1
|
Deng W, Almeida G, Gibson KE. Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:15. [PMID: 39789292 PMCID: PMC11717783 DOI: 10.1007/s12560-025-09633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.). At room temperature, the viruses bound to all bacteria in strain-dependent rates and remained bound for at least 2 h. The virus association with two gram-positive bacteria B. cereus and E. sibiricum was less efficient than gram-negative bacteria. Next, the bacterial envelope components including lipopolysaccharides (LPS), extracellular polymeric substances (EPS), and peptidoglycan (PG) from selected strains were co-incubated with viruses to evaluate their effect on virus infectivity. All the tested bacteria components significantly increased virus infection to variable degrees as compared to PBS. The LPS of E. coli O111:B4 resulted in the greatest increases of infection by 0.19 log PFU for TuV as determined by plaque assay. Lastly, bacterial whole cell lysate of B. cereus and E. cloacae was examined for their impact on the infectivity of MNV and TuV. The co-incubation with whole cell lysates significantly increased the infectivity of TuV by 0.2 log PFU but not MNV. This study indicated that both the individual bacteria components and whole bacterial cell lysate can enhance virus infectivity, providing key insights for understanding virus-bacteria interaction.
Collapse
Affiliation(s)
- Wenjun Deng
- College of Life Science, Qingdao University, Qingdao, People's Republic of China
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Giselle Almeida
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Kristen E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Riller Q, Schmutz M, Fourgeaud J, Fischer A, Neven B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol Rev 2024; 328:243-264. [PMID: 39340232 PMCID: PMC11659928 DOI: 10.1111/imr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Jacques Fourgeaud
- Université Paris Cité, FETUSParisFrance
- Microbiology DepartmentAP‐HP, Hôpital NeckerParisFrance
| | - Alain Fischer
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
- INSERM UMRS 1163, Institut ImagineParisFrance
- Collège de FranceParisFrance
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
| |
Collapse
|
3
|
Woo S, Hossain MI, Jung S, Yeo D, Yoon D, Hwang S, Do HJ, Eyun SI, Choi C. Whole genome sequencing and genome characterization of Aichivirus isolated from Korean adults. J Med Virol 2024; 96:e29902. [PMID: 39228345 DOI: 10.1002/jmv.29902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
The whole-genome sequence (WGS) analysis of Aichivirus (AiV) identified in Korea was performed in this study. Using Sanger and Nanopore sequencing, the 8228-nucleotide-long genomic sequence of AiV (OQ121963) was determined and confirmed to belong to genotype A. The full-length genome of OQ121963 consisted of a 7296 nt open reading frame (ORF) that encodes a single polyprotein, and 5' UTR (676 nt) and 3' UTR (256 nt) at 5' and 3' ends, respectively. The ORF consisted of leader protein (L), structural protein P1 (VP0, VP1, and VP3), and nonstructural protein P2 (2A, 2B, and 2C) and P3 (3A, 3B, 3C, and 3D). The secondary structure analysis of the 5' UTR identified only stem-loop C (SL-C) and not SL-A and SL-B. The variable region of the AiV genome was analyzed by MegAlign Pro and reconfirmed by SimPlot analysis using 16 AiV whole genomes known to date. Among the entire regions, structural protein region P1 showed the lowest amino acid identity (96.07%) with reference sequence AB040749 (originated in Japan; genotype A), while the highest amino acid identity (98.26%) was confirmed in the 3D region among nonstructural protein region P2 and P3. Moreover, phylogenetic analysis of the WGS of OQ121963 showed the highest homology (96.96%) with JX564249 (originated in Taiwan; genotype A) and lowest homology (90.14%) with DQ028632 (originated in Brazil; genotype B). Therefore, the complete genome characterization of OQ121963 and phylogenetic analysis of the AiV conducted in this study provide useful information allowing to improve diagnostic tools and epidemiological studies of AiVs.
Collapse
Affiliation(s)
- Seoyoung Woo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Md Iqbal Hossain
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Danbi Yoon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Seongwon Hwang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Hee-Jung Do
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
4
|
Kim MG, Yoo B, Min AY, Seo DW, Choi C, Kim SH, Kim SH. Comparative analysis of reverse-transcription-polymerase chain reaction for Aichivirus detection. Food Sci Biotechnol 2024; 33:2807-2814. [PMID: 39184978 PMCID: PMC11339220 DOI: 10.1007/s10068-024-01537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024] Open
Abstract
Aichivirus-A (AiV-A), a member of the Kobuvirus genus of the family Picornaviridae, was first reported in stool samples of patients with non-bacterial gastroenteritis in Aichi Prefecture, Japan, in 1989. AiV has been reported from in various aquatic environments, such as surface water and sewage, can be transmitted via the fecal-oral route through contaminated water. As AiV is known to acute gastroenteritis worldwide, developing methods for AiV detection from contaminated environments and food is required. In the present study, we established an effective polymerase chain reaction (PCR) method to detect AiV. Various real-time reverse transcription (RT)-PCR and conventional PCR methods for AiV detection were compared, and the limit of detection was confirmed by comparing the sensitivity at varied primer concentrations and PCR conditions. The final detection limits were 102 copy/μL in conventional PCR, and 101 copy/μL in the real-time RT-PCR. The optimized method used in this study might aid in detecting AiV contamination.
