1
|
Almeida CF, Juno JA. Sensing mycobacteria through unconventional pathways. J Clin Invest 2025; 135:e190230. [PMID: 40091837 PMCID: PMC11910222 DOI: 10.1172/jci190230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Approximately one-quarter of the global population is estimated to be infected with Mycobacterium tuberculosis. New developments in vaccine design and therapeutics are urgently needed, particularly in the face of multidrug-resistant tuberculosis (TB). In this issue of the JCI, Sakai and colleagues used a multidisciplinary approach to determine that trehalose-6-monomycolate (TMM), a mycobacterial cell wall lipid, serves as a T cell antigen presented by CD1b. CD1b-TMM-specific T cells were characterized by conserved T cell receptor features and were present at elevated frequencies in individuals with active TB disease. These findings highlight the dual role of TMM in stimulating both innate and adaptive immunity and broaden our understanding of CD1-mediated lipid recognition by unconventional T cells.
Collapse
|
2
|
Weinberg A, Johnson M, Crotteau M, Ghosh D, Vu T, Levin MJ. Trained Immunity Generated by the Recombinant Zoster Vaccine. RESEARCH SQUARE 2024:rs.3.rs-4607744. [PMID: 39041035 PMCID: PMC11261968 DOI: 10.21203/rs.3.rs-4607744/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Trained immunity may play a role in vaccine-induced protection against infections. We showed that the highly efficacious recombinant VZV-gE zoster vaccine (RZV) generated trained immunity in monocytes, natural killer (NK) cells, and dendritic cells (DCs) and that the less efficacious live zoster vaccine did not. RZV stimulated ex vivo gE-specific monocyte, DC and NK cell responses that did not correlate with CD4 + T-cell responses. These responses were also elicited in purified monocyte and NK cell cocultures stimulated with VZV-gE and persisted above prevaccination levels for ≥ 4 years post-RZV administration. RZV administration also increased ex vivo heterologous monocyte and NK cell responses to herpes simplex and cytomegalovirus antigens. ATAC-seq analysis and ex vivo TGFβ1 supplementation and inhibition experiments demonstrated that decreased tgfβ1 transcription resulting from RZV-induced chromatin modifications may explain the development of monocyte trained immunity. The role of RZV-trained immunity in protection against herpes zoster and other infections should be further studied.
Collapse
Affiliation(s)
| | | | | | | | - Thao Vu
- University of Colorado Denver
| | | |
Collapse
|
3
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Bryan E, Teague JE, Eligul S, Arkins WC, Moody DB, Clark RA, Van Rhijn I. Human Skin T Cells Express Conserved T-Cell Receptors that Cross-React with Staphylococcal Superantigens and CD1a. J Invest Dermatol 2024; 144:833-843.e3. [PMID: 37951348 DOI: 10.1016/j.jid.2023.09.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
Human Langerhans cells highly express CD1a antigen-presenting molecules. To understand the functions of CD1a in human skin, we used CD1a tetramers to capture T cells and determine their effector functions and TCR patterns. Skin T cells from all donors showed CD1a tetramer staining, which in three cases exceeded 10% of skin T cells. CD1a tetramer-positive T cells produced diverse cytokines, including IL-2, IL-4, IL-5, IL-9, IL-17, IL-22, and IFN-γ. Conserved TCRs often recognize nonpolymorphic antigen-presenting molecules, but no TCR motifs are known for CD1a. We detected highly conserved TCRs that used TRAV34 and TRBV28 variable genes, which is a known motif for recognition of staphylococcal enterotoxin B, a superantigen associated with atopic dermatitis. We found that these conserved TCRs did not respond to superantigen presented by CD1a, but instead showed a cross-reactive response with two targets: CD1a and staphylococcal enterotoxin B presented by classical major histocompatibility complex II. These studies identify a conserved human TCR motif for CD1a-reactive T cells. Furthermore, the demonstrated cross-reaction of T cells with two common skin-specific stimuli suggests a candidate mechanism by which CD1a and skin flora could synergize during natural immune response and in Staphylococcus-associated skin diseases.
Collapse
Affiliation(s)
- Elizabeth Bryan
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sezin Eligul
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wellington C Arkins
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Weinberg A, Johnson MJ, Garth K, Hsieh EWY, Kedl R, Weiskopf D, Cassaday M, Rester C, Cabrera-Martinez B, Baxter RM, Levin MJ. Innate and Adaptive Cell-Mediated Immune Responses to a COVID-19 mRNA Vaccine in Young Children. Open Forum Infect Dis 2023; 10:ofad608. [PMID: 38107018 PMCID: PMC10721446 DOI: 10.1093/ofid/ofad608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Background There is little information on cell-mediated immunity (CMI) to COVID-19 mRNA vaccines in children. We studied adaptive and innate CMI in vaccinated children aged 6 to 60 months. Methods Blood obtained from participants in a randomized placebo-controlled trial of an mRNA vaccine before and 1 month after the first dose was used for antibody measurements and CMI (flow cytometry). Results We enrolled 29 children with a mean age of 28.5 months (SD, 15.7). Antibody studies revealed that 10 participants were infected with SARS-CoV-2 prevaccination. Ex vivo stimulation of peripheral blood mononuclear cells with SARS-CoV-2 spike peptides showed significant increases pre- to postimmunization of activated conventional CD4+ and γδ T cells, natural killer cells, monocytes, and conventional dendritic cells but not mucosa-associated innate T cells. Conventional T-cell, monocyte, and conventional dendritic cell responses in children were higher immediately after vaccination than after SARS-CoV-2 infection. The fold increase in CMI pre- to postvaccination did not differ between children previously infected with SARS-CoV-2 and those uninfected. Conclusions Children aged 6 to 60 months who were vaccinated with a COVID-19 mRNA vaccine developed robust CMI responses, including adaptive and innate immunity.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael J Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krystle Garth
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elena W Y Hsieh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ross Kedl
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mattie Cassaday
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cody Rester
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Berenice Cabrera-Martinez
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan M Baxter
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Myron J Levin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
7
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Jalbert E, Liu C, Mave V, Lang N, Kagal A, Valvi C, Paradkar M, Gupte N, Lokhande R, Bharadwaj R, Kulkarni V, Gupta A, Weinberg A. Comparative immune responses to Mycobacterium tuberculosis in people with latent infection or sterilizing protection. iScience 2023; 26:107425. [PMID: 37564701 PMCID: PMC10410524 DOI: 10.1016/j.isci.2023.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
There is great need for vaccines against tuberculosis (TB) more efficacious than the licensed BCG. Our goal was to identify new vaccine benchmarks by identifying immune responses that distinguish individuals able to eradicate the infection (TB-resisters) from individuals with latent infection (LTBI-participants). TB-resisters had higher frequencies of circulating CD8+ glucose monomycolate (GMM)+ Granzyme-B+ T cells than LTBI-participants and higher proportions of polyfunctional conventional and nonconventional T cells expressing Granzyme-B and/or PD-1 after ex vivo M. tuberculosis stimulation of blood mononuclear cells. LTBI-participants had higher expression of activation markers and cytokines, including IL10, and IFNγ. An exploratory analysis of BCG-recipients with minimal exposure to TB showed absence of CD8+GMM+Granzyme-B+ T cells, lower or equal proportions of Granzyme-B+PD-1+ polyfunctional T cells than TB-resisters and higher or equal than LTBI-participants. In conclusion, high Granzyme-B+PD-1+ T cell responses to M. tuberculosis and, possibly, of CD8+GMM+Granzyme-B+ T cells may be desirable for new TB vaccines.
