1
|
Tangjittipokin W, Narkdontri T, Teerawattanapong N, Suthon S, Nakhonsri V, Wasitthankasem R, Sudtachat N, Preechasuk L, Lapinee V, Thongtang N, Tongsima S, Plengvidhya N. Investigation of the degree of family history of diabetes in different clusters of newly diagnosed type 2 diabetes in Thailand. Ann Med 2025; 57:2500697. [PMID: 40338056 PMCID: PMC12064116 DOI: 10.1080/07853890.2025.2500697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
AIM Type 2 diabetes is a heterogeneous disease with strong genetic components. We showed earlier that newly diagnosed type 2 diabetes in Thai patients could be categorized into four clusters. This study aimed to determine the evidence of hereditary factors in these type 2 diabetes clusters. METHODS A total of 487 subjects who were diagnosed with type 2 diabetes in two years were enrolled in the Siriraj Diabetes Center, Siriraj Hospital Bangkok, Bangkok, Thailand. They were divided into four clusters as previously described. The associations between patients' characteristics, degree of family history of diabetes (FHD), and type 2 diabetes clusters were tested using multinomial logistic regression. RESULTS Among four clusters of newly diagnosed type 2 diabetes, there were significant differences in characteristics at baseline, including age at diagnosis, BMI, waist circumference, blood sugar levels, vital signs, triglyceride, HDL, calculated LDL, creatinine and eGFR (all p < .05). A relatively young age at the time of diabetes diagnosis was associated with having second-degree relatives with diabetes (p < .05) in all clusters when using mild age-related diabetes (MARD) cluster with no FHD as a control. Patients in the severe insulin-deficient diabetes (SIDD) cluster had more first-degree relatives with diabetes (odds ratio = 1.85; p = .0354), while patients in the metabolic syndrome diabetes (MSD) cluster (odds ratio = 10.73; p < .001) and the mild obesity-related diabetes (MOD) group (odds ratio = 6.66; p = .002), had more second-degree relatives with diabetes. CONCLUSIONS Genetic factors might have various roles in the pathogenesis of type 2 diabetes, at least in newly diagnosed Thai patients. Our findings supported that genetic heterogeneity contributed to clinical heterogeneity or four different clusters. Further studies are needed in a larger sample size of these patients is needed to identify genetic loci associated with each cluster.
Collapse
Affiliation(s)
- Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tassanee Narkdontri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipaporn Teerawattanapong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sarocha Suthon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vorthunju Nakhonsri
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Thailand
| | - Rujipat Wasitthankasem
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Thailand
| | - Nirinya Sudtachat
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Thailand
| | - Lukana Preechasuk
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varisara Lapinee
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuntakorn Thongtang
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Iakovleva V, de Jong YP. Gene-based therapies for steatotic liver disease. Mol Ther 2025:S1525-0016(25)00298-9. [PMID: 40254880 DOI: 10.1016/j.ymthe.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Advances in nucleic acid delivery have positioned the liver as a key target for gene therapy, with adeno-associated virus vectors showing long-term effectiveness in treating hemophilia. Steatotic liver disease (SLD), the most common liver condition globally, primarily results from metabolic dysfunction-associated and alcohol-associated liver diseases. In some individuals, SLD progresses from simple steatosis to steatohepatitis, cirrhosis, and eventually hepatocellular carcinoma, driven by a complex interplay of genetic, metabolic, and environmental factors. Genetic variations in various lipid metabolism-related genes, such as patatin-like phospholipase domain-containing protein 3 (PNPLA3), 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), and mitochondrial amidoxime-reducing component 1 (MTARC1), impact the progression of SLD and offer promising therapeutic targets. This review largely focuses on genes identified through clinical association studies, as they are more likely to be effective and safe for therapeutic intervention. While preclinical research continues to deepen our understanding of genetic factors, early-stage clinical trials involving gene-based SLD therapies, including transient antisense and small-molecule approaches, are helping prioritize therapeutic targets. Meanwhile, hepatocyte gene editing technologies are advancing rapidly, offering alternatives to transient methods. As such, gene-based therapies show significant potential for preventing the progression of SLD and enhancing long-term liver health.
Collapse
Affiliation(s)
- Viktoriia Iakovleva
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
3
|
Dron JS, Natarajan P, Peloso GM. The breadth and impact of the Global Lipids Genetics Consortium. Curr Opin Lipidol 2025; 36:61-70. [PMID: 39602359 PMCID: PMC11888832 DOI: 10.1097/mol.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW This review highlights contributions of the Global Lipids Genetics Consortium (GLGC) in advancing the understanding of the genetic etiology of blood lipid traits, including total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, and non-HDL cholesterol. We emphasize the consortium's collaborative efforts, discoveries related to lipid and lipoprotein biology, methodological advancements, and utilization in areas extending beyond lipid research. RECENT FINDINGS The GLGC has identified over 923 genomic loci associated with lipid traits through genome-wide association studies (GWASs), involving more than 1.65 million individuals from globally diverse populations. Many loci have been functionally validated by individuals inside and outside the GLGC community. Recent GLGC studies show increased population diversity enhances variant discovery, fine-mapping of causal loci, and polygenic score prediction for blood lipid levels. Moreover, publicly available GWAS summary statistics have facilitated the exploration of lipid-related genetic influences on cardiovascular and noncardiovascular diseases, with implications for therapeutic development and drug repurposing. SUMMARY The GLGC has significantly advanced the understanding of the genetic basis of lipid levels and serves as the leading resource of GWAS summary statistics for these traits. Continued collaboration will be critical to further understand lipid and lipoprotein biology through large-scale genetic assessments in diverse populations.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge
- Cardiovascular Research Center, Massachusetts General Hospital
- Department of Medicine, Harvard Medical School
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Choi J, Wen W, Jia G, Tao R, Long J, Shu XO, Zheng W. Associations of Blood Lipid-Related Polygenic Scores, Lifestyle Factors and Their Combined Effects with Risk of Coronary Artery Disease in the UK Biobank Cohort. J Cardiovasc Transl Res 2025; 18:331-340. [PMID: 39680354 DOI: 10.1007/s12265-024-10578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Circulating lipids play a crucial role in the development of coronary artery disease (CAD). However, it is unclear whether the genetic susceptibility to hyperlipidemia may interact with lifestyle factors in CAD risk. Using UK Biobank data from 328,606 participants, we evaluated combined effects of genetic susceptibility to hyperlipidemia and lifestyle factors with risk of CAD. We found that both blood lipid-related polygenic score (PGS) and healthy lifestyle score (HLS) are independently associated with CAD risk, and individuals with the highest-risk lipid-related PGS and the least healthy HLS had the highest CAD risk. This association was stronger in younger (< 60 years, hazard ratio: 4.46, 95% confidence interval: 3.44-5.78) than older adults (2.54, 2.13-3.03). Our study suggests that individuals, particularly younger adults, with higher-risk PGSs of blood lipid traits would benefit more substantially by adherence to a healthy lifestyle than those with lower PGSs.
Collapse
Affiliation(s)
- Jungyoon Choi
- Division of Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-Do, Korea
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Shan H, Fan S, Li Q, Liang R, Chen Z, Wang S, Wang X, Li Y, Chen S, Yu K, Fei T. Systematic interrogation of functional genes underlying cholesterol and lipid homeostasis. Genome Biol 2025; 26:59. [PMID: 40098013 PMCID: PMC11912599 DOI: 10.1186/s13059-025-03531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Dyslipidemia or hypercholesterolemia are among the main risk factors for cardiovascular diseases. Unraveling the molecular basis of lipid or cholesterol homeostasis would help to identify novel drug targets and develop effective therapeutics. RESULTS Here, we adopt a systematic approach to catalog the genes underlying lipid and cholesterol homeostasis by combinatorial use of high-throughput CRISPR screening, RNA sequencing, human genetic variant association analysis, and proteomic and metabolomic profiling. Such integrative multi-omics efforts identify gamma-glutamyltransferase GGT7 as an intriguing potential cholesterol and lipid regulator. As a SREBP2-dependent target, GGT7 positively regulates cellular cholesterol levels and affects the expression of several cholesterol metabolism genes. Furthermore, GGT7 interacts with actin-dependent motor protein MYH10 to control low-density lipoprotein cholesterol (LDL-C) uptake into the cells. Genetic ablation of Ggt7 in mice leads to reduced serum cholesterol levels, supporting an in vivo role of Ggt7 during cholesterol homeostasis. CONCLUSIONS Our study not only provides a repertoire of lipid or cholesterol regulatory genes from multiple angles but also reveals a causal link between a gamma-glutamyltransferase and cholesterol metabolism.
Collapse
Affiliation(s)
- Haihuan Shan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shuangshuang Fan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Quanrun Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Ruipu Liang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Zhisong Chen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shengnan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Xiaofeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Yurong Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Kun Yu
- College of Medicine and Bioinformation Engineering, Northeastern University, Shenyang, 110819, China
| | - Teng Fei
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China.
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China.
| |
Collapse
|
6
|
Cheng C, Xu F, Pan XF, Wang C, Fan J, Yang Y, Liu Y, Sun L, Liu X, Xu Y, Zhou Y, Xiao C, Gou W, Miao Z, Yuan J, Shen L, Fu Y, Sun X, Zhu Y, Chen Y, Pan A, Zhou D, Zheng JS. Genetic mapping of serum metabolome to chronic diseases among Han Chinese. CELL GENOMICS 2025; 5:100743. [PMID: 39837327 PMCID: PMC11872534 DOI: 10.1016/j.xgen.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Serum metabolites are potential regulators for chronic diseases. To explore the genetic regulation of metabolites and their roles in chronic diseases, we quantified 2,759 serum metabolites and performed genome-wide association studies (GWASs) among Han Chinese individuals. We identified 184 study-wide significant (p < 1.81 × 10-11) metabolite quantitative trait loci (metaboQTLs), 88.59% (163) of which were novel. Notably, we identified Asian-ancestry-specific metaboQTLs, including the SNP rs2296651 for taurocholic acid and taurochenodesoxycholic acid. Leveraging the GWAS for 37 clinical traits from East Asians, Mendelian randomization analyses identified 906 potential causal relationships between metabolites and clinical traits, including 27 for type 2 diabetes and 38 for coronary artery disease. Integrating genetic regulation of the transcriptome and proteome revealed putative regulators of several metabolites. In summary, we depict a landscape of the genetic architecture of the serum metabolome among Han Chinese and provide insights into the role of serum metabolites in chronic diseases.
