ccRCC patients from The Cancer Genome Atlas (TCGA) database and identified differential expression of RBPs between tumor tissue and normal kidney tissue. Then the biological function and clinical value of these RBPs were explored by using a variety of bioinformatics techniques. We identified a total of 40 differentially expressed RBPs, including 10 down-regulated RBPs and 30 up-regulated RBPs. Eight RBPs (APOBEC3G, AUH, DAZL, EIF4A1, IGF2BP3, NR0B1, RPL36A, and TRMT1) and nine RBPs (APOBEC3G, AUH, DDX47, IGF2BP3, MOV10L1, NANOS1, PIH1D3, TDRD9, and TRMT1) were identified as prognostic related to overall survival (OS) and disease-free survival (DFS), respectively, and prognostic models for OS and DFS were constructed based on these RBPs. Further analysis showed that OS and DFS were worse in high-risk group than in the low-risk group. The area under the receiver operator characteristic curve of the model for OS was 0.702 at 3 years and 0.726 at 5 years in TCGA cohort and 0.783 at 3 years and 0.795 at 5 years in E-MTAB-1980 cohort, showing good predictive performance. Both models have been shown to independently predict the prognosis of ccRCC patients. We also established a nomogram based on these prognostic RBPs for OS and performed internal validation in the TCGA cohort, showing an accurate prediction of ccRCC prognosis. Stratified analysis showed a significant correlation between the prognostic model for OS and ccRCC progression.
Collapse
Affiliation(s)
- Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
McLean ZL, Appleby SJ, Wei J, Snell RG, Oback B. Testes of DAZL null neonatal sheep lack prospermatogonia but maintain normal somatic cell morphology and marker expression. Mol Reprod Dev 2020; 88:3-14. [PMID: 33251684 DOI: 10.1002/mrd.23443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Multiplying the germline would increase the number of offspring that can be produced from selected animals, accelerating genetic improvement for livestock breeding. This could be achieved by producing multiple chimaeric animals, each carrying a mix of donor and host germ cells in their gonads. However, such chimaeric germlines would produce offspring from both donor and host genotypes, limiting the rate of genetic improvement. To resolve this problem, we disrupted the RNA-binding protein DAZL and generated germ cell-deficient host animals. Using Cas9-mediated homology-directed repair (HDR), we introduced a DAZL loss-of-function mutation in male ovine fetal fibroblasts. Following manual single cell isolation, 4/48 (8.3%) of donor cell strains were homozygously HDR-edited. Sequence-validated strains were used as nuclear donors for somatic cell cloning to generate three lambs, which died at birth. All DAZL null male neonatal sheep lacked germ cells on histological sections and showed greatly reduced germ cell markers. Somatic cells within their testes were morphologically intact and expressed normal levels of lineage-specific markers, suggesting that the germ cell niche remained intact. This extends the DAZL mutant phenotype beyond mice into agriculturally relevant ruminants, providing a pathway for using absolute germline transmitters in rapid livestock improvement.
Collapse
Affiliation(s)
- Zachariah L McLean
- Reproduction, AgResearch, Ruakura Research Centre, Hamilton.,Applied Translational Research Group and Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah J Appleby
- Reproduction, AgResearch, Ruakura Research Centre, Hamilton.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jingwei Wei
- Reproduction, AgResearch, Ruakura Research Centre, Hamilton
| | - Russell G Snell
- Applied Translational Research Group and Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Björn Oback
- Reproduction, AgResearch, Ruakura Research Centre, Hamilton.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Identification of an Individualized Prognostic Signature Based on the RWSR Model in Early-Stage Bladder Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9186546. [PMID: 32596394 PMCID: PMC7293744 DOI: 10.1155/2020/9186546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BLCA) is the fourth common cancer among males in the United States, which is also the fourth leading cause of cancer-related death in old males. BLCA has a high recurrence rate, with over 50% of patients which has at least one recurrence within five years. Due to the complexity of the molecular mechanisms and heterogeneous cancer feature, BLCA clinicians find it hard to make an efficient management decision as they lack reliable assessment of mortality risk. Meanwhile, there is currently no screening suitable prognostic signature or method recommended for early detection, which is significantly important to early-stage detection and prognosis. In this study, a novel model, named the risk-weighted sparse regression (RWSR) model, is constructed to identify a robust signature for patients of early-stage BLCA. The 17-gene signature is generated and then validated as an independent prognostic factor in BLCA cohorts from GSE13507 and TCGA_BLCA datasets. Meanwhile, a risk score model is developed and validated among the 17-gene signature. The risk score is also considered an independent factor for prognosis prediction, which is confirmed through prognosis analysis. The Kaplan-Meier with the log-rank test is used to assess survival difference. Furthermore, the predictive capacity of the signature is proved through stratification analysis. Finally, an effective patient classification is completed by a combination of the 17-gene signature and stage information, which is for better survival prediction and treatment decisions. Besides, 11 genes in the signature, such as coiled-coil domain containing 73 (CCDC73) and protein kinase, DNA-activated, and catalytic subunit (PRKDC), are proved to be prognosis marker genes or strongly associated with prognosis and progress of other types of cancer in published literature already. As a result, this paper would more accurately predict a patient's prognosis and improve surveillance in the clinical setting, which may provide a quantitative and reliable decision-making basis for the treatment plan.
