1
|
Gil-Fernández M, Carthey AJR, Mendoza E, Godínez-Gómez O, G MCM, Blanco-García A, Delfín-Alfonso CA, Le Roux JJ. The impact of land use change on mycorrhizal fungi and their associations with rodents: insights from a temperate forest in Mexico. MYCORRHIZA 2025; 35:36. [PMID: 40338382 PMCID: PMC12062193 DOI: 10.1007/s00572-025-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Ecosystem functioning is influenced by biological diversity, ecological interactions, and abiotic conditions. Human interactions with ecosystems can cause major changes in how they function when involving changes in the vegetation cover and structure (i.e., land use change). This study examines how land use change affects the diversity of arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) in soil and rodent scats in temperate forest sites. We collected soil and rodent scat samples at five paired sites (i.e., disturbed vs. undisturbed) in Michoacan, Mexico. We identified 112 putative mycorrhizal fungi species using DNA barcoding based on partial internal transcribed region 1 (ITS) sequences. We found a higher richness of EMF in undisturbed soil samples compared to disturbed soil samples and a higher AMF diversity in rodent scat samples from disturbed than undisturbed sites. Scat samples had a high incidence of both AMF (75%) and EMF (100%). We found significant differences in the diversity of both AMF and EMF depending on the rodent species associated with them. We also found a higher diversity of EMF in scats in the wet season than in the dry season. We also report, for the first time, associations between Sigmodon hispidus and numerous AMF and EMF species. Overall, our study highlights the role of rodents as important dispersal vectors of mycorrhizal fungi, particularly for EMF that could be essential to build up mycorrhizal fungi spore banks in disturbed forests.
Collapse
Affiliation(s)
- Margarita Gil-Fernández
- School of Natural Sciences, Macquarie University, New South Wales, 2109, Australia.
- Posgrado en Biología Integrativa, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico.
- Laboratorio de Vertebrados, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico.
| | | | - Eduardo Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, San Juanito Itzicuaro Avenue, Nueva Esperanza, Morelia, Michoacán, 58330, México
| | - Oscar Godínez-Gómez
- Department of Wildlife Ecology and Conservation, School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32618, USA
| | - M Cristina MacSwiney G
- Centro de Investigaciones Tropicales, Universidad Veracruzana, José María Morelos y Pavon 44, Centro, Xalapa, Veracruz, 91000, México
| | - Arnulfo Blanco-García
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Francisco J. Múgica Avenue, Ciudad Universitaria, 58060, Morelia, Michoacan, Mexico
| | - Christian A Delfín-Alfonso
- Laboratorio de Vertebrados, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico
| | - Johannes J Le Roux
- School of Natural Sciences, Macquarie University, New South Wales, 2109, Australia
| |
Collapse
|
2
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, Santo Svierzoski ND, Pozo C, González-López J, González-Martínez A. Anticancer drugs alter active nitrogen-cycling communities with effects on the nitrogen removal efficiency of a continuous-flow aerobic granular sludge system. CHEMOSPHERE 2025; 376:144279. [PMID: 40073731 DOI: 10.1016/j.chemosphere.2025.144279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
There is increasing awareness of the presence of anticancer drugs (ACDs) in wastewater. Nonetheless, how ACDs affect the performance of wastewater treatment systems and their microbial populations remains largely unclear. This study investigated the effects of three common ACDs (cyclophosphamide, tamoxifen, and methotrexate) at varying concentrations on physicochemical parameters and drug removal efficiency in an aerobic granular sludge (AGS) system operated in a continuous-flow reactor. Additionally, it examined the abundance of active microbial communities, including nitrifiers (amoA gene from ammonia-oxidizing bacteria and archaea) and denitrifiers (napA, narG, nirK, nirS, nosZ genes), as well as the biodiversity of active prokaryotic communities. The concentration level of ACDs determines variations in biomass density, granule integrity, and removal efficiencies of organic matter (OM) and total nitrogen. Both medium and high ACD concentrations negatively impact these physicochemical