Collapse
Affiliation(s)
- Mi-Gyeong Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Boeun Yoo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - A Young Min
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Doo Won Seo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung-Ang University, Ansung, 456-756 South Korea
| | - Seung Hwan Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Soon Han Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| |
Collapse
|
5
|
Van Nguyen T, Kasantikul T, Piewbang C, Techangamsuwan S. Evolutionary dynamics of canine kobuvirus in Vietnam and Thailand reveal the evidence of viral ability to evade host immunity. Sci Rep 2024; 14:12037. [PMID: 38802579 PMCID: PMC11130191 DOI: 10.1038/s41598-024-62833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Canine kobuvirus (CaKoV) is a pathogen associated with canine gastrointestinal disease (GID). This study examined 327 rectal swabs (RS), including 113 from Vietnam (46 healthy, 67 with GID) and 214 from Thailand (107 healthy and 107 with GID). CaKoV was detected in both countries, with prevalences of 28.3% (33/113) in Vietnam and 7.9% (17/214) in Thailand. Additionally, CaKoV was found in both dogs with diarrhea and healthy dogs. CaKoV was mainly found in puppies under six months of age (30.8%). Co-detection with other canine viruses were also observed. The complete coding sequence (CDS) of nine Vietnamese and four Thai CaKoV strains were characterized. Phylogenetic analysis revealed a close genetic relationship between Vietnamese and Thai CaKoV strains, which were related to the Chinese strains. CDS analysis indicated a distinct lineage for two Vietnamese CaKoV strains. Selective pressure analysis on the viral capsid (VP1) region showed negative selection, with potential positive selection sites on B-cell epitopes. This study, the first of its kind in Vietnam, provides insights into CaKoV prevalence in dogs of different ages and healthy statuses, updates CaKoV occurrence in Thailand, and sheds light on its molecular characteristics and immune evasion strategies.
Collapse
Affiliation(s)
- Tin Van Nguyen
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Kasantikul
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Ibrahim C, Hammami S, Khelifi N, Pothier P, Hassen A. Activated sludge and UV-C 254 for Sapovirus, Aichivirus, Astrovirus, and Adenovirus processing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1995-2014. [PMID: 37086061 DOI: 10.1080/09603123.2023.2203906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
In this study, the detection rates of four enteric viruses, Human Astrovirus (HAstVs), Aichivirus (AiVs), Human Adenovirus (HAdVs), and Sapovirus (SaVs) are carried out to assess the virological quality of the treated wastewater. A total of 140 samples was collected from wastewater treatment plant WWTP of Tunis-City. Real-time RT-PCR and conventional RT-PCR results showed high frequencies of detection of the four enteric viruses investigated at the entry and exit of the biological activated sludge procedure and a significant reduction in viral titers after tertiary treatment with UV-C254 irradiation. These results revealed the ineffectiveness of the biological activated sludge treatment in removing viruses and the poor quality of the treated wastewater intended for recycling, agricultural reuse, and safe discharge into the natural environment. The UV-C254 irradiation, selected while considering the non-release of known disinfection by-products because of eventual reactions with the large organic and mineral load commonly present in the wastewater.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, the University of Tunis El Manar, Tunis, Tunisia
- Microbiology Laboratory, Beja University Hospital, Beja,Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine at Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Nesserine Khelifi
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Tunisia
| | - Pierre Pothier
- National Reference Center for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Abdennaceur Hassen
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Tunisia
| |
Collapse
|
7
|
Tang Y, Sasaki K, Ihara M, Sugita D, Yamashita N, Takeuchi H, Tanaka H. Evaluation of virus removal in membrane bioreactor (MBR) and conventional activated sludge (CAS) processes based on long-term monitoring at two wastewater treatment plants. WATER RESEARCH 2024; 253:121197. [PMID: 38341968 DOI: 10.1016/j.watres.2024.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
The membrane bioreactor (MBR) process always offers better wastewater treatment than conventional activated sludge (CAS) treatment. However, the difference in their efficacy of virus reduction remains unknown. To investigate this, we monitored virus concentrations before and after MBR and CAS processes over 2 years. Concentrations of norovirus genotypes I and II (NoV GI and GII), aichivirus (AiV), F-specific RNA phage genotypes I, II, and III (GI-, GII-, and GIII-FRNAPHs), and pepper mild mottle virus (PMMoV) were measured by a quantitative polymerase chain reaction (qPCR) method at two municipal wastewater treatment plants (WWTPs A and B) in Japan. Virus concentration datasets containing left-censored data were estimated by using both maximum likelihood estimation (MLE) and robust regression on order statistics (rROS) approaches. PMMoV was the most prevalent at both WWTPs, with median concentrations of 7.5 to 8.8 log10 copies/L before treatment. Log10 removal values (LRVs) of all viruses based on means and standard deviations of concentrations before and after treatment were consistently higher following MBR than following CAS. We used NoV GII as a model pathogen in a quantitative microbial risk assessment of the treated water, and we estimated the additional reductions required following MBR and CAS processes to meet the guideline of 10-6 DALYs pppy for safe wastewater reuse.
Collapse
Affiliation(s)
- Yu Tang
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan.
| | - Kenta Sasaki
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Daichi Sugita
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Haruka Takeuchi
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| |
Collapse
|
8
|
Yang C, Abi KM, Yue H, Yang F, Tang C. First identification of a novel Aichivirus D in goats with diarrhea. JOURNAL OF INTEGRATIVE AGRICULTURE 2024; 23:1442-1446. [DOI: 10.1016/j.jia.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Jungbauer-Groznica M, Wiese K, Fischer I, Markus J, Chang TH, Gösler I, Kowalski H, Blaas D, Real-Hohn A. Aichivirus A1 replicates in human intestinal epithelium and bronchial tissue: Lung-gut axis? Virus Res 2024; 342:199338. [PMID: 38373599 PMCID: PMC10901855 DOI: 10.1016/j.virusres.2024.199338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.