Collapse
|
25
|
Fanfani V, Zatopkova M, Harris AL, Pezzella F, Stracquadanio G. Dissecting the heritable risk of breast cancer: From statistical methods to susceptibility genes. Semin Cancer Biol 2020; 72:175-184. [PMID: 32569822 DOI: 10.1016/j.semcancer.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
Decades of research have shown that rare highly penetrant mutations can promote tumorigenesis, but it is still unclear whether variants observed at high-frequency in the broader population could modulate the risk of developing cancer. Genome-wide Association Studies (GWAS) have generated a wealth of data linking single nucleotide polymorphisms (SNPs) to increased cancer risk, but the effect of these mutations are usually subtle, leaving most of cancer heritability unexplained. Understanding the role of high-frequency mutations in cancer can provide new intervention points for early diagnostics, patient stratification and treatment in malignancies with high prevalence, such as breast cancer. Here we review state-of-the-art methods to study cancer heritability using GWAS data and provide an updated map of breast cancer susceptibility loci at the SNP and gene level.
Collapse
Affiliation(s)
- Viola Fanfani
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Martina Zatopkova
- Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Francesco Pezzella
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Giovanni Stracquadanio
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
26
|
Ghazarian AA, McGlynn KA. Increasing Incidence of Testicular Germ Cell Tumors among Racial/Ethnic Minorities in the United States. Cancer Epidemiol Biomarkers Prev 2020; 29:1237-1245. [PMID: 32385118 DOI: 10.1158/1055-9965.epi-20-0107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The incidence of testicular germ cell tumors (TGCT) has been rising in the United States and is notably higher among white men. Previously, our group reported that rates were rising among Hispanic men in certain areas. This study sought to determine whether the patterns noted in our prior publication remained evident in more recent years and to determine whether any new patterns have emerged. METHODS Data from 51 U.S. cancer registries were examined. Racial/ethnic-specific incidence rates per 100,000 man-years were calculated overall and by census region. Annual percent changes (APC) were estimated, and joinpoint models were fit. Differences in regional incidence were examined using the Wald test. RESULTS During the time period 2001 to 2016, 126,575 TGCTs were recorded. TGCT incidence was highest among non-Hispanic whites (NHW; 6.63/100,000), followed by Hispanics (4.20), American Indian/Alaska Natives (AI/AN; 3.27), Asian/Pacific Islanders (A/PI; 1.72), and non-Hispanic blacks (NHB; 1.27). TGCT incidence increased significantly among all men; the greatest increase was experienced by A/PIs (APC: 2.47), followed in order by Hispanics (2.10), AI/ANs (1.71), NHBs (1.28), and NHWs (0.41). Significant differences in rates by region were seen for all men except NHBs, with the highest rates among Hispanics (5.38/100,000), AI/ANs (4.47), and A/PIs (2.37) found in the West, and among NHWs (7.60) and NHBs (1.51) found in the Northeast. CONCLUSIONS Although TGCT incidence remained highest among NHWs between 2001 and 2016, the greatest increase was experienced by A/PI men. IMPACT Rising rates of TGCTs among men of all racial/ethnic backgrounds in the United States suggest that future attention is warranted.
Collapse
Affiliation(s)
- Armen A Ghazarian
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Katherine A McGlynn
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
27
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
28
|
Qin J, Yang Y, Zhuang X, Xing J. Association Between BAK1 Gene rs210138 Polymorphisms and Testicular Germ Cell Tumors: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:2. [PMID: 32038496 PMCID: PMC6989409 DOI: 10.3389/fendo.2020.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Several studies including some genome-wide association studies (GWAS) had shown that BAK1 gene rs210138 polymorphisms might be associated with testicular germ cell tumors (TGCT). Here we tried to sum up the association through a systematic review and meta-analysis. Methods: Studies associated with BAK1 rs210138 and TGCT was systematically searched in databases. The effect size was pooled according to ORs and 95% CIs. Results: Our systematic review and meta-analysis comprised 14 articles. Significantly increased risk of TGCT was found in eligible GWAS and follow-up studies, in overall group and its Caucasian subgroup. Conclusions: Compared with adenine (A), BAK1 rs210138 guanine (G) is associated with increased risk of TGCT. Well-planned studies with larger sample size and more subgroups are needed to verify the risk identified in our systematic review and meta-analysis.
Collapse
Affiliation(s)
- Jiaxuan Qin
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Jiaxuan Qin
| | - Yufeng Yang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xuan Zhuang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinchun Xing
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Jinchun Xing
| |
Collapse
|
29
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 676] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Nicholls PK, Schorle H, Naqvi S, Hu YC, Fan Y, Carmell MA, Dobrinski I, Watson AL, Carlson DF, Fahrenkrug SC, Page DC. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S A 2019; 116:25677-25687. [PMID: 31754036 PMCID: PMC6925976 DOI: 10.1073/pnas.1910733116] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.