parameters. The findings revealed that AGS functioning within a continuous system could help remove ACDs, but removal efficiencies depended on the specific drug and concentration applied. At medium and high ACD concentrations a marked reduction in the abundance of active bacterial and archaeal communities, including nitrifiers and denitrifiers, was observed, alongside a decline in microbial diversity and a transformation in community composition. Specific bacterial genera, which are crucial for OM degradation, nitrification and denitrification were identified as particularly sensitive to anticancer drugs. Our findings highlight the need for monitoring and managing anticancer drugs in wastewater systems, as they can substantially alter treatment performance, nitrogen-cycling communities, and bacterial community composition.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| | | | | | - Clementina Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| | - Alejandro González-Martínez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| |
Collapse
|
3
|
Liu M, Blattman SB, Takahashi M, Mandayam N, Jiang W, Oikonomou P, Tavazoie SF, Tavazoie S. Conserved genetic basis for microbial colonization of the gut. Cell 2025; 188:2505-2520.e22. [PMID: 40187346 PMCID: PMC12048274 DOI: 10.1016/j.cell.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Despite the fundamental importance of gut microbes, the genetic basis of their colonization remains largely unexplored. Here, by applying cross-species genotype-habitat association at the tree-of-life scale, we identify conserved microbial gene modules associated with gut colonization. Across thousands of species, we discovered 79 taxonomically diverse putative colonization factors organized into operonic and non-operonic modules. They include previously characterized colonization pathways such as autoinducer-2 biosynthesis and novel processes including tRNA modification and translation. In vivo functional validation revealed YigZ (IMPACT family) and tRNA hydroxylation protein-P (TrhP) are required for E. coli intestinal colonization. Overexpressing YigZ alone is sufficient to enhance colonization of the poorly colonizing MG1655 E. coli by >100-fold. Moreover, natural allelic variations in YigZ impact inter-strain colonization efficiency. Our findings highlight the power of large-scale comparative genomics in revealing the genetic basis of microbial adaptations. These broadly conserved colonization factors may prove critical for understanding gastrointestinal (GI) dysbiosis and developing therapeutics.
Collapse
Affiliation(s)
- Menghan Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Good BH, Bhatt AS, McDonald MJ. Unraveling the tempo and mode of horizontal gene transfer in bacteria. Trends Microbiol 2025:S0966-842X(25)00100-3. [PMID: 40274494 DOI: 10.1016/j.tim.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Research on horizontal gene transfer (HGT) has surged over the past two decades, revealing its critical role in accelerating evolutionary rates, facilitating adaptive innovations, and shaping pangenomes. Recent experimental and theoretical results have shown how HGT shapes the flow of genetic information within and between populations, expanding the range of possibilities for microbial evolution. These advances set the stage for a new wave of research seeking to predict how HGT shapes microbial evolution within natural communities, especially during rapid ecological shifts. In this article, we highlight these developments and outline promising research directions, emphasizing the necessity of quantifying the rates of HGT within diverse ecological contexts.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J McDonald
- ARC Centre for the Mathematical Analysis of Cellular Systems, Melbourne, Victoria, Australia; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Corbin KD, Igudesman D, Smith SR, Zengler K, Krajmalnik-Brown R. Targeting the Gut Microbiota's Role in Host Energy Absorption With Precision Nutrition Interventions for the Prevention and Treatment of Obesity. Nutr Rev 2025:nuaf046. [PMID: 40233201 DOI: 10.1093/nutrit/nuaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