Collapse
Affiliation(s)
- Chunxiao Cheng
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Fengzhe Xu
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610200, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Wang
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, China
| | - Jiayao Fan
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Liu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingyun Sun
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Xu
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Yuan Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Congmei Xiao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Wanglong Gou
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Zelei Miao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Jiaying Yuan
- Department of Science and Education & Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610200, China
| | - Luqi Shen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yuanqing Fu
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiaohui Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dan Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
7
|
Wu Y, Xu W. Clarifications and enhancements for cardiovascular risk study in metabolic dysfunction-associated steatotic liver disease. Eur J Intern Med 2025; 132:158-159. [PMID: 39632135 DOI: 10.1016/j.ejim.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Yinfang Wu
- Department of Gastrointestinal and Minimally Invasive Surgery, Shaoxing Second Hospital, Shaoxing, Zhejiang, China.
| | - Weixing Xu
- Department of Gastrointestinal and Minimally Invasive Surgery, Shaoxing Second Hospital, Shaoxing, Zhejiang, China; Department of Clinical Medicine, Shaoxing University School of Medicine, Zhejiang, China
| |
Collapse
|
8
|
Rauterberg S, Härdtner C, Hein J, Schrepf P, Peyronnet R, Koentges C, Vico TA, Ehlert C, Dufner B, Lindner D, von zur Mühlen C, Wolf D, Westermann D, Hilgendorf I, von Ehr A. PCSK9-antibodies fail to block PCSK9-induced inflammation in macrophages and cannot recapitulate protective effects of PCSK9-deficiency in experimental myocardial infarction. Front Cardiovasc Med 2025; 11:1463844. [PMID: 39906341 PMCID: PMC11790616 DOI: 10.3389/fcvm.2024.1463844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025] Open
Abstract
Background and aims Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol homeostasis by regulating low-density lipoprotein (LDL) receptor levels. Despite its known effects on cholesterol metabolism, the role of PCSK9 in cardiac function, especially post-myocardial infarction (MI), remains unclear. This study investigates the impact of PCSK9 on heart function post-MI and evaluates the effects of PCSK9 inhibition via Alirocumab. Methods We used PCSK9 knockout (KO) mice and wildtype (WT) mice and in vivo treatment with Alirocumab to analyze cardiac function and survival post-MI induced by permanent ligation of the left anterior descending artery. PCSK9 and LDL receptor levels were measured using ELISA and qRT-PCR. Cardiac function was assessed via echocardiography and isolated working heart model experiments. Gene expression changes were evaluated using RNA sequencing, and inflammatory responses in bone marrow-derived macrophages (BMDMs) were analyzed in vitro. Results PCSK9 was expressed in murine heart tissue at levels comparable to the liver, despite minimal heart RNA expression. PCSK9 KO mice had lower plasma cholesterol levels and showed reduced cardiac functions in the working heart model compared to WT mice. Post-MI, PCSK9 KO mice demonstrated significantly improved survival and reduced ventricular rupture compared to WT mice. Alirocumab treatment, while effective in lowering plasma cholesterol, did not replicate the survival benefits seen in PCSK9 KO mice and even worsened cardiac function post-MI. In vitro, PCSK9 induced significant inflammatory responses in macrophages, which were not mitigated by Alirocumab. Conclusion PCSK9 accumulation in the heart post-MI contributes to adverse cardiac remodeling and inflammation. Genetic deletion of PCSK9 confers protection against post-infarct mortality, whereas pharmacological inhibition with Alirocumab fails to reproduce these benefits and may exacerbate cardiac dysfunction. These findings highlight the complex role of PCSK9 in cardiac pathology and caution against the assumption that PCSK9 inhibitors will necessarily yield cardiovascular benefits similar to genetic PCSK9 deficiency.
Collapse
Affiliation(s)
- Simon Rauterberg
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
- Department of Congenital Heart Disease and Pediatric Cardiology, Faculty of Medicine, University Heart Centre Freiburg—Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
| | - Carmen Härdtner
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Jennifer Hein
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Paola Schrepf
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Remi Peyronnet
- Institute of Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tamara A. Vico
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Carolin Ehlert
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Bianca Dufner
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Constantin von zur Mühlen
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Alexander von Ehr
- Department of Cardiology and Angiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Benn M, Emanuelsson F, Tybjærg-Hansen A, Nordestgaard BG. Low LDL cholesterol and risk of bacterial and viral infections: observational and Mendelian randomization studies. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf009. [PMID: 39991120 PMCID: PMC11843444 DOI: 10.1093/ehjopen/oeaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Aims Low levels of LDL cholesterol may be associated with risk of infectious disease. We tested the hypothesis that low LDL cholesterol due to genetic variation in the LDLR, PCSK9, and HMGCR genes and a polygenic LDL cholesterol score is associated with risk of infectious diseases in the general population. Methods and results Using observational and Mendelian randomization designs, we examined associations of low plasma LDL cholesterol with risk of bacterial and viral infections in 119 805 individuals from the Copenhagen General Population Study/Copenhagen City Heart Study, 468 701 from the UK Biobank, and up to 376 773 from the FinnGen Research Project. Observationally, low LDL cholesterol concentrations were associated with risk of hospitalization for both bacterial and viral infections. In genetic analyses, a 1 mmol/L lower LDL cholesterol was associated with lower plasma PCSK9 {-0.55 nmol/L [95% confidence interval (CI): -1.06 to -0.05]; P = 0.03}, leucocyte count [-0.42 × 109/L (-0.61 to -0.24); P < 0.001], and high-sensitivity C-reactive protein [-0.44 mg/L (-0.79 to -0.09); P = 0.014]. Using an LDLR, HMGCR, and PCSK9 score, a 1 mmol/L lower LDL cholesterol was associated with risk ratios of 0.91 (95% CI: 0.86-0.97; P = 0.002) for unspecified bacterial infection, of 0.92 (0.87-0.97; P = 0.004) for diarrhoeal disease, and of 1.15 (1.03-1.29; P = 0.012) for unspecified viral infections and 1.64 (1.13-2.39; P = 0.009) for HIV/AIDS. Using a polygenic LDL cholesterol score largely showed similar results and in addition a lower risk of 0.85 (0.76-0.96; P = 0.006) for bacterial pneumonia and 0.91 (0.82-0.99; P = 0.035) for sepsis. Conclusion Genetically low LDL cholesterol concentrations were associated with lower concentration of markers of inflammation; lower risk of hospitalization for unspecified bacterial infections, infectious diarrhoeal diseases, bacterial pneumonia, and sepsis; and higher risk of viral infections and HIV/AIDS.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Frida Emanuelsson
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
| |
Collapse
|
10
|
Wu S, Smith A, Huang J, Otto GW, Ko YH, Yarmolinsky J, Gill D, Rohatgi A, Dehghan A, Tzoulaki I, Meena D. Prioritizing protein targets for dyslipidaemia and cardiovascular diseases using Mendelian randomization in South Asians. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.18.24319223. [PMID: 39763524 PMCID: PMC11702717 DOI: 10.1101/2024.12.18.24319223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
South Asians are at higher risk of dyslipidaemia-a modifiable risk factor for cardiovascular diseases (CVDs). We aimed to identify protein targets for dyslipidaemia and CVDs in this population. We used a two-sample Mendelian randomization (MR) approach, supplemented with MR-Egger, weighted median, colocalization, and generalized MR (GMR), to evaluate the effect of 2,800 plasma proteins on high/low/non-high-density lipoprotein cholesterol (HDL-C/LDL-C/nonHDL-C), total cholesterol, and triglycerides. Observational analyses were conducted on MR findings with strong colocalization (posterior probability≥ 80%) and GMR findings. Univariate MR assessed lipid-associated proteins' effect on CVDs. Finally, we compared the potential causal effects of plasma proteins on lipids in South Asians with those in Europeans to study heterogeneity in the MR effects. We identified 29 genetically proxied proteins potentially causal to at least one lipid measure, 12 of which showed strong colocalization and GMR evidence, including ANGPTL3 and PCSK9. Notably, PCSK9 demonstrated a stronger association with LDL-C in European compared to South Asian (βEuropean= 0.37; 95% Confidence Interval (CI)= (0.36, 0.38), βSouth Asian= 0.16; 95% CI= (0.11, 0.21)). Observational analysis suggested significant interaction between PCSK9 levels with LDL-C levels in South Asians with South Asians having a significantly lower effect compared to other ethnicities (PCSK9*South Asian; β= -0.14; 95% CI= (-0.174, -0.107)). Additionally, we showed that CELSR2 is also linked with CAD in South Asians. Our study highlighted potential causal links between plasma proteins, dyslipidaemia, and CVD in South Asians, with significant heterogeneity across genetic ancestry groups. Larger studies in South Asians are needed to validate these findings.
Collapse
Affiliation(s)
- Siwei Wu
- Department of Clinical Nutrition, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alexander Smith
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jingxian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Georg W. Otto
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Yi-Hsuan Ko
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - James Yarmolinsky
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Anand Rohatgi
- Department of Medicine, Division of Cardiology University of Texas Southwestern Medical Center Dallas TX USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
- Centre for Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Devendra Meena
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
11
|
Wuni R, Vimaleswaran KS. Barriers in Translating Existing Nutrigenetics Insights to Precision Nutrition for Cardiometabolic Health in Ethnically Diverse Populations. Lifestyle Genom 2024; 17:122-135. [PMID: 39467522 DOI: 10.1159/000541909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cardiometabolic diseases pose a significant threat to global public health, with a substantial majority of cardiovascular disease mortality (more than three-quarters) occurring in low- and middle-income countries. There have been remarkable advances in recent years in identifying genetic variants that alter disease susceptibility by interacting with dietary factors. Despite the remarkable progress, several factors need to be considered before the translation of nutrigenetics insights to personalised and precision nutrition in ethnically diverse populations. Some of these factors include variations in genetic predispositions, cultural and lifestyle factors as well as socio-economic factors. SUMMARY This review aimed to explore the factors that need to be considered in bridging the gap between existing nutrigenetics insights and the implementation of personalised and precision nutrition across diverse ethnicities. Several factors might influence variations among individuals with regard to dietary exposures and metabolic responses, and these include genetic diversity, cultural and lifestyle factors as well as socio-economic factors. A multi-omics approach involving disciplines such as metabolomics, epigenetics, and the gut microbiome might contribute to improved understanding of the underlying mechanisms of gene-diet interactions and the implementation of precision nutrition although more research is needed to confirm the practicality and effectiveness of this approach. Conducting gene-diet interaction studies in diverse populations is essential and studies utilising large sample sizes are required as this improves the power to detect interactions with minimal effect sizes. Future studies should focus on replicating initial findings to enhance reliability and promote comparison across studies. Once findings have been replicated in independent samples, dietary intervention studies will be required to further strengthen the evidence and facilitate their application in clinical practice. KEY MESSAGES Nutrigenetics has a potential role to play in the prevention and management of cardiometabolic diseases. Conducting gene-diet interaction studies in diverse populations is essential giving the genetic diversity and variations in dietary patterns. Integrating data from disciplines such as metabolomics, epigenetics, and the gut microbiome could help in early identification of individuals at risk of cardiometabolic diseases as well as the implementation of precise dietary interventions for preventing and managing cardiometabolic diseases.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, UK
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, Reading, UK
| |
Collapse
|
12
|
Larifla L, Bassien-Capsa V, Velayoudom FL, Chingan-Martino V, Afassinou Y, Ancedy Y, Galantine O, Galantine V, Nicolas L, Martino F, Numeric P, Foucan L, Humphries SE. Influence of Common Gene Variants on Lipid Levels and Risk of Coronary Heart Disease in Afro-Caribbeans. Int J Mol Sci 2024; 25:11140. [PMID: 39456920 PMCID: PMC11508861 DOI: 10.3390/ijms252011140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A lower mortality rate from coronary artery disease (CAD) and a more favourable lipid profile have been reported in Afro-Caribbeans compared with people of European ancestry. The aim of this study was to determine whether common lipid variants identified in other populations are associated with lipid levels and CAD in Afro-Caribbeans. We studied 705 Afro-Caribbeans (192 with CAD) who were genotyped for 13 lipid-associated variants. We calculated three polygenic risk scores (PRSs) for elevated LDL (LDL-PRS), decreased HDL (HDL-PRS), and elevated triglycerides (TG-PRS). LDL-PRS, HDL-PRS, and TG-PRS were associated with LDL, HDL, and TG levels, respectively. The LDL-PRS was positively associated with LDL > 2.6 mmol/L and with LDL > 3.0 mmol/L with ORs (odds ratios) of 1.33 (95% confidence interval (CI) = 1.14-1.56) and 1.40 (CI = 1.21-1.62), respectively. The HDL-PRS was associated with a low HDL category (HDL < 1.03 mmol/L) with an OR of 1.3 (CI = 1.04-1.63) and inversely associated with a high HDL category (HDL > 1.55 mmol/L) with an OR of 0.79 (CI = 0.65-0.96). The LDL-PRS was positively associated with CAD after adjustment for age, gender, hypertension, diabetes, and smoking with an OR of 1.27 (CI = 1.06-1.51) but not the HDL-PRS nor the TG-PRS. Results of the present study indicate that common lipid variants are associated with lipid levels and prevalent CAD in Afro-Caribbeans.
