1
|
Happe M, Lynch RM, Fichtenbaum CJ, Heath SL, Koletar SL, Landovitz RJ, Presti RM, Santana-Bagur JL, Tressler RL, Holman LA, Novik L, Roa JC, Rothwell RS, Strom L, Wang J, Hu Z, Conan-Cibotti M, Bhatnagar AM, Dwyer B, Ko SH, Belinky F, Namboodiri AM, Pandey JP, Carroll R, Basappa M, Serebryannyy L, Narpala SR, Lin BC, McDermott AB, Boritz EA, Capparelli EV, Coates EE, Koup RA, Ledgerwood JE, Mascola JR, Chen GL, Tebas P, the VRC 607/A5378 Study Team. Virologic effects of broadly neutralizing antibodies VRC01LS and VRC07-523LS on chronic HIV-1 infection. JCI Insight 2025; 10:e181496. [PMID: 39989458 PMCID: PMC11949028 DOI: 10.1172/jci.insight.181496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUNDHIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs) have emerged as promising interventions with the potential to effectively treat and prevent HIV-1 infections. We conducted a phase I clinical trial evaluating the potent CD4-binding site-specific (CD4bs-specific) bNAbs VRC01LS and VRC07-523LS in people with HIV-1 (PWH) not receiving antiretroviral therapy (ART).METHODSParticipants received a single intravenous 40 mg/kg dose of either VRC01LS (n = 7) or VRC07-523LS (n = 9) and did not initiate ART for a minimum of 14 days. The primary study objective was to evaluate safety and tolerability; the secondary study objectives were to evaluate pharmacokinetics (PK) and the impact of administered bNAbs on viral loads (VL) and CD4+ T cell counts in the absence of ART.RESULTSThis trial enrolled 16 PWH aged 20 to 57 years. Both bNAbs were safe and well tolerated. Mild local reactogenicity was only reported in participants who received VRC07-523LS, while both bNAbs were associated with mild systemic symptoms. Maximum serum concentrations (Cmax) following VRC01LS or VRC07-523LS were 1,566 ± 316 and 1,295 ± 376 μg/mL, respectively. VRC07-523LS administration significantly decreased VL in 8 out of 9 participants, with an average decline of 1.7 ± 0.8 log10 copies/mL within 14 days after administration. In contrast, VRC01LS administration resulted in a smaller average decline (0.8 ± 0.8 log10 copies/mL), and 3 out of 7 participants showedno change in VL. Postinfusion maximum decline in VL correlated with post hoc baseline in vitro viral susceptibility results for both bNAbs.CONCLUSIONThe results of this trial support inclusion of potent CD4bs-specific bNAbs, such as VRC07-523LS, into next-generation treatment regimens for HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02840474.FUNDINGNational Institute of Allergy and Infectious Diseases (NIAID)/NIH (grants UM1 AI068634, UM1 AI068636, UM1 AI106701, UM1AI069424, UM1AI069501, UM1AI69415, UM1AI069534, UM1AI69494); the Intramural Research Program of the NIAID/NIH; National Center for Advancing Translational Sciences/NIH (grants UM1TR004548, UL1TR001881, and UL1TR001878); and the National Cancer Institute/NIH (contract 75N91019D00024).
Collapse
Affiliation(s)
- Myra Happe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | - Sonya L. Heath
- Division of Infectious Diseases, University of Alabama, Birmingham, Alabama, USA
| | - Susan L. Koletar
- Division of Infectious Diseases, The Ohio State University, Columbus, Ohio, USA
| | - Raphael J. Landovitz
- Division of Infectious Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Washington University, St. Louis, Missouri, USA
| | | | - Randall L. Tressler
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - LaSonji A. Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jhoanna C. Roa
- AIDS Network Coordinating Center, DLH Corporation, Bethesda, Maryland, USA
| | - Ro Shauna Rothwell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Anjali M. Bhatnagar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Bridget Dwyer
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Aryan M. Namboodiri
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Edmund V. Capparelli
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
2
|
Hesselman MC, Zeeb M, Rusert P, Pasin C, Mamrosh J, Kariuki S, Pichler I, Sickmann M, Kaufmann MM, Schmidt D, Friedrich N, Metzner KJ, Rindler A, Kuster H, Adams C, Thebus R, Huber M, Yerly S, Leuzinger K, Perreau M, Koller R, Dollenmaier G, Frigerio S, Westfall DH, Deng W, deCamp AC, Juraska M, Edupuganti S, Mgodi N, Murrell H, Garrett N, Wagh K, Mullins JI, Williamson C, Moore PL, Günthard HF, Kouyos RD, Trkola A. Rare twin cysteine residues in the HIV-1 envelope variable region 1 link to neutralization escape and breadth development. Cell Host Microbe 2025; 33:279-293.e6. [PMID: 39909038 DOI: 10.1016/j.chom.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Identifying HIV-1 envelope (Env) traits associated with neutralization cross-reactivity is crucial for vaccine design. Variable loops 1 and 2 (V1V2), positioned at the Env trimer apex, are key regions linked to neutralization. We describe non-canonical cysteine (Cys) residues in V1 that are enriched in individuals with elite neutralization breadth. Analyzing over 65,000 V1 sequences from the CATNAP database, AMP trials, and longitudinal HIV-1 cohorts (SHCS, ZPHI, and CAPRISA), we found that Env variants with extra V1 Cys are present at low levels and fluctuate over time. Extra V1 Cys associate with elite plasma neutralization, and two additional Cys are preferred, suggesting stabilization through disulfide bonds. Among 34 broadly neutralizing antibody (bnAb)-inducer Envs, 17.6% had elongated V1 regions with extra Cys. These extra Cys moderately increased neutralization resistance and altered bnAb epitope accessibility. Collectively, altering epitope exposure alongside Env stabilization renders the V1 twin Cys motif a promising feature for HIV-1 bnAb immunogens.
Collapse
Affiliation(s)
- Maria C Hesselman
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Marius Zeeb
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Jennifer Mamrosh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Samuel Kariuki
- Department of Biological Sciences, School of Science, University of Eldoret, 30100 Eldoret, Kenya; Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Ian Pichler
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Michèle Sickmann
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Masako M Kaufmann
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Karin J Metzner
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Audrey Rindler
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Herbert Kuster
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Craig Adams
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Ruwayhida Thebus
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Michael Huber
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, 1205 Geneva, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| | - Roger Koller
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | | | - Simona Frigerio
- Institute of Laboratory Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Dylan H Westfall
- Department of Microbiology at the University of Washington, Seattle, WA 98195, USA
| | - Wenjie Deng
- Department of Microbiology at the University of Washington, Seattle, WA 98195, USA
| | | | | | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe; University of California, San Francisco, San Francisco, CA 94115, USA
| | - Hugh Murrell
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Nigel Garrett
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, 4041 Durban, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James I Mullins
- Department of Microbiology at the University of Washington, Seattle, WA 98195, USA
| | - Carolyn Williamson
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, 2050 Johannesburg, South Africa; National Institute for Communicable Disease of the National Health Laboratory Services, 2192 Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland.
| |
Collapse
|
3
|
Li M, Li D. Cysteines shape antibody battles for HIV-1 Env. Cell Host Microbe 2025; 33:171-172. [PMID: 39947129 DOI: 10.1016/j.chom.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 05/09/2025]
Abstract
In this issue of Cell Host & Microbe, Hesselman et al. investigate the relationship between the presence of non-canonical cysteine residues in HIV-1 V1 region of the Envelope glycoprotein and the development of neutralization breadth through population-based analyses.
Collapse
Affiliation(s)
- Mingxi Li
- Center for Infectious Disease Research, Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Dapeng Li
- Center for Infectious Disease Research, Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
4
|
Griffith GL, Machmach K, Jian N, Kim D, Costanzo MC, Creegan M, Swafford I, Kundu G, Yum L, Bolton JS, Smith L, Slike BM, Bergmann-Leitner ES, Thomas R, Michael NL, Ake JA, Eller LA, Robb ML, Townsley SM, Krebs SJ, Paquin-Proulx D, for the RV217 Study Group. CD16 and CD57 expressing gamma delta T cells in acute HIV-1 infection are associated with the development of neutralization breadth. PLoS Pathog 2025; 21:e1012916. [PMID: 39888945 PMCID: PMC11805418 DOI: 10.1371/journal.ppat.1012916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/07/2025] [Accepted: 01/17/2025] [Indexed: 02/02/2025] Open
Abstract
New HIV vaccine approaches are focused on eliciting broadly neutralizing antibodies. We characterized early gamma-delta (γδ) T cell responses starting from pre-acquisition and during acute HIV infection (AHI) in participants previously characterized for neutralization breadth development. We found significant differences in γδ T cell surface marker expression in participants that developed neutralization breadth compared to those that did not. Activation of γδ T cells occurred within the first weeks of HIV acquisition and associated with viral load. Expression of CD16 on Vδ1 T cells and CD57 on Vδ2 T cells were found to be significantly higher in broad neutralizers during AHI, and associated with the development of neutralization breadth years later. In addition, the levels of CD16 on Vδ1 T cells was associated with early production of founder virus Env-specific IgM. Thus, γδ T cells may promote development of neutralization breadth, which has implications for HIV vaccine strategies.
Collapse
Affiliation(s)
- Gina L. Griffith
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kawthar Machmach
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Ningbo Jian
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Dohoon Kim
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Margaret C. Costanzo
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Matthew Creegan
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Isabella Swafford
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Gautam Kundu
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Lauren Yum
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jessica S. Bolton
- Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lauren Smith
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Bonnie M. Slike
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Elke S. Bergmann-Leitner
- Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Rasmi Thomas
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Julie A. Ake
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Leigh Anne Eller
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Samantha M. Townsley
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - for the RV217 Study Group
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
5
|
Schwarzmüller M, Trkola A. ART-DEX: A novel strategy to monitor broadly neutralizing antibody activity during antiretroviral therapy of HIV-1. STAR Protoc 2024; 5:103056. [PMID: 39217609 PMCID: PMC11403073 DOI: 10.1016/j.xpro.2024.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024] Open
Abstract
Therapeutic use of HIV-1 broadly neutralizing antibodies (bnAbs), passively administered or induced by therapeutic vaccines, is a focus of advanced treatment strategies under development. To enable monitoring of bnAb activity during concurrent antiretroviral therapy (ART), we developed ART-DEX, an analytic strategy that allows high-throughput detection of pure antibody-based neutralizing activity. ART-DEX combines pH-dependent dissociation of antiretrovirals (ARVs) from plasma proteins and size exclusion to effectively remove ARVs from plasma samples, reducing the confounding effects of ARVs on neutralization assays. For complete details on the use and execution of this protocol, please refer to Schwarzmüller et al.1.