The field of precision nutrition aims to develop dietary approaches based on individual biological factors such as genomics or the gut microbiota. The gut microbiota, which is the highly individualized and complex community of microbes residing in the colon, is a key contributor to human physiology. Although gut microbes play multiple roles in the metabolism of nutrients, their role in modulating the absorption of dietary energy from foods that escape digestion in the small intestine has the potential to variably affect energy balance and, thus, body weight. The fate of this energy, and its subsequent impact on body weight, is well described in rodents and is emerging in humans. This narrative review is focused on recent clinical evidence of the role of the gut microbiota in human energy balance, specifically its impact on energy available to the human host. Despite recent progress, remaining gaps in knowledge present opportunities for developing and implementing strategies to understand causal microbial mechanisms related to energy balance. We propose that implementing rigorous microbiota-focused measurements in the context of innovative clinical trial designs will elucidate integrated diet-host-gut microbiota mechanisms. These mechanisms are primed to be targets for precision nutrition interventions to optimize energy balance to achieve desired weight outcomes. Given the magnitude and impact of the obesity epidemic, implementing these interventions within comprehensive weight management paradigms has the potential to be of public health significance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Daria Igudesman
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, FL 32804, United States
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, United States
| |
Collapse
|
6
|
Matsumura E, Kato H, Hara S, Ohbayashi T, Ito K, Shingubara R, Kawakami T, Mitsunobu S, Saeki T, Tsuda S, Minamisawa K, Wagai R. Single-cell genomics of single soil aggregates: methodological assessment and potential implications with a focus on nitrogen metabolism. Front Microbiol 2025; 16:1557188. [PMID: 40260087 PMCID: PMC12010503 DOI: 10.3389/fmicb.2025.1557188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 04/23/2025] Open
Abstract
Soil particles in plant rooting zones are largely clustered to form porous structural units called aggregates where highly diverse microorganisms inhabit and drive biogeochemical cycling. The complete extraction of microbial cells and DNA from soil is a substantial task as certain microorganisms exhibit strong adhesion to soil surfaces and/or inhabit deep within aggregates. However, the degree of aggregate dispersion and the efficacy of extraction have rarely been examined, and thus, adequate cell extraction methods from soil remain unclear. We aimed to develop an optimal method of cell extraction for single-cell genomics (SCG) analysis of single soil aggregates by focusing on water-stable macroaggregates (diameter: 5.6-8.2 mm) from the topsoil of cultivated Acrisol. We postulated that the extraction of microorganisms with distinct taxonomy and functions could be achieved depending on the degree of soil aggregate dispersion. To test this idea, we used six individual aggregates and performed both SCG sequencing and amplicon analysis. While both bead-vortexing and sonication dispersion techniques improved the extractability of bacterial cells compared to previous ones, the sonication technique led to more efficient dispersion and yielded a higher number and more diverse microorganisms than the bead technique. Furthermore, the analyses of nitrogen cycling and exopolysaccharides-related genes suggested that the sonication-assisted extraction led to the greater recovery of microorganisms strongly attached to soil particles and/or inhabited the aggregate subunits that were more physically stable (e.g., aggregate core). Further SCG analysis revealed that all six aggregates held intact microorganisms holding the genes (potentials) to convert nitrate into all possible nitrogen forms while some low-abundance genes showed inter-aggregate heterogeneity. Overall, all six aggregates studied showed similarities in pore characteristics, phylum-level composition, and microbial functional redundancy. Together, these results suggest that water-stable macroaggregates may act as a functional unit in soil and show potential as a useful experimental unit in soil microbial ecology. Our study also suggests that conventional methods employed for the extraction of cells and DNA may not be optimal. The findings of this study emphasize the necessity of advancing extraction methodologies to facilitate a more comprehensive understanding of microbial diversity and function in soil environments.