Collapse
Affiliation(s)
- Emilie Jalbert
- Department of Pediatrics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Vidya Mave
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Nancy Lang
- Department of Pediatrics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Anju Kagal
- Department of Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Chhaya Valvi
- Department of Pediatrics, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Mandar Paradkar
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Nikhil Gupte
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Rahul Lokhande
- Department of Pulmonary Medicine, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Renu Bharadwaj
- Department of Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Vandana Kulkarni
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Amita Gupta
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Adriana Weinberg
- Departments of Pediatrics, Medicine and Pathology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Shahine A, Van Rhijn I, Rossjohn J, Moody DB. CD1 displays its own negative regulators. Curr Opin Immunol 2023; 83:102339. [PMID: 37245411 PMCID: PMC10527790 DOI: 10.1016/j.coi.2023.102339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
After two decades of the study of lipid antigens that activate CD1-restricted T cells, new studies show how autoreactive αβ T-cell receptors (TCRs) can directly recognize the outer surface of CD1 proteins in ways that are lipid-agnostic. Most recently, this lipid agnosticism has turned to negativity, with the discovery of natural CD1 ligands that dominantly negatively block autoreactive αβ TCR binding to CD1a and CD1d. This review highlights the basic differences between positive and negative regulation of cellular systems. We outline strategies to discover lipid inhibitors of CD1-reactive T cells, whose roles in vivo are becoming clear, especially in CD1-mediated skin disease.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Farquhar R, Van Rhijn I, Moody DB, Rossjohn J, Shahine A. αβ T-cell receptor recognition of self-phosphatidylinositol presented by CD1b. J Biol Chem 2023; 299:102849. [PMID: 36587766 PMCID: PMC9900620 DOI: 10.1016/j.jbc.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
CD1 glycoproteins present lipid-based antigens to T-cell receptors (TCRs). A role for CD1b in T-cell-mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here, we report the 1.9 Å resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b-phosphatidylinositol complexed to an autoreactive αβ TCR, BC8B. We show that the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodeling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We in addition define a role for both CD1b α1 and CD1b α2 molecular domains in modulating this interaction. These findings suggest that the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of corecognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T-cell autoreactivity.
Collapse
Affiliation(s)
- Rachel Farquhar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, United Kingdom.
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Morita D, Asa M, Sugita M. Engagement with the TCR induces plasticity in antigenic ligands bound to MHC class I and CD1 molecules. Int Immunol 2023; 35:7-17. [PMID: 36053252 DOI: 10.1093/intimm/dxac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Complementarity-determining regions (CDRs) of αβ T-cell receptors (TCRs) sense peptide-bound MHC (pMHC) complexes via chemical interactions, thereby mediating antigen specificity and MHC restriction. Flexible finger-like movement of CDR loops contributes to the establishment of optimal interactions with pMHCs. In contrast, peptide ligands captured in MHC molecules are considered more static because of the rigid hydrogen-bond network that stabilizes peptide ligands in the antigen-binding groove of MHC molecules. An array of crystal structures delineating pMHC complexes in TCR-docked and TCR-undocked forms is now available, which enables us to assess TCR engagement-induced conformational changes in peptide ligands. In this short review, we overview conformational changes in MHC class I-bound peptide ligands upon TCR docking, followed by those for CD1-bound glycolipid ligands. Finally, we analyze the co-crystal structure of the TCR:lipopeptide-bound MHC class I complex that we recently reported. We argue that TCR engagement-induced conformational changes markedly occur in lipopeptide ligands, which are essential for exposure of a primary T-cell epitope to TCRs. These conformational changes are affected by amino acid residues, such as glycine, that do not interact directly with TCRs. Thus, ligand recognition by specific TCRs involves not only T-cell epitopes but also non-epitopic amino acid residues. In light of their critical function, we propose to refer to these residues as non-epitopic residues affecting ligand plasticity and antigenicity (NR-PA).
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minori Asa
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Walker EM, Merino KM, Slisarenko N, Grasperge BF, Mehra S, Roy CJ, Kaushal D, Rout N. Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Guérin (BCG) inoculated macaques. Front Immunol 2023; 13:1085786. [PMID: 36726992 PMCID: PMC9885173 DOI: 10.3389/fimmu.2022.1085786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of M. bovis and M. tuberculosis were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results Prior to BCG inoculation, innate-like IFN-γ responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL γδT cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-γ responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL γδT cells. Additionally, IFN-γ responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-γ production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
Collapse
Affiliation(s)
- Edith M. Walker
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Kristen M. Merino
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Nadia Slisarenko
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Brooke F. Grasperge
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chad J. Roy
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Namita Rout
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
14
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
15
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
16
|
Senserrich J, Guallar-Garrido S, Gomez-Mora E, Urrea V, Clotet B, Julián E, Cabrera C. Remodeling the bladder tumor immune microenvironment by mycobacterial species with changes in their cell envelope composition. Front Immunol 2022; 13:993401. [PMID: 36304456 PMCID: PMC9593704 DOI: 10.3389/fimmu.2022.993401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intravesical BCG instillation after bladder tumor resection is the standard treatment for non-muscle invasive bladder cancer; however, it is not always effective and frequently has undesirable side effects. Therefore, new strategies that improve the clinical management of patients are urgently needed. This study aimed to comprehensively evaluate the bladder tumor immune microenvironment profile after intravesical treatment with a panel of mycobacteria with variation in their cell envelope composition and its impact on survival using an orthotopic murine model to identify more effective and safer therapeutic strategies. tumor-bearing mice were intravesically treated with a panel of BCG and M. brumae cultured under different conditions. Untreated tumor-bearing mice and healthy mice were also included as controls. After mycobacterial treatments, the infiltrating immune cell populations in the bladder were analysed by flow cytometry. We provide evidence that mycobacterial treatment triggered a strong immune infiltration into the bladder, with BCG inducing higher global absolute infiltration than M. brumae. The induced global immune microenvironment was strikingly different between the two mycobacterial species, affecting both innate and adaptive immunity. Compared with M. brumae, BCG treated mice exhibited a more robust infiltration of CD4+ and CD8+ T-cells skewed toward an effector memory phenotype, with higher frequencies of NKT cells, neutrophils/gMDSCs and monocytes, especially the inflammatory subset, and higher CD4+ TEM/CD4+ Treg and CD8+ TEM/CD4+ Treg ratios. Conversely, M. brumae treatment triggered higher proportions of total activated immune cells and activated CD4+ and CD8+ TEM cells and lower ratios of CD4+ TEM cells/CD4+ Tregs, CD8+ TEM cells/CD4+ Tregs and inflammatory/reparative monocytes. Notably, the mycobacterial cell envelope composition in M. brumae had a strong impact on the immune microenvironment, shaping the B and myeloid cell compartment and T-cell maturation profile and thus improving survival. Overall, we demonstrate that the bladder immune microenvironment induced by mycobacterial treatment is species specific and shaped by mycobacterial cell envelope composition. Therefore, the global bladder immune microenvironment can be remodelled, improving the quality of infiltrating immune cells, the balance between inflammatory and regulatory/suppressive responses and increasing survival.
