1
|
Wang J, Yang H, Chen J, Sun Y, Pei H, Li L. DNA Origami Scaffold-Based Peptide-Major Histocompatibility Complex Multimers for Spatial Imaging of T Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18116-18123. [PMID: 40079396 DOI: 10.1021/acsami.5c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Visualizing the spatial distribution of antigen-specific T cells is essential for understanding immune responses and improving therapeutic strategies. However, detecting low-affinity antigen-specific T cells and enhancing signals from low-abundance populations remain challenging due to limitations in sensitivity. Here, we report DNA origami scaffold-based peptide-major histocompatibility complex multimers (DOS-pMHCs) with precise spatial organization of pMHC and signaling molecules on the nanoscale for enhanced in situ visualization of antigen-specific T cells. The two-dimensional triangular DNA origami precisely organizes pMHCs and signaling molecules with high valency, significantly improving binding to antigen-specific T cells and signal amplification. These DOS-pMHCs facilitate enhanced visualization of antigen-specific T cells in lymphoid tissues compared to traditional tetramers. Moreover, we show that DOS-pMHCs enable the in situ detection of autoimmune T cells with lower affinity T cell receptors (TCRs), which are difficult to identify using traditional tetramers. This in situ detection strategy provides a powerful tool for mapping the spatial distribution of antigen-specific T cells, thus holding great potential for advancing our understanding of immune responses and guiding personalized immunotherapy.
Collapse
Affiliation(s)
- Jianing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Han Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
2
|
Zanluqui NG, McGavern DB. Why do central nervous system barriers host a diverse immune landscape? Trends Immunol 2024; 45:738-749. [PMID: 39299888 PMCID: PMC11471389 DOI: 10.1016/j.it.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
The meninges in vertebrates comprise three layers (dura, arachnoid, pia mater), representing an important barrier surrounding and protecting the central nervous system (CNS). The most exterior CNS barrier, the dura mater, is unique because it resembles a peripheral tissue. It hosts a rich immune landscape, lymphatic vessels, and fenestrated vasculature, allowing microbes and other threats from the blood to extravasate into the meninges, potentially reaching the underlying CNS. The highly specialized large venous drainage system in the dura is especially susceptible to infection. Here, we explore specializations in the CNS barrier system from an anatomical and immunological perspective and posit that the dura mater evolved an elaborate innate and adaptive immune system in specific locations within it to protect underlying CNS tissue against invading pathogens.
Collapse
Affiliation(s)
- Nagela G Zanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Grusdat M, Dostert C, Brenner D. Quantification of lymphocytic choriomeningitis virus specific T cells and LCMV viral titers. Methods Cell Biol 2023; 173:121-131. [PMID: 36653079 DOI: 10.1016/bs.mcb.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a frequently used animal model to study immune responses against acute and chronic viral infections. LCMV is a non-cytopathic virus, but destruction of infected cells by cytotoxic T lymphocytes (CTLs) can lead to severe damage of tissues. Virus-specific T cell responses have to be balanced. A low virus load leads to a strong T cell response and subsequently to viral control. In contrast, a high viral titer is associated with T cell exhaustion and chronic viral infections. During an intermediate LCMV viral load CD8+ T cells can cause immunopathology, which can have detrimental outcomes. The LCMV infection model offers the opportunity to study virus-specific CD4+ and CD8+ T cell responses during chronic and acute infections by quantifying LCMV-specific T cells by tetramer staining and measuring cytokine production and viral titers in different organs.
Collapse
Affiliation(s)
- Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Buckley MW, McGavern DB. Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunol Rev 2022; 306:58-75. [PMID: 35067941 PMCID: PMC8852772 DOI: 10.1111/imr.13066] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
The central nervous system (CNS) has historically been viewed as an immunologically privileged site, but recent studies have uncovered a vast landscape of immune cells that reside primarily along its borders. While microglia are largely responsible for surveying the parenchyma, CNS barrier sites are inhabited by a plethora of different innate and adaptive immune cells that participate in everything from the defense against microbes to the maintenance of neural function. Static and dynamic imaging studies have revolutionized the field of neuroimmunology by providing detailed maps of CNS immune cells as well as information about how these cells move, organize, and interact during steady-state and inflammatory conditions. These studies have also redefined our understanding of neural-immune interactions at a cellular level and reshaped our conceptual view of immune privilege in this specialized compartment. This review will focus on insights gained using imaging techniques in the field of neuroimmunology, with an emphasis on anatomy and CNS immune dynamics during homeostasis, infectious diseases, injuries, and aging.
Collapse
Affiliation(s)
- Monica W. Buckley
- Viral Immunology and Intravital Imaging Section National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
5
|
Chen H, Smith M, Herz J, Li T, Hasley R, Le Saout C, Zhu Z, Cheng J, Gronda A, Martina JA, Irusta PM, Karpova T, McGavern DB, Catalfamo M. The role of protease-activated receptor 1 signaling in CD8 T cell effector functions. iScience 2021; 24:103387. [PMID: 34841225 PMCID: PMC8605340 DOI: 10.1016/j.isci.2021.103387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
CD8 T cells are essential for adaptive immunity against viral infections. Protease activated receptor 1 (PAR1) is expressed by CD8 T cells; however, its role in T cell effector function is not well defined. Here we show that in human CD8 T cells, PAR1 stimulation accelerates calcium mobilization. Furthermore, PAR1 is involved in cytotoxic T cell function by facilitating granule trafficking via actin polymerization and repositioning of the microtubule organizing center (MTOC) toward the immunological synapse. In vivo, PAR1-/- mice have reduced cytokine-producing T cells in response to a lymphocytic choriomeningitis virus (LCMV) infection and fail to efficiently control the virus. Specific deletion of PAR1 in LCMV GP33-specific CD8 T cells results in reduced expansion and diminished effector function. These data demonstrate that PAR1 plays a role in T cell activation and function, and this pathway could represent a new therapeutic strategy to modulate CD8 T cell effector function.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mindy Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jasmin Herz
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Rebecca Hasley
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecile Le Saout
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ziang Zhu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Andres Gronda
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - José A. Martina
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo M. Irusta
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
6
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
7
|
Eberlein J, Davenport B, Nguyen TT, Victorino F, Jhun K, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2169-2187. [PMID: 32948687 DOI: 10.4049/jimmunol.2000253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Jhun
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Wright WF, Pinto CN, Palisoc K, Baghli S. Viral (aseptic) meningitis: A review. J Neurol Sci 2019; 398:176-183. [PMID: 30731305 DOI: 10.1016/j.jns.2019.01.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022]
Abstract
Viral meningitis is an inflammation of the meninges associated with acute onset of meningeal symptoms and fever, pleocytosis of the cerebrospinal fluid, and no growth on routine bacterial culture. It is sometimes associated with viral encephalitis and meningoencephalitis. Viruses reach the central nervous system (CNS) hematogenously or in a retrograde manner from nerve endings. The viral etiology varies according to age and country. Molecular diagnostics technology has helped improve the rate of pathogen detection reducing unnecessary antibiotic use and length of hospitalization. Most of the viral infections detailed in this article have no specific treatment other than supportive care. Many of the viruses discussed are preventable by vaccination and proper skin protection against transmitting vectors.