Collapse
Affiliation(s)
- Emi Matsumura
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiromi Kato
- Graduate School of Life Science, Tohoku University, Sendai, Japan
| | - Shintaro Hara
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Koji Ito
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryo Shingubara
- Research Center for Advanced Analysis (NAAC), National Agriculture and Food Research Organization (NARO), Sendai, Japan
| | - Tomoya Kawakami
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | | | | | | | - Rota Wagai
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
7
|
Beugnon R, Eisenhauer N, Lochner A, Blechinger MJ, Buhr PE, Cesarz S, Farfan MA, Ferlian O, Rompeltien Howard AJ, Huang Y, Kuhlmann BS, Lienicke N, Mählmann S, Nowka A, Petereit E, Ristok C, Schädler M, Schmid JTM, Schulte LJ, Seim K, Thouvenot L, Tremmel R, Weber L, Weitowitz J, Yi H, Sünnemann M. Sustainable Land Use Enhances Soil Microbial Respiration Responses to Experimental Heat Stress. GLOBAL CHANGE BIOLOGY 2025; 31:e70214. [PMID: 40272845 PMCID: PMC12020990 DOI: 10.1111/gcb.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Soil microbial communities provide numerous ecosystem functions, such as nutrient cycling, decomposition, and carbon storage. However, global change, including land-use and climate changes, affects soil microbial communities and activity. As extreme weather events (e.g., heatwaves) tend to increase in magnitude and frequency, we investigated the effects of heat stress on the activity (e.g., respiration) of soil microbial communities that had experienced four different long-term land-use intensity treatments (ranging from extensive grassland and intensive grassland to organic and conventional croplands) and two climate conditions (ambient vs. predicted future climate). We hypothesized that both intensive land use and future climate conditions would reduce soil microbial respiration (H1) and that experimental heat stress would increase microbial respiration (H2). However, this increase would be less pronounced in soils with a long-term history of high-intensity land use and future climate conditions (H3), and soils with a higher fungal-to-bacterial ratio would show a more moderate response to warming (H4). Our study showed that soil microbial respiration was reduced under high land-use intensity (i.e., -43% between extensive grassland and conventional cropland) and future climate conditions (-12% in comparison to the ambient climate). Moreover, heat stress increased overall microbial respiration (+17% per 1°C increase), while increasing land-use intensity reduced the strength of this response (-25% slope reduction). In addition, increasing soil microbial biomass and fungal-to-bacterial ratio under low-intensity land use (i.e., extensive grassland) enhanced the microbial respiration response to heat stress. These findings show that intensive land use and climate change may compromise the activity of soil microbial communities as well as their respiration under heatwaves. In particular, soil microbial communities under high-intensity land use and future climate are less able to respond to additional stress, such as heatwaves, potentially threatening the critical ecosystem functions driven by soil microbes and highlighting the benefits of more sustainable agricultural practices.
Collapse
Affiliation(s)
- Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
- CEFE, University Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Paula E. Buhr
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Monica A. Farfan
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Nora Lienicke
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Selma Mählmann
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Anneke Nowka
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalleGermany
| | | | - Lara J. Schulte
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Kora‐Lene Seim
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Lise Thouvenot
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Raphael Tremmel
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
| | - Lara Weber
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Jule Weitowitz
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| |
Collapse
|
8
|
Dai J, Ouyang Y, Gupte R, Liu XJA, Li Y, Yang F, Chen S, Provin T, Van Schaik E, Samuel JE, Jayaraman A, Zhou A, de Figueiredo P, Zhou J, Han A. Microfluidic droplets with amended culture media cultivate a greater diversity of soil microorganisms. Appl Environ Microbiol 2025; 91:e0179424. [PMID: 39936906 PMCID: PMC11921321 DOI: 10.1128/aem.01794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Uncultivated but abundant soil microorganisms have untapped potential for producing broad ranges of natural products, as well as for bioremediation. However, cultivating soil microorganisms while maintaining a broad microorganism diversity to enable phenotyping and functional analysis of as diverse individual isolates as possible remains challenging. In this study, we developed and tested the ability of several culture media formulations that contain defined soil metabolites or soil extracts to maintain microorganism diversity during culture. We also assessed their performance in microfluidic droplet cultivation where single-soil microorganism isolates were encapsulated and cultivated in picoliter-volume water-in-oil emulsion droplets to enable clonal growth needed for downstream functional analyses. Our results show that droplet cultivation with media supplemented by soil extract or soil metabolites enables the recovery of soil microorganisms with higher diversity (up to 1.5-fold higher richness) compared to bulk cultivation methods. Importantly, 1.7-fold more of less abundant (<1%) phyla and 11-fold more of unique genera were recovered, demonstrating the utility of this method for interrogating highly diverse soil microorganisms for broad ranges of applications.IMPORTANCEAlthough soil microorganisms hold a significant value in bioproduction and bioremediation, only a small fraction-less than 1%-can be cultured under specific media and cultivation conditions. This indicates that there are ample opportunities in harvesting the diverse environmental microorganisms if isolating and recovering these uncultured microorganisms are possible. This paper presents a new cultivation technique composed of isolating single-soil microorganism cell from an in situ soil microorganism community in microfluidic droplets and conducting in-droplet cultivation in media supplemented by soil extract or soil metabolites. This method enables the recovery of a broader diversity of the original microorganism community, laying the groundwork for a high-throughput phenotyping of these diverse microorganisms from their natural habitats.
