1
|
Byatt TC, Razaghi E, Tüzüner S, Simões FC. Immune-mediated cardiac development and regeneration. Semin Cell Dev Biol 2025; 171:103613. [PMID: 40315634 DOI: 10.1016/j.semcdb.2025.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
The complex interplay between the immune and cardiovascular systems during development, homeostasis and regeneration represents a rapidly evolving field in cardiac biology. Single cell technologies, spatial mapping and computational analysis have revolutionised our understanding of the diversity and functional specialisation of immune cells within the heart. From the earliest stages of cardiogenesis, where primitive macrophages guide heart tube formation, to the complex choreography of inflammation and its resolution during regeneration, immune cells emerge as central orchestrators of cardiac fate. Translating these fundamental insights into clinical applications represents a major challenge and opportunity for the field. In this Review, we decode the immunological blueprint of heart development and regeneration to transform cardiovascular disease treatment and unlock the regenerative capacity of the human heart.
Collapse
Affiliation(s)
- Timothy C Byatt
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ehsan Razaghi
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Selin Tüzüner
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Filipa C Simões
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
3
|
Lubin R, Patel AA, Mackerodt J, Zhang Y, Gvili R, Mulder K, Dutertre CA, Jalali P, Glanville JR, Hazan I, Sridharan N, Rivkin G, Akarca A, Marafioti T, Gilroy DW, Kandel L, Mildner A, Wilensky A, Asquith B, Ginhoux F, Macallan D, Yona S. The lifespan and kinetics of human dendritic cell subsets and their precursors in health and inflammation. J Exp Med 2024; 221:e20220867. [PMID: 39417994 PMCID: PMC11488382 DOI: 10.1084/jem.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dendritic cells (DC) are specialized mononuclear phagocytes that link innate and adaptive immunity. They comprise two principal subsets: plasmacytoid DC (pDC) and conventional DC (cDC). Understanding the generation, differentiation, and migration of cDC is critical for immune homeostasis. Through human in vivo deuterium-glucose labeling, we observed the rapid appearance of AXL+ Siglec6+ DC (ASDC) in the bloodstream. ASDC circulate for ∼2.16 days, while cDC1 and DC2 circulate for ∼1.32 and ∼2.20 days, respectively, upon release from the bone marrow. Interestingly, DC3, a cDC subset that shares several similarities with monocytes, exhibits a labeling profile closely resembling that of DC2. In a human in vivo model of cutaneous inflammation, ASDC were recruited to the inflammatory site, displaying a distinctive effector signature. Taken together, these results quantify the ephemeral circulating lifespan of human cDC and propose functions of cDC and their precursors that are rapidly recruited to sites of inflammation.
Collapse
Affiliation(s)
- Ruth Lubin
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit A. Patel
- Division of Medicine, University College London, London, UK
| | - Jonas Mackerodt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Rotem Gvili
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Idit Hazan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Nikhila Sridharan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gurion Rivkin
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | - Leonid Kandel
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Derek Macallan
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
- St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Oliveira TY, Merkenschlager J, Eisenreich T, Bortolatto J, Yao KH, Gatti DM, Churchill GA, Nussenzweig MC, Breton G. Quantitative trait loci mapping provides insights into the genetic regulation of dendritic cell numbers in mouse tissues. Cell Rep 2024; 43:114296. [PMID: 38823019 PMCID: PMC11726347 DOI: 10.1016/j.celrep.2024.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
To explore the influence of genetics on homeostatic regulation of dendritic cell (DC) numbers, we present a screen of DCs and their progenitors in lymphoid and non-lymphoid tissues in Collaborative Cross (CC) and Diversity Outbred (DO) mice. We report 30 and 71 loci with logarithm of the odds (LOD) scores >8.18 and ranging from 6.67 to 8.19, respectively. The analysis reveals the highly polygenic and pleiotropic architecture of this complex trait, including many of the previously identified genetic regulators of DC development and maturation. Two SNPs in genes potentially underlying variation in DC homeostasis, a splice variant in Gramd4 (rs235532740) and a missense variant in Orai3 (rs216659754), are confirmed by gene editing using CRISPR-Cas9. Gramd4 is a central regulator of DC homeostasis that impacts the entire DC lineage, and Orai3 regulates cDC2 numbers in tissues. Overall, the data reveal a large number of candidate genes regulating DC homeostasis in vivo.
Collapse
Affiliation(s)
- Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Julia Merkenschlager
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
6
|
Yosef M, Bunimovich-Mendrazitsky S. Mathematical model of MMC chemotherapy for non-invasive bladder cancer treatment. Front Oncol 2024; 14:1352065. [PMID: 38884094 PMCID: PMC11176538 DOI: 10.3389/fonc.2024.1352065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 06/18/2024] Open
Abstract
Mitomycin-C (MMC) chemotherapy is a well-established anti-cancer treatment for non-muscle-invasive bladder cancer (NMIBC). However, despite comprehensive biological research, the complete mechanism of action and an ideal regimen of MMC have not been elucidated. In this study, we present a theoretical investigation of NMIBC growth and its treatment by continuous administration of MMC chemotherapy. Using temporal ordinary differential equations (ODEs) to describe cell populations and drug molecules, we formulated the first mathematical model of tumor-immune interactions in the treatment of MMC for NMIBC, based on biological sources. Several hypothetical scenarios for NMIBC under the assumption that tumor size correlates with cell count are presented, depicting the evolution of tumors classified as small, medium, and large. These scenarios align qualitatively with clinical observations of lower recurrence rates for tumor size ≤ 30[mm] with MMC treatment, demonstrating that cure appears up to a theoretical x[mm] tumor size threshold, given specific parameters within a feasible biological range. The unique use of mole units allows to introduce a new method for theoretical pre-treatment assessments by determining MMC drug doses required for a cure. In this way, our approach provides initial steps toward personalized MMC chemotherapy for NMIBC patients, offering the possibility of new insights and potentially holding the key to unlocking some of its mysteries.