Collapse
Affiliation(s)
- William F Wright
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States.
| | - Casey N Pinto
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States; Department of Public Health Sciences, The Pennsylvania State University, United States.
| | - Kathryn Palisoc
- Division of Hospital Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States
| | - Salim Baghli
- Division of Hospital Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States
| |
Collapse
|
9
|
Abstract
The mouse model of West Nile virus (WNV), which is a leading cause of mosquito-borne encephalitis worldwide, has provided fundamental insights into the host and viral factors that regulate viral pathogenesis and infection outcome. In particular, CD8+ T cells are critical for controlling WNV replication and promoting protection against infection. Here, we present the characterization of a T cell receptor (TCR)-transgenic mouse with specificity for the immunodominant epitope in the WNV NS4B protein (here referred to as transgenic WNV-I mice). Using an adoptive-transfer model, we found that WNV-I CD8+ T cells behave similarly to endogenous CD8+ T cell responses, with an expansion phase in the periphery beginning around day 7 postinfection (p.i.) followed by a contraction phase through day 15 p.i. Through the use of in vivo intravascular immune cell staining, we determined the kinetics, expansion, and differentiation into effector and memory subsets of WNV-I CD8+ T cells within the spleen and brain. We found that red-pulp WNV-I CD8+ T cells were more effector-like than white-pulp WNV-I CD8+ T cells, which displayed increased differentiation into memory precursor cells. Within the central nervous system (CNS), we found that WNV-I CD8+ T cells were polyfunctional (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), displayed tissue-resident characteristics (CD69+ and CD103+), persisted in the brain through day 15 p.i., and reduced the viral burden within the brain. The use of these TCR-transgenic WNV-I mice provides a new resource to dissect the immunological mechanisms of CD8+ T cell-mediated protection during WNV infection.IMPORTANCE West Nile Virus (WNV) is the leading cause of mosquito-borne encephalitis worldwide. There are currently no approved therapeutics or vaccines for use in humans to treat or prevent WNV infection. CD8+ T cells are critical for controlling WNV replication and protecting against infection. Here, we present a comprehensive characterization of a novel TCR-transgenic mouse with specificity for the immunodominant epitope in the WNV NS4B protein. In this study, we determine the kinetics, proliferation, differentiation into effector and memory subsets, homing, and clearance of WNV in the CNS. Our findings provide a new resource to dissect the immunological mechanisms of CD8+ T cell-mediated protection during WNV infection.
Collapse
|
10
|
Nishimura CD, Brenner DA, Mukherjee M, Hirsch RA, Ott L, Wu MF, Liu H, Dakhova O, Orange JS, Brenner MK, Lin CY, Arber C. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals. Blood 2017; 130:2739-2749. [PMID: 29079582 PMCID: PMC5746163 DOI: 10.1182/blood-2017-02-769463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL+ polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents.
Collapse
Affiliation(s)
- Christopher D Nishimura
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
| | - Daniel A Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Center for Human Immunobiology
| | - Malini Mukherjee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Center for Human Immunobiology
| | | | - Leah Ott
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
| | - Meng-Fen Wu
- Department of Biostatistics, Dan L. Duncan Comprehensive Cancer Center
| | - Hao Liu
- Department of Biostatistics, Dan L. Duncan Comprehensive Cancer Center
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
| | | | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Department of Molecular and Human Genetics
- Department of Pediatrics, and
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Caroline Arber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
11
|
Mukherjee M, Mace EM, Carisey AF, Ahmed N, Orange JS. Quantitative Imaging Approaches to Study the CAR Immunological Synapse. Mol Ther 2017; 25:1757-1768. [PMID: 28663103 PMCID: PMC5542801 DOI: 10.1016/j.ymthe.2017.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 06/03/2017] [Accepted: 06/04/2017] [Indexed: 01/11/2023] Open
Abstract
The lytic immunological synapse (IS) is a discrete structural entity formed after the ligation of specific activating receptors that leads to the destruction of a cancerous cell. The formation of an effector cell IS in cytotoxic T lymphocytes or natural killer cells is a hierarchical and stepwise rearrangement of structural and signaling components and targeted release of the contents of lytic granules. While recent advances in the generation and testing of cytotoxic lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated their efficacy in the targeted lysis of tumor targets, the contribution and dynamics of IS components have not yet been extensively investigated in the context of engineered CAR cells. Understanding the biology of the CAR IS will be a powerful approach to efficiently guide the engineering of new CARs and help identify mechanistic problems in existing CARs. Here, we review the formation of the lytic IS and describe quantitative imaging-based measurements using multiple microscopy techniques at a single cell level that can be used in conjunction with established population-based assays to provide insight into the important cytotoxic function of CAR cells. The inclusion of this approach in the pipeline of CAR product design could be a novel and valuable innovation for the field.
Collapse
MESH Headings
- Animals
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- Biotechnology
- Cytotoxicity, Immunologic
- Humans
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Microscopy/methods
- Molecular Imaging/methods
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Malini Mukherjee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77025, USA; Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77025, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77025, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77025, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nabil Ahmed
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77025, USA; Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77025, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77025, USA; Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77025, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
12
|
Altman JD, Davis MM. MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells. ACTA ACUST UNITED AC 2016; 115:17.3.1-17.3.44. [DOI: 10.1002/cpim.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mark M. Davis
- Stanford University School of Medicine and The Howard Hughes Medical Institute Palo Alto California
| |
Collapse
|
13
|
Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft. Transplantation 2015; 99:2485-93. [DOI: 10.1097/tp.0000000000000805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Herz J, Johnson KR, McGavern DB. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. ACTA ACUST UNITED AC 2015; 212:1153-69. [PMID: 26122661 PMCID: PMC4516789 DOI: 10.1084/jem.20142047] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/04/2015] [Indexed: 01/12/2023]
Abstract
Clearance of neurotropic infections is challenging because the CNS is relatively intolerant of immunopathological reactions. Herz et al. use a model of persistent viral infection in mice to demonstrate therapeutic antiviral T cells can purge the CNS infection without causing tissue damage resulting from limited recruitment of inflammatory innate immune cells and conversion of microglia into APCs. Several viruses can infect the mammalian nervous system and induce neurological dysfunction. Adoptive immunotherapy is an approach that involves administration of antiviral T cells and has shown promise in clinical studies for the treatment of peripheral virus infections in humans such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus, among others. In contrast, clearance of neurotropic infections is particularly challenging because the central nervous system (CNS) is relatively intolerant of immunopathological reactions. Therefore, it is essential to develop and mechanistically understand therapies that noncytopathically eradicate pathogens from the CNS. Here, we used mice persistently infected from birth with lymphocytic choriomeningitis virus (LCMV) to demonstrate that therapeutic antiviral T cells can completely purge the persistently infected brain without causing blood–brain barrier breakdown or tissue damage. Mechanistically, this is accomplished through a tailored release of chemoattractants that recruit antiviral T cells, but few pathogenic innate immune cells such as neutrophils and inflammatory monocytes. Upon arrival, T cells enlisted the support of nearly all brain-resident myeloid cells (microglia) by inducing proliferation and converting them into CD11c+ antigen-presenting cells (APCs). Two-photon imaging experiments revealed that antiviral CD8+ and CD4+ T cells interacted directly with CD11c+ microglia and induced STAT1 signaling but did not initiate programmed cell death. We propose that noncytopathic CNS viral clearance can be achieved by therapeutic antiviral T cells reliant on restricted chemoattractant production and interactions with apoptosis-resistant microglia.
Collapse
Affiliation(s)
- Jasmin Herz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
Abstract
Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.
