1
|
Mahyari E, Boggy GJ, McElfresh GW, Kaza M, Benjamin S, Varco-Merth B, Ojha S, Feltham S, Goodwin W, Nkoy C, Duell D, Selseth A, Bennett T, Barber-Axthelm A, Smedley JV, Labriola CS, Axthelm MK, Reeves RK, Okoye AA, Hansen SG, Picker LJ, Bimber BN. Enhanced interpretation of immune cell phenotype and function through a rhesus macaque single-cell atlas. CELL GENOMICS 2025; 5:100849. [PMID: 40233746 DOI: 10.1016/j.xgen.2025.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) allows cell classification using genome-wide transcriptional state; however, high-dimensional transcriptomic profiles, and the unsupervised analyses employed to interpret them, provide a systematically different view of biology than well-established functional/lineage definitions of immunocytes. Understanding these differences and limits is essential for accurate interpretation of these rich data. We present the Rhesus Immune Reference Atlas (RIRA), the first immune-focused macaque single-cell multi-tissue atlas. We contrasted transcriptional profiles against immune lineages, using surface protein and marker genes as ground truth. While the pattern of clustering can align with cell type, this is not always true. Especially within T and natural killer (NK) cells, many functionally distinct subsets lack defining markers, and strong shared expression programs, such as cytotoxicity, result in systematic intermingling by unsupervised clustering. We identified gene programs with high discriminatory/diagnostic value, including multi-gene signatures that model T/NK cell maturation. Directly measuring these diagnostic programs complements unsupervised analyses.
Collapse
Affiliation(s)
- Eisa Mahyari
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Gregory J Boggy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - G W McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Maanasa Kaza
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sebastian Benjamin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin Varco-Merth
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shana Feltham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - William Goodwin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Candice Nkoy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Derick Duell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrea Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tyler Bennett
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Aaron Barber-Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Caralyn S Labriola
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Afam A Okoye
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
2
|
Lukyanov DK, Kriukova VV, Ladell K, Shagina IA, Staroverov DB, Minasian BE, Fedosova AS, Shelyakin P, Suchalko ON, Komkov AY, Blagodatskikh KA, Miners KL, Britanova OV, Franke A, Price DA, Chudakov DM. Repertoire-based mapping and time-tracking of T helper cell subsets in scRNA-Seq. Front Immunol 2025; 16:1536302. [PMID: 40255395 PMCID: PMC12006041 DOI: 10.3389/fimmu.2025.1536302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction The functional programs of CD4+ T helper (Th) cell clones play a central role in shaping immune responses to different challenges. While advances in single-cell RNA sequencing (scRNA-Seq) have significantly improved our understanding of the diversity of Th cells, the relationship between scRNA-Seq clusters and the traditionally characterized Th subsets remains ambiguous. Methods In this study, we introduce TCR-Track, a method leveraging immune repertoire data to map phenotypically sorted Th subsets onto scRNA-Seq profiles. Results and discussion This approach accurately positions the Th1, Th1-17, Th17, Th22, Th2a, Th2, T follicular helper (Tfh), and regulatory T-cell (Treg) subsets, outperforming mapping based on CITE-Seq. Remarkably, the mapping is tightly focused on specific scRNA-Seq clusters, despite 4-year interval between subset sorting and the effector CD4+ scRNA-Seq experiment. These findings highlight the intrinsic program stability of Th clones circulating in peripheral blood. Repertoire overlap analysis at the scRNA-Seq level confirms that the circulating Th1, Th2, Th2a, Th17, Th22, and Treg subsets are clonally independent. However, a significant clonal overlap between the Th1 and cytotoxic CD4+ T-cell clusters suggests that cytotoxic CD4+ T cells differentiate from Th1 clones. In addition, this study resolves a longstanding ambiguity: we demonstrate that, while CCR10+ Th cells align with a specific Th22 scRNA-Seq cluster, CCR10-CCR6+CXCR3-CCR4+ cells, typically classified as Th17, represent a mixture of bona fide Th17 cells and clonally unrelated CCR10low Th22 cells. The clear distinction between the Th17 and Th22 subsets should influence the development of vaccine- and T-cell-based therapies. Furthermore, we show that severe acute SARS-CoV-2 infection induces systemic type 1 interferon (IFN) activation of naive Th cells. An increased proportion of effector IFN-induced Th cells is associated with a moderate course of the disease but remains low in critical COVID-19 cases. Using integrated scRNA-Seq, TCR-Track, and CITE-Seq data from 122 donors, we provide a comprehensive Th scRNA-Seq reference that should facilitate further investigation of Th subsets in fundamental and clinical studies.
Collapse
Affiliation(s)
- Daniil K. Lukyanov
- Center for Molecular and Cellular Biology, Moscow, Russia
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Irina A. Shagina
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry B. Staroverov
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | - Pavel Shelyakin
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates
| | | | | | | | - Kelly L. Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Olga V. Britanova
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Dmitry M. Chudakov
- Center for Molecular and Cellular Biology, Moscow, Russia
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates
- Department of Molecular Medicine, Central European Institute of Technology, Brno, Czechia
| |
Collapse
|
3
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Nawrocki M, Huber S. Using Specific Reporter Mice to Assess CD4 + T Cell Transdifferentiation. Methods Mol Biol 2025; 2904:125-132. [PMID: 40220230 DOI: 10.1007/978-1-0716-4414-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The hallmark of the adaptive immune response is its ability to adjust to the offending agents via antigen specificity and the type of immune mechanisms involved in the host defense. The cytokine milieu present in the inflammatory environment and the strength of T cell receptor (TCR) signaling control the differentiation of CD4+ T cells into specific effector or regulatory lineages. Nevertheless, CD4+ T cell differentiation is a dynamic ongoing process allowing for the plasticity of lineages, with CD4+ T cells possessing phenotypes of more than one effector lineage and transdifferentiation between effector states or from an effector into a regulatory phenotype. In this protocol, we describe how the use of reporter mice can be employed for studying cell transdifferentiation of CD4+ T cells in vitro.
Collapse
Affiliation(s)
- Mikolaj Nawrocki
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Loiodice S, D'Acquisto F, Drinkenburg P, Suojanen C, Llorca PM, Manji HK. Neuropsychiatric drug development: Perspectives on the current landscape, opportunities and potential future directions. Drug Discov Today 2025; 30:104255. [PMID: 39615745 DOI: 10.1016/j.drudis.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Mental health represents a major challenge to our societies. One key difficulty associated with neuropsychiatric drug development is the lack of connection between the underlying biology and the disease. Nevertheless, there is growing optimism in this field with recent drug approvals (the first in decades) and renewed interest from pharmaceutical companies and investors. Here we review some of the most promising drug discovery and development endeavors currently deployed by industry. We also present elements illustrating the renewed interest from key stakeholders in neuropsychiatric drug development and provide potential future directions in this field.