Collapse
Affiliation(s)
- Jordi Senserrich
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Gomez-Mora
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor Urrea
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic - UCC), Vic, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Cecilia Cabrera, ; Esther Julián,
| |
Collapse
|
17
|
James CA, Yu KKQ, Mayer-Blackwell K, Fiore-Gartland A, Smith MT, Layton ED, Johnson JL, Hanekom WA, Scriba TJ, Seshadri C. Durable Expansion of TCR-δ Meta-Clonotypes After BCG Revaccination in Humans. Front Immunol 2022; 13:834757. [PMID: 35432299 PMCID: PMC9005636 DOI: 10.3389/fimmu.2022.834757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) has been used for 100 years and prevents disseminated tuberculosis and death in young children. However, it shows only partial efficacy against pulmonary tuberculosis (TB) in adults, so new vaccines are urgently needed. The protective efficacy of BCG depends on T cells, which are typically activated by pathogen-derived protein antigens that bind to highly polymorphic major histocompatibility complex (MHC) molecules. Some T cells recognize non-protein antigens via antigen presenting systems that are independent of genetic background, leading to their designation as donor-unrestricted T (DURT) cells. Whether live whole cell vaccines, like BCG, can induce durable expansions of DURT cells in humans is not known. We used combinatorial tetramer staining, multi-parameter flow cytometry, and immunosequencing to comprehensively characterize the effect of BCG on activation and expansion of DURT cell subsets. We examined peripheral blood mononuclear cells (PBMC) derived from a Phase I study of South African adults in which samples were archived at baseline, 3 weeks, and 52 weeks post-BCG revaccination. We did not observe a change in the frequency of total mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells, germline encoded mycolyl-reactive (GEM) T cells, or γδ T cells at 52 weeks post-BCG. However, immunosequencing revealed a set of TCR-δ clonotypes that were expanded at 52 weeks post-BCG revaccination. These expanded clones expressed the Vδ2 gene segment and could be further defined on the basis of biochemical similarity into several 'meta-clonotypes' that likely recognize similar epitopes. Our data reveal that BCG vaccination leads to durable expansion of DURT cell clonotypes despite a limited effect on total circulating frequencies in the blood and have implications for defining the immunogenicity of candidate whole cell TB vaccines.
Collapse
Affiliation(s)
- Charlotte A. James
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Krystle K. Q. Yu
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Malisa T. Smith
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Erik D. Layton
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - John L. Johnson
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, United States
- Tuberculosis Research and Training Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Suliman S, Kjer-Nielsen L, Iwany SK, Lopez Tamara K, Loh L, Grzelak L, Kedzierska K, Ocampo TA, Corbett AJ, McCluskey J, Rossjohn J, León SR, Calderon R, Lecca-Garcia L, Murray MB, Moody DB, Van Rhijn I. Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1389-1395. [PMID: 35246495 PMCID: PMC9359468 DOI: 10.4049/jimmunol.2100275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/12/2022] [Indexed: 05/20/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRβ-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRβ-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous β-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah K Iwany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kattya Lopez Tamara
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Socios en Salud Sucursal Perú, Lima, Peru
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Megan B Murray
- Department of Global Health and Social Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
19
|
James CA, Xu Y, Aguilar MS, Jing L, Layton ED, Gilleron M, Minnaard AJ, Scriba TJ, Day CL, Warren EH, Koelle DM, Seshadri C. CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells. Nat Commun 2022; 13:78. [PMID: 35013257 PMCID: PMC8748927 DOI: 10.1038/s41467-021-27764-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.
Collapse
Affiliation(s)
- Charlotte A James
- Molecular Medicine and Mechanisms of Disease PhD Program (M3D), Department of Pathology, University of Washington, Seattle, WA, USA
| | - Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Erik D Layton
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077, Toulouse, France
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Cheryl L Day
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Edus H Warren
- Molecular Medicine and Mechanisms of Disease PhD Program (M3D), Department of Pathology, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David M Koelle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Tuberculosis Research and Training Center, Seattle, WA, USA.
| |
Collapse
|
20
|
Soma S, Lewinsohn DA, Lewinsohn DM. Donor Unrestricted T Cells: Linking innate and adaptive immunity. Vaccine 2021; 39:7295-7299. [PMID: 34740474 DOI: 10.1016/j.vaccine.2021.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Donor Unrestricted T Cells (DURTs) are characterized by their use of antigen presentation molecules that are often invariant. As these cells recognize diverse mycobacterial antigens, often found in BCG, these cells have the potential to either serve as targets for vaccination, or as a means to enable the induction of traditional T and B cell immunity. Here, we will review specific DURT family members, and their relationship to BCG.
Collapse
Affiliation(s)
- Shogo Soma
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Deborah A Lewinsohn
- Division of Pediatric Infectious Disease, Department of Pediatrics, Oregon Health & Science University, Portland, OR. 97239, United States
| | - David M Lewinsohn
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Portland VA Medical Center, Oregon Health & Science University, United States.
| |
Collapse
|
21
|
Zhou AX, Scriba TJ, Day CL, Hagge DA, Seshadri C. A simple assay to quantify mycobacterial lipid antigen-specific T cell receptors in human tissues and blood. PLoS Negl Trop Dis 2021; 15:e0010018. [PMID: 34914694 PMCID: PMC8717985 DOI: 10.1371/journal.pntd.0010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/30/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
T cell receptors (TCRs) encode the history of antigenic challenge within an individual and have the potential to serve as molecular markers of infection. In addition to peptide antigens bound to highly polymorphic MHC molecules, T cells have also evolved to recognize bacterial lipids when bound to non-polymorphic CD1 molecules. One such subset, germline-encoded, mycolyl lipid-reactive (GEM) T cells, recognizes mycobacterial cell wall lipids and expresses a conserved TCR-ɑ chain that is shared among genetically unrelated individuals. We developed a quantitative PCR assay to determine expression of the GEM TCR-ɑ nucleotide sequence in human tissues and blood. This assay was validated on plasmids and T cell lines. We tested blood samples from South African subjects with or without tuberculin reactivity or with active tuberculosis disease. We were able to detect GEM TCR-ɑ above the limit of detection in 92% of donors but found no difference in GEM TCR-ɑ expression among the three groups after normalizing for total TCR-ɑ expression. In a cohort of leprosy patients from Nepal, we successfully detected GEM TCR-ɑ in 100% of skin biopsies with histologically confirmed tuberculoid and lepromatous leprosy. Thus, GEM T cells constitute part of the T cell repertoire in the skin. However, GEM TCR-ɑ expression was not different between leprosy patients and control subjects after normalization. Further, these results reveal the feasibility of developing a simple, field deployable molecular diagnostic based on mycobacterial lipid antigen-specific TCR sequences that are readily detectable in human tissues and blood independent of genetic background.