Collapse
Affiliation(s)
- Martin Jungbauer-Groznica
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria; Virus and Immunity Unit, Institute Pasteur, Université Paris Cité, Paris, France
| | - Konstantin Wiese
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Histology Facility, Vienna Biocenter, Max Perutz Laboratories, Vienna, Austria
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | - Tsung-Hsien Chang
- National Defense Medical Center, Department of Microbiology and Immunology, Taipei, Taiwan
| | - Irene Gösler
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Huang M, Gan J, Xu Z, Guo Y, Chen Z, Gao GF, Liang H, Liu WJ. A black goat-derived novel genotype of Aichi virus C blurs the boundary between caprine and porcine kobuviruses. Virology 2023; 585:215-221. [PMID: 37384968 DOI: 10.1016/j.virol.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Aichi virus C, a species in the genus Kobuvirus, causes diarrhea diseases in pigs and goats and pose health threat and economic loss for stock farming. A nearly complete genome sequence of caprine kobuvirus GCCDC14 was obtained from an anal swab of a black goat died from diarrhea collected in Hubei, China in 2019. Phylogenetic analyses suggested that GCCDC14 is a novel genotype of Aichi virus C, forming a sister branch to other caprine kobuviruses, with P1 and VP0 genes more closely related to porcine kobuviruses and VP3 in an independent branch. Compared to previous caprine kobuviruses, unique amino acid changes in the poly-l-proline type II helix structure of VP0 and VP1 were found, which may affect the cellular machinery of host and pathogenicity. This study indicates the presence of the kobuvirus with continuously evolving features and emphasizes the surveillance and genetic evolution investigation of kobuviruses for safety of husbandry.
Collapse
Affiliation(s)
- Mengkun Huang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Jinxian Gan
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Ziqian Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yuanyuan Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; School of Public Health, Shandong University, Jinan, 250012, China
| | - Zhangfu Chen
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; School of Public Health, Shandong University, Jinan, 250012, China
| | - George F Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; School of Public Health, Shandong University, Jinan, 250012, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Hao Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China.
| | - William J Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530000, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 102206, China.
| |
Collapse
|
11
|
Yan N, Yue H, Liu Q, Wang G, Tang C, Liao M. Isolation and Characteristics of a Novel Aichivirus D from Yak. Microbiol Spectr 2023; 11:e0009923. [PMID: 37097198 PMCID: PMC10269754 DOI: 10.1128/spectrum.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Aichivirus D (AiV-D) is a newly emerging Kobuvirus detected in bovine and sheep, and information is limited regarding its biological significance and prevalence. This study aimed to explore both the prevalence and characteristics of AiV-D in yaks. From May to August 2021, 117 fecal samples were collected from yaks with diarrhea in three provinces of China's Qinghai-Tibet Plateau, 15 of which were selected and pooled for metagenomic analysis. A high abundance of AiV-D sequences was obtained. Of the 117 diarrhea samples, 29 (24.8%) tested AiV-D-positive, including 33.3% (14/42) from Sichuan, 21.1% (8/38) from Qinghai, and 18.9% (7/37) from Tibet, respectively, suggesting a wide geographical distribution of the AiV-D in yaks in the Qinghai-Tibet Plateau. Furthermore, three AiV-D strains were successfully isolated using Vero cells. Significantly, the AiV-D strain could cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, duodenum, colon, cecum, and rectum. Based on phylogenetic analysis of the genome and capsid protein P1 (VP0, VP3, and VP1 genes), the yak AiV-D strains likely represent a novel genotype of AiV-D. On the whole, this study identified a novel genotype of AiV-D from yaks, which was successfully isolated, and confirmed that this virus is a diarrhea pathogen in yaks and has a wide geographical distribution in the Qinghai-Tibet Plateau. Our results expand the host range of AiV-D and the pathogen spectrum of yaks and have significant implications for diagnosing and controlling diarrhea in yaks. IMPORTANCE In this study, we identified and successfully isolated a novel genotype of AiV-D from yaks. Animal infection confirmed that this virus can cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, cecum, duodenum, colon, and rectum. All of these results have significant implications for diagnosing and controlling diarrhea in yaks. These novel AiV-D strains have a wide geographical distribution in yaks from the Qinghai-Tibet Plateau in China. In addition to expanding the host range of AiV-D and the pathogen spectrum of yaks, these findings can increase knowledge of the prevalence and diversity of AiV-D.
Collapse
Affiliation(s)
- Nan Yan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Bhilegaonkar KN, Kolhe RP. Transfer of viruses implicated in human disease through food. PRESENT KNOWLEDGE IN FOOD SAFETY 2023:786-811. [DOI: 10.1016/b978-0-12-819470-6.00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Wang H, Munke A, Li S, Tomaru Y, Okamoto K. Structural Insights into Common and Host-Specific Receptor-Binding Mechanisms in Algal Picorna-like Viruses. Viruses 2022; 14:2369. [PMID: 36366467 PMCID: PMC9697754 DOI: 10.3390/v14112369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/31/2023] Open
Abstract
Marnaviridae viruses are abundant algal viruses that regulate the dynamics of algal blooms in aquatic environments. They employ a narrow host range because they merely lyse their algal host species. This host-specific lysis is thought to correspond to the unique receptor-binding mechanism of the Marnaviridae viruses. Here, we present the atomic structures of the full and empty capsids of Chaetoceros socialis forma radians RNA virus 1 built-in 3.0 Å and 3.1 Å cryo-electron microscopy maps. The empty capsid structure and the structural variability provide insights into its assembly and uncoating intermediates. In conjunction with the previously reported atomic model of the Chaetoceros tenuissimus RNA virus type II capsid, we have identified the common and diverse structural features of the VP1 surface between the Marnaviridae viruses. We have also tested the potential usage of AlphaFold2 for structural prediction of the VP1s and a subsequent structural phylogeny for classifying Marnaviridae viruses by their hosts. These findings will be crucial for inferring the host-specific receptor-binding mechanism in Marnaviridae viruses.