Collapse
Affiliation(s)
- Phillip A Swanson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
16
|
Foley MH, Forcier T, McAndrew E, Gonzalez M, Chen H, Juelg B, Walker BD, Irvine DJ. High avidity CD8+ T cells efficiently eliminate motile HIV-infected targets and execute a locally focused program of anti-viral function. PLoS One 2014; 9:e87873. [PMID: 24551068 PMCID: PMC3923750 DOI: 10.1371/journal.pone.0087873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/29/2013] [Indexed: 11/17/2022] Open
Abstract
The dissemination of HIV from an initial site of infection is facilitated by motile HIV-infected CD4+ T-cells. However, the impact of infected target cell migration on antigen recognition by HIV-specific CD8+ T-cells is unclear. Using a 3D in vitro model of tissue, we visualized dynamic interactions between HIV-infected or peptide-pulsed CD4+ T-cells and HIV-specific CD8+ T-cells. CTLs engaged motile HIV-infected targets, but ∼50% of targets broke contact and escaped. In contrast, immobilized target cells were readily killed, indicating target motility directly inhibits CD8+ T-cell function. Strong calcium signals occurred in CTLs killing a motile target but calcium signaling was weak or absent in CTLs which permitted target escape. Neutralization of adhesion receptors LFA-1 and CD58 inhibited CD8+ T-cell function within the 3D matrix, demonstrating that efficient motile target lysis as dependent on adhesive engagement of targets. Antigen sensitivity (a convolution of antigen density, TCR avidity and CD8 coreceptor binding) is also critical for target recognition. We modulated this parameter (known as functional avidity but referred to here as “avidity” for the sake of simplicity) by exploiting common HIV escape mutations and measured their impact on CTL function at the single-cell level. Targets pulsed with low avidity mutant antigens frequently escaped while CTLs killed targets bearing high avidity antigen with near-perfect efficiency. CTLs engaged, arrested, and killed an initial target bearing high avidity antigen within minutes, but serial killing was surprisingly rare. CD8 cells remained committed to their initial dead target for hours, accumulating TCR signals that sustained secretion of soluble antiviral factors. These data indicate that high-avidity CD8+ T-cells execute an antiviral program in the precise location where antigen has been sensed: CTL effector functions are spatiotemporally coordinated with an early lytic phase followed by a sustained stationary secretory phase to control local viral infection.
Collapse
Affiliation(s)
- Maria Hottelet Foley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America ; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Talitha Forcier
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America ; Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elizabeth McAndrew
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael Gonzalez
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Huabiao Chen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Boris Juelg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America ; Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America ; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
17
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
18
|
Mouchacca P, Schmitt-Verhulst AM, Boyer C. Visualization of cytolytic T cell differentiation and granule exocytosis with T cells from mice expressing active fluorescent granzyme B. PLoS One 2013; 8:e67239. [PMID: 23840635 PMCID: PMC3695958 DOI: 10.1371/journal.pone.0067239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022] Open
Abstract
To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI) mice expressing Granzyme B (GZMB) as a fusion protein with red fluorescent tdTomato (GZMB-Tom). As for GZMB in wild type (WT) lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells' plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC), as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo.
Collapse
Affiliation(s)
- Pierre Mouchacca
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| |
Collapse
|
19
|
Zinselmeyer BH, Heydari S, Sacristán C, Nayak D, Cammer M, Herz J, Cheng X, Davis SJ, Dustin ML, McGavern DB. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. ACTA ACUST UNITED AC 2013; 210:757-74. [PMID: 23530125 PMCID: PMC3620347 DOI: 10.1084/jem.20121416] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune responses to persistent viral infections and cancer often fail because of intense regulation of antigen-specific T cells-a process referred to as immune exhaustion. The mechanisms that underlie the induction of exhaustion are not completely understood. To gain novel insights into this process, we simultaneously examined the dynamics of virus-specific CD8(+) and CD4(+) T cells in the living spleen by two-photon microscopy (TPM) during the establishment of an acute or persistent viral infection. We demonstrate that immune exhaustion during viral persistence maps anatomically to the splenic marginal zone/red pulp and is defined by prolonged motility paralysis of virus-specific CD8(+) and CD4(+) T cells. Unexpectedly, therapeutic blockade of PD-1-PD-L1 restored CD8(+) T cell motility within 30 min, despite the presence of high viral loads. This result was supported by planar bilayer data showing that PD-L1 localizes to the central supramolecular activation cluster, decreases antiviral CD8(+) T cell motility, and promotes stable immunological synapse formation. Restoration of T cell motility in vivo was followed by recovery of cell signaling and effector functions, which gave rise to a fatal disease mediated by IFN-γ. We conclude that motility paralysis is a manifestation of immune exhaustion induced by PD-1 that prevents antiviral CD8(+) T cells from performing their effector functions and subjects them to prolonged states of negative immune regulation.
Collapse
Affiliation(s)
- Bernd H Zinselmeyer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Matheu MP, Teijaro JR, Walsh KB, Greenberg ML, Marsolais D, Parker I, Rosen H, Oldstone MBA, Cahalan MD. Three phases of CD8 T cell response in the lung following H1N1 influenza infection and sphingosine 1 phosphate agonist therapy. PLoS One 2013; 8:e58033. [PMID: 23533579 PMCID: PMC3606384 DOI: 10.1371/journal.pone.0058033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/29/2013] [Indexed: 12/13/2022] Open
Abstract
Influenza-induced lung edema and inflammation are exacerbated by a positive feedback loop of cytokine and chemokine production termed a 'cytokine storm', a hallmark of increased influenza-related morbidity and mortality. Upon infection, an immune response is rapidly initiated in the lungs and draining lymph node, leading to expansion of virus-specific effector cells. Using two-photon microscopy, we imaged the dynamics of dendritic cells (DC) and virus-specific eGFP(+)CD8(+) T cells in the lungs and draining mediastinal lymph nodes during the first two weeks following influenza infection. Three distinct phases of T cell and CD11c(+) DC behavior were revealed: 1) Priming, facilitated by the arrival of lung DCs in the lymph node and characterized by antigen recognition and expansion of antigen-specific CD8(+) T cells; asymmetric T cell division in contact with DCs was frequently observed. 2) Clearance, during which DCs re-populate the lung and T cells leave the draining lymph node and re-enter the lung tissue where enlarged, motile T cells come into contact with DCs and form long-lived interactions. 3) Maintenance, characterized by T-cell scanning of the lung tissue and dissociation from local antigen presenting cells; the T cells spend less time in association with DCs and migrate rapidly on collagen. A single dose of a sphingosine-1-phosphate receptor agonist, AAL-R, sufficient to suppress influenza-induced cytokine-storm, altered T cell and DC behavior during influenza clearance, delaying T cell division, cellular infiltration in the lung, and suppressing T-DC interactions in the lung. Our results provide a detailed description of T cell and DC choreography and dynamics in the lymph node and the lung during influenza infection. In addition, we suggest that phase lags in T cell and DC dynamics induced by targeting S1P receptors in vivo may attenuate the intensity of the immune response and can be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Melanie P. Matheu
- Department of Physiology and Biophysics and the Center for Immunology, University of California Irvine, Irvine, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kevin B. Walsh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Milton L. Greenberg
- Department of Physiology and Biophysics and the Center for Immunology, University of California Irvine, Irvine, California, United States of America
| | - David Marsolais
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Medicine, Faculty of Medicine, Laval University; IUCPQ Research Center, Québec, Québec, Canada
| | - Ian Parker
- Department of Physiology and Biophysics and the Center for Immunology, University of California Irvine, Irvine, California, United States of America
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael D. Cahalan
- Department of Physiology and Biophysics and the Center for Immunology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dissecting influenza virus pathogenesis uncovers a novel chemical approach to combat the infection. Virology 2013; 435:92-101. [PMID: 23217619 DOI: 10.1016/j.virol.2012.09.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/09/2023]
Abstract
The cytokine storm is an aggressive immune response characterized by the recruitment of inflammatory leukocytes and exaggerated levels of cytokines and chemokines at the site of infection. Here we review evidence that cytokine storm directly contributes to the morbidity and mortality resulting from influenza virus infection and that sphingosine-1-phosphate (S1P) receptor agonists can abort cytokine storms providing significant protection against pathogenic human influenza viral infections. In experiments using murine models and the human pathogenic 2009 influenza viruses, S1P1 receptor agonist alone reduced deaths from influenza virus by over 80% as compared to lesser protection (50%) offered by the antiviral neuraminidase inhibitor oseltamivir. Optimal protection of 96% was achieved by combined therapy with the S1P1 receptor agonist and oseltamivir. The functional mechanism of S1P receptor agonist(s) action and the predominant role played by pulmonary endothelial cells as amplifiers of cytokine storm during influenza infection are described.