Collapse
Affiliation(s)
| | - Fulvio D'Acquisto
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London, UK
| | - Pim Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Christian Suojanen
- Broadreach Global LLC, Miami, FL, USA; European Brain Council, Brussels, Belgium
| | - Pierre-Michel Llorca
- Department of Psychiatry, CHU Clermont-Ferrand, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France; Fondation FondaMental, Créteil, France
| | - Husseini K Manji
- Oxford University, Oxford, UK; Yale University, New Haven, CT, USA; UK Government Mental Health Mission, London, UK
| |
Collapse
|
6
|
Chen Z, Xiao L, Zhou J, Wang W, Guo R, Li J, Li B. A new S1 subunit truncation vaccine induces effective protection against porcine deltacoronavirus in suckling piglets. Vet Microbiol 2024; 299:110303. [PMID: 39536688 DOI: 10.1016/j.vetmic.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel porcine intestinal coronavirus that causes diarrhea in pigs of various ages, especially in suckling pigs. Developing effective treatments and vaccines is crucial to preventing PDCoV transmission and infection. This study evaluated the immune response elicited by the PDCoV S1 subunit and an inactivated PDCoV vaccine in mice. Indirect ELISA assays revealed a significant enhancement in IgG levels against PDCoV following vaccination with the PDCoV S1 subunit. Neutralization assays and flow cytometry analysis demonstrated that the PDCoV S1 subunit vaccine elicited robust neutralizing antibodies (NAbs) and cellular immune responses. To assess the protective efficacy of the S1 subunit in newborn piglets, pregnant sows were vaccinated with either the S1 or an inactivated PDCoV vaccine at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with PDCoV strain. Severe diarrhea, high levels of viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, immunized S1 piglets showed high NAbs titers and significantly fewer microscopic lesions in the intestinal tissue, with only one piglet showing mild diarrhea. Thus, our results suggest that the PDCoV S1 subunit vaccine is effective with strong immunogenicity and is expected to be a candidate vaccine against PDCoV.
Collapse
Affiliation(s)
- Zhuoqi Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China.
| |
Collapse
|
7
|
Su D, Han L, Shi C, Li Y, Qian S, Feng Z, Yu L. An updated review of HSV-1 infection-associated diseases and treatment, vaccine development, and vector therapy application. Virulence 2024; 15:2425744. [PMID: 39508503 PMCID: PMC11562918 DOI: 10.1080/21505594.2024.2425744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally widespread virus that causes and associates with a wide range of diseases, including herpes simplex encephalitis, herpes simplex keratitis, and herpes labialis. The interaction between HSV-1 and the host involves complex immune response mechanisms, including recognition of viral invasion, maintenance of latent infection, and triggering of reactivation. Antiviral therapy is the core treatment for HSV-1 infections. Meanwhile, vaccine development employs different strategies and methods, and several promising vaccine types have emerged, such as live attenuated, protein subunit, and nucleic acid vaccines, offering new possibilities for the prevention of HSV-1 infection. Moreover, HSV-1 can be modified into a therapeutic vector for gene therapy and tumour immunotherapy. This review provides an in-depth summary of HSV-1 infection-associated innate and adaptive immune responses, disease pathogenesis, current therapeutic approaches, recent advances in vaccine development, and vector therapy applications for cancer treatment. Through a systematic review of multiple aspects of HSV-1, this study aims to provide a comprehensive and detailed reference for the public on the prevention, control, and treatment of HSV-1.
Collapse
Affiliation(s)
- Dan Su
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Liping Han
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengyu Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Yaoxin Li
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Lili Yu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| |
Collapse
|
8
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
9
|
Zhang B, Li S, Zhou J, Wang W, Xiao L, Yuan X, Yi X, Fan L, Fan B, Zhu X, Li J, Li B. A novel virus-like particles vaccine induces broad immune protective against deltacoronavirus in piglets. Virology 2024; 597:110150. [PMID: 38917690 DOI: 10.1016/j.virol.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.
Collapse
Affiliation(s)
- Baotai Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Liyuan Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Xue Y, Zhang L, Chu L, Song Z, Zhang B, Su X, Liu W, Li X. JAK2/STAT3 Pathway Inhibition by AG490 Ameliorates Experimental Autoimmune Encephalomyelitis via Regulation of Th17 Cells and Autophagy. Neuroscience 2024; 552:65-75. [PMID: 38885894 DOI: 10.1016/j.neuroscience.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.
Collapse
Affiliation(s)
- Yumei Xue
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lifang Chu
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhe Song
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bing Zhang
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Wanhu Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China.
| |
Collapse
|
11
|
Enk LUB, Hellmig M, Riecken K, Kilian C, Datlinger P, Jauch-Speer SL, Neben T, Sultana Z, Sivayoganathan V, Borchers A, Paust HJ, Zhao Y, Asada N, Liu S, Agalioti T, Pelczar P, Wiech T, Bock C, Huber TB, Huber S, Bonn S, Gagliani N, Fehse B, Panzer U, Krebs CF. Targeting T cell plasticity in kidney and gut inflammation by pooled single-cell CRISPR screening. Sci Immunol 2024; 9:eadd6774. [PMID: 38875317 DOI: 10.1126/sciimmunol.add6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.
Collapse
Affiliation(s)
- Leon U B Enk
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Hellmig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kilian
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Saskia L Jauch-Speer
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Neben
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zeba Sultana
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Varshi Sivayoganathan
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Borchers
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Division of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Hegazy AN, Peine C, Niesen D, Panse I, Vainshtein Y, Kommer C, Zhang Q, Brunner TM, Peine M, Fröhlich A, Ishaque N, Marek RM, Zhu J, Höfer T, Löhning M. Plasticity and lineage commitment of individual T H1 cells are determined by stable T-bet expression quantities. SCIENCE ADVANCES 2024; 10:eadk2693. [PMID: 38838155 PMCID: PMC11152138 DOI: 10.1126/sciadv.adk2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.
Collapse
Affiliation(s)
- Ahmed N. Hegazy
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medical Department of Gastroenterology, Infectious Diseases and Rheumatology, 12203 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Inflammatory Mechanisms, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Caroline Peine
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Dominik Niesen
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Isabel Panse
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Yevhen Vainshtein
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Christoph Kommer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Qin Zhang
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Tobias M. Brunner
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Michael Peine
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Anja Fröhlich
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Naveed Ishaque
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Roman M. Marek
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Jinfang Zhu
- National Institute of Allergy and Infectious Diseases, Laboratory of Immune System Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Max Löhning
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| |
Collapse
|
13
|
Talayev V, Svetlova M, Zaichenko I, Voronina E, Babaykina O, Neumoina N, Perfilova K. CCR6 + T helper cells and regulatory T cells in the blood and gastric mucosa during Helicobacter pylori infection. Helicobacter 2024; 29:e13097. [PMID: 38819071 DOI: 10.1111/hel.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H. pylori bacteria but promote mucosal inflammation. In contrast, regulatory T cells (Tregs) may reduce inflammation but promote H. pylori persistence. CC motif chemokine receptor 6 (CCR6) is involved in the migration of various cells into inflamed gastric mucosa. In this study, we examined CCR6+ Th cells and CCR6+ Tregs during H. pylori infection in humans. MATERIALS AND METHODS Isolation of cells from blood and mucosal biopsies, magnetic separation of В cells, CD4+ and CD4+CCR6+CD45RO+ T cells, antigen-specific activation, B cell response in vitro, flow cytometry, determination of CD4+CD25hiFoxP3+ Tregs and various groups of Th cells. RESULTS CD4+CCR6+ blood lymphocytes from healthy donors included Th cells and Tregs. These CCR6+ Th cells produced proinflammatory cytokines and also stimulated plasma cell maturation and antibody production in vitro. H. pylori gastritis and peptic ulcer disease were associated with an increase in the number of circulate CD4+CCR6+CD45RO+ cells and the percentage of Th1, Th17 and Th1/17 cells in this lymphocyte subgroup. In H. pylori-positive patients, circulating CD4+CCR6+ cells contained a higher proportion of H. pylori-specific cells compared with their CD4+CCR6- counterparts. H. pylori infection strongly increased the content of CD4+ lymphocytes in the inflamed gastric mucosa, with the majority of these CD4+ lymphocytes expressing CCR6. CD4+CCR6+ lymphocytes from H. pylori-infected stomach included Tregs and in vivo activated T cells, some of which produced interferon-γ without ex vivo stimulation. CONCLUSION H. pylori infection causes an increase in the number of mature CD4+CCR6+ lymphocytes in the blood, with a pro-inflammatory shift in their composition and enrichment of the gastric mucosa with CD4+CCR6+ lymphocytes, including CCR6+ Th1 cells and Tregs.