Collapse
MESH Headings
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Cell Wall/genetics
- Cell Wall/immunology
- Cohort Studies
- Humans
- Leprosy/blood
- Leprosy/diagnosis
- Leprosy/immunology
- Leprosy/microbiology
- Lipids/immunology
- Molecular Diagnostic Techniques/methods
- Mycobacterium/genetics
- Mycobacterium/immunology
- Mycobacterium/isolation & purification
- Nepal
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- South Africa
- T-Lymphocytes/immunology
- T-Lymphocytes/microbiology
- Tuberculosis/blood
- Tuberculosis/diagnosis
- Tuberculosis/immunology
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Angela X. Zhou
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Tuberculosis Research and Training Center, University of Washington, Seattle, Washington, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deanna A. Hagge
- Mycobacterial Research Laboratories, Anandaban Hospital, Kathmandu, Nepal
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Tuberculosis Research and Training Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
23
|
Raffetseder J, Lindau R, van der Veen S, Berg G, Larsson M, Ernerudh J. MAIT Cells Balance the Requirements for Immune Tolerance and Anti-Microbial Defense During Pregnancy. Front Immunol 2021; 12:718168. [PMID: 34497611 PMCID: PMC8420809 DOI: 10.3389/fimmu.2021.718168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T cell subset with proinflammatory and cytotoxic effector functions. During pregnancy, modulation of the maternal immune system, both at the fetal-maternal interface and systemically, is crucial for a successful outcome and manifests through controlled enhancement of innate and dampening of adaptive responses. Still, immune defenses need to efficiently protect both the mother and the fetus from infection. So far, it is unknown whether MAIT cells are subjected to immunomodulation during pregnancy, and characterization of decidual MAIT cells as well as their functional responses during pregnancy are mainly lacking. We here characterized the presence and phenotype of Vα7.2+CD161+ MAIT cells in blood and decidua (the uterine endometrium during pregnancy) from women pregnant in the 1st trimester, i.e., the time point when local immune tolerance develops. We also assessed the phenotype and functional responses of MAIT cells in blood of women pregnant in the 3rd trimester, i.e., when systemic immunomodulation is most pronounced. Multi-color flow cytometry panels included markers for MAIT subsets, and markers of activation (CD69, HLA-DR, Granzyme B) and immunoregulation (PD-1, CTLA-4). MAIT cells were numerically decreased at the fetal-maternal interface and showed, similar to other T cells in the decidua, increased expression of immune checkpoint markers compared with MAIT cells in blood. During the 3rd trimester, circulating MAIT cells showed a higher expression of CD69 and CD56, and their functional responses to inflammatory (activating anti-CD3/CD28 antibodies, and IL-12 and IL-18) and microbial stimuli (Escherichia coli, group B streptococci and influenza A virus) were generally increased compared with MAIT cells from non-pregnant women, indicating enhanced antimicrobial defenses during pregnancy. Taken together, our findings indicate dual roles for MAIT cells during pregnancy, with an evidently well-adapted ability to balance the requirements of immune tolerance in parallel with maintained antimicrobial defenses. Since MAIT cells are easily activated, they need to be strictly regulated during pregnancy, and failure to do so could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Johanna Raffetseder
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Robert Lindau
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Sigrid van der Veen
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Göran Berg
- Division of Obstetrics and Gynecology, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology (MMV), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Mayassi T, Barreiro LB, Rossjohn J, Jabri B. A multilayered immune system through the lens of unconventional T cells. Nature 2021; 595:501-510. [PMID: 34290426 PMCID: PMC8514118 DOI: 10.1038/s41586-021-03578-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets according to the class of ligand that they recognize; their expression of semi-invariant or diverse T cell receptors; the structural features that underlie ligand recognition; their acquisition of effector functions in the thymus or periphery; and their distinct functional properties. Unconventional T cells follow specific selection rules and are poised to recognize self or evolutionarily conserved microbial antigens. We discuss these features from an evolutionary perspective to provide insights into the development and function of unconventional T cells. Finally, we elaborate on the functional redundancy of unconventional T cells and their relationship to subsets of innate and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a critical role in our survival by expanding and complementing the role of the conventional T cell compartment in protective immunity, tissue healing and barrier function.
Collapse
Affiliation(s)
- Toufic Mayassi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Luis B. Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Pediatrics, University of Chicago, Chicago, IL, USA.,Correspondence and requests for materials should be addressed to B.J.,
| |
Collapse
|
25
|
Gherardin NA, Redmond SJ, McWilliam HEG, Almeida CF, Gourley KHA, Seneviratna R, Li S, De Rose R, Ross FJ, Nguyen-Robertson CV, Su S, Ritchie ME, Villadangos JA, Moody DB, Pellicci DG, Uldrich AP, Godfrey DI. CD36 family members are TCR-independent ligands for CD1 antigen-presenting molecules. Sci Immunol 2021; 6:6/60/eabg4176. [PMID: 34172588 DOI: 10.1126/sciimmunol.abg4176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
CD1c presents lipid-based antigens to CD1c-restricted T cells, which are thought to be a major component of the human T cell pool. However, the study of CD1c-restricted T cells is hampered by the presence of an abundantly expressed, non-T cell receptor (TCR) ligand for CD1c on blood cells, confounding analysis of TCR-mediated CD1c tetramer staining. Here, we identified the CD36 family (CD36, SR-B1, and LIMP-2) as ligands for CD1c, CD1b, and CD1d proteins and showed that CD36 is the receptor responsible for non-TCR-mediated CD1c tetramer staining of blood cells. Moreover, CD36 blockade clarified tetramer-based identification of CD1c-restricted T cells and improved identification of CD1b- and CD1d-restricted T cells. We used this technique to characterize CD1c-restricted T cells ex vivo and showed diverse phenotypic features, TCR repertoire, and antigen-specific subsets. Accordingly, this work will enable further studies into the biology of CD1 and human CD1-restricted T cells.
Collapse
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catarina F Almeida
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Katherine H A Gourley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca Seneviratna
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fiona J Ross
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catriona V Nguyen-Robertson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shian Su
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3053, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3053, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Abstract
In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
27
|
Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltab005. [PMID: 35919736 PMCID: PMC9327107 DOI: 10.1093/immadv/ltab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.
Collapse
Affiliation(s)
- Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,Systems Immunity Research Institute, Cardiff University, Cardiff, UK,Correspondence: Matthias Eberl, Division of Infection and Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK. Tel: +44-29206-87011;
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Suliman S, Gela A, Mendelsohn SC, Iwany SK, Tamara KL, Mabwe S, Bilek N, Darboe F, Fisher M, Corbett AJ, Kjer-Nielsen L, Eckle SBG, Huang CC, Zhang Z, Lewinsohn DM, McCluskey J, Rossjohn J, Hatherill M, León SR, Calderon RI, Lecca L, Murray M, Scriba TJ, Van Rhijn I, Moody DB. Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. J Infect Dis 2021; 222:995-1007. [PMID: 32267943 DOI: 10.1093/infdis/jiaa173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In human blood, mucosal-associated invariant T (MAIT) cells are abundant T cells that recognize antigens presented on non-polymorphic major histocompatibility complex-related 1 (MR1) molecules. The MAIT cells are activated by mycobacteria, and prior human studies indicate that blood frequencies of MAIT cells, defined by cell surface markers, decline during tuberculosis (TB) disease, consistent with redistribution to the lungs. METHODS We tested whether frequencies of blood MAIT cells were altered in patients with TB disease relative to healthy Mycobacterium tuberculosis-exposed controls from Peru and South Africa. We quantified their frequencies using MR1 tetramers loaded with 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. RESULTS Unlike findings from prior studies, frequencies of blood MAIT cells were similar among patients with TB disease and latent and uninfected controls. In both cohorts, frequencies of MAIT cells defined by MR1-tetramer staining and coexpression of CD161 and the T-cell receptor alpha variable gene TRAV1-2 were strongly correlated. Disease severity captured by body mass index or TB disease transcriptional signatures did not correlate with MAIT cell frequencies in patients with TB. CONCLUSIONS Major histocompatibility complex (MHC)-related 1-restrictied MAIT cells are detected at similar levels with tetramers or surface markers. Unlike MHC-restricted T cells, blood frequencies of MAIT cells are poor correlates of TB disease but may play a role in pathophysiology.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sarah K Iwany
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kattya Lopez Tamara
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Socios En Salud Sucursal Peru, Lima, Peru
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland VA Medical Center, Portland, Oregon, USA
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Leonid Lecca
- Socios En Salud Sucursal Peru, Lima, Peru.,Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Novel Molecular Insights into Human Lipid-Mediated T Cell Immunity. Int J Mol Sci 2021; 22:ijms22052617. [PMID: 33807663 PMCID: PMC7961386 DOI: 10.3390/ijms22052617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
T cells represent a critical arm of our immune defense against pathogens. Over the past two decades, considerable inroads have been made in understanding the fundamental principles underpinning the molecular presentation of peptide-based antigens by the Major Histocompatibility Complex molecules (MHC-I and II), and their molecular recognition by specialized subsets of T cells. However, some T cells can recognize lipid-based antigens presented by MHC-I-like molecules that belong to the Cluster of Differentiation 1 (CD1) family. Here, we will review the advances that have been made in the last five years to understand the molecular mechanisms orchestrating the presentation of novel endogenous and exogenous lipid-based antigens by the CD1 glycoproteins and their recognition by specific populations of CD1-reactive T cells.