Collapse
Affiliation(s)
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Abela IA, Hauser A, Schwarzmüller M, Pasin C, Kusejko K, Epp S, Cavassini M, Battegay M, Rauch A, Calmy A, Notter J, Bernasconi E, Fux CA, Leuzinger K, Perreau M, Ramette A, Gottschalk J, Schindler E, Wepf A, Marconato M, Manz MG, Frey BM, Braun DL, Huber M, Günthard HF, Trkola A, Kouyos RD. Deciphering Factors Linked With Reduced Severe Acute Respiratory Syndrome Coronavirus 2 Susceptibility in the Swiss HIV Cohort Study. J Infect Dis 2024; 230:e292-e304. [PMID: 38227786 PMCID: PMC11326820 DOI: 10.1093/infdis/jiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Factors influencing susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain to be resolved. Using data from the Swiss HIV Cohort Study on 6270 people with human immunodeficiency virus (HIV) and serologic assessment for SARS-CoV-2 and circulating human coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS We analyzed SARS-CoV-2 polymerase chain reaction test results, COVID-19-related hospitalizations, and deaths reported to the Swiss HIV Cohort Study between 1 January 2020 and 31 December 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in prepandemic (2019) and pandemic (2020) biobanked plasma samples and compared with findings in HIV-negative individuals. We applied logistic regression, conditional logistic regression, and bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and antibody responses to SARS-CoV-2 in people with HIV. RESULTS No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High prepandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses on infection. We observed a robust protective effect of smoking on SARS-CoV-2 infection risk (adjusted odds ratio, 0.46 [95% confidence interval, .38-.56]; P < .001), which occurred even in previous smokers and was highest for heavy smokers. CONCLUSIONS Our findings of 2 independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anthony Hauser
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Julia Notter
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Christoph A Fux
- Department of Infectious Diseases, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | - Alexander Wepf
- Institute of Laboratory Medicine, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Maddalena Marconato
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Plaza-Soriano Á, Martínez-Lobo FJ, Garza-Moreno L, Castillo-Pérez J, Caballero E, Castro JM, Simarro I, Prieto C. Determination of the frequency of individuals with broadly cross-reactive neutralizing antibodies against PRRSV in the sow population under field conditions. Porcine Health Manag 2024; 10:26. [PMID: 38978128 PMCID: PMC11229297 DOI: 10.1186/s40813-024-00372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a significant swine pathogen, yet the immune response components contributing to protection remain incompletely understood. Broadly reactive neutralizing antibodies (bNAs) may play a crucial role in preventing reinfections by heterologous viruses, although their occurrence is considered low under both field and experimental conditions. This study aimed to assess the frequency of sows exhibiting bNAs against PRRSV under field conditions and to analyze the epidemiological factors influencing the occurrence of these elite neutralizers. Blood samples were collected from breeding sows across eleven unrelated pig farms, with samples categorized by parity. Serum obtained was utilized in virus neutralization assays (VNs) against six PRRSV field isolates and two MLV strains. RESULTS Approximately 7% of the sows exhibited neutralization activity against all viruses in the panel, with a geometric mean of the titer (GMT) of NAs at or exceeding 4 log2. Exclusion of the PRRSV-2 isolate from the panel increased the proportion of elite neutralizers to around 15%. Farm-specific analysis revealed significant variations in both GMT of NAs and proportion of elite neutralizers. PRRSV unstable farms and those with a PRRS outbreak in the last 12 months displayed higher GMT of NAs compared to stable farms without recent outbreaks. The GMT of NAs showed a gradual, albeit moderate, increase with the parity of the sows. Parity's impact on bNA response was consistently observed in stable farms but not necessarily in unstable farms or those with recent outbreaks. Finally, the results indicated that vaccinated animals had higher NA titers against the vaccine virus used in the farm than against field viruses. CONCLUSION bNAs against heterologous isolates induced by PRRSV infection under field conditions are generally low, often falling below titers necessary for protection against reproductive failure. However, a subset of sows (approximately 15%) can be considered elite neutralizers, efficiently recognizing various PRRSV strains. Repeated exposures to PRRSV play a crucial role in eliciting these bNAs, with a higher frequency observed in unstable farms and those with recent outbreaks. In stable farms, parity only marginally influences bNA titers, highlighting its limited role compared to the impact of PRRSV exposure history.
Collapse
Affiliation(s)
- Ángeles Plaza-Soriano
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Engineering and Veterinary Medicine, University of Lleida, Lleida, Spain.
| | - Laura Garza-Moreno
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Castillo-Pérez
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elki Caballero
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Castro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Simarro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Love M, Behrens-Bradley N, Ahmad A, Wertheimer A, Klotz S, Ahmad N. Plasma Levels of Secreted Cytokines in Virologically Controlled HIV-Infected Aging Adult Individuals on Long-Term Antiretroviral Therapy. Viral Immunol 2024; 37:202-215. [PMID: 38717822 PMCID: PMC11238844 DOI: 10.1089/vim.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
HIV-infected (HIV+) aging adult individuals who have achieved undetectable viral load and improved CD4 T cell counts due to long-term antiretroviral therapy (ART) may continue to experience inflammation and immunosenescence. Therefore, we evaluated the plasma levels of proinflammatory and anti-inflammatory cytokines in 173 HIV+ aging adult individuals with age ranging from 22 to 81 years on long-term ART with viral load mostly <20 HIV RNA copies/mL and compared with 92 HIV-uninfected (HIV- or healthy controls) aging individuals. We found that the median levels of TNF-α, IFN-γ, IL-1β, IL-6, and IL-10 were higher (p < 0.001 to <0.0001) and IL-17 trended lower in HIV+ individuals than healthy controls. Increasing CD4 T cell counts in the HIV+ cohort did not significantly change the circulating cytokine levels, although levels of IL-1β increased. However, IL-17 levels significantly decreased with increasing CD4 counts in the healthy controls and yet unchanged in the HIV+ cohort. Of note, the levels of circulating IL-17 were significantly reduced comparatively in the healthy controls where the CD4 count was below 500, yet once above 500 the levels of CD4, IL-17 levels were comparable with the HIV+ cohort. With increasing CD8 T cell counts, the levels of these cytokines were not significantly altered, although levels of TNF-α, IFN-γ, and IL-6 declined, whereas IL-1β and IL-17 were slightly elevated. Furthermore, increasing age of the HIV+ cohort did not significantly impact the cytokine levels although a slight increase in TNF-α, IL-6, IL-10, and IL-17 was observed. Similarly, these cytokines were not significantly modulated with increasing levels of undetectable viral loads, whereas some of the HIV+ individuals had higher levels of TNF-α, IFN-γ, and IL-1β. In summary, our findings show that HIV+ aging adult individuals with undetectable viral load and restored CD4 T cell counts due to long-term ART still produce higher levels of both proinflammatory and anti-inflammatory cytokines compared with healthy controls, suggesting some level of inflammation.
Collapse
Affiliation(s)
- Maria Love
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | | | - Aasim Ahmad
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Anne Wertheimer
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Stephen Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Trkola A, Moore PL. Vaccinating people living with HIV: a fast track to preventive and therapeutic HIV vaccines. THE LANCET. INFECTIOUS DISEASES 2024; 24:e252-e255. [PMID: 37883985 DOI: 10.1016/s1473-3099(23)00481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 10/28/2023]
Abstract
Globally, the number of new HIV infections remains unacceptably high, and urgent new approaches are needed to advance HIV vaccine science. However, the development of a preventive HIV vaccine has proven to be an intractable scientific challenge. Recent advances in HIV immunogen design have taken the field a step closer to triggering the rare precursors of broadly neutralising antibodies, which are widely assumed to be necessary for a vaccine. Nonetheless, these same studies and previous studies in people living with HIV have also highlighted the major hurdles that must be overcome to boost the cross-reactivity and potency of these responses to sufficient levels. Here, we describe an opportunity for fast-tracking the evaluation of candidate preventive and therapeutic vaccines by immunising people with HIV who are antiretroviral therapy suppressed. We argue that such studies, unlike traditional studies of vaccines in participants not infected with HIV, will be faster and more informative and will allow the vaccine field to bypass multiple hurdles. This approach will accelerate the process of defining the capacity of immunogens to trigger relevant antibodies, currently an extremely slow and expensive pathway, and provide a quick path to creating an HIV vaccine.
Collapse
Affiliation(s)
- Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | - Penny L Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Florova M, Abreu-Mota T, Paesen GC, Beetschen AS, Cornille K, Marx AF, Narr K, Sahin M, Dimitrova M, Swarnalekha N, Beil-Wagner J, Savic N, Pelczar P, Buch T, King CG, Bowden TA, Pinschewer DD. Central tolerance shapes the neutralizing B cell repertoire against a persisting virus in its natural host. Proc Natl Acad Sci U S A 2024; 121:e2318657121. [PMID: 38446855 PMCID: PMC10945855 DOI: 10.1073/pnas.2318657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Viral mimicry of host cell structures has been postulated to curtail the B cell receptor (BCR) repertoire against persisting viruses through tolerance mechanisms. This concept awaits, however, experimental testing in a setting of natural virus-host relationship. We engineered mouse models expressing a monoclonal BCR specific for the envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV), a naturally persisting mouse pathogen. When the heavy chain of the LCMV-neutralizing antibody KL25 was paired with its unmutated ancestor light chain, most B cells underwent receptor editing, a behavior reminiscent of autoreactive clones. In contrast, monoclonal B cells expressing the same heavy chain in conjunction with the hypermutated KL25 light chain did not undergo receptor editing but exhibited low levels of surface IgM, suggesting that light chain hypermutation had lessened KL25 autoreactivity. Upon viral challenge, these IgMlow cells were not anergic but up-regulated IgM, participated in germinal center reactions, produced antiviral antibodies, and underwent immunoglobulin class switch as well as further affinity maturation. These studies on a persisting virus in its natural host species suggest that central tolerance mechanisms prune the protective antiviral B cell repertoire.