Collapse
|
22
|
Oldstone MBA, Edelmann KH, McGavern DB, Cruite JT, Welch MJ. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes. PLoS Pathog 2012; 8:e1003044. [PMID: 23209415 PMCID: PMC3510245 DOI: 10.1371/journal.ppat.1003044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022] Open
Abstract
We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP) epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers). In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276–286) in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes. Insulin-dependent type 1 diabetes (T1D) is characterized by elevated blood sugar, lymphocytic infiltration into the islets of Langerhans and T cell destruction of beta (β) cells. β cells produce insulin whose function is to maintain and regulate glucose hemostasis. However, in vivo, the numbers of antigen specific T cells that migrate to the islets to cause T1D, the engagement of such T cells with β cells at the immunologic synapse and the molecules expressed at the synapse are not clear. Using a transgenic model of virus induced T1D, a panel of viruses with CD8 T cell epitope mutations and in situ tetramer hybridization, we note of the total CD8 T cells infiltrating the islets, only 1–2% are antigen specific recognizing the immunodominant virus CD8 T cell epitope expressed on β cells. Immunohistochemical analysis of the synapse found between antigen specific CD8 T cells and β cells displays attachment by LFA-1 and presence of perforin, the molecule indicative of lytic activity.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunological Synapses/genetics
- Immunological Synapses/immunology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/pathology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Michael B A Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
23
|
Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TWH, Atkinson MA, Roep BO, von Herrath MG. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. ACTA ACUST UNITED AC 2012; 209:51-60. [PMID: 22213807 PMCID: PMC3260877 DOI: 10.1084/jem.20111187] [Citation(s) in RCA: 531] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In situ tetramer staining reveals the presence of islet antigen-reactive CD8+ T cells in pancreatic islets from deceased type 1 diabetes patients. A direct association of islet-autoreactive T cells with β cell destruction in human pancreatic islets from type 1 diabetes (T1D) patients has never been demonstrated, and little is known about disease progression after diagnosis. Frozen pancreas samples were obtained from 45 cadaveric T1D donors with disease durations ranging from 1 wk to >50 yr, 14 nondiabetic controls, 5 nondiabetics with islet autoantibodies, 2 cases of gestational diabetes, and 6 T2D patients. Sections were systematically analyzed for the presence of insulin-sufficient β cells, CD8+ insulitic lesions, and HLA class I hyperexpression. Finally, consecutive sections from HLA-A2–expressing individuals were probed for CD8 T cell reactivity against six defined islet autoantigens associated with T1D by in situ tetramer staining. Both single and multiple CD8 T cell autoreactivities were detected within individual islets in a subset of patients up to 8 yr after clinical diagnosis. Pathological features such as HLA class I hyperexpression and insulitis were specific for T1D and persisted in a small portion of the patients with longstanding disease. Insulitic lesions consistently presented in a multifocal pattern with varying degrees of infiltration and β cell loss across affected organs. Our observations provide the first direct proof for islet autoreactivity within human islets and underscore the heterogeneous and chronic disease course.
Collapse
Affiliation(s)
- Ken T Coppieters
- Type 1 Diabetes Center, the La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Valentino MD, Abdul-Alim CS, Maben ZJ, Skrombolas D, Hensley LL, Kawula TH, Dziejman M, Lord EM, Frelinger JA, Frelinger JG. A broadly applicable approach to T cell epitope identification: application to improving tumor associated epitopes and identifying epitopes in complex pathogens. J Immunol Methods 2011; 373:111-26. [PMID: 21872603 DOI: 10.1016/j.jim.2011.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 12/22/2022]
Abstract
Epitopes are a hallmark of the antigen specific immune response. The identification and characterization of epitopes is essential for modern immunologic studies, from investigating cellular responses against tumors to understanding host/pathogen interactions especially in the case of bacteria with intracellular residence. Here, we have utilized a novel approach to identify T cell epitopes exploiting the exquisite ability of particulate antigens, in the form of beads, to deliver exogenous antigen to both MHC class I and class II pathways for presentation to T cell hybridomas. In the current study, we coupled this functional assay with two distinct protein expression libraries to develop a methodology for the characterization of T cell epitopes. One set of expression libraries containing single amino acid substitutions in a defined epitope sequence was interrogated to identify epitopes with enhanced T cell stimulation for a MHC class I epitope. The second expression library is comprised of the majority of open reading frames from the intracellular pathogen and potential biowarfare agent, Francisella tularensis. By automating aspects of this technology, we have been able to functionally screen and identify novel T cell epitopes within F. tularensis. We have also expanded upon these studies to generate a novel expression vector that enables immunization of recombinant protein into mice, which has been utilized to facilitate T cell epitope discovery for proteins that are critically linked to Francisella pathogenicity. This methodology should be applicable to a variety of systems and other pathogens.
Collapse
Affiliation(s)
- Michael D Valentino
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abdulreda MH, Faleo G, Molano RD, Lopez-Cabezas M, Molina J, Tan Y, Echeverria OAR, Zahr-Akrawi E, Rodriguez-Diaz R, Edlund PK, Leibiger I, Bayer AL, Perez V, Ricordi C, Caicedo A, Pileggi A, Berggren PO. High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci U S A 2011; 108:12863-8. [PMID: 21768391 PMCID: PMC3150878 DOI: 10.1073/pnas.1105002108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intravital imaging emerged as an indispensible tool in biological research, and a variety of imaging techniques have been developed to noninvasively monitor tissues in vivo. However, most of the current techniques lack the resolution to study events at the single-cell level. Although intravital multiphoton microscopy has addressed this limitation, the need for repeated noninvasive access to the same tissue in longitudinal in vivo studies remains largely unmet. We now report on a previously unexplored approach to study immune responses after transplantation of pancreatic islets into the anterior chamber of the mouse eye. This approach enabled (i) longitudinal, noninvasive imaging of transplanted tissues in vivo; (ii) in vivo cytolabeling to assess cellular phenotype and viability in situ; (iii) local intervention by topical application or intraocular injection; and (iv) real-time tracking of infiltrating immune cells in the target tissue.