Collapse
|
30
|
Layton ED, Barman S, Wilburn DB, Yu KKQ, Smith MT, Altman JD, Scriba TJ, Tahiri N, Minnaard AJ, Roederer M, Seder RA, Darrah PA, Seshadri C. T Cells Specific for a Mycobacterial Glycolipid Expand after Intravenous Bacillus Calmette-Guérin Vaccination. THE JOURNAL OF IMMUNOLOGY 2021; 206:1240-1250. [PMID: 33536255 DOI: 10.4049/jimmunol.2001065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022]
Abstract
Intradermal vaccination with Mycobacterium bovis bacillus Calmette-Guérin (BCG) protects infants from disseminated tuberculosis, and i.v. BCG protects nonhuman primates (NHP) against pulmonary and extrapulmonary tuberculosis. In humans and NHP, protection is thought to be mediated by T cells, which typically recognize bacterial peptide Ags bound to MHC proteins. However, during vertebrate evolution, T cells acquired the capacity to recognize lipid Ags bound to CD1a, CD1b, and CD1c proteins expressed on APCs. It is unknown whether BCG induces T cell immunity to mycobacterial lipids and whether CD1-restricted T cells are resident in the lung. In this study, we developed and validated Macaca mulatta (Mamu) CD1b and CD1c tetramers to probe ex vivo phenotypes and functions of T cells specific for glucose monomycolate (GMM), an immunodominant mycobacterial lipid Ag. We discovered that CD1b and CD1c present GMM to T cells in both humans and NHP. We show that GMM-specific T cells are expanded in rhesus macaque blood 4 wk after i.v. BCG, which has been shown to protect NHP with near-sterilizing efficacy upon M. tuberculosis challenge. After vaccination, these T cells are detected at high frequency within bronchoalveolar fluid and express CD69 and CD103, markers associated with resident memory T cells. Thus, our data expand the repertoire of T cells known to be induced by whole cell mycobacterial vaccines, such as BCG, and show that lipid Ag-specific T cells are resident in the lungs, where they may contribute to protective immunity.
Collapse
Affiliation(s)
- Erik D Layton
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Soumik Barman
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Krystle K Q Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - Malisa T Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109
| | - John D Altman
- National Institutes of Health Tetramer Core Facility, Emory University, Atlanta, GA 30329
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 9747, South Africa
| | - Nabil Tahiri
- Stratingh Institute for Chemistry, University of Groningen 7925, Groningen, the Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen 7925, Groningen, the Netherlands
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892; and
| | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892; and
| | - Patricia A Darrah
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892; and
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109; .,Tuberculosis Research and Training Center, University of Washington, Seattle, WA 98109
| |
Collapse
|
31
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Morgun E, Cao L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Host Defense and Inflammatory Diseases. Crit Rev Immunol 2021; 41:1-21. [PMID: 35381140 PMCID: PMC10128144 DOI: 10.1615/critrevimmunol.2021040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group 1 CD1-restricted T cells are members of the unconventional T cell family that recognize lipid antigens presented by CD1a, CD1b, and CD1c molecules. Although they developmentally mirror invariant natural killer T cells, they have diverse antigen specificity and functional capacity, with both anti-microbial and autoreactive targets. The role of group 1 CD1-restricted T cells has been best established in Mycobacterium tuberculosis (Mtb) infection in which a wide variety of lipid antigens have been identified and their ability to confer protection against Mtb infection in a CD1 transgenic mouse model has been shown. Group 1 CD1-restricted T cells have also been implicated in other infections, inflammatory conditions, and malignancies. In particular, autoreactive group 1 CD1-restricted T cells have been shown to play a role in several skin inflammatory conditions. The prevalence of group 1 CD1 autoreactive T cells in healthy individuals suggests the presence of regulatory mechanisms to suppress autoreactivity in homeostasis. The more recent use of group 1 CD1 tetramers and mouse models has allowed for better characterization of their phenotype, functional capacity, and underlying mechanisms of antigen-specific and autoreactive activation. These discoveries may pave the way for the development of novel vaccines and immunotherapies that target group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
- Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
33
|
Animal models for human group 1 CD1 protein function. Mol Immunol 2020; 130:159-163. [PMID: 33384157 DOI: 10.1016/j.molimm.2020.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
Abstract
The CD1 antigen presenting system is evolutionary conserved and found in mammals, birds and reptiles. Humans express five isoforms, of which CD1a, CD1b and CD1c represent the group 1 CD1-molecules. They are recognized by T cells that express diverse αβ-T cell receptors. Investigation of the role of group 1 CD1 function has been hampered by the fact that CD1a, CD1b and CD1c are not expressed by mice. However, other animals, such as guinea pigs or cattle, serve as alternative models and have established basic aspects of CD1-dependent, antimicrobial immune functions. Group 1 CD1 transgenic mouse models became available about ten years ago. In a series of seminal studies these mouse models coined the mechanistical understanding of the role of the corresponding CD1 restricted T cell responses. This review gives a short overview of available animal studies and the lessons that have been and still can be learned.