Collapse
Affiliation(s)
- Marianna Florova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Tiago Abreu-Mota
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Sophia Beetschen
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Karen Cornille
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Kerstin Narr
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mehmet Sahin
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mirela Dimitrova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Nivedya Swarnalekha
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Natasa Savic
- ETH Phenomics Center, ETH Zürich, Zürich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4001, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Carolyn G. King
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| |
Collapse
|
12
|
Griffith S, Muir L, Suchanek O, Hope J, Pade C, Gibbons JM, Tuong ZK, Fung A, Touizer E, Rees-Spear C, Nans A, Roustan C, Alguel Y, Fink D, Orkin C, Deayton J, Anderson J, Gupta RK, Doores KJ, Cherepanov P, McKnight Á, Clatworthy M, McCoy LE. Preservation of memory B cell homeostasis in an individual producing broadly neutralising antibodies against HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578789. [PMID: 38370662 PMCID: PMC10871235 DOI: 10.1101/2024.02.05.578789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.
Collapse
Affiliation(s)
- Sarah Griffith
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Luke Muir
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Audrey Fung
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Emma Touizer
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Rees-Spear
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Yilmaz Alguel
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Douglas Fink
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Orkin
- SHARE collaborative, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Deayton
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Jane Anderson
- Homerton University Hospital NHS Foundation, London, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
13
|
Freind MC, Tallón de Lara C, Kouyos RD, Wimmersberger D, Kuster H, Aceto L, Kovari H, Flepp M, Schibli A, Hampel B, Grube C, Braun DL, Günthard HF. Cohort Profile: The Zurich Primary HIV Infection Study. Microorganisms 2024; 12:302. [PMID: 38399706 PMCID: PMC10893142 DOI: 10.3390/microorganisms12020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The Zurich Primary HIV Infection (ZPHI) study is a longitudinal cohort study established in 2002, aiming to study the clinical, epidemiological, and biological characteristics of primary HIV infection. The ZPHI enrolls individuals with documented primary HIV-1 infection. At the baseline and thereafter, the socio-demographic, clinical, and laboratory data are systematically collected, and regular blood sampling is performed for biobanking. By the end of December 2022, 486 people were enrolled, of which 353 were still undergoing active follow-up. Of the 486 participants, 86% had an acute infection, and 14% a recent HIV-1 infection. Men who have sex with men accounted for 74% of the study population. The median time from the estimated date of infection to diagnosis was 32 days. The median time from diagnosis to the initiation of antiretroviral therapy was 11 days, and this has consistently decreased over the last two decades. During the seroconversion phase, 447 (92%) patients reported having symptoms, of which only 73% of the patients were classified as having typical acute retroviral syndrome. The ZPHI study is a well-characterized cohort belonging to the most extensively studied primary HIV infection cohort. Its findings contribute to advancing our understanding of the early stages of HIV infection and pathogenesis, and it is paving the way to further improve HIV translational research and HIV medicine.
Collapse
Affiliation(s)
- Matt C. Freind
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
| | - Carmen Tallón de Lara
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
- Institute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland
| | - David Wimmersberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
| | - Hebert Kuster
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
| | - Leonardo Aceto
- Center for Infectious Diseases, Klinik im Park, 8027 Zurich, Switzerland; (L.A.); (H.K.); (M.F.)
| | - Helen Kovari
- Center for Infectious Diseases, Klinik im Park, 8027 Zurich, Switzerland; (L.A.); (H.K.); (M.F.)
| | - Markus Flepp
- Center for Infectious Diseases, Klinik im Park, 8027 Zurich, Switzerland; (L.A.); (H.K.); (M.F.)
| | - Adrian Schibli
- Department of Infectious Diseases, Hospital Epidemiology and Occupational Health, City Hospital Zurich, 8091 Zurich, Switzerland;
| | | | | | - Dominique L. Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
- Institute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.C.F.); (C.T.d.L.); (R.D.K.); (D.W.); (H.K.); (D.L.B.)
- Institute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
14
|
Sanchez-Merino V, Martin-Serrano M, Beltran M, Lazaro-Martin B, Cervantes E, Oltra M, Sainz T, Garcia F, Navarro ML, Yuste E. The Association of HIV-1 Neutralization in Aviremic Children and Adults with Time to ART Initiation and CD4+/CD8+ Ratios. Vaccines (Basel) 2023; 12:8. [PMID: 38276667 PMCID: PMC10820134 DOI: 10.3390/vaccines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Broadly neutralizing antibodies (bnAbs) bind and neutralize diverse HIV isolates and demonstrate protective effects in primate models and humans against specific isolates. To develop an effective HIV vaccine, it is widely believed that inducing these antibodies is crucial. However, the high somatic hypermutation in bnAbs and the limited affinity of HIV Env proteins for bnAb germline precursors suggest that extended antigen exposure is necessary for their production. Consequently, HIV vaccine research is exploring complex sequential vaccination strategies to guide the immune response through maturation stages. In this context, the exploration of the factors linked to the generation of these antibodies across diverse age groups becomes critical. In this study, we assessed the anti-HIV-1 neutralization potency and breadth in 108 aviremic adults and 109 aviremic children under 15 years of age who were receiving ART. We used a previously described minipanel of recombinant viruses and investigated the factors associated with neutralization in these individuals. We identified individuals in both groups who were capable of neutralizing viruses from three different subtypes, with greater cross-neutralization observed in the adult group (49.0% vs. 9.2%). In both groups, we observed an inverse association between neutralization breadth and the CD4+/CD8+ ratio, as well as a direct association with the time to ART initiation. However, we found no association with time post-infection, cumulative ART duration, or CD8+ cell levels. The present study demonstrates that children receiving antiretroviral therapy generate broadly neutralizing responses to HIV-1, albeit with lower magnitude compared to adults. We also observed that neutralization breadth is associated with CD4+/CD8+ levels and time to treatment initiation in both children and adults living with HIV-1. Our interpretation of these results is that a delay in ART initiation could have prolonged the antigenic stimulation associated with viral replication and thus facilitate the capacity to elicit long-lasting broadly neutralizing responses. These results corroborate prior findings that show that HIV-1-neutralizing responses can persist for years, even at low antigen levels, implying an HIV-1 vaccine may induce lasting neutralizing antibody response.
Collapse
Affiliation(s)
- Victor Sanchez-Merino
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Faculty of Health Sciences, Alfonso X el Sabio University, 28691 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| | - Miguel Martin-Serrano
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuela Beltran
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| | - Beatriz Lazaro-Martin
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Eloisa Cervantes
- Sección de Infectología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - Manuel Oltra
- Sección de Patologia Infecciosa Infantil, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Talia Sainz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Department of Pediatrics, Infectious and Tropical Diseases, La Paz Research Institute (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Maria Luisa Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Eloisa Yuste
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| |
Collapse
|
15
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
16
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Maliqi L, Friedrich N, Glögl M, Schmutz S, Schmidt D, Rusert P, Schanz M, Zaheri M, Pasin C, Niklaus C, Foulkes C, Reinberg T, Dreier B, Abela I, Peterhoff D, Hauser A, Kouyos RD, Günthard HF, van Gils MJ, Sanders RW, Wagner R, Plückthun A, Trkola A. Assessing immunogenicity barriers of the HIV-1 envelope trimer. NPJ Vaccines 2023; 8:148. [PMID: 37777519 PMCID: PMC10542815 DOI: 10.1038/s41541-023-00746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Understanding the balance between epitope shielding and accessibility on HIV-1 envelope (Env) trimers is essential to guide immunogen selection for broadly neutralizing antibody (bnAb) based vaccines. To investigate the antigenic space of Env immunogens, we created a strategy based on synthetic, high diversity, Designed Ankyrin Repeat Protein (DARPin) libraries. We show that DARPin Antigenicity Analysis (DANA), a purely in vitro screening tool, has the capability to extrapolate relevant information of antigenic properties of Env immunogens. DANA screens of stabilized, soluble Env trimers revealed that stronger trimer stabilization led to the selection of highly mutated DARPins with length variations and framework mutations mirroring observations made for bnAbs. By mimicking heterotypic prime-boost immunization regimens, DANA may be used to select immunogen combinations that favor the selection of trimer-reactive binders. This positions DANA as a versatile strategy for distilling fundamental antigenic features of immunogens, complementary to preclinical immunogenicity testing.
Collapse
Affiliation(s)
- Liridona Maliqi
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Matthias Glögl
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Cyrille Niklaus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Irene Abela
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Alexandra Hauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
18
|
Taveira N, Figueiredo I, Calado R, Martin F, Bártolo I, Marcelino JM, Borrego P, Cardoso F, Barroso H. An HIV-1/HIV-2 Chimeric Envelope Glycoprotein Generates Binding and Neutralising Antibodies against HIV-1 and HIV-2 Isolates. Int J Mol Sci 2023; 24:ijms24109077. [PMID: 37240423 DOI: 10.3390/ijms24109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The development of immunogens that elicit broadly reactive neutralising antibodies (bNAbs) is the highest priority for an HIV vaccine. We have shown that a prime-boost vaccination strategy with vaccinia virus expressing the envelope glycoprotein gp120 of HIV-2 and a polypeptide comprising the envelope regions C2, V3 and C3 elicits bNAbs against HIV-2. We hypothesised that a chimeric envelope gp120 containing the C2, V3 and C3 regions of HIV-2 and the remaining parts of HIV-1 would elicit a neutralising response against HIV-1 and HIV-2. This chimeric envelope was synthesised and expressed in vaccinia virus. Balb/c mice primed with the recombinant vaccinia virus and boosted with an HIV-2 C2V3C3 polypeptide or monomeric gp120 from a CRF01_AG HIV-1 isolate produced antibodies that neutralised >60% (serum dilution 1:40) of a primary HIV-2 isolate. Four out of nine mice also produced antibodies that neutralised at least one HIV-1 isolate. Neutralising epitope specificity was assessed using a panel of HIV-1 TRO.11 pseudoviruses with key neutralising epitopes disrupted by alanine substitution (N160A in V2; N278A in the CD4 binding site region; N332A in the high mannose patch). The neutralisation of the mutant pseudoviruses was reduced or abolished in one mouse, suggesting that neutralising antibodies target the three major neutralising epitopes in the HIV-1 envelope gp120. These results provide proof of concept for chimeric HIV-1/HIV-2 envelope glycoproteins as vaccine immunogens that can direct the antibody response against neutralising epitopes in the HIV-1 and HIV-2 surface glycoproteins.