Collapse
Affiliation(s)
| | | | | | | | - Judith Molina
- Diabetes Research Institute and
- Departments of Medicine
| | | | | | | | | | - Patrick K. Edlund
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Ingo Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | | | - Victor Perez
- Microbiology and Immunology, and
- Bascom Palmer Eye Institute, and
| | - Camillo Ricordi
- Diabetes Research Institute and
- Department of Biomedical Engineering, University of Miami, Miami, FL 33136
- Departments of Medicine
- Microbiology and Immunology, and
- DeWitt-Daughtry Department of Surgery, Division of Cellular Transplantation, University of Miami Miller School of Medicine, Miami, FL 33136; and
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Alejandro Caicedo
- Diabetes Research Institute and
- Departments of Medicine
- Physiology and Biophysics
- DeWitt-Daughtry Department of Surgery, Division of Cellular Transplantation, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Antonello Pileggi
- Diabetes Research Institute and
- Department of Biomedical Engineering, University of Miami, Miami, FL 33136
- Microbiology and Immunology, and
- DeWitt-Daughtry Department of Surgery, Division of Cellular Transplantation, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Per-Olof Berggren
- Diabetes Research Institute and
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 76, Sweden
| |
Collapse
|
26
|
Davis MM, Altman JD, Newell EW. Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis. Nat Rev Immunol 2011; 11:551-8. [PMID: 21760610 PMCID: PMC3699324 DOI: 10.1038/nri3020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Labelling antigen-specific T cells with peptide-MHC multimers has provided an invaluable way to monitor T cell-mediated immune responses. A number of recent developments in this technology have made these multimers much easier to make and use in large numbers. Furthermore, enrichment techniques have provided a greatly increased sensitivity that allows the analysis of the naive T cell repertoire directly. Thus, we can expect a flood of new information to emerge in the coming years.
Collapse
Affiliation(s)
- Mark M Davis
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.
| | | | | |
Collapse
|
27
|
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare inflammatory disorder with a poor prognosis for affected individuals. To find a means of suppressing the clinical phenotype, we investigated the cellular and molecular mechanisms leading to HLH in Unc13d(jinx/jinx) mice, in which cytolytic function of NK and CD8(+) T cells is impaired. Unc13d(jinx/jinx) mutants infected with lymphochoriomeningitis virus (LCMV) present typical clinical features of HLH, including splenomegaly, elevated serum IFNγ, and anemia. Proteins mediating cell-cell contact, cytokine signaling or Toll-like receptor (TLR) signaling were analyzed. We show that neither the integrin CD18, which is involved in adhesion between antigen-presenting cells and effector T cells, nor tumor necrosis factor (TNF) made nonredundant contributions to the disease phenotype. Disruption of IFNγ signaling reduced immune cell activation in Unc13d(jinx/jinx) mice, but also resulted in uncontrolled viral proliferation and exaggerated release of inflammatory cytokines. Abrogating the function of myeloid differentiation primary response gene 88 (MyD88) in Unc13d(jinx/jinx) mice suppressed immune cell activation and controlled cytokine production in an IL-1 receptor 1 (IL-1R1)-independent way. Our findings implicate MyD88 as the key initiator of myeloid and lymphoid proliferation in HLH, and suggest that blockade of this signaling molecule may reduce immunopathology in patients.
Collapse
|
28
|
Abstract
Viral infections are a major cause of human disease. Although most viruses replicate in peripheral tissues, some have developed unique strategies to move into the nervous system, where they establish acute or persistent infections. Viral infections in the central nervous system (CNS) can alter homeostasis, induce neurological dysfunction and result in serious, potentially life-threatening inflammatory diseases. This Review focuses on the strategies used by neurotropic viruses to cross the barrier systems of the CNS and on how the immune system detects and responds to viral infections in the CNS. A special emphasis is placed on immune surveillance of persistent and latent viral infections and on recent insights gained from imaging both protective and pathogenic antiviral immune responses.
Collapse
Affiliation(s)
- Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
29
|
Kang SS, Herz J, Kim JV, Nayak D, Stewart-Hutchinson P, Dustin ML, McGavern DB. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. ACTA ACUST UNITED AC 2011; 208:747-59. [PMID: 21464219 PMCID: PMC3135345 DOI: 10.1084/jem.20101295] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Virus-specific cytotoxic CD8+ T cells are in cell cycle as they transit from lymphoid tissues to sites of infection. After virus infection, cytotoxic T lymphocytes (CTLs) divide rapidly to eradicate the pathogen and prevent the establishment of persistence. The magnitude of an antiviral CTL response is thought to be controlled by the initiation of a cell cycle program within lymphoid tissues. However, it is presently not known whether this division program proceeds during migration or is influenced locally at sites of viral infection. We demonstrate that antiviral CTLs remain in cell cycle while transiting to infected tissues. Up to one third of virus-specific CTLs within blood were found to be in cell cycle after infection with lymphocytic choriomeningitis virus or vesicular stomatitis virus. Using two-photon microscopy, we found that effector CTL divided rapidly upon arrest in the virus-infected central nervous system as well as in meningeal blood vessels. We also observed that MHC I–dependent interactions, but not costimulation, influenced the division program by advancing effector CTL through stages of the cell cycle. These results demonstrate that CTLs are poised to divide in transit and that their numbers can be influenced locally at the site of infection through interactions with cells displaying cognate antigen.
Collapse
Affiliation(s)
- Silvia S Kang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Dustin ML. Visualization of Cell-Cell Interaction Contacts: Synapses and Kinapses. SELF/NONSELF 2011; 2:85-97. [PMID: 22299060 PMCID: PMC3268994 DOI: 10.4161/self.2.2.17931] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T-cell activation requires interactions of T-cell antigen receptors (TCR) and peptides presented by major histocompatibility complex molecules (MHCp) in an adhesive junction between the T-cell and antigen-presenting cell (APC). Stable junctions with bull's eye supramolecular activation clusters (SMACs) have been defined as immunological synapses. The term synapse works in this case because it joins roots for "same" and "fasten," which could be translated as "fasten in the same place." These structures maintain T-cell-APC interaction and allow directed secretion. We have proposed that SMACs are not really clusters, but are analogous to higher order membrane-cytoskeleton zones involved in amoeboid locomotion including a substrate testing lamellipodium, an adhesive lamella and anti-adhesive uropod. Since T-cells can also integrate signaling during locomotion over antigen presenting cells, it is important to consider adhesive junctions maintained as cells move past each other. This combination of movement (kine-) and fastening (-apse) can be described as a kinapse or moving junction. Synapses and kinapses operate in different stages of T-cell priming. Optimal effector functions may also depend upon cyclical use of synapses and kinapses. Visualization of these structures in vitro and in vivo presents many distinct challenges that will be discussed in this paper.