Collapse
Affiliation(s)
- Marom Yosef
- Department of Mathematics, Ariel University, Ariel, Israel
| | | |
Collapse
|
7
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Mousa M, Liang Y, Tung LT, Wang H, Krawczyk C, Langlais D, Nijnik A. Chromatin-binding deubiquitinase MYSM1 acts in haematopoietic progenitors to control dendritic cell development and to program dendritic cell responses to microbial stimulation. Immunology 2024; 172:109-126. [PMID: 38316548 DOI: 10.1111/imm.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dendritic cells (DCs) are the most significant antigen presenting cells of the immune system, critical for the activation of naïve T cells. The pathways controlling DC development, maturation, and effector function therefore require precise regulation to allow for an effective induction of adaptive immune response. MYSM1 is a chromatin binding deubiquitinase (DUB) and an activator of gene expression via its catalytic activity for monoubiquitinated histone H2A (H2A-K119ub), which is a highly abundant repressive epigenetic mark. MYSM1 is an important regulator of haematopoiesis in mouse and human, and a systemic constitutive loss of Mysm1 in mice results in a depletion of many haematopoietic progenitors, including DC precursors, with the downstream loss of most DC lineage cells. However, the roles of MYSM1 at the later checkpoints in DC development, maturation, activation, and effector function at present remain unknown. In the current work, using a range of novel mouse models (Mysm1flCreERT2, Mysm1flCD11c-cre, Mysm1DN), we further the understanding of MYSM1 functions in the DC lineage: assessing the requirement for MYSM1 in DC development independently of other complex developmental phenotypes, exploring its role at the later checkpoints in DC maintenance and activation in response to microbial stimulation, and testing the requirement for the DUB catalytic activity of MYSM1 in these processes. Surprisingly, we demonstrate that MYSM1 expression and catalytic activity in DCs are dispensable for the maintenance of DC numbers in vivo or for DC activation in response to microbial stimulation. In contrast, MYSM1 acts via its DUB catalytic activity specifically in haematopoietic progenitors to allow normal DC lineage development, and its loss results not only in a severe DC depletion but also in the production of functionally altered DCs, with a dysregulation of many housekeeping transcriptional programs and significantly altered responses to microbial stimulation.
Collapse
Affiliation(s)
- Marwah Mousa
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Connie Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, United States
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
De Leeuw E, Hammad H. The role of dendritic cells in respiratory viral infection. Eur Respir Rev 2024; 33:230250. [PMID: 38811032 PMCID: PMC11134197 DOI: 10.1183/16000617.0250-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 05/31/2024] Open
Abstract
Respiratory viral infections represent one of the major causes of death worldwide. The recent coronavirus disease 2019 pandemic alone claimed the lives of over 6 million people around the globe. It is therefore crucial to understand how the immune system responds to these threats and how respiratory infection can be controlled and constrained. Dendritic cells (DCs) are one of the key players in antiviral immunity because of their ability to detect pathogens. They can orchestrate an immune response that will, in most cases, lead to viral clearance. Different subsets of DCs are present in the lung and each subset can contribute to antiviral responses through various mechanisms. In this review, we discuss the role of the different lung DC subsets in response to common respiratory viruses, with a focus on respiratory syncytial virus, influenza A virus and severe acute respiratory syndrome coronavirus 2. We also review how lung DC-mediated responses to respiratory viruses can lead to the worsening of an existing chronic pulmonary disease such as asthma. Throughout the review, we discuss results obtained from animal studies as well as results generated from infected patients.
Collapse
Affiliation(s)
- Elisabeth De Leeuw
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Minutti CM, Piot C, Pereira da Costa M, Chakravarty P, Rogers N, Huerga Encabo H, Cardoso A, Loong J, Bessou G, Mionnet C, Langhorne J, Bonnet D, Dalod M, Tomasello E, Reis e Sousa C. Distinct ontogenetic lineages dictate cDC2 heterogeneity. Nat Immunol 2024; 25:448-461. [PMID: 38351322 PMCID: PMC10907303 DOI: 10.1038/s41590-024-01745-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.
Collapse
Affiliation(s)
- Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London, UK.
- Immunoregulation Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Neil Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Jane Loong
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Gilles Bessou
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Cyrille Mionnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Marc Dalod
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | | |
Collapse
|
11
|
Kou T, Kang L, Zhang B, Li J, Zhao B, Zeng W, Hu X. RBP-J regulates homeostasis and function of circulating Ly6C lo monocytes. eLife 2024; 12:RP88135. [PMID: 38407952 PMCID: PMC10942619 DOI: 10.7554/elife.88135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.
Collapse
Affiliation(s)
- Tiantian Kou
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Lan Kang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaqi Li
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
12
|
Régnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, Gautier EL, Guermonprez P, Manoury B, Podsypanina K, Darrasse-Jèze G. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4:101256. [PMID: 38118422 PMCID: PMC10772324 DOI: 10.1016/j.xcrm.2023.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 12/22/2023]
Abstract
FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Collapse
Affiliation(s)
- Paul Régnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, DMU3ID, Paris, France
| | - Mathias Vetillard
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Adèle Bansard
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France
| | | | - Xinyue Li
- Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Nicolas Cagnard
- Structure Fédérative de Recherche Necker, Université Paris Descartes, Paris, France
| | - Emmanuel L Gautier
- Inserm, UMR_S1166, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664, Paris, France
| | - Guillaume Darrasse-Jèze
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
13
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
14
|
Ugur M, Labios RJ, Fenton C, Knöpper K, Jobin K, Imdahl F, Golda G, Hoh K, Grafen A, Kaisho T, Saliba AE, Grün D, Gasteiger G, Bajénoff M, Kastenmüller W. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity 2023; 56:1778-1793.e10. [PMID: 37463581 PMCID: PMC10433941 DOI: 10.1016/j.immuni.2023.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/02/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Unlike macrophage networks composed of long-lived tissue-resident cells within specific niches, conventional dendritic cells (cDCs) that generate a 3D network in lymph nodes (LNs) are short lived and continuously replaced by DC precursors (preDCs) from the bone marrow (BM). Here, we examined whether specific anatomical niches exist within which preDCs differentiate toward immature cDCs. In situ photoconversion and Prtn3-based fate-tracking revealed that the LN medullary cords are preferential entry sites for preDCs, serving as specific differentiation niches. Repopulation and fate-tracking approaches demonstrated that the cDC1 network unfolded from the medulla along the vascular tree toward the paracortex. During inflammation, collective maturation and migration of resident cDC1s to the paracortex created discontinuity in the medullary cDC1 network and temporarily impaired responsiveness. The decrease in local cDC1 density resulted in higher Flt3L availability in the medullary niche, which accelerated cDC1 development to restore the network. Thus, the spatiotemporal development of the cDC1 network is locally regulated in dedicated LN niches via sensing of cDC1 densities.