Collapse
Affiliation(s)
- Nuno Taveira
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Inês Figueiredo
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Rita Calado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Francisco Martin
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - José M Marcelino
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Pedro Borrego
- Centre for Public Administration and Public Policies, Institute of Social and Political Sciences, Universidade de Lisboa, 1300-663 Lisbon, Portugal
| | - Fernando Cardoso
- Unidade de Microbiologia Médica, Saúde Global e Medicina Tropical, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Helena Barroso
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| |
Collapse
|
19
|
Adeoye B, Nakiyingi L, Moreau Y, Nankya E, Olson AJ, Zhang M, Jacobson KR, Gupta A, Manabe YC, Hosseinipour MC, Kumwenda J, Sagar M, AIDS Clinical Trials Group A5274 (REMEMBER) Study Team. Mycobacterium tuberculosis disease associates with higher HIV-1-specific antibody responses. iScience 2023; 26:106631. [PMID: 37168567 PMCID: PMC10165194 DOI: 10.1016/j.isci.2023.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common infection among people with HIV (PWH). Mtb disease-associated inflammation could affect HIV-directed immune responses in PWH. We show that HIV antibodies are broader and more potent in PWH in the presence as compared to the absence of Mtb disease. With co-existing Mtb disease, the virus in PWH also encounters unique antibody selection pressure. The Mtb-linked HIV antibody enhancement associates with specific mediators important for B cell and antibody development. This Mtb humoral augmentation does not occur due to cross-reactivity, a generalized increase in all antibodies, or differences in duration or amount of antigen exposure. We speculate that the co-localization of Mtb and HIV in lymphatic tissues leads to the emergence of potent HIV antibodies. PWH's Mtb disease status has implications for the future use of HIV broadly neutralizing antibodies as prophylaxis or treatment and the induction of better humoral immunity.
Collapse
Affiliation(s)
- Bukola Adeoye
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lydia Nakiyingi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ethel Nankya
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex J. Olson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Mo Zhang
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Karen R. Jacobson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Amita Gupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukari C. Manabe
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Manish Sagar
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - AIDS Clinical Trials Group A5274 (REMEMBER) Study Team
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
20
|
Garg AK, Mitra T, Schips M, Bandyopadhyay A, Meyer-Hermann M. Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: A computational study. Front Immunol 2023; 14:1080853. [PMID: 36993964 PMCID: PMC10042134 DOI: 10.3389/fimmu.2023.1080853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood. Such a permissive selection may allow non-immunodominant clones, which are often rare and of low-affinity, to somatically hypermutate and result in a broad and diverse B cell response. How the constituent elements of germinal centers, their quantity and kinetics may modulate diversity of B cells, has not been addressed well. By implementing a state-of-the-art agent-based model of germinal center, here, we study how these factors impact temporal evolution of B cell clonal diversity and its underlying balance with affinity maturation. While we find that the extent of selection stringency dictates clonal dominance, limited antigen availability on follicular dendritic cells is shown to expedite the loss of diversity of B cells as germinal centers mature. Intriguingly, the emergence of a diverse set of germinal center B cells depends on high affinity founder cells. Our analysis also reveals a substantial number of T follicular helper cells to be essential in balancing affinity maturation with clonal diversity, as a low number of T follicular helper cells impedes affinity maturation and also contracts the scope for a diverse B cell response. Our results have implications for eliciting antibody responses to non-immunodominant specificities of the pathogens by controlling the regulators of the germinal center reaction, thereby pivoting a way for vaccine development to generate broadly protective antibodies.
Collapse
Affiliation(s)
- Amar K. Garg
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanmay Mitra
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Tanmay Mitra, ; Michael Meyer-Hermann,
| | - Marta Schips
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Tanmay Mitra, ; Michael Meyer-Hermann,
| |
Collapse
|
21
|
Identification of early-induced broadly neutralizing activities against transmitted founder HIV strains. AIDS 2023; 37:43-49. [PMID: 36001527 PMCID: PMC9794156 DOI: 10.1097/qad.0000000000003371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Broadly neutralizing antibodies have been proposed as key actors for HIV vaccine development. However, they display features of highly matured antibodies, hampering their induction by vaccination. As protective broadly neutralizing antibodies should be induced rapidly after vaccination and should neutralize the early-transmitted founder (T/F) viruses, we searched whether such antibodies may be induced following HIV infection. DESIGN Sera were collected during acute infection (Day 0) and at viral set point (Month 6/12) and the neutralizing activity against T/F strains was investigated. Neutralizing activity in sera collected from chronic progressor was analyzed in parallel. METHODS We compared neutralizing activity against T/F strains with neutralizing activity against non-T/F strains using the conventional TZM-bL neutralizing assay. RESULTS We found neutralizing antibodies (nAbs) preferentially directed against T/F viruses in sera collected shortly after infection. This humoral response evolved by shifting to nAbs directed against non-T/F strains. CONCLUSION Although features associated with nAbs directed against T/F viruses need further investigations, these early-induced nAbs may display lesser maturation characteristics; therefore, this might increase their interest for future vaccine designs.
Collapse
|
22
|
Tohma K, Ushijima H. [Molecular epidemiology and evolution of human noroviruses]. Uirusu 2023; 73:17-32. [PMID: 39343517 DOI: 10.2222/jsv.73.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Noroviruses are the most common viral cause of acute gastroenteritis after the introduction of rotavirus vaccines. Norovirus infection can cause severe symptoms in vulnerable populations including young children and the elderly. Thus, it is still a leading cause of death from diarrhea in children in developing countries. Recent advancement of genomics platforms facilitated understanding of the epidemiology of norovirus, while the whole picture of norovirus diversity is still undetermined. Currently, there are no approved vaccines for norovirus, but state-of-the-art norovirus cultivation systems could elucidate the antigenic diversity of this fast-evolving virus. In this review, we will summarize the historical and latest findings of norovirus epidemiology, diversity, and evolution.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, US Food and Drug Administration, Maryland, Unites States
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Martin F, Marcelino JM, Palladino C, Bártolo I, Tracana S, Moranguinho I, Gonçalves P, Mateus R, Calado R, Borrego P, Leitner T, Clemente S, Taveira N. Long-Term and Low-Level Envelope C2V3 Stimulation by Highly Diverse Virus Isolates Leads to Frequent Development of Broad and Elite Antibody Neutralization in HIV-1-Infected Individuals. Microbiol Spectr 2022; 10:e0163422. [PMID: 36445130 PMCID: PMC9769935 DOI: 10.1128/spectrum.01634-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/29/2022] [Indexed: 12/03/2022] Open
Abstract
A minority of HIV-1-infected patients produce broadly neutralizing antibodies (bNAbs). Identification of viral and host correlates of bNAb production may help develop vaccines. We aimed to characterize the neutralizing response and viral and host-associated factors in Angola, which has one of the oldest, most dynamic, and most diverse HIV-1 epidemics in the world. Three hundred twenty-two HIV-1-infected adults from Angola were included in this retrospective study. Phylogenetic analysis of C2V3C3 env gene sequences was used for virus subtyping. Env-binding antibody reactivity was tested against polypeptides comprising the C2, V3, and C3 regions. Neutralizing-antibody responses were determined against a reference panel of tier 2 Env pseudoviruses in TZM-bl cells; neutralizing epitope specificities were predicted using ClustVis. All subtypes were found, along with untypeable strains and recombinant forms. Notably, 56% of the patients developed cross neutralizing, broadly neutralizing, or elite neutralizing responses. Broad and elite neutralization was associated with longer infection time, subtype C, lower CD4+ T cell counts, higher age, and higher titer of C2V3C3-specific antibodies relative to failure to develop bNAbs. Neutralizing antibodies targeted the V3-glycan supersite in most patients. V3 and C3 regions were significantly less variable in elite neutralizers than in weak neutralizers and nonneutralizers, suggesting an active role of V3C3-directed bNAbs in controlling HIV-1 replication and diversification. In conclusion, prolonged and low-level envelope V3C3 stimulation by highly diverse and ancestral HIV-1 isolates promotes the frequent elicitation of bNAbs. These results provide important clues for the development of an effective HIV-1 vaccine. IMPORTANCE Studies on neutralization by antibodies and their determinants in HIV-1-infected individuals have mostly been conducted in relatively recent epidemics caused by subtype B and C viruses. Results have suggested that elicitation of broadly neutralizing antibodies (bNAbs) is uncommon. The mechanisms underlying the elicitation of bNAbs are still largely unknown. We performed the first characterization of the plasma neutralizing response in a cohort of HIV-1-infected patients from Angola. Angola is characterized by an old and dynamic epidemic caused by highly diverse HIV-1 variants. Remarkably, more than half of the patients produced bNAbs, mostly targeting the V3-glycan supersite in HIV-1. This was associated with higher age, longer infection time, lower CD4+ T cell counts, subtype C infection, or higher titer of C2V3C3-specific antibodies relative to patients that did not develop bNAbs. These results may help develop the next generation of vaccine candidates for HIV-1.
Collapse
Affiliation(s)
- Francisco Martin
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - José Maria Marcelino
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Claudia Palladino
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Bártolo
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Tracana
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Moranguinho
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paloma Gonçalves
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Mateus
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Calado
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Borrego
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Nuno Taveira
- Research Institute for Medicine, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| |
Collapse
|
24
|
Advances in Molecular Genetics Enabling Studies of Highly Pathogenic RNA Viruses. Viruses 2022; 14:v14122682. [PMID: 36560685 PMCID: PMC9784166 DOI: 10.3390/v14122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Experimental work with viruses that are highly pathogenic for humans and animals requires specialized Biosafety Level 3 or 4 facilities. Such pathogens include some spectacular but also rather seldomly studied examples such as Ebola virus (requiring BSL-4), more wide-spread and commonly studied viruses such as HIV, and the most recent example, SARS-CoV-2, which causes COVID-19. A common characteristic of these virus examples is that their genomes consist of single-stranded RNA, which requires the conversion of their genomes into a DNA copy for easy manipulation; this can be performed to study the viral life cycle in detail, develop novel therapies and vaccines, and monitor the disease course over time for chronic virus infections. We summarize the recent advances in such new genetic applications for RNA viruses in Switzerland over the last 25 years, from the early days of the HIV/AIDS epidemic to the most recent developments in research on the SARS-CoV-2 coronavirus. We highlight game-changing collaborative efforts between clinical and molecular disciplines in HIV research on the path to optimal clinical disease management. Moreover, we summarize how the modern technical evolution enabled the molecular studies of emerging RNA viruses, confirming that Switzerland is at the forefront of SARS-CoV-2 research and potentially other newly emerging viruses.