Collapse
Affiliation(s)
- Michael L Dustin
- Program in Molecular Pathogenesis; Skirball Institute of Biomolecular Medicine and Department of Pathology; New York University School of Medicine; New York, NY USA
| |
Collapse
|
31
|
Friedman RS, Beemiller P, Sorensen CM, Jacobelli J, Krummel MF. Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics. ACTA ACUST UNITED AC 2010; 207:2733-49. [PMID: 21041455 PMCID: PMC2989766 DOI: 10.1084/jem.20091201] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Real-time imaging defines the dynamics of TCR and T cell motility during early T cell activation in lymph nodes. The real-time dynamics of the T cell receptor (TCR) reflect antigen detection and T cell signaling, providing valuable insight into the evolving events of the immune response. Despite considerable advances in studying TCR dynamics in simplified systems in vitro, live imaging of subcellular signaling complexes expressed at physiological densities in intact tissues has been challenging. In this study, we generated a transgenic mouse with a TCR fused to green fluorescent protein to provide insight into the early signaling events of the immune response. To enable imaging of TCR dynamics in naive T cells in the lymph node, we enhanced signal detection of the fluorescent TCR fusion protein and used volumetric masking with a second fluorophore to mark the T cells expressing the fluorescent TCR. These in vivo analyses and parallel experiments in vitro show minimal and transient incorporation of TCRs into a stable central supramolecular activating cluster (cSMAC) structure but strong evidence for rapid, antigen-dependent TCR internalization that was not contingent on T cell motility arrest or cSMAC formation. Short-lived antigen-independent TCR clustering was also occasionally observed. These in vivo observations demonstrate that varied TCR trafficking and cell arrest dynamics occur during early T cell activation.
Collapse
Affiliation(s)
- Rachel S Friedman
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
32
|
Dustin ML, Chakraborty AK, Shaw AS. Understanding the structure and function of the immunological synapse. Cold Spring Harb Perspect Biol 2010; 2:a002311. [PMID: 20843980 DOI: 10.1101/cshperspect.a002311] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The immunological synapse has been an area of very active scientific interest over the last decade. Surprisingly, much about the synapse remains unknown or is controversial. Here we review some of these current issues in the field: how the synapse is defined, its potential role in T-cell function, and our current understanding about how the synapse is formed.
Collapse
Affiliation(s)
- Michael L Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine and Department of Pathology, New York University, New York, New York 10016, USA
| | | | | |
Collapse
|
33
|
McDole JR, Danzer SC, Pun RYK, Chen Y, Johnson HL, Pirko I, Johnson AJ. Rapid formation of extended processes and engagement of Theiler's virus-infected neurons by CNS-infiltrating CD8 T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1823-33. [PMID: 20813972 DOI: 10.2353/ajpath.2010.100231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question in neuroimmunology is the extent to which CD8 T cells actively engage virus-infected neurons. In the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis, an effective central nervous system (CNS)-infiltrating antiviral CD8 T cell response offers protection from this demyelinating disease. However, the specific CNS cell types engaged by these protective CD8 T cells in TMEV-resistant strains remains unknown. We used confocal microscopy to visualize the morphology, migration, and specific cellular interactions between adoptively transferred CD8 T cells and specific CNS cell types. Adoptively transferred GFP+ CD8+ splenocytes migrated to the brain and became 93% specific for the immunodominant virus epitope D(b):VP2(121-130). These CD8 T cells also polarized T cell receptor, CD8 protein, and granzyme B toward target neurons. Furthermore, we observed CD8 T cells forming cytoplasmic processes up to 45 μm in length. Using live tissue imaging, we determined that these T cell-extended processes (TCEPs) could be rapidly formed and were associated with migratory behavior through CNS tissues. These studies provide evidence that antiviral CD8 T cells have the capacity to engage virus-infected neurons in vivo and are the first to document and measure the rapid formation of TCEPs on these brain-infiltrating lymphocytes using live tissue imaging.
Collapse
Affiliation(s)
- Jeremiah R McDole
- Departments of Neurology,University of Cincinnati College of Medicine , Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kang SS, McGavern DB. Microbial induction of vascular pathology in the CNS. J Neuroimmune Pharmacol 2010; 5:370-86. [PMID: 20401700 PMCID: PMC4988845 DOI: 10.1007/s11481-010-9208-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/10/2010] [Indexed: 12/31/2022]
Abstract
The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe.
Collapse
Affiliation(s)
- Silvia S. Kang
- National Institute of Neurological Disorders and Stroke, The National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and Stroke, The National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Jenkins MR, Griffiths GM. The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol 2010; 22:308-13. [PMID: 20226643 PMCID: PMC4101800 DOI: 10.1016/j.coi.2010.02.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 12/11/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) rapidly kill target cells via the release of lytic granules into the immunological synapse, a process directed by the docking of the centrosome at the plasma membrane. New evidence highlights how signal strength and avidity influence the recruitment of cytolytic machinery to the synapse, and the role of each synaptic compartment. Release of cytolytic effector proteins, including perforin and FasL, is controlled at multiple levels and is also influenced by the avidity of the interaction. New imaging technologies and the use of photoactivatable peptides have allowed the dissection of signalling molecules involved in each step of the cytolytic process. This review highlights the important role of avidity in controlling how a T cell kills its target.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cambridge Institute for Medical Research, Addenbrooke's, Cambridge, United Kingdom
| | | |
Collapse
|
36
|
Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristán C, Victora GD, Zanin-Zhorov A, Dustin ML. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 2010; 28:79-105. [PMID: 19968559 DOI: 10.1146/annurev-immunol-030409-101308] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward.
Collapse
Affiliation(s)
- David R Fooksman
- Department of Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
One of the most fundamental activities of the adaptive immune system is to kill infected cells and tumor cells. Two distinct pathways mediate this process, both of which are facilitated by a cytotoxic immunological synapse. While traditionally thought of as innate immune cells, natural killer (NK) cells are now appreciated to have the capacity for long-term adaptation to chemical and viral insults. These cells integrate multiple positive and negative signals through NK cell cytotoxic or inhibitory synapses. The traditional CD8(+)alphabeta T-cell receptor-positive cells are among the best models for the concept of an immunological synapse, in which vectoral signaling is linked to directed secretion in a stable interface to induce apoptotic cell death in an infected cell. Large-scale molecular organization in synapses generated a number of hypotheses. Studies in the past 5 years have started to provide clear answers regarding the validity of these models. In vivo imaging approaches have provided some hints as to the physiologic relevance of these processes with great promise for the future. This review provides an overview of work on cytotoxic immunological synapses and suggests pathways forward in applying this information to the development of therapeutic agents.