Collapse
Affiliation(s)
- Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany.
| | - R Jacob Labios
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Chloe Fenton
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Katarzyna Jobin
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Gosia Golda
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Kathrin Hoh
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Anika Grafen
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology Institute of Advanced Medicine, Wakayama Medical University, 641-8509 Wakayama, Japan
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Marc Bajénoff
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille, France
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany.
| |
Collapse
|
15
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Bourque J, Hawiger D. Activation, Amplification, and Ablation as Dynamic Mechanisms of Dendritic Cell Maturation. BIOLOGY 2023; 12:biology12050716. [PMID: 37237529 DOI: 10.3390/biology12050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
T cell responses to cognate antigens crucially depend on the specific functionality of dendritic cells (DCs) activated in a process referred to as maturation. Maturation was initially described as alterations of the functional status of DCs in direct response to multiple extrinsic innate signals derived from foreign organisms. More recent studies, conducted mainly in mice, revealed an intricate network of intrinsic signals dependent on cytokines and various immunomodulatory pathways facilitating communication between individual DCs and other cells for the orchestration of specific maturation outcomes. These signals selectively amplify the initial activation of DCs mediated by innate factors and dynamically shape DC functionalities by ablating DCs with specific functions. Here, we discuss the effects of the initial activation of DCs that crucially includes the production of cytokine intermediaries to collectively achieve amplification of the maturation process and further precise sculpting of the functional landscapes among DCs. By emphasizing the interconnectedness of the intracellular and intercellular mechanisms, we reveal activation, amplification, and ablation as the mechanistically integrated components of the DC maturation process.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
17
|
Bosteels V, Maréchal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, Vetters J, Van De Velde E, Fayazpour F, Deswarte K, Lamoot A, Van Duyse J, Martens L, Bosteels C, Roelandt R, Emmaneel A, Van Gassen S, Boon L, Van Isterdael G, Guillas I, Vandamme N, Höglinger D, De Geest BG, Le Goff W, Saeys Y, Ravichandran KS, Lambrecht BN, Janssens S. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol 2023; 8:eadd3955. [PMID: 37172103 DOI: 10.1126/sciimmunol.add3955] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sandra Maréchal
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J Tavernier
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jessica Vetters
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Evelien Van De Velde
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | | | - Julie Van Duyse
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Cédric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ria Roelandt
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Annelies Emmaneel
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Louis Boon
- Polpharma Biologics, Utrecht, Netherlands
| | - Gert Van Isterdael
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Isabelle Guillas
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
19
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Rodrigues PF, Kouklas A, Cvijetic G, Bouladoux N, Mitrovic M, Desai JV, Lima-Junior DS, Lionakis MS, Belkaid Y, Ivanek R, Tussiwand R. pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Sci Immunol 2023; 8:eadd4132. [PMID: 36827419 PMCID: PMC10165717 DOI: 10.1126/sciimmunol.add4132] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) have been shown to play an important role during immune responses, ranging from initial viral control through the production of type I interferons to antigen presentation. However, recent studies uncovered unexpected heterogeneity among pDCs. We identified a previously uncharacterized immune subset, referred to as pDC-like cells, that not only resembles pDCs but also shares conventional DC (cDC) features. We show that this subset is a circulating precursor distinct from common DC progenitors, with prominent cDC2 potential. Our findings from human CD2-iCre and CD300c-iCre lineage tracing mouse models suggest that a substantial fraction of cDC2s originates from pDC-like cells, which can therefore be referred to as pre-DC2. This precursor subset responds to homeostatic cytokines, such as macrophage colony stimulating factor, by expanding and differentiating into cDC2 that efficiently prime T helper 17 (TH17) cells. Development of pre-DC2 into CX3CR1+ ESAM- cDC2b but not CX3CR1- ESAM+ cDC2a requires the transcription factor KLF4. Last, we show that, under homeostatic conditions, this developmental pathway regulates the immune threshold at barrier sites by controlling the pool of TH17 cells within skin-draining lymph nodes.
Collapse
Affiliation(s)
| | | | - Grozdan Cvijetic
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Microbiome and Immunity, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Mladen Mitrovic
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Microbiome and Immunity, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Bourque J, Hawiger D. Life and death of tolerogenic dendritic cells. Trends Immunol 2023; 44:110-118. [PMID: 36599743 PMCID: PMC9892261 DOI: 10.1016/j.it.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
In contrast to conventional dendritic cells (cDCs) that are constantly exposed to microbial signals at anatomical barriers, cDCs in systemic lymphoid organs are sheltered from proinflammatory stimulation in the steady state but respond to inflammatory signals by gaining specific immune functions in a process referred to as maturation. Recent findings show that, during maturation, a population of systemic tolerogenic cDCs undergoes an acute tumor necrosis factor α (TNFα)-mediated cell death, resulting in the loss of tolerance-inducing capacity. This tolerogenic cDC population is restored upon return to the homeostatic baseline. We propose that such a dynamic reshaping of cDC populations becomes the foundation of a novel framework for maintaining tolerance at the steady state while being conducive to unhampered initiation of immune responses under proinflammatory conditions.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
22
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
23
|
Lellahi SM, Azeem W, Hua Y, Gabriel B, Paulsen Rye K, Reikvam H, Kalland KH. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol 2023; 13:1058963. [PMID: 36713392 PMCID: PMC9880532 DOI: 10.3389/fimmu.2022.1058963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) have attracted increasing attention as alternatives to monocyte-derived dendritic cells (moDCs) in cancer immunotherapy. Use of cDCs for therapy has been hindered by their low numbers in peripheral blood. In the present study, we found that extensive spontaneous apoptosis and cDC death in culture within 24hrs represent an additional challenge. Different media conditions that maintain cDC viability and function were investigated. CD141+ cDC1 and CD1c+ cDC2 were isolated from healthy blood donor buffy coats. Low viabilities were found with CellGenix DC, RPMI-1640, and X-VIVO 15 standard culture media and with several supplements at 24hrs and 48hrs. Among multiple factors it was found that GM-CSF improved both cDC1 and cDC2 viability, whereas Flt3-L and IL-4 only increased viability of cDC1 and cDC2, respectively. Combinations of these three cytokines improved viability of both cDCs further, both at 24hrs and 48hrs time points. Although these cytokines have been extensively investigated for their role in myeloid cell differentiation, and are also used clinically, their effects on mature cDCs remain incompletely known, in particular effects on pro-inflammatory or tolerogenic cDC features. HLA-DR, CD80, CD83, CD86, PD-L1 and PD-L2 cDC membrane expressions were relatively little affected by GM-CSF, IL-4 and Flt3-L cytokine supplements compared to the strong induction following Toll-like receptor (TLR) stimulation for 24hrs. With minor exceptions the three cytokines appeared to be permissive to the TLR-induced marker expression. Allogeneic mixed leukocyte reaction showed that the cytokines promoted T-cell proliferation and revealed a potential to boost both Th1 and Th2 polarizing cytokines. GM-CSF and Flt3-L and their combination improved the capability of cDC1 for dextran uptake, while in cDC2, dextran capture was improved by GM-CSF. The data suggest that GM-CSF, IL-4 and Flt3-L and combinations might be beneficial for DC viability and function in vitro. Limited viability of cDCs could be a confounding variable experimentally and in immunotherapy.