Collapse
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Yang Ouyang
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Rohit Gupte
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Xiao Jun A. Liu
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Fang Yang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shaorong Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Tony Provin
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin Van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aifen Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul de Figueiredo
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Veterinary Pathobiology, University of Missouri School of Veterinary Medicine, Columbia, Missouri, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Sciences, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Cofré N, Grilli G, Marro N, Videla M, Urcelay C. Morphological spore-based characterisation and molecular approaches reveal comparable patterns in glomeromycotan communities. MYCORRHIZA 2025; 35:19. [PMID: 40063119 DOI: 10.1007/s00572-025-01198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Traditionally, characterisation and comparison of AMF communities has been carried out by morphological identification of asexual spores in soil. In recent decades, molecular methods such as soil metabarcoding have become more popular than morphological identification of spores, but direct comparisons of the efficiency of both approaches have been rare. In this study, we compared AMF communities in soil samples from vegetable farms using both morphological and molecular methods (internal transcribed spacer, ITS, markers). In addition, we performed a systematic literature search and retrieved nine studies that analysed AMF communities using both approaches in the same soil samples, mostly in agroecosystems. Our results show that AMF communities determined by morphological spore-based identification are different than those determined by molecular genetic markers, but not as often claimed. In some cases, the morphological spore-based characterisation of spores revealed more diverse glomeromycotan communities. Moreover, in several cases the spore-based methods recovered taxa that the molecular methods did not, while in other cases the opposite was observed. The field and literature-based results of this study indicate that for a comprehensive and exhaustive characterisation of AMF communities it is necessary to combine both approaches. However, if the aim is to compare communities under different environmental conditions, both approaches provide comparable patterns.
Collapse
Affiliation(s)
- Noelia Cofré
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, Córdoba, 5000, Argentina.
| | - Gabriel Grilli
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, Córdoba, 5000, Argentina
| | - Nicolás Marro
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, Córdoba, 5000, Argentina
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Martín Videla
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, Córdoba, 5000, Argentina
| | - Carlos Urcelay
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, Córdoba, 5000, Argentina
| |
Collapse
|
10
|
Lane BR, Kuhs MA, Zaret MM, Song Z, Borer ET, Seabloom EW, Schlatter DC, Kinkel LL. Foliar fungi-imposed costs to plant productivity moderate shifts in composition of the rhizosphere microbiome. FRONTIERS IN PLANT SCIENCE 2025; 16:1558191. [PMID: 40110355 PMCID: PMC11921152 DOI: 10.3389/fpls.2025.1558191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Plants in grasslands navigate a complex landscape of interactions including competition for resources and defense against pathogens. Foliar fungi can suppress plant growth directly through pathogenic interactions, or indirectly via host growth-defense tradeoffs. The exclusion of foliar fungi allows the reallocation of resources from defense to growth and reproduction. In addition, plants also invest photosynthates in rhizodeposition, or root exudates, which play a significant role in shaping the rhizosphere microbial community. However, it remains unclear what impact the exclusion of foliar fungi has on the allocation of resources to rhizodeposition and the composition of the rhizosphere microbial community. Using a 6-year foliar fungicide study in plots planted with 16 species of native prairie plants, we asked whether foliar fungi influence the rhizosphere microbial composition of a common prairie grass (Andropogon gerardii) and a common legume (Lespedeza capatita). We found that foliar fungicide increased aboveground biomass and season-long plant production, but did not alter root biomass, seed production, or rhizosphere microbial diversity. The magnitude of change in aboveground season-long plant production was significantly associated with the magnitude of change in the rhizosphere microbial community in paired foliar fungicide-treated vs. control plots. These results suggest important coupling between foliar fungal infection and plant investment in rhizodeposition to modify the local soil microbial community.