Collapse
Affiliation(s)
- Michael L Dustin
- Helen, Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
38
|
Liou LY, Walsh KB, Vartanian AR, Beltran-Valero de Bernabe D, Welch M, Campbell KP, Oldstone MBA, Kunz S. Functional glycosylation of dystroglycan is crucial for thymocyte development in the mouse. PLoS One 2010; 5:e9915. [PMID: 20369005 PMCID: PMC2848029 DOI: 10.1371/journal.pone.0009915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/02/2010] [Indexed: 12/03/2022] Open
Abstract
Background Alpha-dystroglycan (α-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, α-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. Methodology/Principal Findings We report that expression of functionally glycosylated α-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4−CD8− double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4+CD8+ double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. Conclusions/Significance Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
Collapse
Affiliation(s)
- Li-Ying Liou
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kevin B. Walsh
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Arineh R. Vartanian
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel Beltran-Valero de Bernabe
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Departments of Neurology and Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Megan Welch
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Departments of Neurology and Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Michael B. A. Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
- * E-mail: (MBAO); (SK)
| | - Stefan Kunz
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- * E-mail: (MBAO); (SK)
| |
Collapse
|
39
|
Yang J, Sanderson N, Wawrowsky K, Puntel M, Castro M, Lowenstein P. Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo. Proc Natl Acad Sci U S A 2010; 107:4716-21. [PMID: 20133734 PMCID: PMC2842057 DOI: 10.1073/pnas.0911587107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To analyze the in vivo structure of antigen-specific immunological synapses during an effective immune response, we established brain tumors expressing the surrogate tumor antigen ovalbumin and labeled antigen-specific anti-glioma T cells using specific tetramers. Using these techniques, we determined that a significant number of antigen-specific T cells were localized to the brain tumor and surrounding brain tissue and a large percentage could be induced to express IFNgamma when exposed to the specific ovalbumin-derived peptide epitope SIINFEKL. Detailed morphological analysis of T cells immunoreactive for tetramers in direct physical contact with tumor cells expressing ovalbumin indicated that the interface between T cells and target tumor cells displayed various morphologies, including Kupfer-type immunological synapses. Quantitative analysis of adjacent confocal optical sections was performed to determine if the higher frequency of antigen-specific antiglioma T cells present in animals that developed an effective antitumor immune response could be correlated with a specific immunological synaptic morphology. Detailed in vivo quantitative analysis failed to detect an increased proportion of immunological synapses displaying the characteristic Kupfer-type morphology in animals mounting a strong and effective antitumor immune response as compared with those experiencing a clinically ineffective response. We conclude that an effective cytolytic immune response is not dependent on an increased frequency of Kupfer-type immunological synapses between T cells and tumor cells.
Collapse
Affiliation(s)
- J. Yang
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - N.S.R. Sanderson
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - K. Wawrowsky
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - M. Puntel
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - M.G. Castro
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - P.R. Lowenstein
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| |
Collapse
|
40
|
Göbel K, Melzer N, Herrmann AM, Schuhmann MK, Bittner S, Ip CW, Hünig T, Meuth SG, Wiendl H. Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack. Glia 2010; 58:469-80. [PMID: 19780193 DOI: 10.1002/glia.20938] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Demyelination and death of oligodendrocytes accompanied by transection of neurites and neuronal apoptosis are pathological hallmarks of cortical and subcortical gray matter lesions in demyelinating viral and autoimmune inflammatory CNS disorders. In these disorders, leukocortical lesions, containing the perikarya of most efferent neurons, display pronounced infiltration by CD8(+) T cells of putative specificity for oligodendrocyte- and myelin-related antigens. Hence, neuronal apoptosis in gray matter lesions may be a collateral effect of an oligodendrocyte-directed attack by CD8(+) T cells. To challenge this hypothesis, we transferred activated antigen-specific CD8(+) T cells (OT-I T cells) into acute coronal brain slices from mice selectively expressing ovalbumin as a cytosolic neo-self-antigen in oligodendrocytes (ODC-OVA mice). We studied mechanisms and kinetics of oligodendroglial and neuronal apoptosis in the neocortex and hippocampus, using multicolor staining for different cell types and activated caspase-3. Within the gray matter, a single OT-I T cell caused simultaneous caspase-3 activation in about 30 ODCs and 10 neurons within 6 h in a strictly antigen-dependent manner. Experiments with OT-I T cells genetically deficient for perforin or the granzyme B-cluster and with blocking anti-FasL antibodies as well as proinflammatory cytokines revealed, that collateral apoptosis of neurons was likely due to a spillover of perforin and granzyme(s) from the OT-I T cell itself or the immunological synapse that it selectively formed with antigen-presenting oligodendrocytes. Collateral neuronal apoptosis could contribute to substantial neuronal loss in gray matter lesions and cause persistent neurological impairment in both acute and chronic gray matter lesions in various inflammatory CNS disorders.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Azar GA, Lemaître F, Robey EA, Bousso P. Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc Natl Acad Sci U S A 2010; 107:3675-80. [PMID: 20133676 PMCID: PMC2840513 DOI: 10.1073/pnas.0905901107] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In vitro studies have revealed that T cell activation occurs during the formation of either dynamic or stable interactions with antigen-presenting cells (APC), and the respective cell junctions have been referred to as immunological kinapses and synapses. However, the relevance and molecular dynamics of kinapses and synapses remain to be established in vivo. Using two-photon imaging, we tracked the distribution of LAT-EGFP molecules during antigen recognition by activated CD4(+) T cells in lymph nodes. At steady state, LAT-EGFP molecules were preferentially found at the uropod of rapidly migrating T cells. In contrast to naïve T cells that fully stopped upon systemic antigen delivery, recently activated T cells decelerated and formed kinapses, characterized by continuous extension of membrane protrusions and by the absence of persistent LAT-EGFP clustering. On the other hand, activated CD4(+) T cells formed stable immunological synapses with antigen-loaded B cells and displayed sustained accumulation of LAT-EGFP fluorescence at the contact zone. Our results show that the state of T cell activation and the type of APC largely influence T cell-APC contact dynamics in lymph nodes. Furthermore, we provide a dynamic look at immunological kinapses and synapses in lymph nodes and suggest the existence of distinct patterns of LAT redistribution during antigen recognition.
Collapse
Affiliation(s)
- Georges A. Azar
- G5 Dynamiques des Réponses Immunes, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U668, Equipe Avenir, 75015 Paris, France; and
| | - Fabrice Lemaître
- G5 Dynamiques des Réponses Immunes, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U668, Equipe Avenir, 75015 Paris, France; and
| | - Ellen A. Robey
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720
| | - Philippe Bousso
- G5 Dynamiques des Réponses Immunes, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale U668, Equipe Avenir, 75015 Paris, France; and
| |
Collapse
|
42
|
|
43
|
Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J 2009; 23:3659-73. [PMID: 19567369 DOI: 10.1096/fj.09-136200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic CD8(+) T cells are increasingly recognized as key players in various inflammatory and degenerative central nervous system (CNS) disorders. CD8(+) T cells are believed to actively contribute to neural damage in these CNS conditions. Conceptually, one can separate two possible ways that CD8(+) T cells harm neuronal function or integrity: CD8(+) T cells either directly target neurons and their neurites in an antigen- or contact-dependent fashion, or exert their action via "collateral" mechanisms of neuronal damage that might follow destruction of the myelin sheath or glial cells in both the CNS gray and white matter. After introducing clinical examples, in which the putative relevance CD8(+) T cells has been demonstrated, we summarize knowledge on the sequence of initiation and execution of CD8(+) T-cell responses in the CNS. This includes the initial antigen cross-presentation and priming of naive CD8(+) T cells, followed by the invasion, migration, and target-cell recognition of CD8(+) effector T cells in the CNS parenchyma. Moreover, we discuss mechanisms of impaired electrical signaling and cell death of neurons as direct and collateral targets of CD8(+) T cells in the CNS.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.
| | | | | |
Collapse
|
44
|
Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J Virol 2009; 83:8905-15. [PMID: 19553326 DOI: 10.1128/jvi.00027-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent viral infections are a major health concern worldwide. During persistent infection, overwhelming viral replication and the rapid loss of antiviral T-cell function can prevent immune-mediated clearance of the infection, and therapies to reanimate the immune response and purge persistent viruses have been largely unsuccessful. Adoptive immunotherapy using memory T cells is a highly successful therapeutic approach to eradicate a persistent viral infection. Understanding precisely how therapeutically administered memory T cells achieve clearance should improve our ability to terminate states of viral persistence in humans. Mice persistently infected from birth with lymphocytic choriomeningitis virus are tolerant to the pathogen at the T-cell level and thus provide an excellent model to evaluate immunotherapeutic regimens. Previously, we demonstrated that adoptively transferred memory T cells require recipient dendritic cells to effectively purge an established persistent viral infection. However, the mechanisms that reactivate and sustain memory T-cell responses during clearance of such an infection remain unclear. Here we establish that therapeutic memory T cells require CD80 and CD86 costimulatory signals to efficiently clear an established persistent viral infection in vivo. Early blockade of costimulatory pathways with CTLA-4-Fc decreased the secondary expansion of virus-specific CD8(+) and CD4(+) memory T cells as well as their ability to produce antiviral cytokines and purge the persistent infection. Late costimulation blockade also reduced virus-specific T-cell numbers, illustrating that sustained interactions with costimulatory molecules is required for efficient T-cell expansion. These findings indicate that antiviral memory T cells require costimulation to efficiently clear a persistent viral infection and that costimulatory pathways can be targeted to modulate the magnitude of an adoptive immunotherapeutic regimen.