Collapse
Affiliation(s)
- Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Siqi Li
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
14
|
Abi KM, Yang C, Tang C, Jing ZZ. Aichivirus C isolate is a diarrhea-causing pathogen in goats. Transbound Emerg Dis 2022; 69:e2268-e2275. [PMID: 35502695 DOI: 10.1111/tbed.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Aichivirus C is an emerging virus in goats, but its biological significance remains unknown. In this study, 18 diarrheic and 16 non-diarrheic fecal samples of kids were collected from a farm with an ongoing diarrheic outbreak in Sichuan Province, China in May 2021. Of these samples, 77.8% (14/18) of diarrheic samples were detected as Aichivirus C positive by RT-PCR, which was significantly higher than that of non-diarrheic feces (0%, p<0.001); meanwhile, other common diarrhea-causing pathogens in goats were not detected in diarrheic samples, except for two samples that were detected as caprine enterovirus positive, suggesting that Aichivirus C was associated with goat diarrhea. Furthermore, five Aichivirus C strains were successfully isolated from positive samples using Vero cell lines and two isolates further plaque-purified, named SWUN/F5/2021(10-6.7 TCID50 /0.1ml) and SWUN/F6/2021(10-7 TCID50 /0.1ml). Interestingly, Aichivirus C strain could cause systemic infection in experimental kids via oral administration, with the main clinical manifestation being severe watery diarrhea. Histopathological changes observed in the duodenum and jejunum were characteristic, with shedding of mucosal epithelial cells. In addition, the virus was detected in tissues of diarrhea kids naturally infected with Aichivirus C, exhibiting pathological changes similar to those of experimental infections. Overall, this study first isolated Aichivirus C and confirmed its pathogenicity on kids, with further study needed to better understand virus pathogenicity. As Aichivirus C has been detected in South Korea, Italy, and the USA and widely prevalent in southwest China, the results obtained here have significant implications for the diagnosis and control of diarrhea in goats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Keha-Mo Abi
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Chen Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| |
Collapse
|
15
|
Kelly JT, Swanson J, Newman J, Groppelli E, Stonehouse NJ, Tuthill TJ. Membrane Interactions and Uncoating of Aichi Virus, a Picornavirus That Lacks a VP4. J Virol 2022; 96:e0008222. [PMID: 35293769 PMCID: PMC9006896 DOI: 10.1128/jvi.00082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Kobuviruses are an unusual and poorly characterized genus within the picornavirus family and can cause gastrointestinal enteric disease in humans, livestock, and pets. The human kobuvirus Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of 5 years; however, this is a very rare occurrence. During the assembly of most picornaviruses (e.g., poliovirus, rhinovirus, and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure, and enhances permeabilization of model membranes. Furthermore, using peptides we demonstrate that the N terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. IMPORTANCE To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small nonenveloped RNA viruses includes significant human and animal pathogens and is also a model to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses rearrange their capsids and induce membrane permeability in the absence of VP4. Here, we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.
Collapse
Affiliation(s)
| | - Jessica Swanson
- The Pirbright Institute, Pirbright, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
16
|
Feng R, Wang L, Shi D, Zheng B, Zhang L, Hou H, Xia D, Cui L, Wang X, Xu S, Wang K, Zhu L. Structural basis for neutralization of an anicteric hepatitis associated echovirus by a potent neutralizing antibody. Cell Discov 2021; 7:35. [PMID: 34035235 PMCID: PMC8149713 DOI: 10.1038/s41421-021-00264-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rui Feng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Shi
- Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Binyang Zheng
- National Health Commission of the People's Republic of China, Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, 210009, Jiangsu, China
| | - Li Zhang
- National Health Commission of the People's Republic of China, Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, 210009, Jiangsu, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Deju Xia
- Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Lunbiao Cui
- National Health Commission of the People's Republic of China, Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, 210009, Jiangsu, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sihong Xu
- Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
Chen BC, Huang TS, Huang NY, Chen CS, Chen YS, Chang TH. Low Seroprevalence of Aichi Virus Infection in Taiwan. Pathogens 2021; 10:pathogens10050553. [PMID: 34063639 PMCID: PMC8147638 DOI: 10.3390/pathogens10050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Aichi virus (AiV) belongs to the genus Kobuvirus of the family Picornaviridae; it is a single-stranded positive-sense RNA virus without an envelope. AiV causes acute gastroenteritis, abdominal pain, nausea, vomiting, and fever. Low incidence and high seroprevalence of AiV infections have been reported in several regions of the world; however, little was known on the prevalence of AiV infections in Taiwan. This study described the first two cases of AiV infection and analyzed AiV seroprevalence in Taiwan. A total of 700 sera were collected from a single hospital in southern Taiwan. The neutralization assay was employed to assess AiV neutralization antibodies in the serum. The test identified 48 positive cases, with a seroprevalence of 6.86%. Results also showed a gradual increase in AiV seroprevalence rate with age. Compared with other countries, Taiwan had a relatively low AiV seroprevalence, suggesting a low incidence of or sporadic AiV infections.