Collapse
Affiliation(s)
- Laurent Larifla
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), UR 1_1, University of Antilles, 97157 Pointe-à-Pitre, France
- Department of Cardiology, University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Valerie Bassien-Capsa
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Fritz-Line Velayoudom
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), UR 1_1, University of Antilles, 97157 Pointe-à-Pitre, France
| | - Vaneva Chingan-Martino
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Yaovi Afassinou
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Yann Ancedy
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
- Department of Cardiology, University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Olivier Galantine
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Valérie Galantine
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Livy Nicolas
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Frédérique Martino
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Patrick Numeric
- Department of Rheumatology, University Hospital of Martinique, 97261 Fort-de France, France;
| | - Lydia Foucan
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London WC1E 6JF, UK;
| |
Collapse
|
13
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 PMCID: PMC11536265 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T. Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R. da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A. Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
14
|
Shin JE, Shin N, Park T, Park M. Multipartite network analysis to identify environmental and genetic associations of metabolic syndrome in the Korean population. Sci Rep 2024; 14:20283. [PMID: 39217223 PMCID: PMC11366034 DOI: 10.1038/s41598-024-71217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Network analysis has become a crucial tool in genetic research, enabling the exploration of associations between genes and diseases. Its utility extends beyond genetics to include the assessment of environmental factors. Unipartite network analysis is commonly used in genomics to visualize initial insights and relationships among variables. Syndromic diseases, such as metabolic syndrome, are characterized by the simultaneous occurrence of various signs, symptoms, and clinicopathological features. Metabolic syndrome encompasses hypertension, diabetes, obesity, and dyslipidemia, and both genetic and environmental factors contribute to its development. Given that relevant data often consist of distinct sets of variables, a more intuitive visualization method is needed. This study applied multipartite network analysis as an effective method to understand the associations among genetic, environmental, and disease components in syndromic diseases. We considered three distinct variable sets: genetic factors, environmental factors, and disease components. The process involved projecting a tripartite network onto a two-mode bipartite network and then simplifying it into a one-mode network. This approach facilitated the visualization of relationships among factors across different sets and within individual sets. To transition from multipartite to unipartite networks, we suggest both sequential and concurrent projection methods. Data from the Korean Association Resource (KARE) project were utilized, including 352,228 SNPs from 8840 individuals, alongside information on environmental factors such as lifestyle, dietary, and socioeconomic factors. The single-SNP analysis step filtered SNPs, supplemented by reference SNPs reported in a genome-wide association study catalog. The resulting network patterns differed significantly by sex: demographic factors and fat intake were crucial for women, while alcohol consumption was central for men. Indirect relationships were identified through projected bipartite networks, revealing that SNPs such as rs4244457, rs2156552, and rs10899345 had lifestyle interactions on metabolic components. Our approach offers several advantages: it simplifies the visualization of complex relationships among different datasets, identifies environmental interactions, and provides insights into SNP clusters sharing common environmental factors and metabolic components. This framework provides a comprehensive approach to elucidate the mechanisms underlying complex diseases like metabolic syndrome.
Collapse
Affiliation(s)
- Ji-Eun Shin
- Department of Biomedical Informatics, Konyang University, Daejeon, Republic of Korea
| | - Nari Shin
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Mira Park
- Department of Preventive Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Bogari NM, Babalghith AO, Azher ZA, Mufti AH, Bouazzaoui A, Banni H, Madkhali AA, Alahmadi A, Allam RM. Impact of rs599839 Polymorphism on Coronary Artery Disease Risk in Saudi Diabetic Patients. DISEASE MARKERS 2024; 2024:8278727. [PMID: 39165561 PMCID: PMC11335421 DOI: 10.1155/2024/8278727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/10/2024] [Accepted: 03/15/2024] [Indexed: 08/22/2024]
Abstract
Background Coronary artery diseases may be affected by several genetic and nongenetic factors. Single-nucleotide polymorphism (SNP) rs599839 and type 2 diabetes mellitus (T2DM) can affect the occurrence and severity of coronary artery disease (CAD). Methods Our aim was to investigate how T2DM and the rs599839 variant affected serum lipid levels and the degree of CAD patients' coronary artery stenosis. rs599839 polymorphism genotyping was done on Saudi patients with coronary angiography performed previously. Patients enrolled were divided into group A (360 DM patients), group B (225 DM patients with CAD), and group C (190 healthy volunteers as control). Results Individuals with diabetes and CAD who possessed the GG genotype in rs599839 exhibited markedly reduced means of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG; 224.5, 116.2, and 221.4 versus 251.6, 131.3, and 261.7 mg/dl, p=0.003, 0.007, and 0.025, respectively) than AA genotype. The odds ratio and the confidence interval of 95% for G allele carriers of rs599839 were OR = 0.62, 95% CI: 0.41-0.82, and p=0.003, among diabetic patients with CAD. Conclusions In patients with diabetic CAD, the locus 1p13.3 polymorphism rs599839 was found to be substantially correlated with serum lipid levels. Furthermore, among Saudi patients with diabetes, the G allele of rs599839 variant lowers the CAD risk.
Collapse
Affiliation(s)
- Neda M. Bogari
- Department of Medical GeneticsFaculty of MedicineUmm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Department of Medical GeneticsFaculty of MedicineUmm Al-Qura University, Makkah, Saudi Arabia
| | - Zohor Asaad Azher
- Department of Medical GeneticsFaculty of MedicineUmm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad Hasan Mufti
- Department of Medical GeneticsFaculty of MedicineUmm Al-Qura University, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical GeneticsFaculty of MedicineUmm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology UnitUmm Al Qura University, Makkah, Saudi Arabia
| | - Hussain Banni
- Department of Medical GeneticsFaculty of MedicineUmm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulelah Awaji Madkhali
- Department of Pathology and Laboratory MedicineCytogenetics LabKing Abdulaziz Medical CityMinistry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Ahmed Alahmadi
- Department of Pathology and Laboratory MedicineKing Faisal Hospital, Makkah, Saudi Arabia
| | - Reem M. Allam
- Department of Clinical PathologyFaculty of MedicineZagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
17
|
Trischitta V, Antonucci A, Adamski J, Prehn C, Menzaghi C, Marucci A, Di Paola R. GALNT2 expression is associated with glucose control and serum metabolites in patients with type 2 diabetes. Acta Diabetol 2024; 61:1007-1013. [PMID: 38627282 PMCID: PMC11329529 DOI: 10.1007/s00592-024-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 08/09/2024]
Abstract
AIMS Aim of this study was to investigate in type 2 diabetes whether expression level of GALNT2, a positive modulator of insulin sensitivity, is associated with a metabolic signature. METHODS Five different metabolite families, including acylcarnitines, aminoacids, biogenic amines, phospholipids and sphingolipids were investigated in fasting serum of 70 patients with type 2 diabetes, by targeted metabolomics. GALNT2 expression levels were measured in peripheral white blood cells by RT-PCR. The association between GALNT2 expression and serum metabolites was assessed using false discovery rate followed by stepwise selection and, finally, multivariate model including several clinical parameters as confounders. The association between GALNT2 expression and the same clinical parameters was also investigated. RESULTS GALNT2 expression was independently correlated with HbA1c levels (P value = 0.0052), a finding that is the likely consequence of the role of GALNT2 on insulin sensitivity. GALNT2 expression was also independently associated with serum levels of the aminoacid glycine (P value = 0.014) and two biogenic amines phenylethylamine (P value = 0.0065) and taurine (P value = 0.0011). The association of GALNT2 expression with HbA1c was not mediated by these three metabolites. CONCLUSIONS Our data indicate that in type 2 diabetes the expression of GALNT2 is associated with several serum metabolites. This association needs to be further investigated to understand in depth its role in mediating the effect of GALNT2 on insulin sensitivity, glucose control and other clinical features in people with diabetes.
Collapse
Affiliation(s)
- Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy.
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy.