Collapse
|
45
|
David R, Ma L, Ivetic A, Takesono A, Ridley AJ, Chai JG, Tybulewicz V, Marelli-Berg FM. T-cell receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue. Blood 2009; 113:3696-705. [PMID: 19060239 PMCID: PMC4898596 DOI: 10.1182/blood-2008-09-176511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into nonlymphoid antigen-rich tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signaling pathways that regulate T-cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4(+) T cells to antigenic sites. Severe migratory defects displayed by Vav1(-/-) T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1(-/-) T cells in vivo. In contrast, Vav1(-/-) T-cell retention into antigen-rich tissue was severely impaired, reflecting T cells' inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, and TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T cell-mediated tissue damage.
Collapse
Affiliation(s)
- Rachel David
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, UK
| | - Liang Ma
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, UK
| | - Aleksandar Ivetic
- BHF Cardiovascular Unit, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 ONN, UK
| | - Aya Takesono
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS
| | - Anne J. Ridley
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS
| | - Jian-Guo Chai
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, UK
| | - Victor Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Federica M. Marelli-Berg
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, UK
| |
Collapse
|
46
|
A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Natl Acad Sci U S A 2009; 106:1560-5. [PMID: 19164548 DOI: 10.1073/pnas.0812689106] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pulmonary tissue damage resulting from influenza virus infection is caused by both the cytolytic activity of the virus and the host immune response. Immune-mediated injury results from T cell-mediated destruction of virus-infected cells and by release of cytokines and chemokines that attract polymorphonuclear leukocytes (PML) and macrophages to the infected site. The cytokines/chemokines potentiate dendritic cell (DC) activation and T cell expansion, which further enhances local damage. Here we report that immune modulation by local administration to the respiratory tract of sphingosine analog AAL-R significantly dampens the release of cytokines and chemokines while maintaining protective neutralizing antibody and cytotoxic T cell responses. As a result there was a marked reduction of infiltrating PML and macrophages into the lung and resultant pulmonary tissue injury. DC maturation was suppressed, which limited proliferation of specific antiviral T cells in the lung and draining lymph nodes. Further, AAL-R was effective in controlling CD8(+) T cell accumulation in the lungs even when given 4 days after initiation of influenza virus infection. These data indicate that sphingosine analogs display useful potential for controlling the immunopathology caused by influenza virus.
Collapse
|
47
|
Kim JV, Kang SS, Dustin ML, McGavern DB. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009; 457:191-5. [PMID: 19011611 PMCID: PMC2702264 DOI: 10.1038/nature07591] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/30/2008] [Indexed: 12/27/2022]
Abstract
Lymphocytic choriomeningitis virus infection of the mouse central nervous system (CNS) elicits fatal immunopathology through blood-brain barrier breakdown and convulsive seizures. Although lymphocytic-choriomeningitis-virus-specific cytotoxic T lymphocytes (CTLs) are essential for disease, their mechanism of action is not known. To gain insights into disease pathogenesis, we observed the dynamics of immune cells in the meninges by two-photon microscopy. Here we report visualization of motile CTLs and massive secondary recruitment of pathogenic monocytes and neutrophils that were required for vascular leakage and acute lethality. CTLs expressed multiple chemoattractants capable of recruiting myelomonocytic cells. We conclude that a CD8(+) T-cell-dependent disorder can proceed in the absence of direct T-cell effector mechanisms and rely instead on CTL-recruited myelomonocytic cells.
Collapse
Affiliation(s)
- Jiyun V Kim
- Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
48
|
Kang SS, McGavern DB. Inflammation on the mind: visualizing immunity in the central nervous system. Curr Top Microbiol Immunol 2009; 334:227-63. [PMID: 19521688 PMCID: PMC4988846 DOI: 10.1007/978-3-540-93864-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time.
Collapse
Affiliation(s)
- Silvia S. Kang
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bldg 10, Rm 7C213, Bethesda, MD 20892, USA
| | - Dorian B. McGavern
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bldg 10, Rm 7C213, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Dustin ML. Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse. Curr Top Microbiol Immunol 2009; 334:47-70. [PMID: 19521681 DOI: 10.1007/978-3-540-93864-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently implemented fluorescence imaging techniques, such as total internal reflection fluorescence microscopy and two-photon laser scanning microscopy, have made possible multiscale analysis of the immune response from single molecules in an interface to cells moving in lymphoid tissues and tumors. In this review, we consider components of T cell sensitivity: the immunological synapse, the coordination of migration, and antigen recognition in vivo. Potency, dose, and detection threshold for peptide-MHC determine T cell sensitivity. The immunological synapse incorporates T cell receptor microclusters that initiate and sustain signaling, and it also determines the positional stability of the T cells through symmetry and symmetry breaking. In vivo decisions by T cells on stopping or migration are based on antigen stop signals and environmental go signals that can sometimes prevent arrest of T cells altogether, and thus can change the outcome of antigen encounters.
Collapse
Affiliation(s)
- Michael L Dustin
- Department of Pathology, Program of Molecular Pathogenesis, Skirball Institute of BioMolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
50
|
Dustin ML. Visualization of cell-cell interaction contacts-synapses and kinapses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:164-82. [PMID: 19065791 DOI: 10.1007/978-0-387-09789-3_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T-cell activation requires interactions of T-cell antigen receptors (TCR) and peptides presented by major histocompatibility complex molecules (MHCp) in an adhesive junction between the T-cell and antigen-presenting cell (APC). Stable junctions with bull's eye supramolecular activation clusters (SMACs) have been defined as immunological synapses. The term synapse works in this case because it joins roots for "same" and "fasten", which could be translated as "fasten in the same place". These structures maintain T-cell-APC interaction and allow directed secretion. We have proposed that SMACs are not really clusters, but are analogous to higher order membrane-cytoskeleton zones involved in amoeboid locomotion including a substrate testing lamellipodium, an adhesive lamella and anti-adhesive uropod. Since T-cells can also integrate signaling during locomotion over antigen presenting cells, it is important to consider adhesive junctions maintained as cells move past each other. This combination of movement (kine-) and fastening (-apse) can be described as a kinapse or moving junction. Synapses and kinapses operate in different stages of T-cell priming. Optimal effector functions may also depend upon cyclical use of synapses and kinapses. Visualization of these structures in vitro and in vivo presents many distinct challenges that will be discussed in this chapter.
Collapse
Affiliation(s)
- Michael L Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, 540 1st Ave, New York, NY 10016, USA.
| |
Collapse
|