Collapse
Affiliation(s)
- Bao-Chen Chen
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (B.-C.C.); (T.-S.H.); (N.-Y.H.); (C.-S.C.)
| | - Tsi-Shu Huang
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (B.-C.C.); (T.-S.H.); (N.-Y.H.); (C.-S.C.)
| | - Nuan-Ya Huang
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (B.-C.C.); (T.-S.H.); (N.-Y.H.); (C.-S.C.)
| | - Chiao-Shan Chen
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (B.-C.C.); (T.-S.H.); (N.-Y.H.); (C.-S.C.)
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (Y.-S.C.); (T.-H.C.)
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-S.C.); (T.-H.C.)
| |
Collapse
|
18
|
Abi KM, Yu Z, Jing ZZ, Tang C. Identification of a novel Aichivirus D in sheep. INFECTION GENETICS AND EVOLUTION 2021; 91:104810. [PMID: 33741511 DOI: 10.1016/j.meegid.2021.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel kobuvirus was found in diarrheal fecal samples of Tibetan sheep using a viral metagenomics approach, and a full kobuvirus genome was successfully obtained by RT-PCR from a diarrheal fecal sample. The full genomic sequence was 8485 nucleotides (nt) in length with a standard picornavirus genome organization. The novel genome shares 62.9% and 77.8% nt homology with Aichivirus D1 genotype strain 1-22-KoV, and Aichivirus D2 genotype strain 2-44-KoV, respectively. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), the new kobuvirus belongs to Aichivirus species D. Interestingly, compared with 2 known Aichivirus D genotype strains, the novel Aichivirus D has unique amino acid substitutions in the 5'untranslated region (-UTR), VP0, VP3, and VP1, with a recombination event in the 2C region.These characteristics make the novel Aichivirus D cluster into an independent branch in the phylogenetic tree, suggesting that strain may represent a novel genotype in Aichivirus D. Moreover, the novel Aichivirus D was detected in 9.2% (18/195) of the sheep diarrheal fecal samples from 4 farms in 3 counties of the Qinghai Tibet Plateau in China. In addition, full-length VP0, VP3, and VP1 genes were successfully obtained from 12 samples from 4 farms, and phylogenetic analysis based on these genes revealed a unique evolutionary pattern for this novel Aichivirus D strain. This study identified a novel Aichivirus D that is circulating in sheep in Qinghai Tibet Plateau in China and these findings provide a better understanding of the epidemiologic and genetic evolution of kobuviruses.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhonghua Yu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Hongyuan 624400, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
19
|
Abi KM, Zhang Q, Jing ZZ, Tang C. First detection and molecular characteristics of caprine kobuvirus in goats in China. INFECTION GENETICS AND EVOLUTION 2020; 85:104566. [PMID: 32976973 DOI: 10.1016/j.meegid.2020.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
Caprine kobuvirus (CKoV), a member of the genus Kobuvirus, has only been identified in South Korea and Italy until now. In this study, 24 goat diarrheic fecal samples were collected from 3 farms in Sichuan province, China, and 87.5% (21/24) samples were detected as CKoV positive by RT-PCR. Meanwhile, full-length VP0, VP3, and VP1 genes were simultaneously cloned from 17 clinical samples. Phylogenetic analysis showed that all CKoV strains were most closely related to porcine kobuvirus based on amino acid (aa) sequences of VP0 and VP3 proteins, but CKoV strains were closely related to with Aichivirus B strains (ferret, bovine, and sheep kobuvirus) based on aa sequences of the VP1 protein. Interestingly, compared with known CKoV strains in the GenBank database, Chinese CKoV strains have unique amino acid changes in VP0 and VP1 proteins. Moreover, the first Chinese CKoV nearly complete genome was successfully obtained from a diarrheic fecal sample, named SWUN/F11/2019. Compared with the two known CKoV strains, five aa mutations (S60A, L252I, V267T, I, V 306 L, V331I) were found in the VP0 gene and 7 aa mutations (S57N, G, T243A, V244I, T, A248V, L, S251A, R252H, and M255L) were found in VP1 in the SWUN/F11/2019 genome. This was the first report of the detection and molecular characteristics of CKoV from goats in China, which could be helpful for improving the understanding of the prevalence and genetic evolution of CKoV.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, P.R. China
| | - Qi Zhang
- College of Life Science and Technology, Southwest Minzu University and Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, P.R. China.
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University and Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China.
| |
Collapse
|
20
|
Wang K, Zhu L, Sun Y, Li M, Zhao X, Cui L, Zhang L, Gao GF, Zhai W, Zhu F, Rao Z, Wang X. Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nat Commun 2020; 11:4421. [PMID: 32887891 PMCID: PMC7474057 DOI: 10.1038/s41467-020-18251-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Receptor usage that determines cell tropism and drives viral classification closely correlates with the virus structure. Enterovirus B (EV-B) consists of several subgroups according to receptor usage, among which echovirus 30 (E30), a leading causative agent for human aseptic meningitis, utilizes FcRn as an uncoating receptor. However, receptors for many EVs remain unknown. Here we analyzed the atomic structures of E30 mature virion, empty- and A-particles, which reveals serotype-specific epitopes and striking conformational differences between the subgroups within EV-Bs. Of these, the VP1 BC loop markedly distinguishes E30 from other EV-Bs, indicative of a role as a structural marker for EV-B. By obtaining cryo-electron microscopy structures of E30 in complex with its receptor FcRn and CD55 and comparing its homologs, we deciphered the underlying molecular basis for receptor recognition. Together with experimentally derived viral receptor identifications, we developed a structure-based in silico algorithm to inform a rational prediction for EV receptor usage. Echovirus 30 (E30) belongs to the Enterovirus-B group and causes aseptic meningitis in humans. Here, the authors present the cryo-EM structures of the E30 E-particle, A-particle and the mature virion, as well as structures of E30 in complex with its receptor FcRn and CD55, and furthermore they describe a structure-based algorithm that allows the prediction of EV receptor usage.