Collapse
Affiliation(s)
- Vladimir Talayev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Maria Svetlova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Irina Zaichenko
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Elena Voronina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Olga Babaykina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Natalia Neumoina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Ksenia Perfilova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| |
Collapse
|
14
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
15
|
Pipitone RM, Lupo G, Zito R, Javed A, Petta S, Pennisi G, Grimaudo S. The PD-1/PD-L1 Axis in the Biology of MASLD. Int J Mol Sci 2024; 25:3671. [PMID: 38612483 PMCID: PMC11011676 DOI: 10.3390/ijms25073671] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.
Collapse
|
16
|
Imazu N, Torisu T, Ihara Y, Umeno J, Kawasaki K, Fujioka S, Fuyuno Y, Matsuno Y, Moriyama T, Kitazono T. Ustekinumab Decreases Circulating Th17 Cells in Ulcerative Colitis. Intern Med 2024; 63:153-158. [PMID: 37197955 PMCID: PMC10864063 DOI: 10.2169/internalmedicine.1724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/19/2023] Open
Abstract
Objective T helper (Th) cells play a central role in the pathogenesis of ulcerative colitis (UC). The present study analyzed the changes in circulating T cells by administration of ustekinumab (UST), an interleukin-12/23p40 antibody. Methods CD4 T cells were isolated from peripheral blood at 0 and 8 weeks after UST treatment, and we analyzed the proportion of CD4 T cells by flow cytometry. Clinical information and laboratory data were obtained at 0, 8, and 16 weeks. Patients We evaluated 13 patients with UC who received UST for the induction of remission between July 2020 and August 2021. Results The median partial Mayo score improved from 4 (1-7) to 0 (0-6) (p<0.001) with UST. Among serological parameters, albumin concentrations, C-reactive protein concentrations, the sedimentation rate, and leucine-rich alpha 2 glycoprotein concentrations showed significant improvement with UST. A flow cytometric analysis of circulating CD4 T cells showed that the percentage of Th17 cells was significantly decreased by UST treatment in all patients (1.85% to 0.98%, p<0.0001). Th1 cells were significantly increased by UST treatment (9.52% to 10.4%, p<0.05), but Th2 and regulatory T cells were not significantly different. The high-Th17 subgroup had a significantly better partial Mayo score than the low-Th17 subgroup at 16 weeks after UST treatment (0 vs. 1, p=0.028). Conclusion Treatment with UST decreases circulating Th17 cells, suggesting that this change may be related to the anti-inflammatory effect of UC.
Collapse
Affiliation(s)
- Noriyuki Imazu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yutaro Ihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Shin Fujioka
- Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tomohiko Moriyama
- Department of International Medical, Kyushu University Hospital, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
17
|
Akiyama M, Alshehri W, Yoshimoto K, Kaneko Y. T follicular helper cells and T peripheral helper cells in rheumatic and musculoskeletal diseases. Ann Rheum Dis 2023; 82:1371-1381. [PMID: 37414520 DOI: 10.1136/ard-2023-224225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Recent technological progress has greatly advanced our understanding of human immunology. In particular, the discovery of human T follicular helper (Tfh) and T peripheral helper (Tph) cells has significantly advanced our understanding of human adaptive immune system. Tfh and Tph cells share similar molecular characteristics and both play critical roles in B cell differentiation and maturation. However, they differ in their functional properties, such as chemokine receptor expression and cytokine production. As a result, Tfh cells are mainly involved in B cell differentiation and maturation in germinal centres of secondary lymphoid tissues, while Tph cells are involved in B cell differentiation and tissue damage in peripheral inflammatory lesions. Importantly, the involvement of Tfh and Tph cells in the pathogenesis of rheumatic and musculoskeletal diseases has become clear. In rheumatoid arthritis and systemic lupus erythematosus, Tph cell infiltration is predominant in peripheral inflammatory lesions, whereas Tfh cell infiltration is predominant in the affected lesions of IgG4-related disease. Therefore, the contribution of Tfh and Tph cells to the development of rheumatic and musculoskeletal diseases varies depending on each disease. In this review, we provide an overview of human Tfh and Tph cells and summarise the latest findings on these novel T cell subsets in various rheumatic and musculoskeletal diseases.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
18
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
19
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
20
|
Lee IS, Van Dyken SJ. Both Horatio and Polonius: Innate Lymphoid Cells in Tissue Homeostasis and Repair. Immunohorizons 2023; 7:729-736. [PMID: 37916861 PMCID: PMC10695417 DOI: 10.4049/immunohorizons.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as critical tissue-resident lymphocytes that coordinate responses to environmental stress and injury. Traditionally, their function was thought to mirror adaptive lymphocytes that respond to specific pathogens. However, recent work has uncovered a more central role for ILCs in maintaining homeostasis even in the absence of infection. ILCs are now better conceptualized as an environmental rheostat that helps maintain the local tissue setpoint during environmental challenge by integrating sensory stimuli to direct homeostatic barrier and repair programs. In this article, we trace the developmental origins of ILCs, relate how ILCs sense danger signals, and describe their subsequent engagement of appropriate repair responses using a general paradigm of ILCs functioning as central controllers in tissue circuits. We propose that these interactions form the basis for how ILC subsets maintain organ function and organismal homeostasis, with important implications for human health.