Collapse
|
34
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
35
|
Perez C, Gruber I, Arber C. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Front Immunol 2020; 11:583716. [PMID: 33262761 PMCID: PMC7685996 DOI: 10.3389/fimmu.2020.583716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineered T cell therapies individually prepared for each patient with autologous T cells have recently changed clinical practice in the management of B cell malignancies. Even though CARs used to redirect polyclonal T cells to the tumor are not HLA restricted, CAR T cells are also characterized by their endogenous T cell receptor (TCR) repertoire. Tumor-antigen targeted TCR-based T cell therapies in clinical trials are thus far using “conventional” αβ-TCRs that recognize antigens presented as peptides in the context of the major histocompatibility complex. Thus, both CAR- and TCR-based adoptive T cell therapies (ACTs) are dictated by compatibility of the highly polymorphic HLA molecules between donors and recipients in order to avoid graft-versus-host disease and rejection. The development of third-party healthy donor derived well-characterized off-the-shelf cell therapy products that are readily available and broadly applicable is an intensive area of research. While genome engineering provides the tools to generate “universal” donor cells that can be redirected to cancers, we will focus our attention on third-party off-the-shelf strategies with T cells that are characterized by unique natural features and do not require genome editing for safe administration. Specifically, we will discuss the use of virus-specific T cells, lipid-restricted (CD1) T cells, MR1-restricted T cells, and γδ-TCR T cells. CD1- and MR1-restricted T cells are not HLA-restricted and have the potential to serve as a unique source of universal TCR sequences to be broadly applicable in TCR-based ACT as their targets are presented by the monomorphic CD1 or MR1 molecules on a wide variety of tumor types. For each cell type, we will summarize the stage of preclinical and clinical development and discuss opportunities and challenges to deliver off-the-shelf targeted cellular therapies against cancer.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Gruber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
37
|
van der Woude H, Krebs J, Filoche S, Gasser O. Innate-like T Cells in the Context of Metabolic Disease and Novel Therapeutic Targets. IMMUNOMETABOLISM 2020; 2. [DOI: 10.20900/immunometab20200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Metabolic diseases continue to rise in global prevalence. Although there is evidence that current methods of treatment are effective, the continued rise in prevalence indicates that alternative, more efficient treatment options are needed. Over the last several years, immune cells have been increasingly studied as important players in the development of a range of diseases, including metabolic diseases such as obesity and obesity-induced type 2 diabetes. This review explores how understanding the intrinsic metabolism of innate-like T cells could provide potential targets for treating metabolic disease, and highlights research areas needed to advance this promising therapeutic approach.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Medicine, The University of Otago, Wellington 6021, New Zealand
- Department of Pathology and Molecular Medicine, The University of Otago, Wellington, 6021, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Jeremy Krebs
- Department of Medicine, The University of Otago, Wellington 6021, New Zealand
| | - Sara Filoche
- Department of Pathology and Molecular Medicine, The University of Otago, Wellington, 6021, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| |
Collapse
|
38
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
39
|
Souter MNT, Eckle SBG. Biased MAIT TCR Usage Poised for Limited Antigen Diversity? Front Immunol 2020; 11:1845. [PMID: 33013835 PMCID: PMC7461848 DOI: 10.3389/fimmu.2020.01845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize the evolutionarily conserved major histocompatibility complex (MHC) class I-like antigen-presenting molecule known as MHC class I related protein 1 (MR1). Since their rise from obscurity in the early 1990s, the study of MAIT cells has grown substantially, accelerating our fundamental understanding of these cells and their possible roles in immunity. In the context of recent advances, we review here the relationship between MR1, antigen, and TCR usage among MAIT and other MR1-reactive T cells and provide a speculative discussion.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Ogongo P, Steyn AJ, Karim F, Dullabh KJ, Awala I, Madansein R, Leslie A, Behar SM. Differential skewing of donor-unrestricted and γδ T cell repertoires in tuberculosis-infected human lungs. J Clin Invest 2020; 130:214-230. [PMID: 31763997 PMCID: PMC6934215 DOI: 10.1172/jci130711] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Unconventional T cells that recognize mycobacterial antigens are of great interest as potential vaccine targets against tuberculosis (TB). This includes donor-unrestricted T cells (DURTs), such as mucosa-associated invariant T cells (MAITs), CD1-restricted T cells, and γδ T cells. We exploited the distinctive nature of DURTs and γδ T cell receptors (TCRs) to investigate the involvement of these T cells during TB in the human lung by global TCR sequencing. Making use of surgical lung resections, we investigated the distribution, frequency, and characteristics of TCRs in lung tissue and matched blood from individuals infected with TB. Despite depletion of MAITs and certain CD1-restricted T cells from the blood, we found that the DURT repertoire was well preserved in the lungs, irrespective of disease status or HIV coinfection. The TCRδ repertoire, in contrast, was highly skewed in the lungs, where it was dominated by Vδ1 and distinguished by highly localized clonal expansions, consistent with the nonrecirculating lung-resident γδ T cell population. These data show that repertoire sequencing is a powerful tool for tracking T cell subsets during disease.
Collapse
Affiliation(s)
- Paul Ogongo
- Africa Health Research Institute and.,School of Laboratory Medicine, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | | | | | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ismael Awala
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute and.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
41
|
Souter MNT, Loh L, Li S, Meehan BS, Gherardin NA, Godfrey DI, Rossjohn J, Fairlie DP, Kedzierska K, Pellicci DG, Chen Z, Kjer-Nielsen L, Corbett AJ, McCluskey J, Eckle SBG. Characterization of Human Mucosal-associated Invariant T (MAIT) Cells. ACTA ACUST UNITED AC 2020; 127:e90. [PMID: 31763790 DOI: 10.1002/cpim.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells restricted by the major histocompatibility complex (MHC) class I-like molecule MHC-related protein 1 (MR1). MAIT cells are found throughout the body, especially in human blood and liver. Unlike conventional T cells, which are stimulated by peptide antigens presented by MHC molecules, MAIT cells recognize metabolite antigens derived from an intermediate in the microbial biosynthesis of riboflavin. MAIT cells mediate protective immunity to infections by riboflavin-producing microbes via the production of cytokines and cytotoxicity. The discovery of stimulating MAIT cell antigens allowed for the development of an analytical tool, the MR1 tetramer, that binds specifically to the MAIT T cell receptor (TCR) and is becoming the gold standard for identification of MAIT cells by flow cytometry. This article describes protocols to characterize the phenotype of human MAIT cells in blood and tissues by flow cytometry using fluorescently labeled human MR1 tetramers alongside antibodies specific for MAIT cell markers. © 2019 by John Wiley & Sons, Inc. The main protocols include: Basic Protocol 1: Determining the frequency and steady-state surface phenotype of human MAIT cells Basic Protocol 2: Determining the activation phenotype of human MAIT cells in blood Basic Protocol 3: Characterizing MAIT cell TCRs using TCR-positive reporter cell lines Alternate protocols are provided for determining the absolute number, transcription factor phenotype, and TCR usage of human MAIT cells; and determining activation phenotype by staining for intracellular markers, measuring secreted cytokines, and measuring fluorescent dye dilution due to proliferation. Additional methods are provided for determining the capacity of MAIT cells to produce cytokine independently of antigen using plate-bound or bead-immobilized CD3/CD28 stimulation; and determining the MR1-Ag dependence of MAIT cell activation using MR1-blocking antibody or competitive inhibition. For TCR-positive reporter cell lines, methods are also provided for evaluating the MAIT TCR-mediated MR1-Ag response, determining the capacity of the reporter lines to produce cytokine independently of antigen, determining the MR1-Ag dependence of the reporter lines, and evaluating the MR1-Ag response of the reporter lines using IL-2 secretion. Support Protocols describe the preparation of PBMCs from human blood, the preparation of single-cell suspensions from tissue, the isolation of MAIT cells by FACS and MACS, cloning MAIT TCRα and β chain genes and MR1 genes for transduction, generating stably and transiently transfected cells lines, generating a stable MR1 knockout antigen-presenting cell line, and generating monocyte-derived dendritic cells.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Wales, United Kingdom
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Pomaznoy M, Kuan R, Lindvall M, Burel JG, Seumois G, Vijayanand P, Taplitz R, Gilman RH, Saito M, Lewinsohn DM, Sette A, Peters B, Lindestam Arlehamn CS. Quantitative and Qualitative Perturbations of CD8 + MAITs in Healthy Mycobacterium tuberculosis-Infected Individuals. Immunohorizons 2020; 4:292-307. [PMID: 32499216 PMCID: PMC7543048 DOI: 10.4049/immunohorizons.2000031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
CD8 T cells are considered important contributors to the immune response against Mycobacterium tuberculosis, yet limited information is currently known regarding their specific immune signature and phenotype. In this study, we applied a cell population transcriptomics strategy to define immune signatures of human latent tuberculosis infection (LTBI) in memory CD8 T cells. We found a 41-gene signature that discriminates between memory CD8 T cells from healthy LTBI subjects and uninfected controls. The gene signature was dominated by genes associated with mucosal-associated invariant T cells (MAITs) and reflected the lower frequency of MAITs observed in individuals with LTBI. There was no evidence for a conventional CD8 T cell–specific signature between the two cohorts. We, therefore, investigated MAITs in more detail based on Vα7.2 and CD161 expression and staining with an MHC-related protein 1 (MR1) tetramer. This revealed two distinct populations of CD8+Vα7.2+CD161+ MAITs: MR1 tetramer+ and MR1 tetramer−, which both had distinct gene expression compared with memory CD8 T cells. Transcriptomic analysis of LTBI versus noninfected individuals did not reveal significant differences for MR1 tetramer+ MAITs. However, gene expression of MR1 tetramer− MAITs showed large interindividual diversity and a tuberculosis-specific signature. This was further strengthened by a more diverse TCR-α and -β repertoire of MR1 tetramer− cells as compared with MR1 tetramer+. Thus, circulating memory CD8 T cells in subjects with latent tuberculosis have a reduced number of conventional MR1 tetramer+ MAITs as well as a difference in phenotype in the rare population of MR1 tetramer− MAITs compared with uninfected controls.