Collapse
Affiliation(s)
| | - Hubert Schorle
- Whitehead Institute, Cambridge, MA 02142
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Sahin Naqvi
- Whitehead Institute, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yueh-Chiang Hu
- Whitehead Institute, Cambridge, MA 02142
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Yuting Fan
- Whitehead Institute, Cambridge, MA 02142
- Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, 510655 Guangzhou, China
| | | | - Ina Dobrinski
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142
| |
Collapse
|
31
|
Zagore LL, Sweet TJ, Hannigan MM, Weyn-Vanhentenryck SM, Jobava R, Hatzoglou M, Zhang C, Licatalosi DD. DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. Cell Rep 2019; 25:1225-1240.e6. [PMID: 30380414 PMCID: PMC6878787 DOI: 10.1016/j.celrep.2018.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/26/2018] [Accepted: 10/01/2018] [Indexed: 01/25/2023] Open
Abstract
The RNA binding protein DAZL is essential for gametogenesis, but its direct in vivo functions, RNA targets, and the molecular basis for germ cell loss in Dazl-null mice are unknown. Here, we mapped transcriptome-wide DAZL-RNA interactions in vivo, revealing DAZL binding to thousands of mRNAs via polyA-proximal 3′ UTR interactions. In parallel, fluorescence-activated cell sorting and RNA-seq identified mRNAs sensitive to DAZL deletion in male germ cells. Despite binding a broad set of mRNAs, integrative analyses indicate that DAZL post-transcriptionally controls only a subset of its mRNA targets, namely those corresponding to a network of genes that are critical for germ cell proliferation and survival. In addition, we provide evidence that polyA sequences have key roles in specifying DAZL-RNA interactions across the transcriptome. Our results reveal a mechanism for DAZL-RNA binding and illustrate that DAZL functions as a master regulator of a post-transcriptional mRNA program essential for germ cell survival. Combining transgenic mice, FACS, and multiple RNA-profiling methods, Zagore et al. show that DAZL binds thousands of mRNAs via GUU sites upstream of polyA tails. Loss of DAZL results in decreased mRNA levels for a network of genes that are essential for germ cell proliferation and differentiation.
Collapse
Affiliation(s)
- Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
|
33
|
Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527-535. [DOI: 10.1111/andr.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- M. K. Das
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
- Department of Molecular Medicine, Faculty of Medicine; University of Oslo; Oslo Norway
| | - L. Kleppa
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| | - T. B. Haugen
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| |
Collapse
|
34
|
Loveday C, Sud A, Litchfield K, Levy M, Holroyd A, Broderick P, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Reid A, Huddart RA, Houlston RS, Turnbull C. Runs of homozygosity and testicular cancer risk. Andrology 2019; 7:555-564. [PMID: 31310061 DOI: 10.1111/andr.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. OBJECTIVE To examine whether RoH are associated with TGCT risk. METHODS We performed a genome-wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. RESULTS Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 13q14.11-13q.14.13, were, however, nominally statistically significant at p < 0.01. Intriguingly, RoH200 at 11p13-11p14.3 encompasses Wilms tumour 1 (WT1), a recognized cancer susceptibility gene with roles in sex determination and developmental transcriptional regulation, processes repeatedly implicated in TGCT aetiology. DISCUSSION AND CONCLUSION Overall, our data do not support a major role in the risk of TGCT for recessively acting alleles acting through homozygosity, as measured by RoH in outbred populations of cases and controls.
Collapse
Affiliation(s)
- C Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A Sud
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - K Litchfield
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK
| | - M Levy
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A Holroyd
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - P Broderick
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Z Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - K Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Warwick, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - J Peto
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - R Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - D F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - D Dudakia
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - N Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - N Pashayan
- Department of Applied Health Research, University College London, London, UK
| | - A Reid
- Academic Uro-oncology Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - R A Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, UK
| | - R S Houlston
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - C Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary University, London, UK
- Guys and St Thomas' NHS Foundation Trust, London, UK
- Public Health England, National Cancer Registration and Analysis Service, London, UK
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW We aim to give an overview of the epidemiology and treatment trends of testicular germ cell tumors (TGCTs), with an emphasis on recent trends. RECENT FINDINGS The incidence of TGCT appears to be increasing, particularly in developed countries, although the reasons are not well understood. There is evidence of racial differences in predisposition to TGCT, with white men having highest risk and men of African or Asian descent having lower risk. In the United States, the incidence of TGCT among Hispanics appears to be rising most quickly. A recent genomic analysis indicates there is no highly penetrant major TGCT susceptibility gene. Incorporation of multidisciplinary care has led to excellent long-term cure rates; however, access to care and insurance remains barriers in young men. Recent treatment trends have centered on maximizing oncologic outcomes while minimizing long-term morbidity. SUMMARY Emerging population-level data provide critical insight into the evolving demographics of TGCT, which may allow for elucidation of biologic and environmental determinants of TGCT. Further, identification of socioeconomic barriers to excellent clinical outcomes will allow for targeted interventions to patients with unique demographic and socioeconomic considerations. Treatment trend analyses suggest that the field is moving toward minimizing treatment-related morbidity.