Collapse
Affiliation(s)
- Intelly S. Lee
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
21
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
22
|
Li J, Chen Z, Kim G, Luo J, Hori S, Wu C. Cathepsin W restrains peripheral regulatory T cells for mucosal immune quiescence. SCIENCE ADVANCES 2023; 9:eadf3924. [PMID: 37436991 DOI: 10.1126/sciadv.adf3924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Peripheral regulatory T (pTreg) cells are a key T cell lineage for mucosal immune tolerance and anti-inflammatory responses, and interleukin-2 receptor (IL-2R) signaling is critical for Treg cell generation, expansion, and maintenance. The expression of IL-2R on pTreg cells is tightly regulated to ensure proper induction and function of pTreg cells without a clear molecular mechanism. We here demonstrate that Cathepsin W (CTSW), a cysteine proteinase highly induced in pTreg cells under transforming growth factor-β stimulation is essential for the restraint of pTreg cell differentiation in an intrinsic manner. Loss of CTSW results in elevated pTreg cell generation, protecting the animals from intestinal inflammation. Mechanistically, CTSW inhibits IL-2R signaling in pTreg cells by cytosolic interaction with and process of CD25, repressing signal transducer and activator of transcription 5 activation to restrain pTreg cell generation and maintenance. Hence, our data indicate that CTSW acts as a gatekeeper to calibrate pTreg cell differentiation and function for mucosal immune quiescence.
Collapse
Affiliation(s)
- Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Kizilbash N, Suhail N, Alzahrani AK, Basha WJ, Soliman M. Natural regulatory T cells increase significantly in pediatric patients with parasitic infections: Flow cytometry study. INDIAN J PATHOL MICR 2023; 66:556-559. [PMID: 37530338 DOI: 10.4103/ijpm.ijpm_1262_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background The most accepted definition of regulatory T cells (Tregs) relies on the expression of several biomarkers, including CD4, CD25, and transcription factor, Foxp3. The Tregs maintain tolerance to self-antigens and prevent autoimmune diseases. Aim The purpose of this study was to determine the difference in natural Treg levels in Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana infected patients. Setting and Design Fifty-one pediatric subjects (29 males and 22 females) were recruited from a tertiary care hospital, and were divided into infected and non-infected (control) groups. The mean age of the subjects was 8.7 years. Materials and Methods Blood samples were collected from infected and non-infected groups, and change in the level of Tregs in these subjects was investigated by flow cytometry. Statistical Analysis Used The statistical analysis of data was performed by SPSS software. Quantitative data used in this study included mean and standard deviation. Data from the two groups were compared by the Student's t-test. The age of the patient and infection status were used for multivariate logistic regression analysis. Odds ratios (ORs) were estimated within a 95% confidence interval, and a P value of <0.05 was considered significant. Results and Conclusions The levels of natural regulatory T cells, indicated by the biomarkers, CD4+, CD25+, and Foxp3+, increase significantly in patients infected by Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana as compared to controls. They also increase in cases of mixed infection as compared to infection by a single parasite.
Collapse
Affiliation(s)
- Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - W Jamith Basha
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
24
|
Pan Y, Yang W, Tang B, Wang X, Zhang Q, Li W, Li L. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment. Front Immunol 2023; 14:1192303. [PMID: 37457739 PMCID: PMC10339829 DOI: 10.3389/fimmu.2023.1192303] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
At the turn of the century, researchers discovered a unique subtype of T helper cells that secretes IL-17 and defined it as Th17. The latest study found that Th17 cells play both positive and negative definitive roles in the regulation of antitumor immune responses. Although the function of Th17 in the tumor microenvironment remains poorly understood, more and more studies have shown that this paradoxical dual role is closely related to the plasticity of Th17 cells in recent decades. Further understanding of the characteristics of Th17 cells in the tumor microenvironment could yield novel and useful therapeutic approaches to treat cancer. In this review, we further present the high plasticity of Th17 cells and the function of Th17-producing IL-17 in tumor immunity.
Collapse
|
25
|
Cao X, Huang M, Wang Y, Chen Y, Yang H, Quan F. Immunogenicity Analysis of PCV3 Recombinant Capsid Protein Virus-like Particles and Their Application in Antibodies Detection. Int J Mol Sci 2023; 24:10377. [PMID: 37373524 DOI: 10.3390/ijms241210377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine circovirus type 3 is a newly emerging pathogen of porcine circovirus associated disease (PCVAD). Currently, there is no commercially available vaccine, resulting in huge economic losses to the pig industry. Porcine circovirus type 3 capsid protein (Cap) can self-assemble into virus-like particles (VLPs). Therefore, the expression of the recombinant Cap protein is of great significance for the prevention, diagnosis and control of porcine circovirus type 3 associated diseases. In this study, the recombinant Cap protein was successfully expressed in Escherichia coli by deleting the nuclear localization sequence (NLS). The VLPs were observed by transmission electron microscopy. To evaluate the immunogenicity of the recombinant Cap protein, mice were immunized. As a result, the recombinant Cap protein can induce higher levels of humoral and cellular immune responses. A VLP-based ELISA method was developed for the detection of antibodies. The established ELISA method has good sensitivity, specificity, repeatability and clinical applicability. These results demonstrate the successful expression of the PCV3 recombinant Cap protein and the preparation of recombinant Cap protein VLPs, which can be used for the preparation of subunit vaccines. Meanwhile, the established I-ELISA method lays a foundation for the development of the commercial PCV3 serological antibody detection kit.
Collapse
Affiliation(s)
- Xuyang Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Min Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Ying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Yanzhi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Hanwen Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
26
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
27
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
28
|
Xue Y, Zhang L, Guo R, Shao X, Shi M, Yuan C, Li X, Li B. miR-485 regulates Th17 generation and pathogenesis in experimental autoimmune encephalomyelitis through targeting STAT3. J Neuroimmunol 2023; 379:578100. [PMID: 37187004 DOI: 10.1016/j.jneuroim.2023.578100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an induced autoimmune disease widely used as an animal model for multiple sclerosis, which is mainly characterized by demyelination, axonal loss, as well as neurodegeneration of central nervous system (CNS). T-helper (Th) 17 cell that generate interleukin-17 (IL-17) plays a key role in its pathogenesis. Their activity and differentiation are tightly regulated by some cytokines and transcription factors. Certain microRNAs (miRNAs) are involved in the pathogenesis of various autoimmune disorders, including EAE. Our research detected a novel miRNA that can regulate EAE. According to the results, during EAE, the expression of miR-485 notably lowered, and STAT3 was significantly increased. It was discovered that miR-485 knockdown in vivo upregulated Th17-associated cytokines and aggravated EAE, while the overexpressed miR-485 down-regulated Th17-associated cytokines and mitigated EAE. The up-regulation of miRNA-485 in vitro inhibited Th17-associated cytokines expression within EAE CD4+ T cells. Furthermore, as revealed by target prediction and dual-luciferase reporter assays, miR-485 directly targets STAT3, a gene that encodes a protein responsible for Th17 generation. Overall, miR-485 exert vital functions in Th17 generation and EAE pathogenesis.