Collapse
Affiliation(s)
- Mikhail Pomaznoy
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Rebecca Kuan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Mikaela Lindvall
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Julie G Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | | | - Randy Taplitz
- Division of Infectious Diseases, University of California San Diego, La Jolla, CA 92093
| | - Robert H Gilman
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205.,Universidad Peruana Caytano Hereida, Lima 15102, Peru
| | - Mayuko Saito
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205.,Department of Virology, Tohuku University Graduate School of Medicine, Sendai 9808575, Japan
| | - David M Lewinsohn
- Department of Medicine, VA Portland Health Care System, Portland, OR 97239.,Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | | |
Collapse
|
43
|
Abstract
Nonclonal innate immune responses mediated by germ line-encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line-encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αβ T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/β chains.
Collapse
Affiliation(s)
- Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College, London, SE1 9RT, United Kingdom; .,Immunosurveillance Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College, London, SE1 9RT, United Kingdom; .,Immunosurveillance Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
44
|
Spindler MJ, Nelson AL, Wagner EK, Oppermans N, Bridgeman JS, Heather JM, Adler AS, Asensio MA, Edgar RC, Lim YW, Meyer EH, Hawkins RE, Cobbold M, Johnson DS. Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nat Biotechnol 2020; 38:609-619. [PMID: 32393905 PMCID: PMC7224336 DOI: 10.1038/s41587-020-0438-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
T cells engineered to express antigen-specific T cell receptors (TCRs) are potent therapies for viral infections and cancer. However, efficient identification of clinical candidate TCRs is complicated by the size and complexity of T cell repertoires and the challenges of working with primary T cells. Here, we present a high-throughput method to identify TCRs with high functional avidity from diverse human T cell repertoires. The approach uses massively parallel microfluidics to generate libraries of natively paired, full-length TCRαβ clones, from millions of primary T cells, which are then expressed in Jurkat cells. The TCRαβ-Jurkat libraries enable repeated screening and panning for antigen-reactive TCRs using peptide:MHC binding and cellular activation. We captured >2.9 million natively paired TCRαβ clonotypes from six healthy human donors and identified rare (<0.001% frequency) viral antigen–reactive TCRs. We also mined a tumor-infiltrating lymphocyte (TIL) sample from a melanoma patient and identified several tumor-specific TCRs, which, after expression in primary T cells, led to tumor cell killing.
Collapse
Affiliation(s)
| | | | | | - Natasha Oppermans
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - James M Heather
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Everett H Meyer
- Stanford Diabetes Research Center, Stanford University Medical Center, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University Medical Center, Stanford, CA, USA
| | - Robert E Hawkins
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Immetacyte Ltd, Manchester, UK
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.,AstraZeneca, Cambridge, MA, USA
| | | |
Collapse
|
45
|
Lopez K, Iwany SK, Suliman S, Reijneveld JF, Ocampo TA, Jimenez J, Calderon R, Lecca L, Murray MB, Moody DB, Van Rhijn I. CD1b Tetramers Broadly Detect T Cells That Correlate With Mycobacterial Exposure but Not Tuberculosis Disease State. Front Immunol 2020; 11:199. [PMID: 32117314 PMCID: PMC7033476 DOI: 10.3389/fimmu.2020.00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
The non-polymorphic nature of CD1 proteins creates a situation in which T cells with invariant T cell receptors (TCRs), like CD1d-specific NKT cells, are present in all humans. CD1b is an abundant protein on human dendritic cells that presents M. tuberculosis (Mtb) lipid antigens to T cells. Analysis of T cell clones suggested that semi-invariant TCRs exist in the CD1b system, but their prevalence in humans is not known. Here we used CD1b tetramers loaded with mycolic acid or glucose monomycolate to study polyclonal T cells from 150 Peruvian subjects. We found that CD1b tetramers loaded with mycolic acid or glucose monomycolate antigens stained TRAV1-2+ GEM T cells or TRBV4-1+ LDN5-like T cells in the majority of subjects tested, at rates ~10-fold lower than NKT cells. Thus, GEM T cells and LDN5-like T cells are a normal part of the human immune system. Unlike prior studies measuring MHC- or CD1b-mediated activation, this large-scale tetramer study found no significant differences in rates of CD1b tetramer-mycobacterial lipid staining of T cells among subjects with Mtb exposure, latent Mtb infection or active tuberculosis (TB) disease. In all subjects, including “uninfected” subjects, CD1b tetramer+ T cells expressed memory markers at high levels. However, among controls with lower mycobacterial antigen exposure in Boston, we found significantly lower frequencies of T cells staining with CD1b tetramers loaded with mycobacterial lipids. These data link CD1b-specific T cell detection to mycobacterial exposure, but not TB disease status, which potentially explains differences in outcomes among CD1-based clinical studies, which used control subjects with low Mtb exposure.
Collapse
Affiliation(s)
- Kattya Lopez
- Socios En Salud, Lima, Peru.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah K Iwany
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Suliman
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Megan B Murray
- Division of Global Health Equity, Department of Global Health and Social Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
James CA, Seshadri C. T Cell Responses to Mycobacterial Glycolipids: On the Spectrum of "Innateness". Front Immunol 2020; 11:170. [PMID: 32117300 PMCID: PMC7026021 DOI: 10.3389/fimmu.2020.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Diseases due to mycobacteria, including tuberculosis, leprosy, and Buruli ulcer, rank among the top causes of death and disability worldwide. Animal studies have revealed the importance of T cells in controlling these infections. However, the specific antigens recognized by T cells that confer protective immunity and their associated functions remain to be definitively established. T cells that respond to mycobacterial peptide antigens exhibit classical features of adaptive immunity and have been well-studied in humans and animal models. Recently, innate-like T cells that recognize lipid and metabolite antigens have also been implicated. Specifically, T cells that recognize mycobacterial glycolipid antigens (mycolipids) have been shown to confer protection to tuberculosis in animal models and share some biological characteristics with adaptive and innate-like T cells. Here, we review the existing data suggesting that mycolipid-specific T cells exist on a spectrum of “innateness,” which will influence how they can be leveraged to develop new diagnostics and vaccines for mycobacterial diseases.