Collapse
Affiliation(s)
- Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minhao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lunbiao Cui
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Li Zhang
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fengcai Zhu
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
21
|
Rivadulla E, Romalde JL. A Comprehensive Review on Human Aichi Virus. Virol Sin 2020; 35:501-516. [PMID: 32342286 PMCID: PMC7223127 DOI: 10.1007/s12250-020-00222-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although norovirus, rotavirus, adenovirus and Astrovirus are considered the most important viral agents transmitted by food and water, in recent years other viruses, such as Aichi virus (AiV), have emerged as responsible for gastroenteritis outbreaks associated with different foods. AiV belongs to the genus Kobuvirus of the family Picornaviridae. It is a virus with icosahedral morphology that presents a single stranded RNA genome with positive sense (8280 nucleotides) and a poly (A) chain. AiV was first detected from clinical samples and in recent years has been involved in acute gastroenteritis outbreaks from different world regions. Furthermore, several studies conducted in Japan, Germany, France, Tunisia and Spain showed a high prevalence of AiV antibodies in adults (between 80% and 99%), which is indicative of a large exposure to this virus. The aim of this review is to bring together all the discovered information about the emerging pathogen human Aichi virus (AiV), discussing the possibles routes of transmission, new detection techniques and future research. Although AiV is responsible for a low percentage of gastroenteritis outbreaks, the high seroprevalence shown by human populations indicates an evident role as an enteric agent. The low percentage of AiV detection could be explained by the fact that the pathogen is more associated to subclinical infections. Further studies will be needed to clarify the real impact of AiV in human health and its importance as a causative gastroenteritis agent worldwide.
Collapse
Affiliation(s)
- Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
22
|
Abstract
The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.
Collapse
|
23
|
Li H, Tang C, Yue H. Molecular detection and genomic characteristics of bovine kobuvirus from dairy calves in China. INFECTION GENETICS AND EVOLUTION 2019; 74:103939. [PMID: 31247336 PMCID: PMC7106006 DOI: 10.1016/j.meegid.2019.103939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 11/18/2022]
Abstract
In this study, 96 diarrheic and 77 non-diarrheic fecal samples from dairy calves were collected from 14 dairy farms in 4 provinces to investigate the molecular prevalence and genomic characteristics of Bovine Kobuvirus (BKoV) in China. The results showed that the BKoV positive rate for the diarrheic feces (35.42%) was significantly higher than that for the non-diarrheic feces (11.69%, p < 0.001). Interestingly, three potential novel VP1 lineages were identified from 15 complete VP1 sequences, and a unique triple nucleotide insertion which can result in an aa insertion, was first observed in the 11/12 VP0 fragments with 660 bp long in this study, compared with known BKoV VP0 sequences. Moreover, the first Chinese BKoV genome was successfully obtained from a diarrheic fecal sample, named CHZ/CHINA. The open reading frame (ORF) of the genome from strain CHZ/China shares 87.4%–88.3% nucleotide (nt) and 93.7%–96.4% amino acid (aa) identity, compared with the three known genomes of BKoV. Interestingly, phylogenetic tree based on aa sequences of these genomes showed that CHZ/CHINA was clustered into an independent branch, suggesting the strain may represent a novel BKoV strain. The findings contribute to better understanding the molecular characteristics and evolution of BKoV. Three potential novel VP1 lineages in BKoV. A unique VP0 sequence type in BKoV. The first BKoV genome from China which may represent a novel BKoV strain. Contributing to better understanding the molecular characteristics of BKoV.
Collapse
Affiliation(s)
- Huiping Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China.
| |
Collapse
|
24
|
Aguilera ER, Nguyen Y, Sasaki J, Pfeiffer JK. Bacterial Stabilization of a Panel of Picornaviruses. mSphere 2019; 4:e00183-19. [PMID: 30944213 PMCID: PMC6449606 DOI: 10.1128/msphere.00183-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Several viruses encounter various bacterial species within the host and in the environment. Despite these close encounters, the effects of bacteria on picornaviruses are not completely understood. Previous work determined that poliovirus (PV), an enteric virus, has enhanced virion stability when exposed to bacteria or bacterial surface polysaccharides such as lipopolysaccharide. Virion stabilization by bacteria may be important for interhost transmission, since a mutant PV with reduced bacterial binding had a fecal-oral transmission defect in mice. Therefore, we investigated whether bacteria broadly enhance stability of picornaviruses from three different genera: Enterovirus (PV and coxsackievirus B3 [CVB3]), Kobuvirus (Aichi virus), and Cardiovirus (mengovirus). Furthermore, to delineate strain-specific effects, we examined two strains of CVB3 and a PV mutant with enhanced thermal stability. We determined that specific bacterial strains enhance thermal stability of PV and CVB3, while mengovirus and Aichi virus are stable at high temperatures in the absence of bacteria. Additionally, we determined that bacteria or lipopolysaccharide can stabilize PV, CVB3, Aichi virus, and mengovirus during exposure to bleach. These effects are likely mediated through direct interactions with bacteria, since viruses bound to bacteria in a pulldown assay. Overall, this work reveals shared and distinct effects of bacteria on a panel of picornaviruses.IMPORTANCE Recent studies have shown that bacteria promote infection and stabilization of poliovirus particles, but the breadth of these effects on other members of the Picornaviridae family is unknown. Here, we compared the effects of bacteria on four distinct members of the Picornaviridae family. We found that bacteria reduced inactivation of all of the viruses during bleach treatment, but not all viral strains were stabilized by bacteria during heat treatment. Overall, our data provide insight into how bacteria play differential roles in picornavirus stability.