Collapse
Affiliation(s)
- Yumei Xue
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Xi Shao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China; Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Xiaobing Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
29
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
30
|
Pacholczak-Madej R, Kosałka-Węgiel J, Kuszmiersz P, Mituś JW, Püsküllüoğlu M, Grela-Wojewoda A, Korkosz M, Bazan-Socha S. Immune Checkpoint Inhibitor Related Rheumatological Complications: Cooperation between Rheumatologists and Oncologists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4926. [PMID: 36981837 PMCID: PMC10049070 DOI: 10.3390/ijerph20064926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In cancer, immune checkpoint inhibitors (ICIs) improve patient survival but may lead to severe immune-related adverse events (irAEs). Rheumatic irAEs are a distinct entity that are much more common in a real-life than in clinical trial reports due to their unspecific symptoms and them being a rare cause of hospitalization. This review focuses on an interdisciplinary approach to the management of rheumatic irAEs, including cooperation between oncologists, rheumatologists, and immunologists. We discuss the immunological background of rheumatic irAEs, as well as their unique clinical characteristics, differentiation from other irAEs, and treatment strategies. Importantly, steroids are not the basis of therapy, and nonsteroidal anti-inflammatory drugs should be administered in the front line with other antirheumatic agents. We also address whether patients with pre-existing rheumatic autoimmune diseases can receive ICIs and how antirheumatic agents can interfere with ICIs. Interestingly, there is a preclinical rationale for combining ICIs with immunosuppressants, particularly tumor necrosis factor α and interleukin 6 inhibitors. Regardless of the data, the mainstay in managing irAEs is interdisciplinary cooperation between oncologists and other medical specialties.
Collapse
Affiliation(s)
- Renata Pacholczak-Madej
- Department of Clinical Oncology, The Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
- Department of Anatomy, Jagiellonian University Medical College, 33-332 Kraków, Poland
| | - Joanna Kosałka-Węgiel
- Department of Rheumatology and Immunology, Jagiellonian University Medical Kraków, 30-688 Krakow, Poland
- Division of Rheumatology and Immunology Clinical, University Hospital, 30-688 Kraków, Poland
| | - Piotr Kuszmiersz
- Department of Rheumatology and Immunology, Jagiellonian University Medical Kraków, 30-688 Krakow, Poland
- Division of Rheumatology and Immunology Clinical, University Hospital, 30-688 Kraków, Poland
| | - Jerzy W. Mituś
- Department of Anatomy, Jagiellonian University Medical College, 33-332 Kraków, Poland
- Department of Surgical Oncology, National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
| | - Mirosława Püsküllüoğlu
- Department of Clinical Oncology, The Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
| | - Aleksandra Grela-Wojewoda
- Department of Clinical Oncology, The Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical Kraków, 30-688 Krakow, Poland
- Division of Rheumatology and Immunology Clinical, University Hospital, 30-688 Kraków, Poland
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
31
|
Atopic Dermatitis and Ulcerative Colitis Successfully Treated with Upadacitinib. Medicina (B Aires) 2023; 59:medicina59030542. [PMID: 36984542 PMCID: PMC10058499 DOI: 10.3390/medicina59030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background and Objectives: JAK inhibitors entered current clinical practice as treatment for several immune-related diseases and, recently, for atopic dermatitis. These drugs target the Janus Kinase intracellular cascade, rendering them suitable for treating both Th1 and Th2 immune-mediated responses. Materials and Methods: We report the case of a 36-year-old male patient presenting an overlap of ulcerative colitis, a Th1-related disease, and atopic dermatitis, a Th2-mediated condition. Treatment with upadacitinib was initiated, and laboratory and instrumental follow-ups were carried out for 8 months. Results: The complete and persistent clinical remission of both conditions was observed at a low dose of 15 mg of upadacitinib, even though ulcerative colitis guidelines usually recommend a dosage of 45 mg. No serious adverse responses to therapy were reported. Conclusions: Upadacitinib may be the most suitable management strategy in subjects with coexisting severe conditions mediated by Th1 inflammation, such as ulcerative colitis, and by Th2 cytokines, such as atopic dermatitis.
Collapse
|
32
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
33
|
Identification of a unique subset of tissue-resident memory CD4 + T cells in Crohn's disease. Proc Natl Acad Sci U S A 2023; 120:e2204269120. [PMID: 36574662 PMCID: PMC9910620 DOI: 10.1073/pnas.2204269120] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T cells differentiate into highly diverse subsets and display plasticity depending on the environment. Although lymphocytes are key mediators of inflammation, functional specialization of T cells in inflammatory bowel disease (IBD) has not been effectively described. Here, we performed deep profiling of T cells in the intestinal mucosa of IBD and identified a CD4+ tissue-resident memory T cell (Trm) subset that is increased in Crohn's disease (CD) showing unique inflammatory properties. Functionally and transcriptionally distinct CD4+ Trm subsets are observed in the inflamed gut mucosa, among which a CD-specific CD4+ Trm subset, expressing CD161 and CCR5 along with CD103, displays previously unrecognized pleiotropic signatures of innate and effector activities. These inflammatory features are further enhanced by their spatial proximity to gut epithelial cells. Furthermore, the CD-specific CD4+ Trm subset is the most predominant producer of type 1 inflammatory cytokines upon various stimulations among all CD4+ T cells, suggesting that the accumulation of this T cell subset is a pathological hallmark of CD. Our results provide comprehensive insights into the pathogenesis of IBD, paving the way for decoding of the molecular mechanisms underlying this disease.
Collapse
|
34
|
Zhang N, Tian X, Yan T, Wang H, Zhang D, Lin C, Liu Q, Jiang S. Insights into the role of nucleotide methylation in metabolic-associated fatty liver disease. Front Immunol 2023; 14:1148722. [PMID: 37020540 PMCID: PMC10067741 DOI: 10.3389/fimmu.2023.1148722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by fatty infiltration of the liver. In recent years, the MAFLD incidence rate has risen and emerged as a serious public health concern. MAFLD typically progresses from the initial hepatocyte steatosis to steatohepatitis and then gradually advances to liver fibrosis, which may ultimately lead to cirrhosis and carcinogenesis. However, the potential evolutionary mechanisms still need to be clarified. Recent studies have shown that nucleotide methylation, which was directly associated with MAFLD's inflammatory grading, lipid synthesis, and oxidative stress, plays a crucial role in the occurrence and progression of MAFLD. In this review, we highlight the regulatory function and associated mechanisms of nucleotide methylation modification in the progress of MAFLD, with a particular emphasis on its regulatory role in the inflammation of MAFLD, including the regulation of inflammation-related immune and metabolic microenvironment. Additionally, we summarize the potential value of nucleotide methylation in the diagnosis and treatment of MAFLD, intending to provide references for the future investigation of MAFLD.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| |
Collapse
|
35
|
Hu Y, Liu C, Han W, Wang P. A theoretical framework of immune cell phenotypic classification and discovery. Front Immunol 2023; 14:1128423. [PMID: 36936975 PMCID: PMC10018129 DOI: 10.3389/fimmu.2023.1128423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Immune cells are highly heterogeneous and show diverse phenotypes, but the underlying mechanism remains to be elucidated. In this study, we proposed a theoretical framework for immune cell phenotypic classification based on gene plasticity, which herein refers to expressional change or variability in response to conditions. The system contains two core points. One is that the functional subsets of immune cells can be further divided into subdivisions based on their highly plastic genes, and the other is that loss of phenotype accompanies gain of phenotype during phenotypic conversion. The first point suggests phenotypic stratification or layerability according to gene plasticity, while the second point reveals expressional compatibility and mutual exclusion during the change in gene plasticity states. Abundant transcriptome data analysis in this study from both microarray and RNA sequencing in human CD4 and CD8 single-positive T cells, B cells, natural killer cells and monocytes supports the logical rationality and generality, as well as expansibility, across immune cells. A collection of thousands of known immunophenotypes reported in the literature further supports that highly plastic genes play an important role in maintaining immune cell phenotypes and reveals that the current classification model is compatible with the traditionally defined functional subsets. The system provides a new perspective to understand the characteristics of dynamic, diversified immune cell phenotypes and intrinsic regulation in the immune system. Moreover, the current substantial results based on plasticitomics analysis of bulk and single-cell sequencing data provide a useful resource for big-data-driven experimental studies and knowledge discoveries.