Collapse
Affiliation(s)
- Charlotte A James
- Molecular Medicine and Mechanisms of Disease (M3D) PhD Program, Department of Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States.,Tuberculosis Research and Training Center, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Burugupalli S, Almeida CF, Smith DGM, Shah S, Patel O, Rossjohn J, Uldrich AP, Godfrey DI, Williams SJ. α-Glucuronosyl and α-glucosyl diacylglycerides, natural killer T cell-activating lipids from bacteria and fungi. Chem Sci 2020; 11:2161-2168. [PMID: 34123306 PMCID: PMC8150115 DOI: 10.1039/c9sc05248h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Natural killer T cells express T cell receptors (TCRs) that recognize glycolipid antigens in association with the antigen-presenting molecule CD1d. Here, we report the concise chemical synthesis of a range of saturated and unsaturated α-glucosyl and α-glucuronosyl diacylglycerides of bacterial and fungal origins from allyl α-glucoside with Jacobsen kinetic resolution as a key step. These glycolipids are recognized by a classical type I NKT TCR that uses an invariant Vα14-Jα18 TCR α-chain, but also by an atypical NKT TCR that uses a different TCR α-chain (Vα10-Jα50). In both cases, recognition is sensitive to the lipid fine structure, and includes recognition of glycosyl diacylglycerides bearing branched (R- and S-tuberculostearic acid) and unsaturated (oleic and vaccenic) acids. The TCR footprints on CD1d loaded with a mycobacterial α-glucuronosyl diacylglyceride were assessed using mutant CD1d molecules and, while similar to that for α-GalCer recognition by a type I NKT TCR, were more sensitive to mutations when α-glucuronosyl diacylglyceride was the antigen. In summary, we provide an efficient approach for synthesis of a broad class of bacterial and fungal α-glycosyl diacylglyceride antigens and demonstrate that they can be recognised by TCRs derived from type I and atypical NKT cells. Microbial α-glycosyl diacylglycerides when presented by the antigen presenting molecule CD1d are recognized by both classical type I and atypical Natural Killer T cell receptors.![]()
Collapse
Affiliation(s)
- Satvika Burugupalli
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| | - Catarina F Almeida
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne Parkville Victoria 3010 Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne Parkville Victoria 3010 Australia
| | - Dylan G M Smith
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| | - Sayali Shah
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia
| | - Onisha Patel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Monash Monash Victoria 3010 Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine Cardiff CF14 4XN UK
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne Parkville Victoria 3010 Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne Parkville Victoria 3010 Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne Parkville Victoria 3010 Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne Parkville Victoria 3010 Australia
| | - Spencer J Williams
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Parkville Victoria 3010 Australia .,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
48
|
Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope - a moving target. Nat Rev Microbiol 2019; 18:47-59. [PMID: 31728063 DOI: 10.1038/s41579-019-0273-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
Abstract
Mycobacterium tuberculosis, the leading cause of death due to infection, has a dynamic and immunomodulatory cell envelope. The cell envelope structurally and functionally varies across the length of the cell and during the infection process. This variability allows the bacterium to manipulate the human immune system, tolerate antibiotic treatment and adapt to the variable host environment. Much of what we know about the mycobacterial cell envelope has been gleaned from model actinobacterial species, or model conditions such as growth in vitro, in macrophages and in the mouse. In this Review, we combine data from different experimental systems to build a model of the dynamics of the mycobacterial cell envelope across space and time. We describe the regulatory pathways that control metabolism of the cell wall and surface lipids in M. tuberculosis during growth and stasis, and speculate about how this regulation might affect antibiotic susceptibility and interactions with the immune system.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
49
|
Reinink P, Shahine A, Gras S, Cheng TY, Farquhar R, Lopez K, Suliman SA, Reijneveld JF, Le Nours J, Tan LL, León SR, Jimenez J, Calderon R, Lecca L, Murray MB, Rossjohn J, Moody DB, Van Rhijn I. A TCR β-Chain Motif Biases toward Recognition of Human CD1 Proteins. THE JOURNAL OF IMMUNOLOGY 2019; 203:3395-3406. [PMID: 31694911 DOI: 10.4049/jimmunol.1900872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
High-throughput TCR sequencing allows interrogation of the human TCR repertoire, potentially connecting TCR sequences to antigenic targets. Unlike the highly polymorphic MHC proteins, monomorphic Ag-presenting molecules such as MR1, CD1d, and CD1b present Ags to T cells with species-wide TCR motifs. CD1b tetramer studies and a survey of the 27 published CD1b-restricted TCRs demonstrated a TCR motif in humans defined by the TCR β-chain variable gene 4-1 (TRBV4-1) region. Unexpectedly, TRBV4-1 was involved in recognition of CD1b regardless of the chemical class of the carried lipid. Crystal structures of two CD1b-specific TRBV4-1+ TCRs show that germline-encoded residues in CDR1 and CDR3 regions of TRBV4-1-encoded sequences interact with each other and consolidate the surface of the TCR. Mutational studies identified a key positively charged residue in TRBV4-1 and a key negatively charged residue in CD1b that is shared with CD1c, which is also recognized by TRBV4-1 TCRs. These data show that one TCR V region can mediate a mechanism of recognition of two related monomorphic Ag-presenting molecules that does not rely on a defined lipid Ag.
Collapse
Affiliation(s)
- Peter Reinink
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Rachel Farquhar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Kattya Lopez
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.,Socios en Salud Sucursal Peru, 15001 Lima, Peru
| | - Sara A Suliman
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Josephine F Reijneveld
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.,Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, the Netherlands
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Li Lynn Tan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | - Megan B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115.,Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA 02115.,Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115; and
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN Cardiff, United Kingdom
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands; .,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
50
|
Cao L, Shcherbin E, Mohimani H. A Metabolome- and Metagenome-Wide Association Network Reveals Microbial Natural Products and Microbial Biotransformation Products from the Human Microbiota. mSystems 2019; 4:e00387-19. [PMID: 31455639 PMCID: PMC6712304 DOI: 10.1128/msystems.00387-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023] Open
Abstract
The human microbiome consists of thousands of different microbial species, and tens of thousands of bioactive small molecules are associated with them. These associated molecules include the biosynthetic products of microbiota and the products of microbial transformation of host molecules, dietary components, and pharmaceuticals. The existing methods for characterization of these small molecules are currently time consuming and expensive, and they are limited to the cultivable bacteria. Here, we propose a method for detecting microbiota-associated small molecules based on the patterns of cooccurrence of molecular and microbial features across multiple microbiomes. We further map each molecule to the clade in a phylogenetic tree that is responsible for its production/transformation. We applied our proposed method to the tandem mass spectrometry and metagenomics data sets collected by the American Gut Project and to microbiome isolates from cystic fibrosis patients and discovered the genes in the human microbiome responsible for the production of corynomycolenic acid, which serves as a ligand for human T cells and induces a specific immune response against infection. Moreover, our method correctly associated pseudomonas quinolone signals, tyrvalin, and phevalin with their known biosynthetic gene clusters.IMPORTANCE Experimental advances have enabled the acquisition of tandem mass spectrometry and metagenomics sequencing data from tens of thousands of environmental/host-oriented microbial communities. Each of these communities contains hundreds of microbial features (corresponding to microbial species) and thousands of molecular features (corresponding to microbial natural products). However, with the current technology, it is very difficult to identify the microbial species responsible for the production/biotransformation of each molecular feature. Here, we develop association networks, a new approach for identifying the microbial producer/biotransformer of natural products through cooccurrence analysis of metagenomics and mass spectrometry data collected on multiple microbiomes.
Collapse
Affiliation(s)
- Liu Cao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Egor Shcherbin
- National Research University Higher School of Economics, St. Petersburg, Russia
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|