Collapse
Affiliation(s)
- Seyed Mohammad Lellahi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Helse Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Gabriel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
24
|
Clonal Analysis of Human Dendritic Cell Progenitors Using a Stromal Cell Culture. Methods Mol Biol 2023; 2618:155-170. [PMID: 36905516 DOI: 10.1007/978-1-0716-2938-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) are a heterogenous population of professional antigen-presenting cells that play an "educator" role in immunity. Multiple DC subsets collaboratively initiate and orchestrate innate and adaptive immune responses. Recent advances in our ability to investigate cellular transcription, signaling, and function at the single-cell level have opened opportunities to examine heterogeneous populations at unprecedented resolutions. Culturing of mouse DC subsets from single bone marrow hematopoietic progenitor cells, that is, clonal analysis, has enabled identification of multiple progenitors with distinct potentials and furthered understanding of mouse DC development. However, studies of human DC development have been hampered by the lack of a corresponding system to generate multiple human DC subsets. Here, we describe a protocol to functionally profile the differentiation potentials of single human hematopoietic stem and progenitor cells (HSPCs) to multiple DC subsets, myeloid and lymphoid cells that will facilitate investigation of human DC lineage specification and reveal its molecular bases.
Collapse
|
25
|
McPherson SW, Heuss ND, Abedin M, Roehrich H, Pierson MJ, Gregerson DS. Parabiosis reveals the correlation between the recruitment of circulating antigen presenting cells to the retina and the induction of spontaneous autoimmune uveoretinitis. J Neuroinflammation 2022; 19:295. [PMID: 36494807 PMCID: PMC9733026 DOI: 10.1186/s12974-022-02660-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Characterizing immune cells and conditions that govern their recruitment and function in autoimmune diseases of the nervous system or in neurodegenerative processes is an area of active investigation. We sought to analyze the origin of antigen presenting cells associated with the induction of retinal autoimmunity using a system that relies on spontaneous autoimmunity, thus avoiding uncertainties associated with immunization with adjuvants at remotes sites or adoptive transfer of in vitro activated T cells. METHODS R161H mice (B10.RIII background), which spontaneously and rapidly develop severe spontaneous autoimmune uveoretinitis (SAU), were crossed to CD11cDTR/GFP mice (B6/J) allowing us to track the recruitment to and/or expansion within the retina of activated, antigen presenting cells (GFPhi cells) in R161H+/- × CD11cDTR/GFP F1 mice relative to the course of SAU. Parabiosis between R161H+/- × CD11cDTR/GFP F1 mice and B10.RIII × B6/J F1 (wild-type recipient) mice was done to explore the origin and phenotype of antigen presenting cells crucial for the induction of autoimmunity. Analysis was done by retinal imaging, flow cytometry, and histology. RESULTS Onset of SAU in R161H+/- × CD11cDTR/GFP F1 mice was delayed relative to B10.RIII-R161H+/- mice revealing a disease prophase prior to frank autoimmunity that was characterized by expansion of GFPhi cells within the retina prior to any clinical or histological evidence of autoimmunity. Parabiosis between mice carrying the R161H and CD11cDTR/GFP transgenes and transgene negative recipients showed that recruitment of circulating GFPhi cells into retinas was highly correlative with the occurrence of SAU. CONCLUSIONS Our results here contrast with our previous findings showing that retinal antigen presenting cells expanding in response to either sterile mechanical injury or neurodegeneration were derived from myeloid cells within the retina or optic nerve, thus highlighting a unique facet of retinal autoimmunity.
Collapse
Affiliation(s)
- Scott W. McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Neal D. Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Md. Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Mark J. Pierson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Dale S. Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| |
Collapse
|
26
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
27
|
Liechti T, Iftikhar Y, Mangino M, Beddall M, Goss CW, O’Halloran JA, Mudd PA, Roederer M. Immune phenotypes that are associated with subsequent COVID-19 severity inferred from post-recovery samples. Nat Commun 2022; 13:7255. [PMID: 36433939 PMCID: PMC9700777 DOI: 10.1038/s41467-022-34638-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Severe COVID-19 causes profound immune perturbations, but pre-infection immune signatures contributing to severe COVID-19 remain unknown. Genome-wide association studies (GWAS) identified strong associations between severe disease and several chemokine receptors and molecules from the type I interferon pathway. Here, we define immune signatures associated with severe COVID-19 using high-dimensional flow cytometry. We measure the cells of the peripheral immune system from individuals who recovered from mild, moderate, severe or critical COVID-19 and focused only on those immune signatures returning to steady-state. Individuals that suffered from severe COVID-19 show reduced frequencies of T cell, mucosal-associated invariant T cell (MAIT) and dendritic cell (DC) subsets and altered chemokine receptor expression on several subsets, such as reduced levels of CCR1 and CCR2 on monocyte subsets. Furthermore, we find reduced frequencies of type I interferon-producing plasmacytoid DCs and altered IFNAR2 expression on several myeloid cells in individuals recovered from severe COVID-19. Thus, these data identify potential immune mechanisms contributing to severe COVID-19.