Collapse
|
25
|
Zacharopoulou P, Ansari MA, Frater J. A calculated risk: Evaluating HIV resistance to the broadly neutralising antibodies10-1074 and 3BNC117. Curr Opin HIV AIDS 2022; 17:352-358. [PMID: 36178770 PMCID: PMC9594129 DOI: 10.1097/coh.0000000000000764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THIS REVIEW Broadly neutralising antibodies (bNAbs) are a promising new therapy for the treatment of HIV infection. However, the effective use of bNAbs is impacted by the presence of preexisting virological resistance and the potential to develop new resistance during treatment. With several bNAb clinical trials underway, sensitive and scalable assays are needed to screen for resistance. This review summarises the data on resistance from published clinical trials using the bNAbs 10-1074 and 3BNC117 and evaluates current approaches for detecting bNAb sensitivity as well as their limitations. RECENT FINDINGS Analyses of samples from clinical trials of 10-1074 and 3BNC117 reveal viral mutations that emerge on therapy which may result in bNAb resistance. These mutations are also found in some potential study participants prior to bNAb exposure. These clinical data are further informed by ex-vivo neutralisation assays which offer an alternative measure of resistance and allow more detailed interrogation of specific viral mutations. However, the limited amount of publicly available data and the need for better understanding of other viral features that may affect bNAb binding mean there is no widely accepted approach to measuring bNAb resistance. SUMMARY Resistance to the bNAbs 10-1074 and 3BNC117 may significantly impact clinical outcome following their therapeutic administration. Predicting bNAb resistance may help to lower the risk of treatment failure and therefore a robust methodology to screen for bNAb sensitivity is needed.
Collapse
Affiliation(s)
- Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
| | - M. Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
26
|
Optimal sequence-based design for multi-antigen HIV-1 vaccines using minimally distant antigens. PLoS Comput Biol 2022; 18:e1010624. [PMID: 36315492 PMCID: PMC9621458 DOI: 10.1371/journal.pcbi.1010624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The immense global diversity of HIV-1 is a significant obstacle to developing a safe and effective vaccine. We recently showed that infections established with multiple founder variants are associated with the development of neutralization breadth years later. We propose a novel vaccine design strategy that integrates the variability observed in acute HIV-1 infections with multiple founder variants. We developed a probabilistic model to simulate this variability, yielding a set of sequences that present the minimal diversity seen in an infection with multiple founders. We applied this model to a subtype C consensus sequence for the Envelope (Env) (used as input) and showed that the simulated Env sequences mimic the mutational landscape of an infection with multiple founder variants, including diversity at antibody epitopes. The derived set of multi-founder-variant-like, minimally distant antigens is designed to be used as a vaccine cocktail specific to a HIV-1 subtype or circulating recombinant form and is expected to promote the development of broadly neutralizing antibodies. Diverse HIV-1 populations are generally thought to promote neutralizing responses. Current leading HIV-1 vaccine design strategies maximize the distance between antigens to attempt to cover global HIV-1 diversity or serialize immunizations to recapitulate the temporal evolution of HIV-1 during infection. To date, no vaccine has elicited broadly neutralizing antibodies. As we recently demonstrated that infection with multiple HIV-1 founder variants is predictive of neutralization breadth, we propose a novel strategy that endeavors to promote the development of broadly neutralizing antibodies by replicating the diversity of multi-founder variant acute infections. By training an HIV-1 Env consensus sequence on the diversity from acute infections with multiple founders, we derived in silico a set of minimally distant antigens that is representative of the diversity seen in a multi-founder acute infection. As the model is particular to the input sequence, it can produce antigens specific to any HIV-1 subtype or circulating recombinant form (CRF). We applied this to HIV-1 subtype C and obtained a set of minimally distant antigens that can be used as a vaccine cocktail.
Collapse
|
27
|
Broadly neutralizing antibodies against HIV-1 and concepts for application. Curr Opin Virol 2022; 54:101211. [DOI: 10.1016/j.coviro.2022.101211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
|
28
|
Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. J Virol 2022; 96:e0027022. [PMID: 35510865 DOI: 10.1128/jvi.00270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some HIV-infected people develop broadly neutralizing antibodies (bNAbs) that block many diverse, unrelated strains of HIV from infecting target cells and, through passive immunization, protect animals and humans from infection. Therefore, understanding the development of bNAbs and their neutralization can inform the design of an HIV vaccine. Here, we extend our previous studies of the ontogeny of the CAP256-VRC26 V2-targeting bNAb lineage by defining the mutations that confer neutralization to the unmutated common ancestor (CAP256.UCA). Analysis of the sequence of the CAP256.UCA showed that many improbable mutations were located in the third complementarity-determining region of the heavy chain (CDRH3) and the heavy chain framework 3 (FR3). Transferring the CDRH3 from bNAb CAP256.25 (63% breadth and 0.003 μg/mL potency) into the CAP256.UCA introduced breadth and the ability to neutralize emerging viral variants. In addition, we showed that the framework and light chain contributed to potency and that the second CDR of the light chain forms part of the paratope of CAP256.25. Notably, a minimally mutated CAP256 antibody, with 41% of the mutations compared to bNAb CAP256.25, was broader (64% breadth) and more potent (0.39 μg/mL geometric potency) than many unrelated bNAbs. Together, we have identified key regions and mutations that confer breadth and potency in a V2-specific bNAb lineage. These data indicate that immunogens that target affinity maturation to key sites in CAP256-VRC26-like precursors, including the CDRHs and light chain, could rapidly elicit breadth through vaccination. IMPORTANCE A major focus in the search for an HIV vaccine is elucidating the ontogeny of broadly neutralizing antibodies (bNAbs), which prevent HIV infection in vitro and in vivo. The unmutated common ancestors (UCAs) of bNAbs are generally strain specific and acquire breadth through extensive, and sometimes redundant, somatic hypermutation during affinity maturation. We investigated which mutations in the CAP256-VRC26 bNAb lineage conferred neutralization capacity to the UCA. We found that mutations in the antibody heavy and light chains had complementary roles in neutralization breadth and potency, respectively. The heavy chain, particularly the third complementarity-determining region, was responsible for conferring breadth. In addition, previously uninvestigated mutations in the framework also contributed to breadth. Together, approximately half of the mutations in CAP256.25 were necessary for broader and more potent neutralization than many unrelated neutralizing antibodies. Vaccine approaches that promote affinity maturation at key sites could therefore more rapidly produce antibodies with neutralization breadth.
Collapse
|
29
|
Tohma K, Ford-Siltz LA, Kendra JA, Parra GI. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep 2022; 39:110689. [PMID: 35417705 DOI: 10.1016/j.celrep.2022.110689] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
A paradigm of RNA viruses is their ability to mutate and escape from herd immunity. Because antibody responses are a major effector for viral immunity, antigenic sites are usually under strong diversifying pressure. Here, we use norovirus as a model to study mechanisms of antigenic diversification of non-enveloped, fast-evolving RNA viruses. We comprehensively characterize all variable antigenic sites involved in virus neutralization and find that single neutralizing monoclonal antibodies (mAbs) map to multiple antigenic sites of GII.4 norovirus. Interactions of multiple epitopes on the viral capsid surface provide a broad mAb-binding repertoire with a remarkable difference in the mAb-binding profiles and immunodominance hierarchy for two distantly related GII.4 variants. Time-ordered mutant viruses confirm a progressive change of antibody immunodominance along with point mutations during the process of norovirus evolution. Thus, in addition to point mutations, switches in immunodominance that redirect immune responses could facilitate immune escape in RNA viruses.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Lauren A Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Joseph A Kendra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Gabriel I Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA.
| |
Collapse
|
30
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
31
|
Thomas AS, Coote C, Moreau Y, Isaac JE, Ewing AC, Kourtis AP, Sagar M. Antibody-dependent cellular cytotoxicity (ADCC) responses along with ADCC susceptibility influence HIV-1 mother to child transmission. JCI Insight 2022; 7:159435. [PMID: 35324477 PMCID: PMC9090239 DOI: 10.1172/jci.insight.159435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HIV-1 vaccine efforts are primarily directed towards eliciting neutralizing antibodies (nAbs). However, vaccine trials and mother to child natural history cohort investigations indicate that antibody-dependent cellular cytotoxicity (ADCC), not nAbs, correlate with prevention. The ADCC characteristics associated with lack of HIV-1 acquisition remain unclear. METHODS Here we examine ADCC and nAb properties in pre-transmission plasma from HIV-1 exposed infants and from the corresponding transmitting and non-transmitting mothers' breast milk and plasma. Breadth and potency (BP) is assessed against a panel of heterologous, non-maternal, variants. ADCC and neutralization sensitivity is estimated for the strains present in the infected mothers. RESULTS Infants that eventually acquire HIV-1 and those that remain uninfected have similar pre-transmission ADCC BP. The viruses circulating in the transmitting and the non-transmitting mothers also have similar ADCC susceptibility. Infants with a combination of higher pre-transmission ADCC BP and exposure to more ADCC susceptible strains are less likely to acquire HIV-1. In contrast, higher pre-existing infant neutralization BP and greater maternal virus neutralization sensitivity does not associate with transmission. Infants have higher ADCC BP closer to birth and in the presence of high plasma IgG relative to IgA levels. Mothers with potent humoral responses against their autologous viruses harbor more ADCC sensitive strains. CONCLUSION ADCC sensitivity of the exposure variants along with preexisting ADCC BP influence mother to child HIV-1 transmission during breastfeeding. Vaccination strategies that enhance ADCC responses are likely not sufficient to prevent HIV-1 transmission because strains present in chronically infected individuals can have low ADCC susceptibility. TRIAL REGISTRATION NCT00164736 for BAN study.
Collapse
Affiliation(s)
- Allison S Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, United States of America
| | - Carolyn Coote
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - John E Isaac
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Alexander C Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Athena P Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, United States of America
| |
Collapse
|
32
|
Lewitus E, Townsley SM, Li Y, Donofrio GC, Dearlove BL, Bai H, Sanders-Buell E, O’Sullivan AM, Bose M, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Eller LA, Michael NL, Polonis VR, Ake JA, Vasan S, Robb ML, Tovanabutra S, Krebs SJ, Rolland M. HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathog 2022; 18:e1010369. [PMID: 35303045 PMCID: PMC8967031 DOI: 10.1371/journal.ppat.1010369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/30/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth. Vaccines against viral pathogens protect through the induction of broadly neutralizing antibodies (bnAbs). No HIV-1 vaccine has successfully elicited bnAbs, and a successful HIV-1 vaccine will need to accelerate the process of development of a broadly neutralizing response that typically takes a couple of years to develop in natural infection. We studied diversity in the HIV-1 envelope gene from initial infection to several years out in 126 individuals from two cohorts. We showed that the development of bnAbs at 2–3 years was not due to transmissible viral genetics, but rather associated with diversity during the first month of infection. We propose that designing a vaccine that mimics an infection with multiple, minimally distant founder variants may successfully elicit the development of bnAbs and provide effective prophylaxis against HIV-1.