Collapse
Affiliation(s)
- Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wenling Han
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
- *Correspondence: Pingzhang Wang,
| |
Collapse
|
36
|
Muñoz L, Caparrós E, Albillos A, Francés R. The shaping of gut immunity in cirrhosis. Front Immunol 2023; 14:1139554. [PMID: 37122743 PMCID: PMC10141304 DOI: 10.3389/fimmu.2023.1139554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cirrhosis is the common end-stage of chronic liver diseases of different etiology. The altered bile acids metabolism in the cirrhotic liver and the increase in the blood-brain barrier permeability, along with the progressive dysbiosis of intestinal microbiota, contribute to gut immunity changes, from compromised antimicrobial host defense to pro-inflammatory adaptive responses. In turn, these changes elicit a disruption in the epithelial and gut vascular barriers, promoting the increased access of potential pathogenic microbial antigens to portal circulation, further aggravating liver disease. After summarizing the key aspects of gut immunity during homeostasis, this review is intended to update the contribution of liver and brain metabolites in shaping the intestinal immune status and, in turn, to understand how the loss of homeostasis in the gut-associated lymphoid tissue, as present in cirrhosis, cooperates in the advanced chronic liver disease progression. Finally, several therapeutic approaches targeting the intestinal homeostasis in cirrhosis are discussed.
Collapse
Affiliation(s)
- Leticia Muñoz
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Caparrós
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Agustín Albillos
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| | - Rubén Francés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnologiía Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| |
Collapse
|
37
|
Chandran S, Tang Q. Impact of interleukin-6 on T cells in kidney transplant recipients. Am J Transplant 2022; 22 Suppl 4:18-27. [PMID: 36453710 DOI: 10.1111/ajt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Interleukin-6 (IL-6), a multifunctional proinflammatory cytokine, plays a key role in T cell activation, survival, and differentiation. Acting as a switch that induces the differentiation of naïve T cells into Th17 cells and inhibits their development into regulatory T cells, IL-6 promotes rejection and abrogates tolerance. Therapies that target IL-6 signaling include antibodies to IL-6 and the IL-6 receptor and inhibitors of janus kinases; several of these therapeutics have demonstrated robust clinical efficacy in autoimmune and inflammatory diseases. Clinical trials of IL-6 inhibition in kidney transplantation have focused primarily on its effects on B cells, plasma cells, and HLA antibodies. In this review, we summarize the impact of IL-6 on T cells in experimental models of transplant and describe the effects of IL-6 inhibition on the T cell compartment in kidney transplant recipients.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, Gladstone-UCSF Institute of Genome Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
39
|
Saleh D, Ramadan A, Mohammed RH, Alnaggar ARLR, Saleh EM. Autophagy-related genes in Egyptian patients with Behçet's disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Abstract
Background
Behçet's disease (BD) is a chronic, multi-systemic, recurrent condition that affects the vascular, ocular, mucocutaneous, and central nervous systems. The diagnosis of this disease depends on its clinical features, which are similar to those observed in several diseases, such as Parkinson’s disease, pemphigus vulgaris, systemic lupus erythematosus, Crohn ҆s disease, and Sjӧgren’s syndrome. Lysosome-mediated autophagy is a catabolic, cytoprotective mechanism that maintains cell homeostasis by degrading undesired long-lived proteins and recycling nutrients. The aim of this study was to evaluate the correlations between some autophagy-related genes (ATG5, ATG7, ATG12, LC3b, mTOR) and the pathogenesis and immunopathology of BD. The expression levels of the genes were evaluated by quantitative polymerase chain reaction (qPCR) in 101 individuals that are classified into two groups. Group 1: (n = 71) BD patients, Group 2: (n = 30) healthy controls.
Results
Patients with BD had lower mRNA expression levels of ATG5 and mTOR and higher levels of LC3b mRNA than the controls. No significant differences in the levels of both ATG7 and ATG12 were observed between the two groups. According to the area under the curve analysis, LC3b was considered the best candidate biomarker among the selected markers for the diagnosis of BD. The mRNA expression of ATG5 was significantly correlated with patient age and the presence of oral ulcers. The mRNA expression of ATG7 was significantly associated with age and the presence of erythema nodosum and vascular lesions, whereas that of LC3b was significantly correlated with the presence of pustules.
Conclusion
These findings indicated that elevated levels of LC3b were strongly associated with BD. Likewise, the levels of ATG5 and ATG7 were associated with the complications and outcomes of this disease. Additional assessments of the mRNA expression levels of these autophagy-related genes might prove beneficial in diagnosing this autoimmune disorder.
Collapse
|
40
|
Yazdani S, Seitz C, Cui C, Lovik A, Pan L, Piehl F, Pawitan Y, Kläppe U, Press R, Samuelsson K, Yin L, Vu TN, Joly AL, Westerberg LS, Evertsson B, Ingre C, Andersson J, Fang F. T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression. Nat Commun 2022; 13:6733. [PMID: 36347843 PMCID: PMC9643478 DOI: 10.1038/s41467-022-34526-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, involving neuroinflammation and T cell infiltration in the central nervous system. However, the contribution of T cell responses to the pathology of the disease is not fully understood. Here we show, by flow cytometric analysis of blood and cerebrospinal fluid (CSF) samples of a cohort of 89 newly diagnosed ALS patients in Stockholm, Sweden, that T cell phenotypes at the time of diagnosis are good predictors of disease outcome. High frequency of CD4+FOXP3- effector T cells in blood and CSF is associated with poor survival, whereas high frequency of activated regulatory T (Treg) cells and high ratio between activated and resting Treg cells in blood are associated with better survival. Besides survival, phenotypic profiling of T cells could also predict disease progression rate. Single cell transcriptomics analysis of CSF samples shows clonally expanded CD4+ and CD8+ T cells in CSF, with characteristic gene expression patterns. In summary, T cell responses associate with and likely contribute to disease progression in ALS, supporting modulation of adaptive immunity as a viable therapeutic option.