Collapse
Affiliation(s)
- Thomas Liechti
- grid.419681.30000 0001 2164 9667ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Maryland, 20892 USA
| | - Yaser Iftikhar
- grid.419681.30000 0001 2164 9667ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Maryland, 20892 USA
| | - Massimo Mangino
- grid.13097.3c0000 0001 2322 6764Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK ,grid.420545.20000 0004 0489 3985NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, SE1 9RT UK
| | - Margaret Beddall
- grid.419681.30000 0001 2164 9667ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Maryland, 20892 USA
| | - Charles W. Goss
- grid.4367.60000 0001 2355 7002Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Jane A. O’Halloran
- grid.4367.60000 0001 2355 7002Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Philip A. Mudd
- grid.4367.60000 0001 2355 7002Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Mario Roederer
- grid.419681.30000 0001 2164 9667ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Maryland, 20892 USA
| |
Collapse
|
28
|
Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY, Pan J. The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther 2022; 13:511. [PMID: 36333820 PMCID: PMC9636722 DOI: 10.1186/s13287-022-03199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bone injury plagues millions of patients worldwide every year, and it demands a heavy portion of expense from the public medical insurance system. At present, orthopedists think that autologous bone transplantation is the gold standard for treating large-scale bone defects. However, this method has significant limitations, which means that parts of patients cannot obtain a satisfactory prognosis. Therefore, a basic study on new therapeutic methods is urgently needed. The in-depth research on crosstalk between macrophages (Mϕs) and bone marrow mesenchymal stem cells (BMSCs) suggests that there is a close relationship between inflammation and regeneration. The in-depth understanding of the crosstalk between Mϕs and BMSCs is helpful to amplify the efficacy of stem cell-based treatment for bone injury. Only in the suitable inflammatory microenvironment can the damaged tissues containing stem cells obtain satisfactory healing outcomes. The excessive tissue inflammation and lack of stem cells make the transplantation of biomaterials necessary. We can expect that the crosstalk between Mϕs and BMSCs and biomaterials will become the mainstream to explore new methods for bone injury in the future. This review mainly summarizes the research on the crosstalk between Mϕs and BMSCs and also briefly describes the effects of biomaterials and aging on cell transplantation therapy.
Collapse
Affiliation(s)
- Yu-Hao Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Cheng-Zhi Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ren-Yi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Qian-Xin Du
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ji-Yuan Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jian Pan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| |
Collapse
|
29
|
Boldova AE, Korobkin JD, Nechipurenko YD, Sveshnikova AN. Theoretical Explanation for the Rarity of Antibody-Dependent Enhancement of Infection (ADE) in COVID-19. Int J Mol Sci 2022; 23:11364. [PMID: 36232664 PMCID: PMC9569501 DOI: 10.3390/ijms231911364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. However, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE in COVID-19. We developed a series of mathematical models of antibody response: model Ab-a model of antibody formation; model Cv-a model of infection spread in the body; and a complete model, which combines the two others. The models describe experimental data on SARS-CoV and SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion times and antibody concentration kinetics. The modelling revealed that a significant proportion of macrophages can become infected only if they bind antibodies with high probability. Thus, a high probability of macrophage infection and a sufficient amount of pre-existing antibodies are necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view of the dynamics of pneumocyte infection, the two cases where the body has a high concentration of preexisting antibodies and a high probability of macrophage infection and where there is a low concentration of antibodies in the body and no macrophage infection are indistinguishable. This conclusion could explain the lack of confirmed ADE cases for COVID-19.
Collapse
Affiliation(s)
- Anna E. Boldova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Julia D. Korobkin
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Yury D. Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia
- Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
30
|
Wiechers C, Pezoldt J, Beckstette M, Berner J, Schraml BU, Huehn J. Lymph node stromal cells support the maturation of pre‐DCs into cDC‐like cells via colony‐stimulating factor 1. Immunology 2022; 166:475-491. [DOI: 10.1111/imm.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carolin Wiechers
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
| | - Joern Pezoldt
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Michael Beckstette
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine Helmholtz Centre for Infection Research and Hannover Medical School Hannover Germany
| | - Johanna Berner
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich Planegg‐Martinsried Germany
- Walter‐Brendel‐Centre of Experimental Medicine University Hospital, LMU Munich Planegg‐Martinsried Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich Planegg‐Martinsried Germany
- Walter‐Brendel‐Centre of Experimental Medicine University Hospital, LMU Munich Planegg‐Martinsried Germany
| | - Jochen Huehn
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
| |
Collapse
|
31
|
Iberg CA, Bourque J, Fallahee I, Son S, Hawiger D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep 2022; 39:110657. [PMID: 35417681 PMCID: PMC9113652 DOI: 10.1016/j.celrep.2022.110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sungho Son
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
ZHANG ZHIBO, LI SHENG, SI PENG, LI XUEFANG, HE XIONGXIONG. A TUMOR-IMMUNE MODEL WITH MIXED IMMUNOTHERAPY AND CHEMOTHERAPY: QUALITATIVE ANALYSIS AND OPTIMAL CONTROL. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We develop a mathematical model of tumor-immune interactions, including six populations (tumor cells, CD8[Formula: see text]T cells, natural killer (NK) cells, dendritic cells, helper T cells, cytokine interleukin-12 (IL-12)) and three potential treatments (chemotherapy, Tumor-infiltrating lymphocyte (TIL) therapy and IL-12 therapy). We characterize the dynamics of our model without treatment through stability and sensitivity analysis, which provides a broad understanding of the long-term qualitative behavior. To find the best combination of the chemo-immunotherapy regimens to eliminate tumors, we formulate an optimal control problem with path constraints of total drug dose and solve it numerically with the optimal control software Pyomo. We also simulate the scenarios of traditional treatment protocols as a comparison and find that our optimal treatment strategies have a better therapeutic effect. In addition, numerical simulation results show that IL-12 therapy is a good adjunctive therapy and has a high potential for inhibiting a large tumor in combination with other therapy. In most cases, combination therapy is more effective than a single treatment.