Collapse
Affiliation(s)
- Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Samantha M. Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Gina C. Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Bethany L. Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | | | - Fredrick K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Klingler J, Paul N, Laumond G, Schmidt S, Mayr LM, Decoville T, Lambotte O, Autran B, Bahram S, Moog C. Distinct antibody profiles in HLA-B∗57+, HLA-B∗57- HIV controllers and chronic progressors. AIDS 2022; 36:487-499. [PMID: 34581307 PMCID: PMC8876439 DOI: 10.1097/qad.0000000000003080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Spontaneous control of HIV replication without treatment in HIV-1 controllers (HICs) was associated with the development of an efficient T-cell response. In addition, increasing data suggest that the humoral response participates in viral clearance. DESIGN In-depth characterization of Ab response in HICs may help to define new parameters associated with this control. METHODS We assessed the levels of total and HIV-specific IgA and IgG subtypes induction and their functional potencies - that is, neutralization, phagocytosis, antibody-dependent cellular cytotoxicity (ADCC), according to the individual's major histocompatibility complex class I (HLA)-B∗57 status, and compared it with nontreated chronic progressors. RESULTS We found that despite an undetectable viral load, HICs displayed HIV-specific IgG levels similar to those of chronic progressors. Interestingly, our compelling multifunctional analysis demonstrates that the functional Ab profile, by itself, allowed to discriminate HLA-B∗57+ HICs from HLA-B∗57- HICs and chronic progressors. CONCLUSION These results show that HICs display a particular HIV-specific antibody (Ab) profile that may participate in HIV control and emphasize the relevance of multifunctional Ab response analysis in future Ab-driven vaccine studies.
Collapse
Affiliation(s)
- Jéromine Klingler
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Nicodème Paul
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Géraldine Laumond
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Sylvie Schmidt
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Luzia M. Mayr
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Thomas Decoville
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
- Vaccine Research Institute (VRI), Créteil
| | - Olivier Lambotte
- Université Paris Sud
- INSERM UMR-1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin Bicêtre
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses
- AP-HP, Service de Méecine Interne-Immunologie Clinique, Hôpitaux Universitaires Paris Sud, Le Kremlin Bicêtre
| | - Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, Center for Immunology and Microbial Infections – CIMI-Paris
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Seiamak Bahram
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
| | - Christiane Moog
- INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx Transplantex, Université de Strasbourg, Strasbourg
- Vaccine Research Institute (VRI), Créteil
| |
Collapse
|
34
|
Snetkov X, Haider T, Mesner D, Groves N, van Engelenburg SB, Jolly C. A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spread. Viruses 2022; 14:v14010129. [PMID: 35062333 PMCID: PMC8778169 DOI: 10.3390/v14010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 envelope (Env) is an essential determinant of viral infectivity, tropism and spread between T cells. Lentiviral Env contain an unusually long 150 amino acid cytoplasmic tail (EnvCT), but the function of the EnvCT and many conserved domains within it remain largely uncharacterised. Here, we identified a highly conserved tryptophan motif at position 757 (W757) in the LLP-2 alpha helix of the EnvCT as a key determinant for HIV-1 replication and spread between T cells. Alanine substitution at this position potently inhibited HIV-1 cell–cell spread (the dominant mode of HIV-1 dissemination) by preventing recruitment of Env and Gag to sites of cell–cell contact, inhibiting virological synapse (VS) formation and spreading infection. Single-molecule tracking and super-resolution imaging showed that mutation of W757 dysregulates Env diffusion in the plasma membrane and increases Env mobility. Further analysis of Env function revealed that W757 is also required for Env fusion and infectivity, which together with reduced VS formation, result in a potent defect in viral spread. Notably, W757 lies within a region of the EnvCT recently shown to act as a supporting baseplate for Env. Our data support a model in which W757 plays a key role in regulating Env biology, modulating its temporal and spatial recruitment to virus assembly sites and regulating the inherent fusogenicity of the Env ectodomain, thereby supporting efficient HIV-1 replication and spread.
Collapse
Affiliation(s)
- Xenia Snetkov
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Tafhima Haider
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Nicholas Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
- Correspondence:
| |
Collapse
|
35
|
Nyanhete TE, Edwards RJ, LaBranche CC, Mansouri K, Eaton A, Dennison SM, Saunders KO, Goodman D, Janowska K, Spreng RL, Zhang L, Mudrak SV, Hope TJ, Hora B, Bradley T, Georgiev IS, Montefiori DC, Acharya P, Tomaras GD. Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Front Immunol 2021; 12:670561. [PMID: 35003053 PMCID: PMC8733328 DOI: 10.3389/fimmu.2021.670561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E. Nyanhete
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Celia C. LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
36
|
Friedrich N, Stiegeler E, Glögl M, Lemmin T, Hansen S, Kadelka C, Wu Y, Ernst P, Maliqi L, Foulkes C, Morin M, Eroglu M, Liechti T, Ivan B, Reinberg T, Schaefer JV, Karakus U, Ursprung S, Mann A, Rusert P, Kouyos RD, Robinson JA, Günthard HF, Plückthun A, Trkola A. Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization. Nat Commun 2021; 12:6705. [PMID: 34795280 PMCID: PMC8602657 DOI: 10.1038/s41467-021-27075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
The V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Nikolas Friedrich
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.424277.0Present Address: Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Deutschland
| | - Matthias Glögl
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Thomas Lemmin
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Computer Science, ETH Zurich, Zurich, Switzerland ,grid.29078.340000 0001 2203 2861Present Address: Euler Institute, Faculty of Biomedicine, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Simon Hansen
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: NGM Bio, 333 Oysterpoint Blvd, South San Francisco, CA 94080 USA
| | - Claus Kadelka
- grid.34421.300000 0004 1936 7312Department of Mathematics, Iowa State University, Ames, IA USA
| | - Yufan Wu
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Innovent Biologics Inc, 168 Dongping Street, Suzhou Industrial Park, 215123 China
| | - Patrick Ernst
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Present Address: Office Research and Teaching, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Liridona Maliqi
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Mylène Morin
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: BeiGene Switzerland GmbH, Aeschengraben 27, 4051 Basel, Switzerland
| | - Mustafa Eroglu
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Janssen Vaccines AG, Rehhagstrasse 79, 3018 Bern, Switzerland
| | - Thomas Liechti
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.419681.30000 0001 2164 9667Present Address: ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Branislav Ivan
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.410567.1Present Address: Laboratory Medicine, Division of Clinical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Thomas Reinberg
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Jonas V. Schaefer
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, Chemical Biology & Therapeutics (CBT), Novartis Pharma AG, Virchow 16, 4056 Basel, Switzerland
| | - Umut Karakus
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Stephan Ursprung
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5335.00000000121885934Present Address: University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge, CB2 0QQ UK
| | - Axel Mann
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Rusert
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Roger D. Kouyos
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - John A. Robinson
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Andreas Plückthun
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
37
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
38
|
Granger LA, Huettner I, Debeljak F, Kaleebu P, Schechter M, Tambussi G, Weber J, Miro JM, Phillips R, Babiker A, Cooper DA, Fisher M, Ramjee G, Fidler S, Frater J, Fox J, Doores KJ. Broadly neutralizing antibody responses in the longitudinal primary HIV-1 infection Short Pulse Anti-Retroviral Therapy at Seroconversion cohort. AIDS 2021; 35:2073-2084. [PMID: 34127581 PMCID: PMC8505148 DOI: 10.1097/qad.0000000000002988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Development of immunogens that elicit an anti-HIV-1 broadly neutralizing antibody (bnAb) response will be a key step in the development of an effective HIV-1 vaccine. Although HIV-1 bnAb epitopes have been identified and mechanisms of action studied, current HIV-1 envelope-based immunogens do not elicit HIV-1 bnAbs in humans or animal models. A better understanding of how HIV-1 bnAbs arise during infection and the clinical factors associated with bnAb development may be critical for HIV-1 immunogen design efforts. DESIGN AND METHODS Longitudinal plasma samples from the treatment-naive control arm of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) primary HIV-1 infection cohort were used in an HIV-1 pseudotype neutralization assay to measure the neutralization breadth, potency and specificity of bnAb responses over time. RESULTS In the SPARTAC cohort, development of plasma neutralization breadth and potency correlates with duration of HIV infection and high viral loads, and typically takes 3-4 years to arise. bnAb activity was mostly directed to one or two bnAb epitopes per donor and more than 60% of donors with the highest plasma neutralization having bnAbs targeted towards glycan-dependent epitopes. CONCLUSION This study highlights the SPARTAC cohort as an important resource for more in-depth analysis of bnAb developmental pathways.
Collapse
Affiliation(s)
- Luke A. Granger
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
- Department of Infectious Disease, Imperial College London
| | - Isabella Huettner
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Franka Debeljak
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - Mauro Schechter
- Projeto Praça Onze, Hospital Escola São Francisco de Assis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giuseppe Tambussi
- Department of Infectious Diseases, Ospedale San Raffaele, Milan, Italy
| | | | - Jose M. Miro
- Infectious Diseases Service. Hospital Clinic–Institut d’investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Rodney Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK
| | - Abdel Babiker
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology
| | - David A. Cooper
- St Vincent's Centre for Applied Medical Research and The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Martin Fisher
- Brighton and Sussex University Hospitals, Brighton, UK
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London
- NIHR Imperial Biomedical Research Centre, London
| | - John Frater
- Nuffield Department of Medicine, Oxford University
- Oxford NIHR Biomedical Research Centre, Oxford
| | - Julie Fox
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
- King's College NIHR Research Biomedical Research Centre, London, UK
| | - Katie J. Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
39
|
Thomas AS, Moreau Y, Jiang W, Isaac JE, Ewing A, White LF, Kourtis AP, Sagar M. Pre-existing infant antibody-dependent cellular cytotoxicity associates with reduced HIV-1 acquisition and lower morbidity. Cell Rep Med 2021; 2:100412. [PMID: 34755132 PMCID: PMC8561235 DOI: 10.1016/j.xcrm.2021.100412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
In humans, pre-existing anti-HIV-1 neutralizing antibodies (nAbs) have not been associated with decreased HIV-1 acquisition. Here, we evaluate antibody-dependent cellular cytotoxicity (ADCC) present in pre-transmission infant and maternal plasma and breast milk (BM) against the contemporaneous maternal HIV-1 variants. HIV-1-exposed uninfected compared with HIV-1-exposed infected infants have higher ADCC and a combination of ADCC and nAb responses against their corresponding mother's strains. ADCC does not correlate with nAbs, suggesting they are independent activities. The infected infants with high ADCC compared with low ADCC, but not those with higher ADCC plus nAbs, have lower morbidity up to 1 year after birth. A higher IgA to IgG ratio, observed in BM supernatants and in a higher proportion of the infected compared with the uninfected infants, associates with lower ADCC. Against the exposure strains, ADCC, more than nAbs, associates with both lower mother-to-child transmission and decreased post-infection infant morbidity.