Collapse
|
36
|
Tracey LJ, Justice MJ. Off to a Bad Start: Cancer Initiation by Pluripotency Regulator PRDM14. Trends Genet 2019; 35:489-500. [PMID: 31130394 DOI: 10.1016/j.tig.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Despite advances in chemotherapies that improve cancer survival, most patients who relapse succumb to the disease due to the presence of cancer stem cells (CSCs), which are highly chemoresistant. The pluripotency factor PR domain 14 (PRDM14) has a key role in initiating many types of cancer. Normally, PRDM14 uses epigenetic mechanisms to establish and maintain the pluripotency of embryonic cells, and its role in cancer is similar. This important link between cancer and induced pluripotency is a key revelation for how CSCs may form: pluripotency genes, such as PRDM14, can expand stem-like cells as they promote ongoing DNA damage. PRDM14 and its protein-binding partners, the ETO/CBFA2T family, are ideal candidates for eliminating CSCs from relevant cancers, preventing relapse and improving long-term survival.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
37
|
Sanchez A, Xu L, Pierce JL, Lafin JT, Abe D, Bagrodia A, Frazier AL, Amatruda JF. Identification of testicular cancer driver genes by a cross-species comparative oncology approach. Andrology 2019; 7:545-554. [PMID: 31087453 DOI: 10.1111/andr.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Germ cell tumors arise in the testis, ovary, or extragonadal locations and have a wide range of histopathological and clinical presentations. The relative lack of animal models of germ cell tumors has impeded functional assessment of candidate driver genes. Previously, we described the development of testicular germ cell tumors in zebrafish carrying a mutation in bmpr1bb, a BMP family receptor, and demonstrated that human germ cell tumors have defects in BMP signaling. OBJECTIVE To further credential the zebrafish model for studies of human germ cell tumor, and to elucidate conserved genetic programs underlying the development of germ cell tumor. MATERIALS AND METHODS We used genetic techniques to ablate the germ cell lineage in developing fish and tested tumors for loss-of-heterozygosity of the wild-type allele of bmpr1bb. We performed comparative gene expression profiling of zebrafish and human germ cell tumors and carried out functional studies of selected genes. RESULTS Ablation of germ cells completely prevents testis tumor formation in the fish, definitively establishing the germ cell origin of the tumors. Germ cell tumors in bmpr1bb heterozygous mutants retain the wild-type allele, indicating haploinsufficiency of bmpr1bb as the mechanism of tumor formation. Comparison of RNA-Seq and microarray data from human and zebrafish germ cell tumors revealed a unique overlapping signature shared by the zebrafish tumors with human seminomas, yolk sac tumors, and embryonal carcinomas. The most highly conserved gene set in this cross-species analysis included potential driver genes such as JUP, which we show to be essential for germ cell tumor cell growth. CONCLUSION Our findings highlight the value of cross-species comparative oncology for the identification of candidate human cancer genes.
Collapse
Affiliation(s)
- A Sanchez
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - L Xu
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA.,Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J L Pierce
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - J T Lafin
- Department of Urology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - D Abe
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - A Bagrodia
- Department of Urology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - A L Frazier
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - J F Amatruda
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical, Dallas, TX, USA
| |
Collapse
|
38
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
39
|
Ghazarian AA, Rusner C, Trabert B, Braunlin M, McGlynn KA, Stang A. Testicular cancer among US men aged 50 years and older. Cancer Epidemiol 2019; 55:68-72. [PMID: 29807233 DOI: 10.1016/j.canep.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND The incidence of testicular cancer in the United States (US) has substantially increased in recent decades. The majority of testicular cancers are germ cell tumors (TGCT), which are the most commonly occurring malignancies among men aged 15-44 years in the US. To date, few studies have focused on testicular cancer among men aged ≥ 50 years. Thus, we sought to examine detailed descriptive features, including incidence rates and age patterns, of tumors that arise in the testes among men aged ≥ 50 years. METHODS Data from forty-one US cancer registries were included for the years 1999-2014. Incidence rates per 100,000 person-years and their 95% confidence intervals (CI) were calculated by race/ethnicity, histology, and age at diagnosis. Estimates of annual percent change (APC) were also calculated. RESULTS Age-specific incidence rates of spermatocytic tumors, sex cord stromal tumors and lymphomas rose with age, while age-specific incidence rates of seminomas and nonseminomas declined. Between 1999 and 2014, the incidence of nonseminoma (APC = 3.26, 95% CI: 2.27-4.25) increased more than any other tumor type. The incidence of seminoma (APC: 1.15, 95% CI: 0.59-1.71) also increased, while rates of testicular lymphoma (APC: -0.66, 95% CI: -1.16 to -0.16), spermatocytic tumors (APC: 0.42, 95% CI: -1.42 to 2.29), and sex cord stromal tumors (APC: 0.60, 95% CI: -3.21 to 4.55) remained relatively unchanged. CONCLUSION Given the distinct time-trends and age-specific patterns of testicular cancer in men aged ≥50 years, additional investigation of risk factors for these tumors is warranted.