Collapse
Affiliation(s)
- Brett R Lane
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Molly A Kuhs
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States
| | - Max M Zaret
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States
| | - Zewei Song
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States
| | - Daniel C Schlatter
- Plant Science Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), St. Paul, MN, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
11
|
Bending GD, Newman A, Picot E, Mushinski RM, Jones DL, Carré IA. Diurnal Rhythmicity in the Rhizosphere Microbiome-Mechanistic Insights and Significance for Rhizosphere Function. PLANT, CELL & ENVIRONMENT 2025; 48:2040-2052. [PMID: 39552493 PMCID: PMC11788953 DOI: 10.1111/pce.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
The rhizosphere is a key interface between plants, microbes and the soil which influences plant health and nutrition and modulates terrestrial biogeochemical cycling. Recent research has shown that the rhizosphere environment is far more dynamic than previously recognised, with evidence emerging for diurnal rhythmicity in rhizosphere chemistry and microbial community composition. This rhythmicity is in part linked to the host plant's circadian rhythm, although some heterotrophic rhizosphere bacteria and fungi may also possess intrinsic rhythmicity. We review the evidence for diurnal rhythmicity in rhizosphere microbial communities and its link to the plant circadian clock. Factors which may drive microbial rhythmicity are discussed, including diurnal change in root exudate flux and composition, rhizosphere physico-chemical properties and plant immunity. Microbial processes which could contribute to community rhythmicity are considered, including self-sustained microbial rhythms, bacterial movement into and out of the rhizosphere, and microbe-microbe interactions. We also consider evidence that changes in microbial composition mediated by the plant circadian clock may affect microbial function and its significance for plant health and broader soil biogeochemical cycling processes. We identify key knowledge gaps and approaches which could help to resolve the spatial and temporal variation and functional significance of rhizosphere microbial rhythmicity. This includes unravelling the factors which determine the oscillation of microbial activity, growth and death, and cross-talk with the host over diurnal time frames. We conclude that diurnal rhythmicity is an inherent characteristic of the rhizosphere and that temporal factors should be considered and reported in rhizosphere studies.
Collapse
Affiliation(s)
| | - Amy Newman
- School of Life SciencesUniversity of WarwickCoventryUK
| | - Emma Picot
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Davey L. Jones
- School of Environmental and Natural SciencesBangor UniversityBangorUK
- Food Futures InstituteMurdoch UniversityPerthWAAustralia
| | | |
Collapse
|
12
|
Wang X, Wu W, Ao G, Han M, Liu M, Yin R, Feng J, Zhu B. Minor Effects of Warming on Soil Microbial Diversity, Richness and Community Structure. GLOBAL CHANGE BIOLOGY 2025; 31:e70104. [PMID: 40035386 DOI: 10.1111/gcb.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Climate warming has caused widespread global concern. However, how warming affects soil microbial diversity, richness, and community structure on a global scale remains poorly understood. Here we conduct a meta-analysis of 945 observations from 100 publications by collecting relevant data. The results show that field warming experiments significantly modify soil temperature (+1.8°C), soil water content (-3.2%), and soil pH (-0.04). However, field warming does not significantly alter the diversity, richness, and community structure of soil bacteria and fungi. Warming-induced changes in soil variables (i.e., ΔSoil water content, ΔpH), ΔTemperature and experimental duration are important factors influencing the microbial responses to warming. In addition, soil bacterial α-diversity (Shannon index) decreases significantly (-3.4%) when the warming duration is 3-6 years, and bacterial β-diversity increases significantly (35.2%) when warming exceeds 6 years. Meta-regression analysis reveals a positive correlation between the change of bacterial Shannon index and ΔpH. Moreover, warming produces more pronounced effects on fungal Shannon index and β-diversity in experimental sites with moderate mean annual temperature (MAT, 0°C-10°C) than in higher (> 10°C) or lower (< 0°C) MAT. Overall, this study provides a global perspective on the response of soil microorganisms to climate warming and improves our knowledge of the factors influencing the response of soil microorganisms to warming.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenao Wu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Gukailin Ao