Collapse
Affiliation(s)
- Allison S. Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Wenqing Jiang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John E. Isaac
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Alexander Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Athena P. Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
40
|
Chikaev AN, Chikaev AN, Rudometov AP, Merkulyeva YA, Karpenko LI. Phage display as a tool for identifying HIV-1 broadly neutralizing antibodies. Vavilovskii Zhurnal Genet Selektsii 2021; 25:562-572. [PMID: 34595378 PMCID: PMC8453360 DOI: 10.18699/vj21.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Combinatorial biology methods offer a good solution for targeting interactions of specif ic molecules
by a high-throughput screening and are widely used for drug development, diagnostics, identif ication of novel
monoclonal antibodies, search for linear peptide mimetics of discontinuous epitopes for the development of
immunogens or vaccine components. Among all currently available techniques, phage display remains one of
the most popular approaches. Despite being a fairly old method, phage display is still widely used for studying
protein-protein, peptide-protein and DNA-protein interactions due to its relative simplicity and versatility. Phage
display allows highly representative libraries of peptides, proteins or their fragments to be created. Each phage
particle in a library displays peptides or proteins fused to its coat protein and simultaneously carries the DNA
sequence encoding the displayed peptide/protein in its genome. The biopanning procedure allows isolation of
specif ic clones for almost any target, and due to the physical link between the genotype and the phenotype of
recombinant phage particles it is possible to determine the structure of selected molecules. Phage display technology
continues to play an important role in HIV research. A major obstacle to the development of an effective
HIV vaccine is an extensive genetic and antigenic variability of the virus. According to recent data, in order to provide
protection against HIV infection, the so-called broadly neutralizing antibodies that are cross-reactive against
multiple viral strains of HIV must be induced, which makes the identif ication of such antibodies a key area of HIV
vaccinology. In this review, we discuss the use of phage display as a tool for identif ication of HIV-specif ic antibodies
with broad neutralizing activity. We provide an outline of phage display technology, brief ly describe the
design of antibody phage libraries and the affinity selection procedure, and discuss the biology of HIV-1-specif ic
broadly neutralizing antibodies. Finally, we summarize the studies aimed at identif ication of broadly neutralizing
antibodies using various types of phage libraries.
Collapse
Affiliation(s)
| | - A N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - Yu A Merkulyeva
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
41
|
Wilson A, Shakhtour L, Ward A, Ren Y, Recarey M, Stevenson E, Korom M, Kovacs C, Benko E, Jones RB, Lynch RM. Characterizing the Relationship Between Neutralization Sensitivity and env Gene Diversity During ART Suppression. Front Immunol 2021; 12:710327. [PMID: 34603284 PMCID: PMC8479156 DOI: 10.3389/fimmu.2021.710327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
Although antiretroviral therapy (ART) successfully suppresses HIV-1 replication, ART-treated individuals must maintain therapy to avoid rebound from an integrated viral reservoir. Strategies to limit or clear this reservoir are urgently needed. Individuals infected for longer periods prior to ART appear to harbor more genetically diverse virus, but the roles of duration of infection and viral diversity in the humoral immune response remain to be studied. We aim to clarify a role, if any, for autologous and heterologous antibodies in multi-pronged approaches to clearing infection. To that end, we have characterized the breadths and potencies of antibody responses in individuals with varying durations of infection and HIV-1 envelope (env) gene diversity as well as the sensitivity of their inducible virus reservoir to broadly neutralizing antibodies (bNAbs). Plasma was collected from 8 well-characterized HIV-1+ males on ART with varied durations of active infection. HIV envs from reservoir-derived outgrowth viruses were amplified and single genome sequenced in order to measure genetic diversity in each participant. IgG from plasma was analyzed for binding titers against gp41 and gp120 proteins, and for neutralizing titers against a global HIV-1 reference panel as well as autologous outgrowth viruses. The sensitivity to bNAbs of these same autologous viruses was measured. Overall, we observed that greater env diversity was associated with higher neutralizing titers against the global panel and also increased resistance to certain bNAbs. Despite the presence of robust anti-HIV-1 antibody titers, we did not observe potent neutralization against autologous viruses. In fact, 3 of 8 participants harbored viruses that were completely resistant to the highest tested concentration of autologous IgG. That this lack of neutralization was observed regardless of ART duration or viral diversity suggests that the inducible reservoir harbors 'escaped' viruses (that co-evolved with autologous antibody responses), rather than proviruses archived from earlier in infection. Finally, we observed that viruses resistant to autologous neutralization remained sensitive to bNAbs, especially CD4bs and MPER bNAbs. Overall, our data suggest that the inducible reservoir is relatively resistant to autologous antibodies and that individuals with limited virus variation in the env gene, such as those who start ART early in infection, are more likely to be sensitive to bNAb treatment.
Collapse
Affiliation(s)
- Andrew Wilson
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Leyn Shakhtour
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Adam Ward
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
- PhD Program in Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, United States
| | - Yanqin Ren
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Melina Recarey
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Eva Stevenson
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Maria Korom
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Colin Kovacs
- Department of Internal Medicine, Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - Erika Benko
- Department of Internal Medicine, Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - R. Brad Jones
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Rebecca M. Lynch
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW There has been significant development of long-acting injectable therapy for the management of HIV in recent years that has the potential to revolutionise HIV care as we know it. This review summarises the data and outlines the potential challenges in the field of long-acting antiretroviral therapy (ART). RECENT FINDINGS In recent years, monthly and two monthly long-acting injectable ART in the form of cabotegravir and rilpivirine has shown safety and efficacy in large-scale phase 3 randomised control trials. Also, agents with novel mechanisms of action, such as Lenacapavir, have been tested in early-phase studies and are currently being tested in phase 2-3 clinical trials; if successful, this may allow six-monthly dosing schedules. SUMMARY However, despite evidence that suggests that these therapies are efficacious and acceptable to patients, the challenge of integrating these agents into our current healthcare infrastructure and making these novel agents cost-effective and available to the populations most likely to benefit remains. The next frontier for long-acting therapy will be to introduce these agents in a real-world setting ensuring that the groups most in need of long-acting therapy are not left behind.
Collapse
|
43
|
Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. J Virol 2021; 95:e0079721. [PMID: 34160251 PMCID: PMC8354232 DOI: 10.1128/jvi.00797-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield’s reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.
Collapse
|
44
|
Scherrer AU, Traytel A, Braun DL, Calmy A, Battegay M, Cavassini M, Furrer H, Schmid P, Bernasconi E, Stoeckle M, Kahlert C, Trkola A, Kouyos RD, Tarr P, Marzolini C, Wandeler G, Fellay J, Bucher H, Yerly S, Suter F, Hirsch H, Huber M, Dollenmaier G, Perreau M, Martinetti G, Rauch A, Günthard HF. Cohort Profile Update: The Swiss HIV Cohort Study (SHCS). Int J Epidemiol 2021; 51:33-34j. [PMID: 34363666 DOI: 10.1093/ije/dyab141] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandra U Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anna Traytel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Marcel Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philip Tarr
- University Department of Medicine, Kantonsspital Bruderholz, University of Basel, Bruderholz, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gilles Wandeler
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Heiner Bucher
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Yerly
- Division of Infectious Diseases and Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Franziska Suter
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Hirsch
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gladys Martinetti
- Department of Microbiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
45
|
Cervera H, Ratnapriya S, Chov A, Herschhorn A. Changes in the V1 Loop of HIV-1 Envelope Glycoproteins Can Allosterically Modulate the Trimer Association Domain and Reduce PGT145 Sensitivity. ACS Infect Dis 2021; 7:1558-1568. [PMID: 34006087 DOI: 10.1021/acsinfecdis.0c00899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) are a main focus of immunogen design and vaccine development. Broadly neutralizing antibodies (bnAbs) against HIV-1 Envs target conserved epitopes and neutralize multiple HIV-1 viral strains. Nevertheless, application of bnAbs to therapy and prevention is limited by resistant strains that are developed or preexist within the viral population. Here we studied the HIV-1NAB9 Envs that were isolated from a person who injects drugs and exhibits high and broad resistance to multiple bnAbs. We identified an insertion of 11 amino acids in the V1 loop that allosterically modulates HIV-1NAB9 sensitivity to the PGT145 bnAb, which targets the Env trimer association domain and supports high level viral infectivity. Our data provide new insights into the mechanisms of HIV-1 resistance to bnAbs and into allosteric connectivity between different HIV-1 Env domains.