Collapse
Affiliation(s)
- Solmaz Yazdani
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anikó Lovik
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lu Pan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Neurology clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Neurology clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Neurology clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Neurology clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Li Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Laure Joly
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Evertsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Neurology clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Neurology clinic, Karolinska University Hospital, Stockholm, Sweden
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Smith JB, Herbert JJ, Truong NR, Cunningham AL. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front Immunol 2022; 13:936235. [PMID: 36211447 PMCID: PMC9538770 DOI: 10.3389/fimmu.2022.936235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous infections in humans. They cause orofacial and genital herpes with occasional severe complications. HSV2 also predisposes individuals to infection with HIV. There is currently no vaccine or immunotherapy for these diseases. Understanding the immunopathogenesis of HSV infections is essential to progress towards these goals. Both HSV viruses result in initial infections in two major sites - in the skin or mucosa, either after initial infection or recurrence, and in the dorsal root or trigeminal ganglia where the viruses establish latency. HSV1 can also cause recurrent infection in the eye. At all of these sites immune cells respond to control infection. T cells and resident dendritic cells (DCs) in the skin/mucosa and around reactivating neurones in the ganglia, as well as keratinocytes in the skin and mucosa, are major sources of cytokines and chemokines. Cytokines such as the Type I and II interferons synergise in their local antiviral effects. Chemokines such as CCL2, 3 and 4 are found in lesion vesicle fluid, but their exact role in determining the interactions between epidermal and dermal DCs and with resident memory and infiltrating CD4 and CD8 T cells in the skin/mucosa is unclear. Even less is known about these mechanisms in the ganglia. Here we review the data on known sources and actions of these cytokines and chemokines at cellular and tissue level and indicate their potential for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Anthony L. Cunningham,
| |
Collapse
|
42
|
Wang Y, Yang H, Jia A, Wang Y, Yang Q, Dong Y, Hou Y, Cao Y, Dong L, Bi Y, Liu G. Dendritic cell Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the differentiation of T H1 and T reg cells in cancer. eLife 2022; 11:79957. [PMID: 35993548 PMCID: PMC9451538 DOI: 10.7554/elife.79957] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) play an important role in anti-tumor immunity by inducing T cell differentiation. Herein, we found that the DC mechanical sensor Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the reciprocal differentiation of TH1 and regulatory T (Treg) cells in cancer. Genetic deletion of Piezo1 in DCs inhibited the generation of TH1 cells while driving the development of Treg cells in promoting cancer growth in mice. Mechanistically, Piezo1-deficient DCs regulated the secretion of the polarizing cytokines TGFβ1 and IL-12, leading to increased TGFβR2-p-Smad3 activity and decreased IL-12Rβ2-p-STAT4 activity while inducing the reciprocal differentiation of Treg and TH1 cells. In addition, Piezo1 integrated the SIRT1-hypoxia-inducible factor-1 alpha (HIF1α)-dependent metabolic pathway and calcium-calcineurin-NFAT signaling pathway to orchestrate reciprocal TH1 and Treg lineage commitment through DC-derived IL-12 and TGFβ1. Our studies provide critical insight for understanding the role of the DC-based mechanical regulation of immunopathology in directing T cell lineage commitment in tumor microenvironments.
Collapse
Affiliation(s)
| | - Hui Yang
- Fudan University, Shanghai, China
| | - Anna Jia
- Beijing Normal University, Beijing, China
| | - Yufei Wang
- Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Beijing Normal University, Beijing, China
| | | | - Yueru Hou
- Beijing Normal University, Beijing, China
| | - Yejin Cao
- Beijing Normal University, Beijing, China
| | - Lin Dong
- Beijing Normal University, Beijing, China
| | - Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | |
Collapse
|
43
|
Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4 + T cell activation and inflammation in NASH-related fibrosis. Front Immunol 2022; 13:967410. [PMID: 36032141 PMCID: PMC9399803 DOI: 10.3389/fimmu.2022.967410] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end stage liver failure, a severe life-threatening disease worldwide. Nonalcoholic fatty liver disease (NAFLD), especially its more severe form with steatohepatitis (NASH), results from obesity, type 2 diabetes and metabolic syndrome and becomes a leading cause of liver fibrosis. Genetic factor, lipid overload/toxicity, oxidative stress and inflammation have all been implicated in the development and progression of NASH. Both innate immune response and adaptive immunity contribute to NASH-associated inflammation. Innate immunity may cause inflammation and subsequently fibrosis via danger-associated molecular patterns. Increasing evidence indicates that T cell-mediated adaptive immunity also provokes inflammation and fibrosis in NASH via cytotoxicity, cytokines and other proinflammatory and profibrotic mediators. Recently, the single-cell transcriptome profiling has revealed that the populations of CD4+ T cells, CD8+ T cells, γδ T cells, and TEMs are expanded in the liver with NASH. The activation of T cells requires antigen presentation from professional antigen-presenting cells (APCs), including macrophages, dendritic cells, and B-cells. However, since hepatocytes express MHCII molecules and costimulators, they may also act as an atypical APC to promote T cell activation. Additionally, the phenotypic switch of hepatocytes to proinflammatory cells in NASH contributes to the development of inflammation. In this review, we focus on T cells and in particular CD4+ T cells and discuss the role of different subsets of CD4+ T cells including Th1, Th2, Th17, Th22, and Treg in NASH-related liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Haibo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yao Yao
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyan Zhang
- Wuhu Hospital & Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Thirunavukarasu AJ, Ross AC, Gilbert RM. Vitamin A, systemic T-cells, and the eye: Focus on degenerative retinal disease. Front Nutr 2022; 9:914457. [PMID: 35923205 PMCID: PMC9339908 DOI: 10.3389/fnut.2022.914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The first discovered vitamin, vitamin A, exists in a range of forms, primarily retinoids and provitamin carotenoids. The bioactive forms of vitamin A, retinol and retinoic acid, have many critical functions in body systems including the eye and immune system. Vitamin A deficiency is associated with dysfunctional immunity, and presents clinically as a characteristic ocular syndrome, xerophthalmia. The immune functions of vitamin A extend to the gut, where microbiome interactions and nutritional retinoids and carotenoids contribute to the balance of T cell differentiation, thereby determining immune status and contributing to inflammatory disease around the whole body. In the eye, degenerative conditions affecting the retina and uvea are influenced by vitamin A. Stargardt's disease (STGD1; MIM 248200) is characterised by bisretinoid deposits such as lipofuscin, produced by retinal photoreceptors as they use and recycle a vitamin A-derived chromophore. Age-related macular degeneration features comparable retinal deposits, such as drusen featuring lipofuscin accumulation; and is characterised by parainflammatory processes. We hypothesise that local parainflammatory processes secondary to lipofuscin deposition in the retina are mediated by T cells interacting with dietary vitamin A derivatives and the gut microbiome, and outline the current evidence for this. No cures exist for Stargardt's or age-related macular degeneration, but many vitamin A-based therapeutic approaches have been or are being trialled. The relationship between vitamin A's functions in systemic immunology and the eye could be further exploited, and further research may seek to leverage the interactions of the gut-eye immunological axis.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rose M. Gilbert
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
45
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
46
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards non-alcoholic steatohepatitis (NASH), cirrhosis or even hepatocellular carcinoma. NAFLD is a major health burden, and its incidence is increasing worldwide. Although it is primarily a disease of disturbed metabolism, NAFLD involves several immune cell-mediated inflammatory processes, particularly when reaching the stage of NASH, at which point inflammation becomes integral to the progression of the disease. The hepatic immune cell landscape is diverse at steady state and it further evolves during NASH with direct consequences for disease severity. In this Review, we discuss current concepts related to the role of immune cells in the onset and progression of NASH. A better understanding of the mechanisms by which immune cells contribute to NASH pathogenesis should aid the design of innovative drugs to target NASH, for which current therapeutic options are limited.