Collapse
Affiliation(s)
- ZHIBO ZHANG
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, P. R. China
| | - SHENG LI
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, P. R. China
| | - PENG SI
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, P. R. China
| | - XUEFANG LI
- School of Intelligent Systems, Engineering Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - XIONGXIONG HE
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, P. R. China
| |
Collapse
|
33
|
Ogawa T, Shichino S, Ueha S, Bando K, Matsushima K. Profibrotic properties of C1q + interstitial macrophages in silica-induced pulmonary fibrosis in mice. Biochem Biophys Res Commun 2022; 599:113-119. [PMID: 35180470 DOI: 10.1016/j.bbrc.2022.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive fibrotic disease with poor prognosis and suboptimal therapeutic options. Although macrophages have been implicated in PF, the role of macrophage subsets, particularly interstitial macrophages (IMs), remains unknown. We performed a time-series single-cell RNA sequencing analysis of the silica-induced mouse PF model. Among the macrophage subsets in fibrotic lungs, Lyve1lo MHC IIhi IMs increased with fibrosis, and highly expressed profibrotic genes. Additionally, we identified C1q as an IM-specific marker. Experiments with C1q-diphtheria toxin receptor-GFP knock-in (C1qKI) mice revealed that IMs are distributed around fibrotic nodules. Depletion of C1q+ IMs in C1qKI mice decreased activated fibroblasts and epithelial cells; however, bodyweight loss and neutrophil infiltration were exacerbated in silica-induced PF. Collectively, these results suggest that IMs have profibrotic and anti-inflammatory properties and that the selective inhibition of the profibrotic function of IMs without compromising their anti-inflammatory effects is a potential novel therapeutic strategy for PF.
Collapse
Affiliation(s)
- Tatsuro Ogawa
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| |
Collapse
|
34
|
A Tale of Two Fimbriae: How Invasion of Dendritic Cells by Porphyromonas gingivalis Disrupts DC Maturation and Depolarizes the T-Cell-Mediated Immune Response. Pathogens 2022; 11:pathogens11030328. [PMID: 35335652 PMCID: PMC8954744 DOI: 10.3390/pathogens11030328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a unique pathogen implicated in severe forms of periodontitis (PD), a disease that affects around 50% of the US population. P. gingivalis is equipped with a plethora of virulence factors that it uses to exploit its environment and survive. These include distinct fimbrial adhesins that enable it to bind to other microbes, colonize inflamed tissues, acquire nutrients, and invade cells of the stroma and immune system. Most notable for this review is its ability to invade dendritic cells (DCs), which bridge the innate and adaptive immune systems. This invasion process is tightly linked to the bridging functions of resultant DCs, in that it can disable (or stimulate) the maturation function of DCs and cytokines that are secreted. Maturation molecules (e.g., MHCII, CD80/CD86, CD40) and inflammatory cytokines (e.g., IL-1b, TNFa, IL-6) are essential signals for antigen presentation and for proliferation of effector T-cells such as Th17 cells. In this regard, the ability of P. gingivalis to coordinately regulate its expression of major (fimA) and minor (mfa-1) fimbriae under different environmental influences becomes highly relevant. This review will, therefore, focus on the immunoregulatory role of P. gingivalis fimbriae in the invasion of DCs, intracellular signaling, and functional outcomes such as alveolar bone loss and immune senescence.
Collapse
|
35
|
Feng J, Pucella JN, Jang G, Alcántara-Hernández M, Upadhaya S, Adams NM, Khodadadi-Jamayran A, Lau CM, Stoeckius M, Hao S, Smibert P, Tsirigos A, Idoyaga J, Reizis B. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 2022; 55:405-422.e11. [PMID: 35180378 PMCID: PMC9344860 DOI: 10.1016/j.immuni.2022.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.
Collapse
Affiliation(s)
- Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marlon Stoeckius
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Stephanie Hao
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Peter Smibert
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
36
|
Yang J, Liu X, Cheng Y, Zhang J, Ji F, Ling Z. Roles of Plasmacytoid Dendritic Cells in Gastric Cancer. Front Oncol 2022; 12:818314. [PMID: 35311157 PMCID: PMC8927765 DOI: 10.3389/fonc.2022.818314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common neoplasm and the third most deadly cancer in humans worldwide. Helicobacter pylori infection is the most important causative factor of gastric carcinogenesis, and activates host innate and adaptive immune responses. As key constituents of the tumor immune microenvironment, plasmacytoid dendritic cells (pDCs) are increasingly attracting attention owing to their potential roles in immunosuppression. We recently reported that pDCs have vital roles in the development of immunosuppression in GC. Clarifying the contribution of pDCs to the development and progression of GC may lead to improvements in cancer therapy. In this review, we summarize current knowledge regarding immune modulation in GC, especially the roles of pDCs in GC carcinogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
37
|
Michaels Lopez V, Legrand A, Tejerina E, Megret J, Bordin C, Quellec V, Ezine S. Intrathymic SIRPa cDC subsets organization in normal and stress conditions reveal another level of cDCs heterogeneity. J Leukoc Biol 2022; 112:629-639. [DOI: 10.1002/jlb.1a0921-502rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Agnès Legrand
- Institut Necker Enfants Malades, Université de Paris Paris France
| | | | - Jérome Megret
- Structure Fédérative de Recherche Necker Paris France
| | - Chantal Bordin
- Institut Necker Enfants Malades, Université de Paris Paris France
| | | | - Sophie Ezine
- Institut Necker Enfants Malades, Université de Paris Paris France
| |
Collapse
|
38
|
Cuadros MA, Sepulveda MR, Martin-Oliva D, Marín-Teva JL, Neubrand VE. Microglia and Microglia-Like Cells: Similar but Different. Front Cell Neurosci 2022; 16:816439. [PMID: 35197828 PMCID: PMC8859783 DOI: 10.3389/fncel.2022.816439] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia are the tissue-resident macrophages of the central nervous parenchyma. In mammals, microglia are thought to originate from yolk sac precursors and posteriorly maintained through the entire life of the organism. However, the contribution of microglial cells from other sources should also be considered. In addition to “true” or “bona-fide” microglia, which are of embryonic origin, the so-called “microglia-like cells” are hematopoietic cells of bone marrow origin that can engraft the mature brain mainly under pathological conditions. These cells implement great parts of the microglial immune phenotype, but they do not completely adopt the “true microglia” features. Because of their pronounced similarity, true microglia and microglia-like cells are usually considered together as one population. In this review, we discuss the origin and development of these two distinct cell types and their differences. We will also review the factors determining the appearance and presence of microglia-like cells, which can vary among species. This knowledge might contribute to the development of therapeutic strategies aiming at microglial cells for the treatment of diseases in which they are involved, for example neurodegenerative disorders like Alzheimer’s and Parkinson’s diseases.