Collapse
Affiliation(s)
- Armen A Ghazarian
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA; Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Carsten Rusner
- Department of Radiology, St. Elisabeth and St. Barbara Hospital, Halle (Saale), Germany
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Megan Braunlin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | - Andreas Stang
- Center of Clinical Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany; Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA; German Consortium of Translational Cancer Research (DKTK), Partner Site University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Jones CC, Bradford Y, Amos CI, Blot WJ, Chanock SJ, Harris CC, Schwartz AG, Spitz MR, Wiencke JK, Wrensch MR, Wu X, Aldrich MC. Cross-Cancer Pleiotropic Associations with Lung Cancer Risk in African Americans. Cancer Epidemiol Biomarkers Prev 2019; 28:715-723. [PMID: 30894353 PMCID: PMC6449205 DOI: 10.1158/1055-9965.epi-18-0935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Identifying genetic variants with pleiotropic associations across multiple cancers can reveal shared biologic pathways. Prior pleiotropic studies have primarily focused on European-descent individuals. Yet population-specific genetic variation can occur, and potential pleiotropic associations among diverse racial/ethnic populations could be missed. We examined cross-cancer pleiotropic associations with lung cancer risk in African Americans. METHODS We conducted a pleiotropic analysis among 1,410 African American lung cancer cases and 2,843 controls. We examined 36,958 variants previously associated (or in linkage disequilibrium) with cancer in prior genome-wide association studies. Logistic regression analyses were conducted, adjusting for age, sex, global ancestry, study site, and smoking status. RESULTS We identified three novel genomic regions significantly associated (FDR-corrected P <0.10) with lung cancer risk (rs336958 on 5q14.3, rs7186207 on 16q22.2, and rs11658063 on 17q12). On chromosome16q22.2, rs7186207 was significantly associated with reduced risk [OR = 0.43; 95% confidence interval (CI), 0.73-0.89], and functional annotation using GTEx showed rs7186207 modifies DHODH gene expression. The minor allele at rs336958 on 5q14.3 was associated with increased lung cancer risk (OR = 1.47; 95% CI, 1.22-1.78), whereas the minor allele at rs11658063 on 17q12 was associated with reduced risk (OR = 0.80; 95% CI, 0.72-0.90). CONCLUSIONS We identified novel associations on chromosomes 5q14.3, 16q22.2, and 17q12, which contain HNF1B, DHODH, and HAPLN1 genes, respectively. SNPs within these regions have been previously associated with multiple cancers. This is the first study to examine cross-cancer pleiotropic associations for lung cancer in African Americans. IMPACT Our findings demonstrate novel cross-cancer pleiotropic associations with lung cancer risk in African Americans.
Collapse
Affiliation(s)
- Carissa C Jones
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuki Bradford
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | | | - Ann G Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Margaret R Spitz
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Institute of Human Genetics, University of California San Francisco, San Francisco, California
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
41
|
Gurney JK. The puzzling incidence of testicular cancer in New Zealand: what can we learn? Andrology 2019; 7:394-401. [PMID: 30663250 DOI: 10.1111/andr.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular germ cell tumour is the most common cancer to be diagnosed among young men. In New Zealand, we have observed some puzzling trends in the epidemiology of this disease. METHODS We have conducted a narrative review of available evidence regarding the puzzling epidemiology of testicular germ cell tumour in New Zealand and discussed the possible drivers of these trends. RESULTS AND DISCUSSION Whereas testicular cancer is most commonly a disease of White men, in New Zealand it is the indigenous Māori population that suffer by far the greatest rate of disease (age-adjusted relative risk: 1.80, 95% CI 1.58-2.05). Even more curiously, the rate of testicular germ cell tumour among Māori men aged 15-44 (28/100,000) is substantially greater than for Pacific Island men (9/100,000), a rare example of divergence between these two populations in terms of the incidence of any disease (cancer or otherwise). Our observations beg the following questions: first, why are rates of testicular germ cell tumour so much higher among Māori New Zealanders compared to the already high rates observed among European/Other New Zealanders? Second, why are rates of testicular germ cell tumour so completely divergent between Māori and Pacific New Zealanders, when these two groups typically move in parallel with respect to the incidence of given diseases? Finally, what might we learn about the factors that cause testicular germ cell tumour in general by answering these questions? CONCLUSION This review examines the possible drivers of our observed disparity, discusses their feasibility, and highlights new work that is underway to further understand these drivers.