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mengguang Han
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mengli Liu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Rui Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jiguang Feng
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
- National Key Laboratory of Water Disaster Prevention, Key Laboratory of Soil and Water Processes in Watershed, College of Geography and Remote Sensing, Hohai University, Nanjing, China
| | - Biao Zhu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Counihan KL, Tilman S, Chen CY, He Y. Detection of Live Shiga Toxin-Producing Escherichia coli with Long-Read Sequencing. Int J Mol Sci 2025; 26:2228. [PMID: 40076850 PMCID: PMC11901022 DOI: 10.3390/ijms26052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
A requirement of any foodborne pathogen testing method is that it only detects live bacteria. Ethidium monoazide (EMA) and propidium monoazide (PMA) are dyes that penetrate the membranes of dead cells and form cross-linkages in the DNA, which prevents its amplification in PCR. This study investigated whether treatment with EMA or PMA would inhibit the sequencing of DNA from dead Escherichia coli. Range finding experiments with qPCR were conducted to determine the optimal concentrations of EMA and PMA needed to inhibit the amplification of DNA from dead cells while not influencing live cells. An EMA concentration that differentiated between live and dead cells could not be established. However, a PMA concentration of 25 µM effectively prevented qPCR amplification of DNA from dead E. coli while not impacting the amplification of live E. coli DNA. Sequencing experiments were conducted with PMA-treated live, untreated live, PMA-treated dead, and untreated dead E. coli. There were no significant differences in the detection of virulence genes of interest between the PMA-treated live, untreated live, and untreated dead E. coli. However, no DNA sequencing data were obtained from the PMA-treated dead E. coli. These results suggest that PMA could be incorporated into sample preparation methods prior to sequencing to selectively detect live cells of foodborne pathogens.
Collapse
Affiliation(s)
- Katrina L. Counihan
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (S.T.); (C.-Y.C.); (Y.H.)
| | | | | | | |
Collapse
|
14
|
Adami GR, Li W, Green SJ, Kim EM, Wu CD. Ex vivo oral biofilm model for rapid screening of antimicrobial agents including natural cranberry polyphenols. Sci Rep 2025; 15:6130. [PMID: 39971954 PMCID: PMC11840115 DOI: 10.1038/s41598-025-87382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
The search has been ongoing for safe and effective antimicrobial agents for control and prevention of oral biofilm associated with disease. Clinical trials for oral specific anti-bacterials are costly and often provide inconclusive results. The simple approach of ex vivo testing of these agents has not demonstrated utility, likely due to variability of effects observed even with a single donor. We show how shed oral biofilms, easily obtained from donor saliva, and tested under optimized conditions, respond reproducibly to anti-bacterial challenges measured by reductions in rRNA accumulation in susceptible taxa. Responses are in part donor specific, but many bacteria taxa were shown to be reproducibly susceptible over a group of donors. For two antibiotics, vancomycin and penicillin G tested at pharmacologic levels, a subset of Gram-positive bacteria was inhibited. A natural product with antibacterial properties, diluted Vaccinium macrocarpon (cranberry) juice, was shown to inhibit a range of oral taxa, including Alloprevotella sp__HMT_473, Granulicatella adiacens, Lachnoanaerobaculum umeaense, Lepotrichia sp__HMT_215, Peptostreptococcus stomatis, Prevotella nanceiensis, Stomatobaculum sp__HMT_097, Veillonella parvula, and kill some targets. The model discussed in this study has promise as a rapid, precise, and reproducible ex vivo method to test and identify potential clinically useful antimicrobial agents active against the oral biofilm community.