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Cornelia Prehn
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy.
| |
Collapse
|
18
|
Zhang Y, Wang M, Li Z, Yang X, Li K, Xie A, Dong F, Wang S, Yan J, Liu J. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1133-1154. [PMID: 38568343 DOI: 10.1007/s11427-023-2522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 06/07/2024]
Abstract
Detecting genes that affect specific traits (such as human diseases and crop yields) is important for treating complex diseases and improving crop quality. A genome-wide association study (GWAS) provides new insights and directions for understanding complex traits by identifying important single nucleotide polymorphisms. Many GWAS summary statistics data related to various complex traits have been gathered recently. Studies have shown that GWAS risk loci and expression quantitative trait loci (eQTLs) often have a lot of overlaps, which makes gene expression gradually become an important intermediary to reveal the regulatory role of GWAS. In this review, we review three types of gene-trait association detection methods of integrating GWAS summary statistics and eQTLs data, namely colocalization methods, transcriptome-wide association study-oriented approaches, and Mendelian randomization-related methods. At the theoretical level, we discussed the differences, relationships, advantages, and disadvantages of various algorithms in the three kinds of gene-trait association detection methods. To further discuss the performance of various methods, we summarize the significant gene sets that influence high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride reported in 16 studies. We discuss the performance of various algorithms using the datasets of the four lipid traits. The advantages and limitations of various algorithms are analyzed based on experimental results, and we suggest directions for follow-up studies on detecting gene-trait associations.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenguo Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Dong
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shihan Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Aggarwal S, Narang R, Saluja D, Srivastava K. Diagnostic potential of SORT1 gene in coronary artery disease. Gene 2024; 909:148308. [PMID: 38395240 DOI: 10.1016/j.gene.2024.148308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Genome-wide association studies identify SORT1 gene associated with risk of coronary artery disease (CAD). Sortilin protein enhances LDL absorption, form cell development, and atherosclerosis in macrophages. AIM We therefore explored SORT1 expression in CAD patients and its gene expression's predictive usefulness for the severity of the disease. METHODOLOGY This is a case control study and Quantitative real-time PCR; Sandwich ELISA and western blotting were used to determine the expression of SORT1 gene at the mRNA and protein level in two hundred healthy controls and two hundred patients with various CAD syndromes. RESULTS CAD patients exhibit higher SORT1 gene expression in CAD patients, a higher concentration of sortilin in their plasma, and distinct expression patterns in various CAD syndromes. The study reveals a positive correlation between gene expression and the severity of coronary artery stenosis, the number of diseased vessels, and the presence of diabetes. ROC curve analysis of SORT1 gene expression both at mRNA and protein level showed strong discrimination between significant CAD and control subjects. CONCLUSION Therefore, elevated SORT1 gene expression in various CAD syndromes may be a potential biomarker for the disease.
Collapse
Affiliation(s)
- Shelly Aggarwal
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Science, New Delhi 110029, India
| | - Daman Saluja
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Kamna Srivastava
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
20
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
21
|
Singh K, Showalter CA, Manring HR, Haque SJ, Chakravarti A. "Oh, Dear We Are in Tribble": An Overview of the Oncogenic Functions of Tribbles 1. Cancers (Basel) 2024; 16:1889. [PMID: 38791967 PMCID: PMC11120034 DOI: 10.3390/cancers16101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pseudokinases are catalytically inactive proteins in the human genome that lack the ability to transfer phosphate from ATP to their substrates. The Tribbles family of pseudokinases contains three members: Tribbles 1, 2, and 3. Tribbles 1 has recently gained importance because of its involvement in various diseases, including cancer. It acts as a scaffolding protein that brings about the degradation of its substrate proteins, such as C/EBPα/β, MLXIPL, and RAR/RXRα, among others, via the ubiquitin proteasome system. It also serves as an adapter protein, which sequesters different protein molecules and activates their downstream signaling, leading to processes, such as cell survival, cell proliferation, and lipid metabolism. It has been implicated in cancers such as AML, prostate cancer, breast cancer, CRC, HCC, and glioma, where it activates oncogenic signaling pathways such as PI3K-AKT and MAPK and inhibits the anti-tumor function of p53. TRIB1 also causes treatment resistance in cancers such as NSCLC, breast cancer, glioma, and promyelocytic leukemia. All these effects make TRIB1 a potential drug target. However, the lack of a catalytic domain renders TRIB1 "undruggable", but knowledge about its structure, conformational changes during substrate binding, and substrate binding sites provides an opportunity to design small-molecule inhibitors against specific TRIB1 interactions.
Collapse
Affiliation(s)
| | | | | | | | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Pennisi G, Maurotti S, Ciociola E, Jamialahmadi O, Bertolazzi G, Mirarchi A, Bergh PO, Scionti F, Mancina RM, Spagnuolo R, Tripodo C, Boren J, Petta S, Romeo S. ANGPTL3 Downregulation Increases Intracellular Lipids by Reducing Energy Utilization. Arterioscler Thromb Vasc Biol 2024; 44:1086-1097. [PMID: 38385290 DOI: 10.1161/atvbaha.123.319789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND ANGPTL3 (angiopoietin-like protein 3) is a circulating protein with a key role in maintaining lipoprotein homeostasis. A monoclonal antibody against ANGPTL3 is an approved and well-tolerated treatment to reduce lipoproteins in familial hypercholesterolemia homozygotes. However, the reduction of hepatic ANGPTL3 synthesis using an antisense oligonucleotide unexpectedly resulted in a dose-dependent increase in liver lipid content and circulating transaminases, resulting in the termination of the clinical trial. Meanwhile, the use of silencing RNAs remains an area of active investigation. Our study sought to investigate whether intracellular downregulation of ANGPTL3 may lead to a primary increase in neutral lipids within the hepatocyte. METHODS We downregulated ANGPTL3 by silencing RNA in primary human hepatocytes 3-dimensional spheroids, HepG2/LX-2 3-dimensional spheroids, and in HepG2, Hep3B2, and Huh7 cultured in 2 dimensions. RESULTS ANGPTL3 downregulation increased neutral lipids in all models investigated. Interestingly, ANGPTL3 induced lower intracellular deiodinase type 1 protein levels resulting in a reduction in beta-oxidation and causing an increase in triglycerides stored in lipid droplets. CONCLUSIONS In conclusion, intracellular ANGPTL3 downregulation by silencing RNA led to an increase in triglycerides content due to a reduction in energy substrate utilization resembling a primary intracellular hepatocyte hypothyroidism.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy (G.P., S.P.)
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy (S.M., F.S.)
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Giorgio Bertolazzi
- Department of Economics, Business, and Statistics, University of Palermo, Italy (G.B.)
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Italy (G.B., C.T.)
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy (A.M., S.R.)
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy (S.M., F.S.)
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
| | - Rocco Spagnuolo
- Department of Health Sciences, University "Magna Graecia," Catanzaro, Italy (R.S.)
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Italy (G.B., C.T.)
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
- Wallenberg Laboratory (J.B.), Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy (G.P., S.P.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden (E.C., O.J., P.-O.B., R.M.M., J.B., S.R.)
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy (A.M., S.R.)
- Cardiology Department (S.R.), Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
23
|
Luo F, Das A, Khetarpal SA, Fang Z, Zelniker TA, Rosenson RS, Qamar A. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med 2024; 34:215-222. [PMID: 36746257 DOI: 10.1016/j.tcm.2023.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Optimal management of low-density lipoprotein cholesterol (LDL-C) is a central tenet in the primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD). However, significant residual cardiovascular risk remains despite achieving guideline-directed LDL-C levels, in part due to mixed hyperlipidemia with elevated fasting and non-fasting triglyceride-rich lipoprotein levels. Advances in human genetics have identified angiopoietin-like 3 (ANGPTL3) as a promising therapeutic target to lower cardiovascular risk. Evidence accrued from genetic epidemiological studies demonstrate that ANGPTL3 loss of function is strongly associated with lowering of circulating LDL-C, triglyceride-rich lipoproteins and concurrent risk reduction in development of coronary artery disease. Pharmacological inhibition of ANGPTL3 with monoclonal antibodies, antisense oligonucleotides and gene editing are in development with early studies showing their safety and efficacy in lowering in both, LDL-C and TGs, circumventing a key limitation of previous therapies. Monoclonal antibodies targeting ANGPTL3 are approved for clinical use in homozygous familial hypercholesteremia in USA and Europe. Although promising, future studies focusing on long-term beneficial effect in reducing cardiovascular events with inhibition of ANGPTL3 are warranted.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sumeet A Khetarpal
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Thomas A Zelniker
- Division of Cardiology, Vienna General Hospital and Medical University of Vienna, Austria
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, NY, United States
| | - Arman Qamar
- Section of Interventional Cardiology & Vascular Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, 2650 Ridge Avenue, Evanston, IL, United States.
| |
Collapse
|
24
|
Kock KH, Kimes PK, Gisselbrecht SS, Inukai S, Phanor SK, Anderson JT, Ramakrishnan G, Lipper CH, Song D, Kurland JV, Rogers JM, Jeong R, Blacklow SC, Irizarry RA, Bulyk ML. DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues. Nat Commun 2024; 15:3110. [PMID: 38600112 PMCID: PMC11006913 DOI: 10.1038/s41467-024-47396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.
Collapse
Affiliation(s)
- Kian Hong Kock
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
| | - Patrick K Kimes
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - James T Anderson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Gayatri Ramakrishnan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Boston Bangalore Biosciences Beginnings Program, Harvard University, Cambridge, MA, USA
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Dongyuan Song
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA, USA
| | - Stephen C Blacklow
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA.
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA.
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Guo L, Zhou L, Wei P, Li S, He S, Li D. Emerging Roles of UDP-GalNAc Polypeptide N-Acetylgalactosaminyltransferases in Cardiovascular Disease. Aging Dis 2024; 16:AD.2024.0308. [PMID: 38502587 PMCID: PMC11745429 DOI: 10.14336/ad.2024.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
UDP-GalNAc polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) catalyze mucin-type O-glycosylation by transferring α-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to Ser or Thr residues of target proteins. This post-translational modification is common in eukaryotes, yet its biological functions remain unclear. Recent studies have identified specific receptors in the heart and vascular wall cells that can be mucin-type O-glycosylated, and there is now substantial evidence confirming that patients with various cardiovascular diseases (CVDs), such as heart failure, coronary artery disease, myocardial hypertrophy, and vascular calcification, exhibit abnormal changes in GalNAc-Ts. This review aims to highlight recent advances in GalNAc-Ts and their roles in the cardiovascular system, intending to provide evidence for clinical treatment and prevention of CVDs.