Collapse
Affiliation(s)
- Miguel A Cuadros
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - M Rosario Sepulveda
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - David Martin-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - José L Marín-Teva
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
39
|
Anderson DA, Ou F, Kim S, Murphy TL, Murphy KM. Transition from cMyc to L-Myc during dendritic cell development coordinated by rising levels of IRF8. J Exp Med 2022; 219:e20211483. [PMID: 34958351 PMCID: PMC8713298 DOI: 10.1084/jem.20211483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
During dendritic cell (DC) development, Myc expression in progenitors is replaced by Mycl in mature DCs, but when and how this transition occurs is unknown. We evaluated DC development using reporters for MYC, MYCL, and cell cycle proteins Geminin and CDT1 in wild-type and various mutant mice. For classical type 1 dendritic cells (cDC1s) and plasmacytoid DCs (pDCs), the transition occurred upon their initial specification from common dendritic cell progenitors (CDPs) or common lymphoid progenitors (CLPs), respectively. This transition required high levels of IRF8 and interaction with PU.1, suggesting the use of EICEs within Mycl enhancers. In pDCs, maximal MYCL induction also required the +41kb Irf8 enhancer that controls pDC IRF8 expression. IRF8 also contributed to repression of MYC. While MYC is expressed only in rapidly dividing DC progenitors, MYCL is most highly expressed in DCs that have exited the cell cycle. Thus, IRF8 levels coordinate the Myc-Mycl transition during DC development.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Rivera CA, Randrian V, Richer W, Gerber-Ferder Y, Delgado MG, Chikina AS, Frede A, Sorini C, Maurin M, Kammoun-Chaari H, Parigi SM, Goudot C, Cabeza-Cabrerizo M, Baulande S, Lameiras S, Guermonprez P, Reis e Sousa C, Lecuit M, Moreau HD, Helft J, Vignjevic DM, Villablanca EJ, Lennon-Duménil AM. Epithelial colonization by gut dendritic cells promotes their functional diversification. Immunity 2022; 55:129-144.e8. [PMID: 34910930 PMCID: PMC8751639 DOI: 10.1016/j.immuni.2021.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population composed of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Here, we show that the small intestine included two pools of cDC2s originating from common pre-DC precursors: (1) lamina propria (LP) CD103+CD11b+ cDC2s that were mature-like proinflammatory cells and (2) intraepithelial cDC2s that exhibited an immature-like phenotype as well as tolerogenic properties. These phenotypes resulted from the action of food-derived retinoic acid (ATRA), which enhanced actomyosin contractility and promoted LP cDC2 transmigration into the epithelium. There, cDC2s were imprinted by environmental cues, including ATRA itself and the mucus component Muc2. Hence, by reaching distinct subtissular niches, DCs can exist as immature and mature cells within the same tissue, revealing an additional mechanism of DC functional diversification.
Collapse
Affiliation(s)
- Claudia A Rivera
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Violaine Randrian
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Wilfrid Richer
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | | | - Aleksandra S Chikina
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France; Institut Curie, CNRS UMR 144, PSL Research University, 75005 Paris, France
| | - Annika Frede
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Chiara Sorini
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Mathieu Maurin
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Hana Kammoun-Chaari
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, 75015 Paris, France
| | - Sara M Parigi
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Christel Goudot
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Sonia Lameiras
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Pierre Guermonprez
- Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Paris, France
| | | | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, 75015 Paris, France; Université de Paris, Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | - Hélène D Moreau
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Julie Helft
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | - Eduardo J Villablanca
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | | |
Collapse
|
41
|
Herppich S, Beckstette M, Huehn J. The thymic microenvironment gradually modulates the phenotype of thymus-homing peripheral conventional dendritic cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:175-188. [PMID: 34748687 PMCID: PMC8767516 DOI: 10.1002/iid3.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Background & Aims Thymic conventional dendritic cells (t‑DCs) are crucial for the development of T cells. A substantial fraction of t‑DCs originates extrathymically and migrates to the thymus. Here, these cells contribute to key processes of central tolerance like the clonal deletion of self‑reactive thymocytes and the generation of regulatory T (Treg) cells. So far, it is only incompletely understood which impact the thymic microenvironment has on thymus‑homing conventional DCs (cDCs), which phenotypic changes occur after the entry of peripheral cDCs into the thymus and which functional properties these modulated cells acquire. Materials & Methods In the present study, we mimicked the thymus‑homing of peripheral cDCs by introducing ex vivo isolated splenic cDCs (sp‑DCs) into reaggregated thymic organ cultures (RTOCs). Results Already after two days of culture, the transcriptomic profile of sp‑DCs was modulated and had acquired certain key signatures of t‑DCs. The regulated genes included immunomodulatory cytokines and chemokines as well as costimulatory molecules. After four days of culture, sp‑DCs appeared to have at least partially acquired the peculiar Treg cell‐inducing capacity characteristic of t‑DCs. Discussion & Conclusion Taken together, our findings indicate that peripheral cDCs possess a high degree of plasticity enabling them to quickly adapt to the thymus‐specific microenvironment. We further provide indirect evidence that thymus‐specific properties such as the efficient induction of Treg cells under homeostatic conditions can be partially transferred to thymus‑homing peripheral cDC subsets.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
42
|
Yang X, Guo Y, Chen C, Shao B, Zhao L, Zhou Q, Liu J, Wang G, Yuan W, Sun Z. Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology 2021; 164:476-493. [PMID: 34322877 PMCID: PMC8517597 DOI: 10.1111/imm.13397] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
In recent years, an increasing number of studies have reported that intestinal microbiota have an important effect on tumour immunity by affecting the tumour microenvironment (TME). The intestinal microbiota are closely associated with various immune cells, such as T lymphocytes, natural killer cells (NK cells) and macrophages. Some bacteria, such as Akkermansia muciniphila (A. muciniphila) and Lactobacillus reuteri (L. reuteri), have been shown to improve the effect of tumour immunity. Furthermore, microbial imbalance, such as the increased abundance of Fusobacterium nucleatum (F. nucleatum) and Helicobacter hepaticus (H. hepaticus), generally causes tumour formation and progression. In addition, some microbiota also play important roles in tumour immunotherapy, especially PD-L1-related therapies. Therefore, what is the relationship between these processes and how do they affect each other? In this review, we summarize the interactions and corresponding mechanisms among the intestinal microbiota, immune system and TME to facilitate the research and development of new targeted drugs and provide new approaches to tumour therapy.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- School of MedicineZhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yaxin Guo
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Basic MedicalAcademy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Bo Shao