Collapse
Affiliation(s)
- J K Gurney
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
42
|
Lobo J, Gillis AJM, Jerónimo C, Henrique R, Looijenga LHJ. Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic. Int J Mol Sci 2019; 20:E258. [PMID: 30634670 PMCID: PMC6359418 DOI: 10.3390/ijms20020258] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 02/03/2023] Open
Abstract
Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as 'genvironment'. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DNA fragments (i.e., XIST promotor) as well as embryonic microRNAs as molecular biomarkers for cancer detection in liquid biopsies will be presented.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Ad J M Gillis
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Leendert H J Looijenga
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| |
Collapse
|
43
|
De Toni L, Šabovic I, Cosci I, Ghezzi M, Foresta C, Garolla A. Testicular Cancer: Genes, Environment, Hormones. Front Endocrinol (Lausanne) 2019; 10:408. [PMID: 31338064 PMCID: PMC6626920 DOI: 10.3389/fendo.2019.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Testicular cancer (TC) represents one of the most peculiar clinical challenges at present. In fact, currently treatments are so effective ensuring a 5 years disease-free survival rate in nearly 95% of patients. On the other hand however, TC represents the most frequent newly diagnosed form of cancer in men between the ages of 14 and 44 years, with an incidence ranging from <1 to 9.9 affected individuals per 100,000 males across countries, while the overall incidence is also increasing worldwide. Furthermore, cancer survivors show a 2% risk of developing cancer in the contralateral testis within 15 years of initial diagnosis. This complex and multifaceted scenario requires a great deal of effort to understand the clinical base of available evidence. It is now clear that genetic, environmental and hormonal risk factors concur and mutually influence both the development of the disease and its prognosis, in terms of response to treatment and the risk of recurrence. In this paper, the most recent issues describing the relative contribution of the aforementioned risk factors in TC development are discussed. In addition, particular attention is paid to the exposure to environmental chemical substances and thermal stress, whose role in cancer development and progression has recently been investigated at the molecular level.
Collapse
Affiliation(s)
- Luca De Toni
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Iva Šabovic
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Ilaria Cosci
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
- Department of Clinical and Experimental Oncology, IOV-IRCCS, Padova, Italy
| | - Marco Ghezzi
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
- *Correspondence: Carlo Foresta
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Van Nieuwenhuysen E, Busschaert P, Neven P, Han SN, Moerman P, Liontos M, Papaspirou M, Kupryjanczyk J, Hogdall C, Hogdall E, Oaknin A, Garcia A, Mahner S, Trillsch F, Cibula D, Heitz F, Concin N, Speiser P, Salvesen H, Sehouli J, Lambrechts D, Vergote I. The genetic landscape of 87 ovarian germ cell tumors. Gynecol Oncol 2018; 151:61-68. [DOI: 10.1016/j.ygyno.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/12/2022]
|
45
|
Paumard‐Hernández B, Calvete O, Inglada Pérez L, Tejero H, Al‐Shahrour F, Pita G, Barroso A, Carlos Triviño J, Urioste M, Valverde C, González Billalabeitia E, Quiroga V, Francisco Rodríguez Moreno J, Fernández Aramburo A, López C, Maroto P, Sastre J, José Juan Fita M, Duran I, Lorenzo‐Lorenzo I, Iranzo P, García del Muro X, Ros S, Zambrana F, María Autran A, Benítez J. Whole exome sequencing identifies
PLEC
,
EXO5
and
DNAH7
as novel susceptibility genes in testicular cancer. Int J Cancer 2018; 143:1954-1962. [DOI: 10.1002/ijc.31604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Oriol Calvete
- Human Genetics Group, Spanish National Cancer Research Center (CNIO)Madrid Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
| | - Lucia Inglada Pérez
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO)Madrid Spain
| | - Héctor Tejero
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Fátima Al‐Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Guillermo Pita
- Human Genotyping‐CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre (CNIO)Madrid Spain
| | - Alicia Barroso
- Human Genetics Group, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Juan Carlos Triviño
- Bioinformatic Unit, Sistemas Genómicos, Valencia Spain, Spanish National Cancer Research Centre (CNIO)Madrid Spain
| | - Miguel Urioste
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Claudia Valverde
- Department of Medical OncologyVall d'Hebron Institute of Oncology, Vall d'Hebron University HospitalBarcelona Spain
- Spanish Germ Cell Group (SGCCG)
| | - Enrique González Billalabeitia
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology‐Haematology DepartmentHospital Universitario Morales MeseguerMurcia Spain
| | - Vanesa Quiroga
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology DepartmentHospital Universitari Germans Trias i Pujol, Institut Català d'Oncologia‐BadalonaBarcelona Spain
| | | | - Antonio Fernández Aramburo
- Spanish Germ Cell Group (SGCCG)
- Department of OncologyComplejo Hospitalario Universitario AlbaceteAlbacete Spain
| | - Cristina López
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology DepartmentInstituto de Investigación Sanitaria Gregorio MarañónMadrid Spain
| | - Pablo Maroto
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology and Biochemistry DepartmentsHospital de la Santa Creu i Sant PauBarcelona Spain
| | - Javier Sastre
- Spanish Germ Cell Group (SGCCG)
- Department of Medical OncologyHospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid Spain
| | - María José Juan Fita
- Spanish Germ Cell Group (SGCCG)
- Medical OncologyFundación Instituto Valenciano de OncologíaValencia Spain
| | - Ignacio Duran
- Spanish Germ Cell Group (SGCCG)