Collapse
Affiliation(s)
- Liwei Guo
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang, Henan, China.
| | - Lulu Zhou
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Pengcheng Wei
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shijie Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shanqing He
- Department of Cardiovascular Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Duan Li
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
- Henan Key Biological of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
26
|
Reay WR, Kiltschewskij DJ, Di Biase MA, Gerring ZF, Kundu K, Surendran P, Greco LA, Clarke ED, Collins CE, Mondul AM, Albanes D, Cairns MJ. Genetic influences on circulating retinol and its relationship to human health. Nat Commun 2024; 15:1490. [PMID: 38374065 PMCID: PMC10876955 DOI: 10.1038/s41467-024-45779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Retinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal. An integrative gene prioritisation pipeline supports novel retinol-associated genes outside of the main retinol transport complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and endocrine signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-pheWAS suggests that retinol may exert causal effects on inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, amongst several others. Conversely, circulating retinol may be causally influenced by factors including lipids and serum creatinine. Finally, we demonstrate how a retinol polygenic score could identify individuals more likely to fall outside of the normative range of circulating retinol for a given age. In summary, this study provides a comprehensive evaluation of the genetics of circulating retinol, as well as revealing traits which should be prioritised for further investigation with respect to retinol related therapies or nutritional intervention.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.
| | - Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary F Gerring
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kousik Kundu
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
| | - Laura A Greco
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Erin D Clarke
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
27
|
Abbas M, Diallo A, Goodney G, Gaye A. Leveraging the transcriptome to further our understanding of GWAS findings: eQTLs associated with genes related to LDL and LDL subclasses, in a cohort of African Americans. Front Genet 2024; 15:1345541. [PMID: 38384714 PMCID: PMC10879560 DOI: 10.3389/fgene.2024.1345541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Background: GWAS discoveries often pose a significant challenge in terms of understanding their underlying mechanisms. Further research, such as an integration with expression quantitative trait locus (eQTL) analyses, are required to decipher the mechanisms connecting GWAS variants to phenotypes. An eQTL analysis was conducted on genes associated with low-density lipoprotein (LDL) cholesterol and its subclasses, with the aim of pinpointing genetic variants previously implicated in GWAS studies focused on lipid-related traits. Notably, the study cohort consisted of African Americans, a population characterized by a heightened prevalence of hypercholesterolemia. Methods: A comprehensive differential expression (DE) analysis was undertaken, with a dataset of 17,948 protein-coding mRNA transcripts extracted from the whole-blood transcriptomes of 416 samples to identify mRNA transcripts associated with LDL, with further granularity delineated between small LDL and large LDL subclasses. Subsequently, eQTL analysis was conducted with a subset of 242 samples for which whole-genome sequencing data were available to identify single-nucleotide polymorphisms (SNPs) associated with the LDL-related mRNA transcripts. Lastly, plausible functional connections were established between the identified eQTLs and genetic variants reported in the GWAS catalogue. Results: DE analysis revealed 1,048, 284, and 94 mRNA transcripts that exhibited differential expression in response to LDL, small LDL, and large LDL, respectively. The eQTL analysis identified a total of 9,950 significant SNP-mRNA associations involving 6,955 SNPs including a subset 101 SNPs previously documented in GWAS of LDL and LDL-related traits. Conclusion: Through comprehensive differential expression analysis, we identified numerous mRNA transcripts responsive to LDL, small LDL, and large LDL. Subsequent eQTL analysis revealed a rich landscape of eQTL-mRNA associations, including a subset of eQTL reported in GWAS studies of LDL and related traits. The study serves as a testament to the important role of integrative genomics in unraveling the enigmatic GWAS relationships between genetic variants and the complex fabric of human traits and diseases.
Collapse
Affiliation(s)
- Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ana Diallo
- School of Nursing, Virginia Commonwealth University, Richmond, VA, United States
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Manco L, Albuquerque D, Rodrigues D, Machado-Rodrigues AM, Padez C. Protective Association of APOC1/rs4420638 with Risk of Obesity: A case-control Study in Portuguese Children. Biochem Genet 2024; 62:254-263. [PMID: 37328602 PMCID: PMC10902077 DOI: 10.1007/s10528-023-10427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The association of the rs4420638 polymorphism, near the APOC1 gene, was examined with the risk of obesity among Portuguese children. A sample of 446 Portuguese individuals (231 boys and 215 girls) of European descent, aged 3.2 to 13.7 years old (mean age: 7.98 years), were selected to conduct a case-control study. Body mass index (BMI), BMI Z-scores, and waist circumference were calculated. Genotyping was performed by real time PCR using a pre-designed TaqMan probe. Logistic regression and the nonparametric Mann-Whitney test were used to test the associations. The association results revealed a significant protective effect from the minor G-allele of SNP rs4420638 against obesity, with an odds ratio (OR) of 0.619 (95% CI 0.421-0.913; p = 0.0155) in the additive model, and OR of 0.587 (95% CI 0.383-0.9; p = 0.0145) in the dominant model. Moreover, comparing genotype groups (AA vs. AG + GG), significantly lower values (p < 0.05) for the anthropometric traits weight, height, BMI, BMI Z-score and waist circumference, were observed in the carriers of allele G. The present study provides further evidence for the APOE/APOC1 candidate-region association with the risk of obesity. This was the first study to describe the protective association of the rs4420638 minor G-allele against obesity in childhood exclusively.
Collapse
Affiliation(s)
- Licínio Manco
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, 3000, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - David Albuquerque
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, 3000, Portugal
| | - Daniela Rodrigues
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, 3000, Portugal
| | - Aristides M Machado-Rodrigues
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, 3000, Portugal
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Cristina Padez
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, 3000, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Kalnytska O, Qvist P, Kunz S, Conrad T, Willnow TE, Schmidt V. SORCS2 activity in pancreatic α-cells safeguards insulin granule formation and release from glucose-stressed β-cells. iScience 2024; 27:108725. [PMID: 38226160 PMCID: PMC10788290 DOI: 10.1016/j.isci.2023.108725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Sorting receptor SORCS2 is a stress-response factor protecting neurons from acute insults, such as during epilepsy. SORCS2 is also expressed in the pancreas, yet its action in this tissue remains unknown. Combining metabolic studies in SORCS2-deficient mice with ex vivo functional analyses and single-cell transcriptomics of pancreatic tissues, we identified a role for SORCS2 in protective stress response in pancreatic islets, essential to sustain insulin release. We show that SORCS2 is predominantly expressed in islet alpha cells. Loss of expression coincides with inability of these cells to produce osteopontin, a secreted factor that facilitates insulin release from stressed beta cells. In line with diminished osteopontin levels, beta cells in SORCS2-deficient islets show gene expression patterns indicative of aggravated cell stress, and exhibit defects in insulin granule maturation and a blunted glucose response. These findings corroborate a function for SORCS2 in protective stress response that extends to metabolism.
Collapse
Affiliation(s)
- Oleksandra Kalnytska
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Séverine Kunz
- Technology Platform for Electron Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Thomas E. Willnow
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Vanessa Schmidt
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
30
|
Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, Wohns AW, Ali MQ, Griffith SJ, Solnik A, Niinemäe H, Ge XJ, Rose AK, Beneker O, O’Connell TC, Robb JE, Kivisild T. Genetic history of Cambridgeshire before and after the Black Death. SCIENCE ADVANCES 2024; 10:eadi5903. [PMID: 38232165 PMCID: PMC10793959 DOI: 10.1126/sciadv.adi5903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.
Collapse
Affiliation(s)
- Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Christiana L. Scheib
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, University of Cambridge, Cambridge, UK
| | | | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Anthony W. Wohns
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Biology, Stanford University, Stanford, CA, USA
| | | | - Samuel J. Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Niinemäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
| | - Alice K. Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Durham, Durham, UK
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tamsin C. O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Toomas Kivisild
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Chen J, Fang Z, Luo Q, Wang X, Warda M, Das A, Oldoni F, Luo F. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis 2024; 23:14. [PMID: 38216994 PMCID: PMC10785355 DOI: 10.1186/s12944-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Collapse
Affiliation(s)
- Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfei Fang
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5400, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
33
|
Peters U, Tomlinson I. Utilizing Human Genetics to Develop Chemoprevention for Cancer-Too Good an Opportunity to be Missed. Cancer Prev Res (Phila) 2024; 17:7-12. [PMID: 38173394 DOI: 10.1158/1940-6207.capr-22-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Large-scale genetic studies are reliably identifying many risk factors for disease in the general population. Several of these genetic risk factors encode potential drug targets, and genetics has already helped to introduce targeted agents for some diseases, an example being lipid-lowering drugs to reduce the incidence of cardiovascular disease. Multiple drugs have been developed to treat cancers based on somatic mutations and genomics, but in stark contrast, there seems to be a reluctance to use germline genetic data to develop drugs to prevent malignancy, despite the large numbers of people who could benefit, the potential for lowering cancer rates, and the widespread current use of non-pharmaceutical measures to reduce cancer risk factors such as tobacco, alcohol, and infectious diseases. We argue that concerted efforts for cancer prevention based on genetics, including genes influenced by common polymorphisms that modulate cancer risk, are urgently needed. There are enormous, yet underutilized, opportunities to develop novel targeted agents for chemoprevention of cancer based on human germline genetics. Such efforts are likely to require the support of a dedicated funding program by national and international agencies. See related commentary by Winham and Sherman, p. 13.
Collapse
Affiliation(s)
- Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Lu Y, Luo J, Huo Z, Ge F, Chen Y, Chen Y, Zhang Q, Li C, Wang J, Gan J, Cheng Z, Li Y, Feng Y, Hu Q, He J, Liang W. Causal effect of beta-blockers on the risk of lung cancer: a Mendelian randomization study. J Thorac Dis 2023; 15:6651-6660. [PMID: 38249886 PMCID: PMC10797374 DOI: 10.21037/jtd-23-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024]
Abstract
Background It remains uncertain whether there is a causal association of the use of beta-blockers (BBs) on lung cancer risk. We used a two-sample Mendelian randomization (MR) approach to identify the causal association of BBs and lung cancer risk. Methods Twenty-two BB-related single-nucleotide polymorphisms (SNPs) were obtained from the UK Biobank as the instrumental variables (IVs). Genetic summary data information of lung cancer was extracted from the International Lung Cancer Consortium, with a total of 11,348 cases and 15,861 controls. We adopted the inverse-variance weighted (IVW) approach to conduct the MR analyses. Egger-intercept analysis was further performed as sensitivity analysis for pleiotropy evaluation. Additionally, we investigated whether BBs could causally affect the risk of lung cancer through their pharmacological effects. Results The current IVW analysis suggested a decreased lung cancer risk in BB users [odds ratio (OR) =0.83; 95% confidence interval (CI): 0.73-0.95; P<0.01]. Results of Egger-intercept analysis demonstrated that no pleiotropy was found (P=0.94), which suggested the robustness of the causality. However, there was little evidence that pharmacological effects mediate the association between BBs and lung cancer. Conclusions The current analysis suggested that BBs could decrease the risk of lung cancer but may be not via its pharmacological effects. Further research is in need for elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jiachun Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Huo
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Ge
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yang Chen
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qing Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jinhui Wang
- Second Clinical School, Wenzhou Medical University, Wenzhou, China
| | - Jiayu Gan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziqiu Cheng
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yangbin Li
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qiyuan Hu
- First Clinical Medical School, the First Hospital, Shanxi Medical University, Taiyuan, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- Department of Oncology, the First People’s Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
35
|
Brechtmann F, Bechtler T, Londhe S, Mertes C, Gagneur J. Evaluation of input data modality choices on functional gene embeddings. NAR Genom Bioinform 2023; 5:lqad095. [PMID: 37942285 PMCID: PMC10629286 DOI: 10.1093/nargab/lqad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Functional gene embeddings, numerical vectors capturing gene function, provide a promising way to integrate functional gene information into machine learning models. These embeddings are learnt by applying self-supervised machine-learning algorithms on various data types including quantitative omics measurements, protein-protein interaction networks and literature. However, downstream evaluations comparing alternative data modalities used to construct functional gene embeddings have been lacking. Here we benchmarked functional gene embeddings obtained from various data modalities for predicting disease-gene lists, cancer drivers, phenotype-gene associations and scores from genome-wide association studies. Off-the-shelf predictors trained on precomputed embeddings matched or outperformed dedicated state-of-the-art predictors, demonstrating their high utility. Embeddings based on literature and protein-protein interactions inferred from low-throughput experiments outperformed embeddings derived from genome-wide experimental data (transcriptomics, deletion screens and protein sequence) when predicting curated gene lists. In contrast, they did not perform better when predicting genome-wide association signals and were biased towards highly-studied genes. These results indicate that embeddings derived from literature and low-throughput experiments appear favourable in many existing benchmarks because they are biased towards well-studied genes and should therefore be considered with caution. Altogether, our study and precomputed embeddings will facilitate the development of machine-learning models in genetics and related fields.