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Luyang Zhao
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Basic MedicalAcademy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinbo Liu
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guixian Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Weitang Yuan
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenqiang Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
43
|
Tewari A, Prabagar MG, Gibbings SL, Rawat K, Jakubzick CV. LN Monocytes Limit DC-Poly I:C Induced Cytotoxic T Cell Response via IL-10 and Induction of Suppressor CD4 T Cells. Front Immunol 2021; 12:763379. [PMID: 34691085 PMCID: PMC8527167 DOI: 10.3389/fimmu.2021.763379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Every immune response has accelerators and brakes. Depending on the pathogen or injury, monocytes can play either role, promoting or resolving immunity. Poly I:C, a potent TLR3 ligand, licenses cross-presenting dendritic cells (DC1) to accelerate a robust cytotoxic T cells response against a foreign antigen. Poly I:C thus has promise as an adjuvant in cancer immunotherapy and viral subunit vaccines. Like DC1s, monocytes are also abundant in the LNs. They may act as either immune accelerators or brakes, depending on the inflammatory mediator they encounter. However, little is known about their contribution to adaptive immunity in the context of antigen and Poly I:C. Using monocyte-deficient and chimeric mice, we demonstrate that LN monocytes indirectly dampen a Poly I:C induced antigen-specific cytotoxic T cell response, exerting a “braking” function. This effect is mediated by IL-10 production and induction of suppressor CD4+ T cells. In a metastatic melanoma model, we show that a triple-combination prophylactic treatment consisting of anti-IL-10, tumor peptides and Poly I:C works because removing IL-10 counteracts the monocytic brake, resulting in significantly fewer tumors compared to mice treated with tumor peptides and Poly I:C alone. Finally, in human LN tissue, we observed that monocytes (unlike DCs) express high levels of IL-10, suggesting that anti-IL-10 may be an important addition to treatments. Overall, our data demonstrates that LN monocytes regulate the induction of a robust DC1-mediated immune response. Neutralization of either IL-10 or monocytes can augment Poly I:C-based treatments and enhance T cell cytotoxicity.
Collapse
Affiliation(s)
- Anita Tewari
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, United States
| | - Miglena G Prabagar
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Sophie L Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Kavita Rawat
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, United States
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, United States
| |
Collapse
|
44
|
Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc Natl Acad Sci U S A 2021; 118:2111234118. [PMID: 34526403 DOI: 10.1073/pnas.2111234118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.
Collapse
|
45
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
46
|
CXCR4 signaling controls dendritic cell location and activation at steady state and in inflammation. Blood 2021; 137:2770-2784. [PMID: 33512478 DOI: 10.1182/blood.2020006675] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.
Collapse
|
47
|
Affiliation(s)
- Antonio P Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium. .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| | - Michael Y Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
48
|
Huang HI, Jewell ML, Youssef N, Huang MN, Hauser ER, Fee BE, Rudemiller NP, Privratsky JR, Zhang JJ, Reyes EY, Wang D, Taylor GA, Gunn MD, Ko DC, Cook DN, Chandramohan V, Crowley SD, Hammer GE. Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes. Front Immunol 2021; 12:661290. [PMID: 33995384 PMCID: PMC8113646 DOI: 10.3389/fimmu.2021.661290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.
Collapse
Affiliation(s)
- Hsin-I. Huang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Mark L. Jewell
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nourhan Youssef
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Min-Nung Huang
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Elizabeth R. Hauser
- Department of Biostatistics and Bioinformatics, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
- Cooperative Studies Program Epidemiology Center, VA Medical Center, Durham, NC, United States
| | - Brian E. Fee
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, NC, United States
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Nathan P. Rudemiller
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Jamie R. Privratsky
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Junyi J. Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Estefany Y. Reyes
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Donghai Wang
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Gregory A. Taylor
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, NC, United States
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Michael D. Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Donald N. Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Vidyalakshmi Chandramohan
- Department of Neurosurgery and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Gianna Elena Hammer
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
49
|
Abstract
Parabiosis is a surgical method of animal modeling with a long history. It has been widely used in medical research, particularly in the fields of aging, stem cells, neuroscience, and immunity in the past two decades. The protocols for parabiosis have been improved many times and are now widely accepted. However, researchers need to consider many details, from surgical operation to perioperative management, to reduce mortality and maintain the parabiosis union. Although parabiosis has certain inevitable limitations, it still has broad application prospects as an irreplaceable animal model in the medical research field.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Zhi-Lan Liu
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Jun Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400012, China
| | - Xian-Le Bu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400012, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400012, China. E-mail:
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China. E-mail:
| |
Collapse
|
50
|
Medler TR, Blair TC, Crittenden MR, Gough MJ. Defining Immunogenic and Radioimmunogenic Tumors. Front Oncol 2021; 11:667075. [PMID: 33816320 PMCID: PMC8017281 DOI: 10.3389/fonc.2021.667075] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
In the cancer literature tumors are inconsistently labeled as ‘immunogenic’, and experimental results are occasionally dismissed since they are only tested in known ‘responsive’ tumor models. The definition of immunogenicity has moved from its classical definition based on the rejection of secondary tumors to a more nebulous definition based on immune infiltrates and response to immunotherapy interventions. This review discusses the basis behind tumor immunogenicity and the variation between tumor models, then moves to discuss how these principles apply to the response to radiation therapy. In this way we can identify radioimmunogenic tumor models that are particularly responsive to immunotherapy only when combined with radiation, and identify the interventions that can convert unresponsive tumors so that they can also respond to these treatments.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Tiffany C Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,Molecular Microbiology and Immunology, OHSU, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,Molecular Microbiology and Immunology, OHSU, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,Molecular Microbiology and Immunology, OHSU, Portland, OR, United States
| |
Collapse
|