Collapse
Affiliation(s)
- Thierry Huby
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR-S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR-S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
47
|
Huang M, Rodriguez‐Coira J. Can polyamine metabolism in T helper cell lineage commitment be a new target in allergy research? Allergy 2022; 77:1929-1930. [PMID: 35191039 DOI: 10.1111/all.15265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mengting Huang
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Juan Rodriguez‐Coira
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Instituto de Medicina Molecular Aplicada Grupo Hospital Madrid Universidad San Pablo‐CEU CEU Universities Madrid España
- Centro de Metabolómica y Bioanálisis (CEMBIO) Facultad de Farmacia Universidad San Pablo‐CEU CEU Universities Madrid España
| |
Collapse
|
48
|
Ghione S, Racoeur C, Mabrouk N, Shan J, Groetz E, Ballot E, Truntzer C, Chouchane L, Végran F, Paul C, Plenchette S, Bettaieb A. Protein Kinase Inhibitor-Mediated Immunoprophylactic and Immunotherapeutic Control of Colon Cancer. Front Immunol 2022; 13:875764. [PMID: 35572581 PMCID: PMC9097540 DOI: 10.3389/fimmu.2022.875764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has allowed major advances in oncology in the past years, in particular with the development of immune checkpoint inhibitors, but the clinical benefits are still limited, particularly in colorectal cancer (CRC). Our scientific approach is based on the search for innovative immunotherapy with a final goal that aims to induce an effective antitumor immune response in CRC. Here, we focused on a multikinase inhibitor, H89. We carried out in vivo experiments based on syngeneic mouse models of colon cancer in BALB/c mice and chemically colon tumorigenesis. Flow cytometry, RNAseq, RT-qPCR, antibody-specific immune cell depletion, and Western blot were used to identify the immune cell type involved in the preventive and antitumor activity of H89. We demonstrated that H89 delays colon oncogenesis and prevents tumor growth. This latter effect seems to involve NK cells. H89 also inhibits colon tumor growth in a T-cell-dependent manner. Analysis of the immune landscape in the tumor microenvironment showed an increase of CD4+ Th1 cells and CD8+ cytotoxic T cells but a decrease of CD4+ Treg cell infiltration. Mechanistically, we showed that H89 could promote naïve CD4+ T-cell differentiation into Th1, a decrease in Treg differentiation, and an increase in CD8+ T-cell activation and cytotoxicity ex vivo. Furthermore, H89 induced overexpression of genes involved in antitumor immune response, such as IL-15RA, which depletion counteracts the antitumor effect of H89. We also found that H89 regulated Akt/PP2A pathway axis, involved in TCR and IL-15 signaling transduction. Our findings identify the H89 as a potential strategy for immune system activation leading to the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Emma Groetz
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Elise Ballot
- Plateforme de Transfert en Biologie Cancérologique, Centre Georges François Leclerc, Dijon, France.,Team CAdIR, Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, Lipids, Nutrition and Cancer, Dijon, France
| | - Caroline Truntzer
- Plateforme de Transfert en Biologie Cancérologique, Centre Georges François Leclerc, Dijon, France.,Team CAdIR, Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, Lipids, Nutrition and Cancer, Dijon, France
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Frédérique Végran
- Plateforme de Transfert en Biologie Cancérologique, Centre Georges François Leclerc, Dijon, France.,Team CAdIR, Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, Lipids, Nutrition and Cancer, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC), EA7269, Université Bourgogne Franche-Comté, Dijon, France.,LIIC, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, Paris, France
| |
Collapse
|
49
|
Linke A, Tiegs G, Neumann K. Pathogenic T-Cell Responses in Immune-Mediated Glomerulonephritis. Cells 2022; 11:cells11101625. [PMID: 35626662 PMCID: PMC9139939 DOI: 10.3390/cells11101625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Glomerulonephritis (GN) comprises a group of immune-mediated kidney diseases affecting glomeruli and the tubulointerstitium. Glomerular crescent formation is a histopathological characteristic of severe forms of GN, also referred to as crescentic GN (cGN). Based on histological findings, cGN includes anti-neutrophil cytoplasmic antibody (ANCA)-associated GN, a severe form of ANCA-associated vasculitis, lupus nephritis associated with systemic lupus erythematosus, Goodpasture’s disease, and IgA nephropathy. The immunopathogenesis of cGN is associated with activation of CD4+ and CD8+ T cells, which particularly accumulate in the periglomerular and tubulointerstitial space but also infiltrate glomeruli. Clinical observations and functional studies in pre-clinical animal models provide evidence for a pathogenic role of Th1 and Th17 cell-mediated immune responses in cGN. Emerging evidence further argues that CD8+ T cells have a role in disease pathology and the mechanisms of activation and function of recently identified tissue-resident CD4+ and CD8+ T cells in cGN are currently under investigation. This review summarizes the mechanisms of pathogenic T-cell responses leading to glomerular damage and renal inflammation in cGN. Advanced knowledge of the underlying immune mechanisms involved with cGN will enable the identification of novel therapeutic targets for the replacement or reduction in standard immunosuppressive therapy or the treatment of refractory disease.
Collapse
Affiliation(s)
- Alexandra Linke
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| |
Collapse
|
50
|
When being flexible matters: Ecological underpinnings for the evolution of collective flexibility and task allocation. Proc Natl Acad Sci U S A 2022; 119:e2116066119. [PMID: 35486699 PMCID: PMC9170069 DOI: 10.1073/pnas.2116066119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A central problem in evolutionary biology is explaining variation in the organization of task allocation across collective systems. Why do human cells irreversibly adopt a task during development (e.g., kidney vs. liver cell), while sponge cells switch between different cell types? And why have only some ant species evolved specialized castes of workers for particular tasks? Although it seems reasonable to suppose that such differences reflect, at least partially, the different ecological pressures that systems face, there is no general understanding of how a system’s dynamic environment shapes its task allocation. To this end, we develop a general mathematical framework that reveals how simple ecological considerations could potentially explain cross-system variation in task allocation—including in flexibility, specialization, and (in)activity. Task allocation is a central feature of collective organization. Living collective systems, such as multicellular organisms or social insect colonies, have evolved diverse ways to allocate individuals to different tasks, ranging from rigid, inflexible task allocation that is not adjusted to changing circumstances to more fluid, flexible task allocation that is rapidly adjusted to the external environment. While the mechanisms underlying task allocation have been intensely studied, it remains poorly understood whether differences in the flexibility of task allocation can be viewed as adaptive responses to different ecological contexts—for example, different degrees of temporal variability. Motivated by this question, we develop an analytically tractable mathematical framework to explore the evolution of task allocation in dynamic environments. We find that collective flexibility is not necessarily always adaptive, and fails to evolve in environments that change too slowly (relative to how long tasks can be left unattended) or too quickly (relative to how rapidly task allocation can be adjusted). We further employ the framework to investigate how environmental variability impacts the internal organization of task allocation, which allows us to propose adaptive explanations for some puzzling empirical observations, such as seemingly unnecessary task switching under constant environmental conditions, apparent task specialization without efficiency benefits, and high levels of individual inactivity. Altogether, this work provides a general framework for probing the evolved diversity of task allocation strategies in nature and reinforces the idea that considering a system’s ecology is crucial to explaining its collective organization.
Collapse
|