Collapse
Affiliation(s)
- Felix Brechtmann
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Thibault Bechtler
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Shubhankar Londhe
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Christian Mertes
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
36
|
Mitok KA, Schueler KL, King SM, Orr J, Ryan KA, Keller MP, Krauss RM, Mitchell BD, Shuldiner AR, Attie AD. Missense variants in SORT1 are associated with LDL-C in an Amish population. J Lipid Res 2023; 64:100468. [PMID: 37913995 PMCID: PMC10711479 DOI: 10.1016/j.jlr.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Common noncoding variants at the human 1p13.3 locus associated with SORT1 expression are among those most strongly associated with low-density lipoprotein cholesterol (LDL-C) in human genome-wide association studies. However, validation studies in mice and cell lines have produced variable results regarding the directionality of the effect of SORT1 on LDL-C. This, together with the fact that the 1p13.3 variants are associated with expression of several genes, has raised the question of whether SORT1 is the causal gene at this locus. Using whole exome sequencing in members of an Amish population, we identified coding variants in SORT1 that are associated with increased (rs141749679, K302E) and decreased (rs149456022, Q225H) LDL-C. Further, analysis of plasma lipoprotein particle subclasses by ion mobility in a subset of rs141749679 (K302E) carriers revealed higher levels of large LDL particles compared to noncarriers. In contrast to the effect of these variants in the Amish, the sortilin K302E mutation introduced into a C57BL/6J mouse via CRISPR/Cas9 resulted in decreased non-high-density lipoprotein cholesterol, and the sortilin Q225H mutation did not alter cholesterol levels in mice. This is indicative of different effects of these mutations on cholesterol metabolism in the two species. To our knowledge, this is the first evidence that naturally occurring coding variants in SORT1 are associated with LDL-C, thus supporting SORT1 as the gene responsible for the association of the 1p13.3 locus with LDL-C.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah M King
- Department of Pediatrics, University of California-San Francisco, San Francisco, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California-San Francisco, San Francisco, CA, USA
| | - Kathleen A Ryan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald M Krauss
- Department of Pediatrics, University of California-San Francisco, San Francisco, CA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Regeneron Genetics Center, Tarrytown, NY, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
37
|
Han R, Guan Y, Tang M, Li M, Zhang B, Fei G, Zhou S, Wang R. High Expression of PSRC1 Predicts Poor Prognosis in Lung Adenocarcinoma. J Cancer 2023; 14:3321-3334. [PMID: 37928428 PMCID: PMC10622992 DOI: 10.7150/jca.88635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background: The incidence of lung cancer is increasing annually, but the mechanism of its occurrence and development requires further study. This study aimed to investigate the biological function and prognostic value of proline- and serine-rich coiled-coil 1 (PSRC1) in lung cancer. Methods: We used data from The Cancer Genome Atlas (TCGA) to analyze the association between clinical features and PSRC1 expression in non-small cell carcinoma. The relationship between PSRC1 expression and prognosis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) was analyzed using Kaplan-Meier curves. The function of PSRC1 was identified using enrichment analysis, and the relationship between PSRC1 expression and immune cell infiltration was studied. In addition, the expression of PSRC1 in 150 patients with non-small cell carcinoma was detected using immunohistochemistry, and its clinical significance was analyzed. Results: It was found that the expression level of PSRC1 was higher in LUAD and LUSC tumor tissues than in normal tissues, and the results were confirmed by immunohistochemistry in 150 patients. TCGA data showed that high PSRC1 expression in LUAD was associated with poorer overall survival (p = 0.003) and progression-free interval (p = 0.012). Multivariable analysis showed that PSRC1 was an independent risk factor for LUAD. Functional enrichment analysis showed that PSRC1 is related to tumor development. Conclusion: High PSRC1 expression is significantly associated with LUAD survival and may be a promising prognostic biomarker.
Collapse
Affiliation(s)
- Rui Han
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Youhong Guan
- Department of infectious disease, Hefei second people's hospital, Hefei 230001, China
| | - Min Tang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Min Li
- Department of oncology, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Binbin Zhang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Guanghe Fei
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei 230022, China
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| |
Collapse
|
38
|
Chen Y, Du X, Kuppa A, Feitosa MF, Bielak LF, O'Connell JR, Musani SK, Guo X, Kahali B, Chen VL, Smith AV, Ryan KA, Eirksdottir G, Allison MA, Bowden DW, Budoff MJ, Carr JJ, Chen YDI, Taylor KD, Oliveri A, Correa A, Crudup BF, Kardia SLR, Mosley TH, Norris JM, Terry JG, Rotter JI, Wagenknecht LE, Halligan BD, Young KA, Hokanson JE, Washko GR, Gudnason V, Province MA, Peyser PA, Palmer ND, Speliotes EK. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nat Genet 2023; 55:1640-1650. [PMID: 37709864 PMCID: PMC10918428 DOI: 10.1038/s41588-023-01497-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.
Collapse
Affiliation(s)
- Yanhua Chen
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey R O'Connell
- Department of Endocrinology, Diabetes and Nutrition, University of Maryland - Baltimore, Baltimore, MD, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bratati Kahali
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Vincent L Chen
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen A Ryan
- Department of Endocrinology, Diabetes and Nutrition, University of Maryland - Baltimore, Baltimore, MD, USA
| | | | - Matthew A Allison
- Department of Family Medicine, University of California San Diego, San Diego, CA, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Budoff
- Department of Internal Medicine, Lundquist Institute at Harbor-UCLA, Torrance, CA, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antonino Oliveri
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Breland F Crudup
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian D Halligan
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - George R Washko
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Saghafi S, Chamani E, Salmani F, Fadaei R, Shafiei E, Moradi N, Tavakoli T. Genetic predisposition to nonalcoholic fatty liver disease: insights from ANGPTL8 gene variants in Iranian adults. Lipids Health Dis 2023; 22:147. [PMID: 37679750 PMCID: PMC10483745 DOI: 10.1186/s12944-023-01905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease with a global prevalence, and modulation of ANGPTL8 expression has emerged as a promising predictor of NAFLD susceptibility. This research was conducted to scrutinize ANGPTL8 protein expression in NAFLD patients and elucidate the interplay between ANGPTL8 gene polymorphisms and their lipid profiles, thus shedding new light on the pathophysiology of this complex disease. The study comprised 423 unrelated participants, including 222 healthy controls and 201 individuals with NAFLD, screened using FibroScan/ultrasonography and laboratory tests. The main goal focused on the genotype and allele frequency distribution in the ANGPTL8 gene, specifically analyzing two genetic variations: rs737337 (T/C) and rs2278426 (C/T). The participants diagnosed with NAFLD were slightly younger (P ≥ 0.05) and had a higher body mass index (BMI) than the individuals in the control group. Notably, there was a significant difference in the occurrence of the rs737337 polymorphism between the NAFLD and control groups, with a lower frequency observed in the NAFLD group. Our results indicated that individuals with the TC + CC genotype and C allele of rs737337 (T/C) had a decreased risk of higher levels of ALT and AST. Conversely, those with the CT, CT + TT genotype, and T allele of rs2278426 (C/T) exhibited an increased risk of higher levels of ALT and AST. The results imply that the rs2278426 (C/T) variant of the ANGPTL8 gene is more strongly linked to an increased risk of NAFLD compared to the rs737337 polymorphism. However, additional research is needed to understand the specific molecular mechanisms responsible for the upregulation of ANGPTL8 in individuals with NAFLD.
Collapse
Affiliation(s)
- Samira Saghafi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Efat Shafiei
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Tahmine Tavakoli
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
40
|
Di Paola R, Marucci A, Mangiacotti D, Antonucci A, Fontana A, Wang X, Qi L, Menzaghi C, Trischitta V. Leveraging Genetics to Address the Role of GALNT2 on Atherogenic Dyslipidemia. Adv Biol (Weinh) 2023; 7:e2200319. [PMID: 36861373 DOI: 10.1002/adbi.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Indexed: 03/03/2023]
Abstract
Several studies have shown that downregulation of GALNT2 (Polypeptide N-Acetylgalactosaminyltransferase 2), encoding polypeptide N-acetylgalactosaminyltransferase 2, decreases high-density lipoprotein cholesterol (HDL-C) and increases triglycerides levels by glycosylating key enzymes of lipid metabolism, such as angiopoietin like 3, apolipoprotein C-III, and phospholipid transfer protein. GALNT2 is also a positive modulator of insulin signaling and action, associated with in vivo insulin sensitivity and during adipogenesis strongly upregulates adiponectin. Thus, the hypothesis that GALNT2 affects HDL-C and triglycerides levels also through insulin sensitivity and/or circulating adiponectin, is tested. In 881 normoglycemic individuals the G allele of rs4846914 SNP at the GALNT2 locus, known to associate with GALNT2 downregulation, is associated with low HDL-C and high values of triglycerides, triglycerides/HDL-C ratio, and theHomeostatic Model Assessment of insulin resistance HOMAIR (p-values = 0.01, 0.027, 0.002, and 0.016, respectively). Conversely, no association is observed with serum adiponectin levels (p = 0.091). Importantly, HOMAIR significantly mediates a proportion of the genetic association with HDL-C (21%, 95% CI: 7-35%, p = 0.004) and triglyceride levels (32%, 95% CI: 4-59%, p = 0.023). The results are compatible with the hypothesis that, besides the effect on key lipid metabolism enzymes, GALNT2 alters HDL-C and triglyceride levels also indirectly through a positive effect on insulin sensitivity.