- Department of Medical OncologyInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilla Spain
| | | | - Patricia Iranzo
- Spanish Germ Cell Group (SGCCG)
- Department of Medical OncologyHospital Clinico Universitario Lozano BlesaZaragoza Spain
| | - Xavier García del Muro
- Spanish Germ Cell Group (SGCCG)
- Sarcoma Multidisciplinary Unit and Medical Oncology DepartmentInstitut Català d'Oncologia Hospitalet, IDIBELLBarcelona Spain
| | - Silverio Ros
- Department of Clinical OncologyHospital Universitario Virgen ArrixacaMurcia Spain
| | - Francisco Zambrana
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology DepartmentHospital Universitario Infanta Sofía, San Sebastián De Los Reyes Spain
| | - Ana María Autran
- Spanish Germ Cell Group (SGCCG)
- Medical Urology departmentFundación Jiménez DíazMadrid Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO)Madrid Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
- Human Genotyping‐CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre (CNIO)Madrid Spain
| |
Collapse
|
46
|
Gurney JK, Stanley J, McGlynn K, Richiardi L, Shaw C, Edwards R, Merriman TR, Robson B, Koea J, McLeod M, Kennedy MA, Sarfati D. Testicular Cancer in New Zealand (TCNZ) study: protocol for a national case-control study. BMJ Open 2018; 8:e025212. [PMID: 30082371 PMCID: PMC6078234 DOI: 10.1136/bmjopen-2018-025212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Testicular cancer (TC) is by far the most common cancer to affect young men; however, the exposures that cause this disease are still poorly understood. Our own research has shown that Māori men have the highest rates of this disease in New Zealand-a puzzling observation, since internationally TC is most commonly a disease of men of European ancestry. These trends provide us with a unique opportunity: to learn more about the currently unknown exposures that cause TC, and to explain why Māori have the highest rates of this disease in New Zealand. Using epidemiology and genetics, our experienced research team will conduct a nationwide study which aims to answer these internationally important questions. AIM OF STUDY The overall aim of the current national case-control study is to identify the key exposures in the development of TC in New Zealand, and explore which factors might explain the difference in the incidence of TC between Māori and non-Māori. METHODS AND ANALYSIS Outside of our own investigations into cryptorchidism, we still do not know which exposures are driving the significant incidence disparity between ethnic groups in NZ. The aim of the proposed research is to use a population-based case-control study to identify the key exposures in the development of TC in New Zealand. We will recruit 410 TC cases and 410 controls, and collect (1) environmental exposure data, via interview and (2) genetic information, via genome-wide genotyping. ETHICS AND DISSEMINATION Ethical approval for this study was sought and received from the New Zealand Ministry of Health's Health and Disability Ethics Committee (reference # 17/NTA/248). Following a careful data interpretation process, we will disseminate the findings of this study to a wide and varied audience ranging from general academia, community groups and clinical settings, as well as to the participants themselves.
Collapse
Affiliation(s)
- Jason K Gurney
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - James Stanley
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Katherine McGlynn
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Maryland, USA
| | | | - Caroline Shaw
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Richard Edwards
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Bridget Robson
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Jonathan Koea
- Department of Surgery, Waitemata District Health Board, Auckland, New Zealand
| | - Melissa McLeod
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Diana Sarfati
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
47
|
Abstract
Fusion of sperm and egg generates a totipotent zygote that develops into a whole organism. Accordingly, the "immortal" germline transmits genetic and epigenetic information to subsequent generations with consequences for human health and disease. In mammals, primordial germ cells (PGCs) originate from peri-gastrulation embryos. While early human embryos are inaccessible for research, in vitro model systems using pluripotent stem cells have provided critical insights into human PGC specification, which differs from that in mice. This might stem from significant differences in early embryogenesis at the morphological and molecular levels, including pluripotency networks. Here, we discuss recent advances and experimental systems used to study mammalian germ cell development. We also highlight key aspects of germ cell disorders, as well as mitochondrial and potentially epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Anastasiya Sybirna
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
48
|
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1474. [PMID: 29582564 DOI: 10.1002/wrna.1474] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/24/2022]
Abstract
Genome Wide Association Studies (GWAS) have mapped thousands of genetic variants associated with complex disease risk and regulating quantitative traits, thus exploiting an unprecedented high-resolution genetic characterization of the human genome. A small fraction (3.7%) of the identified associations is located in untranslated regions (UTRs), and the molecular mechanism has been elucidated for few of them. Genetic variations at UTRs may modify regulatory elements affecting the interaction of the UTRs with proteins and microRNAs. The overall functional consequences include modulation of messenger RNA (mRNA) transcription, secondary structure, stability, localization, translation, and access to regulators like microRNAs (miRNAs) and RNA-binding proteins (RBPs). Alterations of these regulatory mechanisms are known to modify molecular pathways and cellular processes, potentially leading to disease processes. Here, we analyze some examples of genetic risk variants mapping in the UTR regulatory elements. We describe a recently identified genetic variant localized in the 3'UTR of the TNFSF13B gene, associated with autoimmunity risk and responsible of an increased stability and translation of TNFSF13B mRNA. We discuss how the correct use and interpretation of public GWAS repositories could lead to a better understanding of etiopathogenetic mechanisms and the generation of robust biological hypothesis as starting point for further functional studies. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, Maryland