Collapse
Affiliation(s)
- Héctor Cervera
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Angela Chov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Mullick R, Sutar J, Hingankar N, Deshpande S, Thakar M, Sahay S, Ringe RP, Mukhopadhyay S, Patil A, Bichare S, Murugavel KG, Srikrishnan AK, Goyal R, Sok D, Bhattacharya J. Neutralization diversity of HIV-1 Indian subtype C envelopes obtained from cross sectional and followed up individuals against broadly neutralizing monoclonal antibodies having distinct gp120 specificities. Retrovirology 2021; 18:12. [PMID: 33990195 PMCID: PMC8120817 DOI: 10.1186/s12977-021-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The potential use of the broadly neutralizing monoclonal antibodies (bnAbs) towards prophylaxis and treatment to HIV-1 is currently being explored. While a number of promising bnAbs have been discovered and a few of them have progressed towards clinical development, their extent of neutralization coverage with respect to global HIV-1 variants given the existence of genetically distinct subtypes and recombinants circulating globally is not clearly known. In the present study, we examined the variation in the neutralization susceptibility of pseudoviruses expressing 71 full length primary HIV-1 subtype C envs obtained from limited cross-sectional individuals over different time points against four bnAbs that target gp120 with distinct specificities: VRC01, CAP256-VRC26.25, PGDM1400 and PGT121. RESULTS We found significant variations in the susceptibility of Indian clade C to these four bnAbs. These variations were found to be distinct to that observed in African subtype C based on the existing datasets and concordant with their sequence diversity. Trend analysis indicated an increasing neutralization resistance observed over time with CAP25-VRC26.25, PGDM1400 and PGT121 when tested on pseudoviruses expressing envs obtained from 1999 to 2016. However, inconsistent trend in neutralization susceptibility was observed, when pseudoviruses expressing envs obtained from three followed up individuals were examined. Finally, through predictive analysis of the 98 Indian subtype C including those assessed in the present study by employing additive model implemented in CombiNAber ( http://www.hiv.lanl.gov ), we observed two possibilities where combinations of three bnAbs (VRC01/CAP56-VRC26.25/PGT121 and PGDM1400/CAP256-VRC26.25/PGT121) could achieve near 100% neutralization coverage. CONCLUSIONS Our findings not only indicate disparate intra-clade C genetic vis-à-vis neutralization diversities but also warrant the need for more comprehensive study using additional isolates towards comparing inter and intra-clade neutralization diversities which will be necessary for selecting the bnAb combinations suitable for optimal coverage of the region-specific HIV-1 circulating subtypes. Expanding these efforts is imperative for designing efficacious bnAb based intervention strategies for India as well as subtype C in general.
Collapse
Affiliation(s)
- Ranajoy Mullick
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Jyoti Sutar
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Nitin Hingankar
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
| | - Suprit Deshpande
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India
| | - Madhuri Thakar
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Seema Sahay
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Rajesh P Ringe
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sampurna Mukhopadhyay
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
- , Mississauga, ON, L5B3Y9, Canada
| | - Ajit Patil
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | | | | | | | - Rajat Goyal
- International AIDS Vaccine Initiative, New Delhi, India
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, Translational Health Sciences & Technology Institute, Faridabad, Haryana, India.
- International AIDS Vaccine Initiative, New Delhi, India.
| |
Collapse
|
47
|
Marcelino R, Gramacho F, Martin F, Brogueira P, Janeiro N, Afonso C, Badura R, Valadas E, Mansinho K, Caldeira L, Taveira N, Marcelino JM. Antibody response against selected epitopes in the HIV-1 envelope gp41 ectodomain contributes to reduce viral burden in HIV-1 infected patients. Sci Rep 2021; 11:8993. [PMID: 33903642 PMCID: PMC8076315 DOI: 10.1038/s41598-021-88274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/09/2021] [Indexed: 01/26/2023] Open
Abstract
The ectodomain of gp41 is the target of potent binding and neutralizing antibodies (NAbs) and is being explored in new strategies for antibody-based HIV vaccines. Previous studies have suggested that the W164A-3S (3S) and EC26-2A4 (EC26) peptides located in the gp41 ectodomain may be potential HIV vaccine candidates. We assessed 3S- and EC26-specific binding antibody responses and related neutralizing activity in a large panel of chronic HIV-1-infected Portuguese individuals on ART. A similar proportion of participants had antibodies binding to 3S (9.6%) and EC26 (9.9%) peptides but the level of reactivity against 3S was significantly higher compared to EC26, except in the rare patients with double peptide reactivity. The higher antigenicity of 3S was unrelated with disease stage, as assessed by CD4+ T cell counts, but it was directly related with plasma viral load. Most patients that were tested (89.9%, N = 268) showed tier 1 neutralizing activity, the potency being inversely associated with plasma viral load. In the subset of patients that were tested for neutralization of tier 2 isolates, neutralization breadth was inversely correlated with plasma viral load and directly correlated with CD4+ T cell counts. These results are consistent with a role for neutralizing antibodies in controlling viral replication and preventing the decline of CD4+ T lymphocytes. Importantly, in patients with 3S-specific antibodies, neutralizing titers were inversely correlated with viral RNA levels and proviral DNA levels. Moreover, patients with 3S and/or EC26-specific antibodies showed a 1.9-fold higher tier 2 neutralization score than patients without antibodies suggesting that 3S and/or EC26-specific antibodies contribute to neutralization breadth and potency in HIV-1 infected patients. Overall, these results suggest that antibodies targeting the S3 and EC26 epitopes may contribute to reduce viral burden and provide further support for the inclusion of 3S and EC26 epitopes in HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Rute Marcelino
- Global Health and Tropical Medicine-GHTM, Instituto de Higiene e Medicina Tropical-IHMT, Universidade Nova de Lisboa-UNL, 1349-008, Lisboa, Portugal.,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal
| | - Filipa Gramacho
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal
| | - Pedro Brogueira
- Serviço de Doenças Infeciosas, Hospital Egas Moniz-HEM, Centro Hospitalar Lisboa Ocidental-CHLO, E.P.E., Lisboa, 1349-019, Lisboa, Portugal
| | - Nuno Janeiro
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Claudia Afonso
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Robert Badura
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Emília Valadas
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Kamal Mansinho
- Serviço de Doenças Infeciosas, Hospital Egas Moniz-HEM, Centro Hospitalar Lisboa Ocidental-CHLO, E.P.E., Lisboa, 1349-019, Lisboa, Portugal
| | - Luís Caldeira
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal
| | - José M Marcelino
- Global Health and Tropical Medicine-GHTM, Instituto de Higiene e Medicina Tropical-IHMT, Universidade Nova de Lisboa-UNL, 1349-008, Lisboa, Portugal. .,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal. .,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal.
| |
Collapse
|
48
|
Townsley SM, Donofrio GC, Jian N, Leggat DJ, Dussupt V, Mendez-Rivera L, Eller LA, Cofer L, Choe M, Ehrenberg PK, Geretz A, Gift S, Grande R, Lee A, Peterson C, Piechowiak MB, Slike BM, Tran U, Joyce MG, Georgiev IS, Rolland M, Thomas R, Tovanabutra S, Doria-Rose NA, Polonis VR, Mascola JR, McDermott AB, Michael NL, Robb ML, Krebs SJ. B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host Microbe 2021; 29:564-578.e9. [PMID: 33662277 DOI: 10.1016/j.chom.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
Determining which immunological mechanisms contribute to the development of broad neutralizing antibodies (bNAbs) during HIV-1 infection is a major goal to inform vaccine design. Using samples from a longitudinal HIV-1 acute infection cohort, we found key B cell determinants within the first 14-43 days of viremia that predict the development of bNAbs years later. Individuals who develop neutralization breadth had significantly higher B cell engagement with the autologous founder HIV envelope (Env) within 1 month of initial viremia. A higher frequency of founder-Env-specific naive B cells was associated with increased B cell activation and differentiation and predictive of bNAb development. These data demonstrate that the initial B cell interaction with the founder HIV Env is important for the development of broadly neutralizing antibodies and provide evidence that events within HIV acute infection lead to downstream functional outcomes.
Collapse
Affiliation(s)
- Samantha M Townsley
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ningbo Jian
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David J Leggat
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lauryn Cofer
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Misook Choe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Syna Gift
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rebecca Grande
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anna Lee
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Caroline Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mary Bryson Piechowiak
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Victoria R Polonis
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW There has been significant development of long-acting injectable therapy for the management of HIV in recent years that has the potential to revolutionise HIV care as we know it. This review summarises the data and outlines the potential challenges in the field of long-acting antiretroviral therapy (ART). RECENT FINDINGS In recent years, monthly and two monthly long-acting injectable ART in the form of cabotegravir and rilpivirine has shown safety and efficacy in large-scale phase 3 randomised control trials. Also, agents with novel mechanisms of action, such as Lenacapavir, have been tested in early-phase studies and are currently being tested in phase 2-3 clinical trials; if successful, this may allow six-monthly dosing schedules. SUMMARY However, despite evidence that suggests that these therapies are efficacious and acceptable to patients, the challenge of integrating these agents into our current healthcare infrastructure and making these novel agents cost-effective and available to the populations most likely to benefit remains. The next frontier for long-acting therapy will be to introduce these agents in a real-world setting ensuring that the groups most in need of long-acting therapy are not left behind.
Collapse
Affiliation(s)
- John Thornhill
- Department of Infection & Immunity, The Royal London Hospital, Bart Health NHS Trust
- Department of Immunobiology, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Chloe Orkin
- Department of Infection & Immunity, The Royal London Hospital, Bart Health NHS Trust
- Department of Immunobiology, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
50
|
Behrens NE, Love M, Bandlamuri M, Bernhardt D, Wertheimer A, Klotz SA, Ahmad N. Characterization of HIV-1 Envelope V3 Region Sequences from Virologically Controlled HIV-Infected Older Patients on Long Term Antiretroviral Therapy. AIDS Res Hum Retroviruses 2021; 37:233-245. [PMID: 33287636 DOI: 10.1089/aid.2020.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although many HIV-infected patients have attained older age owing to the success of antiretroviral therapy (ART) in controlling viremia and increasing CD4 T cell counts, HIV continues to persist in several target cells. We have characterized 514 HIV-1 envelope V3 region sequences (94-96 amino acids [aa]) from 25 HIV-infected older patients' peripheral blood mononuclear cell DNA on long-term ART with controlled viremia (undetectable viral load) and improved CD4 T cell counts. Phylogenetic analysis revealed that the V3 region sequences of each patient formed distinct clusters that were well separated and discriminated from other patients' sequences. The coding potential of the V3 region, including several patient-specific amino acid motifs and functional domains, including the two cysteines sandwiching the V3 loop, the central GPGR motif with variation at one position in some sequences, the base GDIR motif, and the N-glycosylation sites were generally conserved. The patients' V3 region sequences contained amino acid motifs conferring affinity mostly for CCR5 coreceptor, suggesting R5 phenotype. There was a low degree of heterogeneity and lower estimates of genetic diversity in all 25 patients' V3 region sequences. Twelve of 25 patients' V3 region sequences were found to be under positive selection pressure. Analysis of the several cytotoxic T lymphocytes (CTL) epitopes showed variation, whereas some of known neutralizing antibodies (nAbs) epitopes showed conservation in patients' V3 region sequences. In conclusion, a low degree of genetic variability and maintenance of functional domains with R5 phenotypes, and variation in CTL and conservation of nAb epitopes were the hallmarks of V3 region sequences from our 25 virologically controlled HIV-infected older patients on long-term ART.
Collapse
Affiliation(s)
- Nicole E. Behrens
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Maria Love
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Meghana Bandlamuri
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Dana Bernhardt
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Anne Wertheimer
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Stephen A. Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|