Collapse
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Davide Mangiacotti
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Andrea Fontana
- Biostatistics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Xuan Wang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 1724, New Orleans, LA, 70112, USA
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
- Department of Experimental Medicine, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
41
|
Samarasinghe SM, Hewage AS, Siriwardana RC, Tennekoon KH, Niriella MA, De Silva S. Genetic and metabolic aspects of non-alcoholic fatty liver disease (NAFLD) pathogenicity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:53. [DOI: 10.1186/s43042-023-00433-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease showing a rising prevalence globally. Genetic predisposition plays a key role in the development and progression of the disease pathogenicity.
Main body
This paper summarizes genetic associations based on their influence on several metabolic aspects such as lipid metabolism, glucose metabolism, hepatic iron accumulation and cholesterol metabolism toward the NAFLD pathogenicity. Furthermore, we present variations in some epigenetic characters and the microRNA profile with regard to NAFLD.
Conclusion
As reported in many studies, the PNPLA3 rs738409 variant seems to be significantly associated with NAFLD susceptibility. Other gene variants like TM6SF2 rs58542926, MBOAT7 rs641738 and GCKR variants also appear to be more prevalent among NAFLD patients. We believe these genetic variants may provide insights into new trends in developing noninvasive biomarkers and identify their suitability in clinical practice in the future.
Graphical abstract
Collapse
|
42
|
Richter E, Lohmann CH, Dell’Accio F, Goettsch C, Bertrand J. Sortilin Is Upregulated in Osteoarthritis-Dependent Cartilage Calcification and Associated with Cellular Senescence. Int J Mol Sci 2023; 24:12343. [PMID: 37569721 PMCID: PMC10418692 DOI: 10.3390/ijms241512343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage calcification, loss of articular cartilage, bone changes, pain, and disability. Cartilage calcification is one hallmark of OA and is predominantly caused by basic calcium crystals formed due to an imbalance of the pyrophosphate pathway. Sortilin is a transmembrane protein that contributes to vascular calcification in atherosclerosis by externalizing alkaline phosphatase (ALP)-containing vesicles. Calcification in atherosclerosis and osteoarthritis has been associated with cellular senescence. The aim of this study was to investigate the potential role of sortilin and senescence in osteoarthritis-dependent cartilage calcification. Osteoarthritic cartilage from human knee joints was collected after joint replacement, and samples were analyzed by immunohistochemistry and quantitative RT-PCR analysis. Human chondrocytes were treated with osteogenic medium for up to 21 days to induce calcification. Western blots for sortilin and ALP, as well as an ALP activity assay, were performed. Human chondrocytes were treated with mitomycin C to induce senescence, and sortilin expression was quantified at the protein and gene levels. Sections of knee joints from a murine model of osteoarthritis were stained for sortilin and p16 and analyzed by immunohistochemistry. Treatment of wild-type chondrocytes using an osteogenic medium similar to human chondrocytes was performed. Osteoarthritic cartilage from mouse and human knee joints showed an increased number of sortilin and p16-positive chondrocytes compared to healthy cartilage. This observation was corroborated by increased gene expression of sortilin and p16 in mild and moderate osteoarthritic cartilage samples. To investigate the mechanism of sortilin regulation, human chondrocytes were treated with osteogenic medium to induce calcification. Sortilin protein levels and expression were increased after 7 days of stimulation, whereas ALP levels and activity were upregulated after 21 days of stimulation. Similar observations were made in a murine osteoarthritis model. Mechanistically, senescent chondrocytes induced by mitomycin C showed an upregulation of sortilin and ALP gene expression compared to non-senescent chondrocytes. Our data indicate that sortilin and ALP are upregulated during cartilage calcification, which is associated with chondrocyte senescence and thus might contribute to the pathogenesis of osteoarthritis. Cellular senescence seems to induce sortilin expression.
Collapse
Affiliation(s)
- Elisabeth Richter
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (E.R.); (C.H.L.)
| | - Christoph H. Lohmann
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (E.R.); (C.H.L.)
| | - Francesco Dell’Accio
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, UK;
| | - Claudia Goettsch
- Department of Internal Medicine I-Cardiology, RWTH Aachen University, 52062 Aachen, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany; (E.R.); (C.H.L.)
| |
Collapse
|
43
|
Huang Y, Stinson SE, Juel HB, Lund MAV, Holm LA, Fonvig CE, Nielsen T, Grarup N, Pedersen O, Christiansen M, Chabanova E, Thomsen HS, Krag A, Stender S, Holm JC, Hansen T. An adult-based genetic risk score for liver fat associates with liver and plasma lipid traits in children and adolescents. Liver Int 2023; 43:1772-1782. [PMID: 37208954 DOI: 10.1111/liv.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies have identified steatogenic variants that also showed pleiotropic effects on cardiometabolic traits in adults. We investigated the effect of eight previously reported genome-wide significant steatogenic variants, individually and combined in a weighted genetic risk score (GRS), on liver and cardiometabolic traits, and the predictive ability of the GRS for hepatic steatosis in children and adolescents. APPROACH & RESULTS Children and adolescents with overweight (including obesity) from an obesity clinic group (n = 1768) and a population-based group (n = 1890) were included. Cardiometabolic risk outcomes and genotypes were obtained. Liver fat was quantified using 1 H-MRS in a subset of 727 participants. Variants in PNPLA3, TM6SF2, GPAM and TRIB1 were associated with higher liver fat (p < .05) and with distinct patterns of plasma lipids. The GRS was associated with higher liver fat content, plasma concentrations of alanine transaminase (ALT), aspartate aminotransferase (AST) and favourable plasma lipid levels. The GRS was associated with higher prevalence of hepatic steatosis (defined as liver fat ≥5.0%) (odds ratio per 1-SD unit: 2.17, p = 9.7E-10). A prediction model for hepatic steatosis including GRS alone yielded an area under the curve (AUC) of 0.78 (95% CI 0.76-0.81). Combining the GRS with clinical measures (waist-to-height ratio [WHtR] SDS, ALT, and HOMA-IR) increased the AUC up to 0.86 (95% CI 0.84-0.88). CONCLUSIONS The genetic predisposition for liver fat accumulation conferred risk of hepatic steatosis in children and adolescents. The liver fat GRS has potential clinical utility for risk stratification.
Collapse
Affiliation(s)
- Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene Baek Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A V Lund
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
| | - Cilius E Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
- Department of Pediatrics, Kolding Hospital a Part of Lillebaelt Hospital, Kolding, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital Herlev Gentofte, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Elizaveta Chabanova
- Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Copenhagen, Denmark
| | - Henrik S Thomsen
- Department of Diagnostic Radiology, Copenhagen University Hospital Herlev Gentofte, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbaek, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Al‐Sharshani D, Velayutham D, Samara M, Gazal R, Al Haj Zen A, Ismail MA, Ahmed M, Nasrallah G, Younes S, Rizk N, Hammuda S, Qoronfleh MW, Farrell T, Zayed H, Abdulrouf PV, AlDweik M, Silang JPB, Rahhal A, Al‐Jurf R, Mahfouz A, Salam A, Al Rifai H, Al‐Dewik NI. Association of single nucleotide polymorphisms with dyslipidemia and risk of metabolic disorders in the State of Qatar. Mol Genet Genomic Med 2023; 11:e2178. [PMID: 37147786 PMCID: PMC10422074 DOI: 10.1002/mgg3.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Dyslipidemia is recognized as one of the risk factors of cardiovascular diseases (CVDs), type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD). OBJECTIVE The study aimed to investigate the association between selected single nucleotide polymorphisms (SNPs) with dyslipidemia and increased susceptibility risks of CVD, NAFLD, and/or T2DM in dyslipidemia patients in comparison with healthy control individuals from the Qatar genome project. METHODS A community-based cross-sectional study was conducted among 2933 adults (859 dyslipidemia patients and 2074 healthy control individuals) from April to December 2021 to investigate the association between 331 selected SNPs with dyslipidemia and increased susceptibility risks of CVD, NAFLD and/or T2DM, and covariates. RESULTS The genotypic frequencies of six SNPs were found to be significantly different in dyslipidemia patients subjects compared to the control group among males and females. In males, three SNPs were found to be significant, the rs11172113 in over-dominant model, the rs646776 in recessive and over-dominant models, and the rs1111875 in dominant model. On the other hand, two SNPs were found to be significant in females, including rs2954029 in recessive model, and rs1801251 in dominant and recessive models. The rs17514846 SNP was found for dominant and over-dominant models among males and only the dominant model for females. We found that the six SNPs linked to gender type had an influence in relation to disease susceptibility. When controlling for the four covariates (gender, obesity, hypertension, and diabetes), the difference between dyslipidemia and the control group remained significant for the six variants. Finally, males were three times more likely to have dyslipidemia in comparison with females, hypertension was two times more likely to be present in the dyslipidemia group, and diabetes was six times more likely to be in the dyslipidemia group. CONCLUSION The current investigation provides evidence of association for a common SNP to coronary heart disease and suggests a sex-dependent effect and encourage potential therapeutic applications.