Collapse
Affiliation(s)
- Elizabeth R Aguilera
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Y Nguyen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Sasaki
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Zhu L, Sun Y, Fan J, Zhu B, Cao L, Gao Q, Zhang Y, Liu H, Rao Z, Wang X. Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nat Commun 2018; 9:4985. [PMID: 30478256 PMCID: PMC6255764 DOI: 10.1038/s41467-018-07531-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus A10 (CVA10), a human type-A Enterovirus (HEV-A), can cause diseases ranging from hand-foot-and-mouth disease to polio-myelitis-like disease. CVA10, together with some other HEV-As, utilizing the molecule KREMEN1 as an entry receptor, constitutes a KREMEN1-dependent subgroup within HEV-As. Currently, there is no vaccine or antiviral therapy available for treating diseases caused by CVA10. The atomic-resolution structure of the CVA10 virion, which is within the KREMEN1-dependent subgroup, shows significant conformational differences in the putative receptor binding sites and serotype-specific epitopes, when compared to the SCARB2-dependent subgroup of HEV-A, such as EV71, highlighting specific differences between the sub-groups. We also report two expanded structures of CVA10, an empty particle and uncoating intermediate at atomic resolution, as well as a medium-resolution genome structure reconstructed using a symmetry-mismatch method. Structural comparisons coupled with previous results, reveal an ordered signal transmission process for enterovirus uncoating, converting exo-genetic receptor-attachment inputs into a generic RNA release mechanism. The disease-causing pathogen Coxsackievirus A10 (CVA10) is a human type-A Enterovirus. Here the authors present the cryo-EM structures of the mature CVA10 virion and the empty- and A-particles of CVA10, which is of interest for CVA10 vaccine development.
Collapse
Affiliation(s)
- Ling Zhu
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yao Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinyan Fan
- Beijing Productivity Center, Major Project Department, Beijing, 100088, China
| | - Bin Zhu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures, and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Lei Cao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, 100085, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Hongrong Liu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures, and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Abstract
Despite significant advances in health care, outbreaks of infections by enteroviruses (EVs) continue to plague the Asia-Pacific region every year. Enterovirus 71 (EV71) causes hand-foot-and-mouth disease (HFMD), for which there are currently no therapeutics. Here, we report two new antibodies, A9 and D6, that potently neutralize EV71. A9 exhibited a 50% neutralizing concentration (neut50) value of 0.1 nM against EV71, which was 10-fold lower than that observed for D6. Investigation into the mechanisms of neutralization revealed that binding of A9 to EV71 blocks receptor binding but also destabilizes and damages the virus capsid structure. In contrast, D6 destabilizes the capsid only slightly but interferes more potently with the attachment of the virus to the host cells. Cryo-electron microscopy (cryo-EM) structures of A9 and D6 bound with EV71 shed light on the locations and nature of the epitopes recognized by the two antibodies. Although some regions of the epitopes recognized by the two antibodies overlap, there are differences that give rise to dissimilarities in potency as well as in the mechanisms of neutralization. Interestingly, the overlapping regions of the epitopes encompass the site that the virus uses to bind SCARB2, explaining the reason for the observed blocking of the virus-receptor interaction by the two antibodies. We also identified structural elements that might play roles in modulating the stability of the EV71 particles, including particle integrity. The molecular features of the A9 and D6 epitopes unveiled in this study open up new avenues for rationally designing antiviral drugs. During the course of viral infections, the human body produces neutralizing antibodies which play a defining role in clearing the virus. From this study, we report two new, highly potent neutralizing antibodies, A9 and D6, against enterovirus 71 (EV71), the causative agent of HFMD. Both antibodies prevent the virus from entering the host cell, a step that is important for establishing a successful infection. A9 destabilizes and damages the virus capsid that forms an outer protective covering around the genome of the virus, while also interfering with virus attachment to the host cells. In contrast, D6 only prevents binding of the virus to its receptor(s). The mechanism of neutralization of A9 is unique and has not been observed before for neutralizing antibodies targeting EVs. The two antibodies that we are reporting in this study have potential to be developed into much-needed therapeutic interventions for treatment of HFMD, outbreaks of which are reported every year in the Asia-Pacific region.
Collapse
|
27
|
Cryo-Electron Microscopy Structure of Seneca Valley Virus Procapsid. J Virol 2018; 92:JVI.01927-17. [PMID: 29263256 DOI: 10.1128/jvi.01927-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
Seneca Valley virus (SVV), like some other members of the Picornaviridae, forms naturally occurring empty capsids, known as procapsids. Procapsids have the same antigenicity as full virions, so they present an interesting possibility for the formation of stable virus-like particles. Interestingly, although SVV is a livestock pathogen, it has also been found to preferentially infect tumor cells and is being explored for use as a therapeutic agent in the treatment of small-cell lung cancers. Here we used cryo-electron microscopy to investigate the procapsid structure and describe the transition of capsid protein VP0 to the cleaved forms of VP4 and VP2. We show that the SVV receptor binds the procapsid, as evidence of its native antigenicity. In comparing the procapsid structure to that of the full virion, we also show that a cage of RNA serves to stabilize the inside surface of the virus, thereby making it more acid stable.IMPORTANCE Viruses are extensively studied to help us understand infection and disease. One of the by-products of some virus infections are the naturally occurring empty virus capsids (containing no genome), termed procapsids, whose function remains unclear. Here we investigate the structure and formation of the procapsids of Seneca Valley virus, to better understand how they form, what causes them to form, how they behave, and how we can make use of them. One potential benefit of this work is the modification of the procapsid to develop it for targeted in vivo delivery of therapeutics or to make a stable vaccine against SVV, which could be of great interest to the agricultural industry.