| | - Michael B Whalen
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
49
|
Dawson EP, Lanza DG, Webster NJ, Benton SM, Suetake I, Heaney JD. Delayed male germ cell sex-specification permits transition into embryonal carcinoma cells with features of primed pluripotency. Development 2018; 145:dev156612. [PMID: 29545285 PMCID: PMC6514421 DOI: 10.1242/dev.156612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023]
Abstract
Testicular teratomas result from anomalies in embryonic germ cell development. In 129 inbred mice, teratoma initiation coincides with germ cell sex-specific differentiation and the mitotic-meiotic switch: XX and XY germ cells repress pluripotency, XX germ cells initiate meiosis, and XY germ cells activate male-specific differentiation and mitotic arrest. Here, we report that expression of Nanos2, a gene that is crucial to male sex specification, is delayed in teratoma-susceptible germ cells. Decreased expression of Nanos2 was found to be due, in part, to the Nanos2 allele present in 129 mice. In teratoma-susceptible germ cells, diminished expression of genes downstream of Nanos2 disrupted processes that were crucial to male germ cell differentiation. Deficiency for Nanos2 increased teratoma incidence in 129 mice and induced developmental abnormalities associated with tumor initiation in teratoma-resistant germ cells. Finally, in the absence of commitment to the male germ cell fate, we discovered that a subpopulation of teratoma-susceptible germ cells transition into embryonal carcinoma (EC) cells with primed pluripotent features. We conclude that delayed male germ cell sex-specification facilitates the transformation of germ cells with naïve pluripotent features into primed pluripotent EC cells.
Collapse
Affiliation(s)
- Emily P Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Nicholas J Webster
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Susan M Benton
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Isao Suetake
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Center For Reproductive Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
50
|
Ylönen O, Jyrkkiö S, Pukkala E, Syvänen K, Boström PJ. Time trends and occupational variation in the incidence of testicular cancer in the Nordic countries. BJU Int 2018; 122:384-393. [PMID: 29460991 DOI: 10.1111/bju.14148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To describe the trends and occupational variation in the incidence of testicular cancer in the Nordic countries utilising national cancer registries, NORDCAN (NORDCAN project/database presents the incidence, mortality, prevalence and survival from >50 cancers in the Nordic countries) and NOCCA (Nordic Occupational Cancer) databases. PATIENTS AND METHODS We obtained the incidence data of testicular cancer for 5-year periods from 1960-1964 to 2000-2014 and for 5-year age-groups from the NORDCAN database. Morphological data on incident cases of seminoma and non-seminoma were obtained from national cancer registries. Age-standardised incidence rates (ASR) were calculated per 100 000 person-years (World Standard). Regression analysis was used to evaluate the annual change in the incidence of testicular cancer in each of the Nordic countries. The risk of testicular cancer in different professions was described based on NOCCA information and expressed as standardised incidence ratios (SIRs). RESULTS During 2010-2014 the ASR for testicular cancer varied from 11.3 in Norway to 5.8 in Finland. Until 1998, the incidence was highest in Denmark. There has not been an increase in Denmark and Iceland since the 1990s, whilst the incidence is still strongly increasing in Norway, Sweden, and Finland. There were no remarkable changes in the ratio of seminoma and non-seminoma incidences during the past 50 years. There was no increase in the incidences in children and those of pension age. The highest significant excess risks of testicular seminoma were found in physicians (SIR 1.48, 95% confidence interval [CI] 1.07-1.99), artistic workers (SIR 1.47, 95% CI 1.06-1.99) and religious workers etc. (SIR 1.33, 95% CI 1.14-1.56). The lowest SIRs of testicular seminoma were seen amongst cooks and stewards (SIR 0.56, 95% CI 0.29-0.98), and forestry workers (SIR 0.64, 95% CI 0.47-0.86). The occupational category of administrators was the only one with a significantly elevated SIR for testicular non-seminoma (SIR 1.21, 95% CI 1.04-1.42). The only SIRs significantly <1.0 were seen amongst engine operators (SIR 0.60, 95% CI 0.41-0.84) and public safety workers (SIR 0.67, 95% CI 0.43-0.99). CONCLUSIONS There have always been differences in the incidence of testicular cancer between the Nordic countries. There is also some divergence in the incidences in different age groups and in the trends of the incidence. The effect of occupation-related factors on incidence of testicular cancer is only moderate. Our study describes the differences, but provides no explanation for this variation.
Collapse
Affiliation(s)
- Outi Ylönen
- South-Karelian Central Hospital, University Hospital of Turku, Lappeenranta, Finland
| | - Sirkku Jyrkkiö
- Department of Oncology, University Hospital of Turku, Turku, Finland
| | - Eero Pukkala
- School of Health Sciences, University of Tampere, Tampere, Finland.,Finnish Cancer Registry, Helsinki, Finland
| | - Kari Syvänen
- Department of Urology, University Hospital of Turku, Turku, Finland
| | - Peter J Boström
- Department of Urology, University Hospital of Turku, Turku, Finland
| |
Collapse
|