Collapse
Affiliation(s)
- Dalal Al‐Sharshani
- Heart Hospital (HH)Hamad Medical Corporation (HMC)DohaQatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS)Hamad Bin Khalifa University (HBKU)DohaQatar
| | - Dinesh Velayutham
- Liberal Arts and Science (LAS)Hamad Bin Khalifa University (HBKU)DohaQatar
| | - Muthanna Samara
- Department of PsychologyKingston University LondonKingston upon ThamesLondonUK
| | - Reham Gazal
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Ayman Al Haj Zen
- College of Health & Life Science (CHLS)Hamad Bin Khalifa University (HBKU)DohaQatar
| | | | - Mahmoud Ahmed
- Department of Mathematics, Statistics and Physics, College of Arts and SciencesQatar University (QU)DohaQatar
| | - Gheyath Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Nasser Rizk
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Sara Hammuda
- Department of PsychologyKingston University LondonKingston upon ThamesLondonUK
| | - M. Walid Qoronfleh
- Research & Policy DivisionQ3CG Research Institute (QRI)7227 Rachel DriveYpsilantiMichiganUSA
- 21HealthStreet CompanyLondonUK
| | - Thomas Farrell
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Palli Valapila Abdulrouf
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Manar AlDweik
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - John Paul Ben Silang
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Alaa Rahhal
- Heart Hospital (HH)Hamad Medical Corporation (HMC)DohaQatar
| | - Rana Al‐Jurf
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Ahmed Mahfouz
- Heart Hospital (HH)Hamad Medical Corporation (HMC)DohaQatar
| | - Amar Salam
- Department of Cardiology, Al Khor Hospital (AKH)Hamad Medical Corporation (HMC)DohaQatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Nader I. Al‐Dewik
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS)Hamad Bin Khalifa University (HBKU)DohaQatar
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
- Hamad Medical Corporation (HMC)DohaQatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
- Faculty of Health and Social Care Sciences, Kingston UniversitySt. George's University of LondonLondonUK
- Translational and Precision Medicine Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| |
Collapse
|
45
|
Jiang J, Chen X, Li C, Du X, Zhou H. Polymorphisms of TRIB1 Genes for Coronary Artery Disease and Stroke Risk: A Systematic Review and Meta-analysis. Gene 2023:147613. [PMID: 37414350 DOI: 10.1016/j.gene.2023.147613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS In recent years, the results of the association between Tribbles Pseudokinase 1 (TRIB1) gene polymorphism and the risk of coronary artery disease (CAD) and stroke are inconsistent. This study aimed to systematically review the literature on TRIB1 gene polymorphisms and susceptibility to coronary atherosclerotic heart disease (CAD) and stroke. METHODS This study collected studies published until May 2022 through a systematic search of PubMed, Web of Science, and Google Scholar databases. After a systematic literature search, pooled odds ratio (OR) and their corresponding 95% confidence interval (CI) were used to assess the strength of the association. RESULTS We identified 6 studies on rs17321515, including 12892 controls and 4583 patients, and 3 on rs2954029, including 1732 controls and 1305 patients. In different genetic models, the rs2954029 genetic polymorphism significantly increased the risk of CAD and stroke. In the codominant model, the AA genotype increased the risk of CAD and stroke (OR=1.74, 95% CI=1.39-2.17, P<0.001); the TA genotype also increased the prevalence of CAD and stroke risk (OR=1.39, 95% CI=1.18-1.64, P<0.001). Compared with the control group, the TT+TA genotype increased the risk of CAD and stroke in the dominant genetic model (OR=1.46, 95%CI=1.25-1.71, P<0.001), and in the recessive model, the TA+AA genotype increased the risk of CAD and stroke (OR=1.41, 95% CI=1.15-1.72, P<0.001). In addition, the TRIB1 rs17321515 polymorphism was not found to be associated with the risk of CAD and stroke, which may be related to other factors such as race. CONCLUSIONS The rs2954029 A allele was significantly associated with an increased risk of CAD and stroke, according to the present meta-analysis. However, the association of rs17321515 polymorphism with susceptibility to CAD and stroke has not been found in this study.
Collapse
Affiliation(s)
- Jiangang Jiang
- Department of Cardiology, Jinhua Hospital of traditional Chinese medicine, Zhejiang Chinese Medical University.
| | - Xinmin Chen
- Department of Cardiology, Jinhua Hospital of traditional Chinese medicine, Zhejiang Chinese Medical University
| | - Chengwei Li
- Department of Cardiology, Jinhua Hospital of traditional Chinese medicine, Zhejiang Chinese Medical University
| | - Xiaoma Du
- Department of Cardiology, Jinhua Hospital of traditional Chinese medicine, Zhejiang Chinese Medical University
| | - Huadong Zhou
- Department of Cardiology, Jinhua Hospital of traditional Chinese medicine, Zhejiang Chinese Medical University
| |
Collapse
|
46
|
Reyes-Soffer G, Liu J, Thomas T, Matveyenko A, Seid H, Ramakrishnan R, Holleran S, Zaghloul N, Sztalryd-Woodle C, Pollin T, Ginsberg HN. TM6SF2 Determines Both the Degree of Lipidation and the Number of VLDL Particles Secreted by the Liver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291823. [PMID: 37425717 PMCID: PMC10327233 DOI: 10.1101/2023.06.23.23291823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In 2014, exome-wide studies identified a glutamine176lysine (p.E167K) substitution in a protein of unknown function named transmembrane 6 superfamily member 2 (TM6SF2). The p.E167K variant was associated with increased hepatic fat content and reduced levels of plasma TG and LDL cholesterol. Over the next several years, additional studies defined the role of TM6SF2, which resides in the ER and the ER-Golgi interface, in the lipidation of nascent VLDL to generate mature, more TG-rich VLDL. Consistent results from cells and rodents indicated that the secretion of TG was reduced in the p.E167K variant or when hepatic TM6SF2 was deleted. However, data for secretion of APOB was inconsistent, either reduced or increased secretion was observed. A recent study of people homozygous for the variant demonstrated reduced in vivo secretion of large, TG-rich VLDL1 into plasma; both TG and APOB secretion were reduced. Here we present new results demonstrating increased secretion of VLDL APOB with no change in TG secretion in p.E167K homozygous individuals from the Lancaster Amish community compared to their wild-type siblings. Our in vivo kinetic tracer results are supported by in vitro experiments in HepG2 and McA cells with knock-down or Crispr-deletions of TM6SF2, respectively. We offer a model to potentially explain all of the prior data and our new results.
Collapse
|
47
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Kononov S, Azarova I, Klyosova E, Bykanova M, Churnosov M, Solodilova M, Polonikov A. Lipid-Associated GWAS Loci Predict Antiatherogenic Effects of Rosuvastatin in Patients with Coronary Artery Disease. Genes (Basel) 2023; 14:1259. [PMID: 37372439 PMCID: PMC10298211 DOI: 10.3390/genes14061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
We have shown that lipid-associated loci discovered by genome-wide association studies (GWAS) have pleiotropic effects on lipid metabolism, carotid intima-media thickness (CIMT), and CAD risk. Here, we investigated the impact of lipid-associated GWAS loci on the efficacy of rosuvastatin therapy in terms of changes in plasma lipid levels and CIMT. The study comprised 116 CAD patients with hypercholesterolemia. CIMT, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were measured at baseline and after 6 and 12 months of follow-up, respectively. Genotyping of fifteen lipid-associated GWAS loci was performed by the MassArray-4 System. Linear regression analysis adjusted for sex, age, body mass index, and rosuvastatin dose was used to estimate the phenotypic effects of polymorphisms, and p-values were calculated through adaptive permutation tests by the PLINK software, v1.9. Over one-year rosuvastatin therapy, a decrease in CIMT was linked to rs1689800, rs4846914, rs12328675, rs55730499, rs9987289, rs11220463, rs16942887, and rs881844 polymorphisms (Pperm < 0.05). TC change was associated with rs55730499, rs11220463, and rs6065906; LDL-C change was linked to the rs55730499, rs1689800, and rs16942887 polymorphisms; and TG change was linked to polymorphisms rs838880 and rs1883025 (Pperm < 0.05). In conclusion, polymorphisms rs1689800, rs55730499, rs11220463, and rs16942887 were found to be predictive markers for multiple antiatherogenic effects of rosuvastatin in CAD patients.
Collapse
Affiliation(s)
- Stanislav Kononov
- Department of Internal Medicine No. 2, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
49
|
Valvi D, Christiani DC, Coull B, Højlund K, Nielsen F, Audouze K, Su L, Weihe P, Grandjean P. Gene-environment interactions in the associations of PFAS exposure with insulin sensitivity and beta-cell function in a Faroese cohort followed from birth to adulthood. ENVIRONMENTAL RESEARCH 2023; 226:115600. [PMID: 36868448 PMCID: PMC10101920 DOI: 10.1016/j.envres.2023.115600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) has been associated with changes in insulin sensitivity and pancreatic beta-cell function in humans. Genetic predisposition to diabetes may modify these associations; however, this hypothesis has not been yet studied. OBJECTIVES To evaluate genetic heterogeneity as a modifier in the PFAS association with insulin sensitivity and pancreatic beta-cell function, using a targeted gene-environment (GxE) approach. METHODS We studied 85 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes, in 665 Faroese adults born in 1986-1987. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were measured in cord whole blood at birth and in participants' serum from age 28 years. We calculated the Matsuda-insulin sensitivity index (ISI) and the insulinogenic index (IGI) based on a 2 h-oral glucose tolerance test performed at age 28. Effect modification was evaluated in linear regression models adjusted for cross-product terms (PFAS*SNP) and important covariates. RESULTS Prenatal and adult PFOS exposures were significantly associated with decreased insulin sensitivity and increased beta-cell function. PFOA associations were in the same direction but attenuated compared to PFOS. A total of 58 SNPs were associated with at least one PFAS exposure variable and/or Matsuda-ISI or IGI in the Faroese population and were subsequently tested as modifiers in the PFAS-clinical outcome associations. Eighteen SNPs showed interaction p-values (PGxE) < 0.05 in at least one PFAS-clinical outcome association, five of which passed False Discovery Rate (FDR) correction (PGxE-FDR<0.20). SNPs for which we found stronger evidence for GxE interactions included ABCA1 rs3890182, FTO rs9939609, FTO rs3751812, PPARG rs170036314 and SLC12A3 rs2289116 and were more clearly shown to modify the PFAS associations with insulin sensitivity, rather than with beta-cell function. DISCUSSION Findings from this study suggest that PFAS-associated changes in insulin sensitivity could vary between individuals as a result of genetic predisposition and warrant replication in independent larger populations.
Collapse
Affiliation(s)
- Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Flemming Nielsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands; Centre of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
50
|
Yow HY, Hamzah S, Abdul Rahim N, Suppiah V. Pharmacogenomics of response to statin treatment and susceptibility to statin-induced adverse drug reactions in Asians: a scoping review. ASIAN BIOMED 2023; 17:95-114. [PMID: 37818163 PMCID: PMC10561688 DOI: 10.2478/abm-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Background Statins are the most widely used lipid-lowering agents for patients with hyperlipidemia. However, interindividual variations in efficacy and risk of adverse drug reactions to statin treatment have been widely reported. Ethnicity is well known to be one of the contributing factors to this variation, particularly among Asians. Objectives To identify genetic variants associated with statin treatment responses among Asian populations with a focus on four commonly prescribed statins: atorvastatin, rosuvastatin, simvastatin, and pravastatin. Methods A literature search was conducted in Medline and Embase databases. Studies published from 2008 to 2021 were included. The title and abstract of each article were screened by two reviewers and verified by another two reviewers. Data charted include information on authors, year of study, study population, statin studied, gene studied, study findings, and data of significant statistical value. Results A total of 35 articles were included from the 1,939 original studies related to treatment efficacy and 5 articles out of the 284 original studies related to adverse effects. Genetic variants in transmembrane transporters, cytochrome P450 isoenzymes, and apolipoproteins are the most extensively studied among Asian populations, with a main focus on ethnic Chinese. However, Asia consists of genetically different populations, and the results of this review indicated that there is a paucity of studies on other ethnic groups within Asia. Conclusions Considering the ethnicity of patients could provide a potential value to personalized medicine in statin therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur50603, Malaysia
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Selangor47500, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Selangor47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Selangor47500, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur50603, Malaysia
| | - Vijayaprakash Suppiah
- Clinical and Health Sciences, University of South Australia, Adelaide, SA5001, Australia
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA5001, Australia
| |
Collapse
|