Collapse
|
28
|
Prevalence and genomic characteristics of canine kobuvirus in southwest China. Arch Virol 2017; 163:459-466. [DOI: 10.1007/s00705-017-3648-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
29
|
Xu L, Zheng Q, Li S, He M, Wu Y, Li Y, Zhu R, Yu H, Hong Q, Jiang J, Li Z, Li S, Zhao H, Yang L, Hou W, Wang W, Ye X, Zhang J, Baker TS, Cheng T, Zhou ZH, Yan X, Xia N. Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nat Commun 2017; 8:505. [PMID: 28894095 PMCID: PMC5593947 DOI: 10.1038/s41467-017-00477-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022] Open
Abstract
Coxsackievirus A6 (CVA6) has recently emerged as a major cause of hand, foot and mouth disease in children worldwide but no vaccine is available against CVA6 infections. Here, we demonstrate the isolation of two forms of stable CVA6 particles-procapsid and A-particle-with excellent biochemical stability and natural antigenicity to serve as vaccine candidates. Despite the presence (in A-particle) or absence (in procapsid) of capsid-RNA interactions, the two CVA6 particles have essentially identical atomic capsid structures resembling the uncoating intermediates of other enteroviruses. Our near-atomic resolution structure of CVA6 A-particle complexed with a neutralizing antibody maps an immune-dominant neutralizing epitope to the surface loops of VP1. The structure-guided cell-based inhibition studies further demonstrate that these loops could serve as excellent targets for designing anti-CVA6 vaccines.Coxsackievirus A6 (CVA6) causes hand, foot and mouth disease in children. Here the authors present the CVA6 procapsid and A-particle cryo-EM structures and identify an immune-dominant neutralizing epitope, which can be exploited for vaccine development.
Collapse
Affiliation(s)
- Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yongchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Qiyang Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Jie Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Zizhen Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Lisheng Yang
- Department of Research & Development Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Xiangzhong Ye
- Department of Research & Development Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing, 102206, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Timothy S Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Z Hong Zhou
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, 90095, USA
| | - Xiaodong Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
30
|
Klima M, Chalupska D, Różycki B, Humpolickova J, Rezabkova L, Silhan J, Baumlova A, Dubankova A, Boura E. Kobuviral Non-structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein. Structure 2017; 25:219-230. [PMID: 28065508 DOI: 10.1016/j.str.2016.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Picornaviruses are small positive-sense single-stranded RNA viruses that include many important human pathogens. Within the host cell, they replicate at specific replication sites called replication organelles. To create this membrane platform, they hijack several host factors including the acyl-CoA-binding domain-containing protein-3 (ACBD3). Here, we present a structural characterization of the molecular complexes formed by the non-structural 3A proteins from two species of the Kobuvirus genus of the Picornaviridae family and the 3A-binding domain of the host ACBD3 protein. Specifically, we present a series of crystal structures as well as a molecular dynamics simulation of the 3A:ACBD3 complex at the membrane, which reveals that the viral 3A proteins act as molecular harnesses to enslave the ACBD3 protein leading to its stabilization at target membranes. Our data provide a structural rationale for understanding how these viral-host protein complexes assemble at the atomic level and identify new potential targets for antiviral therapies.
Collapse
Affiliation(s)
- Martin Klima
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic.
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Adriana Baumlova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
31
|
Rivadulla E, Varela MF, Romalde JL. Low prevalence of Aichi virus in molluscan shellfish samples from Galicia (NW Spain). J Appl Microbiol 2016; 122:516-521. [PMID: 27891729 DOI: 10.1111/jam.13363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
Abstract
AIMS The aim of this study was to detect and quantify Aichi virus (AiV) in shellfish from three estuaries in Galicia, the main producer of molluscs in Europe. METHODS AND RESULTS A total of 249 shellfish samples were analysed using a reverse transcription-quantitative PCR procedure. AiV was detected in 15 of 249 (6·02%) samples. Ría de Ares-Betanzos showed the highest prevalence (11·1%), followed by Ría do Burgo (3·7%) and Ría de Vigo, (2·56%). AiV quantifications ranged from nonquantifiable (under the limit of quantification of the method) to 6·9 × 103 RNAc per g DT, with a mean value of 1·9 × 102 RNAc per g DT. CONCLUSION Results obtained indicated that the prevalence of this enteric virus in the studied area is considerably lower than those of other enteric viruses, such as Norovirus, Sapovirus, HAV or HEV. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that detects the presence of AiV in shellfish from authorized harvesting areas in Spain. Further studies with clinical samples are needed to determine the potential risk of AiV for human health in Galicia.
Collapse
Affiliation(s)
- E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
32
|
Structural biology: A picornavirus unlike the others. Nat Microbiol 2016; 1:16217. [DOI: 10.1038/nmicrobiol.2016.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|