Collapse
Affiliation(s)
- Guy R Adami
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| | - Wei Li
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, USA
| | - Elissa M Kim
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Christine D Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Xue Z, He H, Han Y, Tian W, Li S, Guo J, Yu P, Qiao L, Zhang W. Relic DNA obscures bacterial diversity and interactions in ballast tank sediment. ENVIRONMENTAL RESEARCH 2025; 267:120715. [PMID: 39733986 DOI: 10.1016/j.envres.2024.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
The dark and anoxic environment of ballast tank sediment (BTS) harbors substantial amounts of relic DNA, yet its impact on microbial diversity estimates in BTS management remains poorly understood. This study employed propidium monoazide (PMA) treatment to eliminate relic DNA and used 16S amplicon high-throughput sequencing to characterize both total and viable bacteria. Our findings revealed that relic DNA is abundant in BTS. When removed, it led to variable reductions in species richness, which fluctuated from a 3.15% increase to a 37.52% decrease. Additionally, 6.27%-15.79% of OTUs were absent in the PMA-treated samples. These findings indicate that relic DNA has diverse effects on microbial diversity estimates. Moreover, relic DNA removal altered the relative abundances of a wide range of taxa, thereby facilitating the detection of rare taxa. Furthermore, the absence of relic DNA resulted in an overestimation of co-occurrence network size, complexity, and competitiveness, which could lead to misinterpretations of community assembly processes. In conclusion, our findings indicate that relic DNA obscures microbial diversity estimates and risk assessments in BTS, highlighting the critical need for monitoring viable bacteria in ballast sediment management.
Collapse
Affiliation(s)
- Zhaozhao Xue
- Marine College, Shandong University, Weihai, China
| | - Haoze He
- Marine College, Shandong University, Weihai, China
| | - Yangchun Han
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Wen Tian
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Shengjie Li
- COSCO SHIPPING Heavy Industry Technology (Weihai) Co., Ltd, Weihai, China
| | - Jingfeng Guo
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Pei Yu
- Marine College, Shandong University, Weihai, China
| | - Lina Qiao
- Marine College, Shandong University, Weihai, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, China.
| |
Collapse
|
16
|
Kaur S, Bran L, Rudakov G, Wang J, Verma MS. Propidium Monoazide is Unreliable for Quantitative Live-Dead Molecular Assays. Anal Chem 2025; 97:2914-2921. [PMID: 39870608 PMCID: PMC11822742 DOI: 10.1021/acs.analchem.4c05593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing. In these applications, treated samples consist of different amounts of dead bacteria and a range of bacterial strains, variables that can affect the performance of PMA and lead to inconsistent findings across various research studies. To evaluate the effectiveness of PMA, we used a sensitive qPCR assay and post-treatment sample concentration to determine PMA cross-linkage and activity accurately under varying sample conditions. We report that PMA is unreliable for viability assays when the concentration and composition of the bacterial mixtures are unknown. PMA is suitable only for qualitatively assessing viability in samples containing a known number of dead microbes or extracellular DNA.
Collapse
Affiliation(s)
- Simerdeep Kaur
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Centre, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura Bran
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Grigorii Rudakov
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Jiangshan Wang
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Centre, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohit S. Verma
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Centre, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Zhang Y, Li HZ, Breed M, Tang Z, Cui L, Zhu YG, Sun X. Soil warming increases the active antibiotic resistome in the gut of invasive giant African snails. MICROBIOME 2025; 13:42. [PMID: 39915809 PMCID: PMC11800439 DOI: 10.1186/s40168-025-02044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Global warming is redrawing the map for invasive species, spotlighting the globally harmful giant African snail as a major ecological disruptor and public health threat. Known for harboring extensive antibiotic resistance genes (ARGs) and human pathogens, it remains uncertain whether global warming exacerbates these associated health risks. METHODS We use phenotype-based single-cell Raman with D2O labeling (Raman-D2O) and genotype-based metagenomic sequencing to investigate whether soil warming increases active antibiotic-resistant bacteria (ARBs) in the gut microbiome of giant African snails. RESULTS We show a significant increase in beta-lactam phenotypic resistance of active ARBs with rising soil temperatures, mirrored by a surge in beta-lactamase genes such as SHV, TEM, OCH, OKP, and LEN subtypes. Through a correlation analysis between the abundance of phenotypically active ARBs and genotypically ARG-carrying gut microbes, we identify species that contribute to the increased activity of antibiotic resistome under soil warming. Among 299 high-quality ARG-carrying metagenome-assembled genomes (MAGs), we further revealed that the soil warming enhances the abundance of "supercarriers" including human pathogens with multiple ARGs and virulence factors. Furthermore, we identified elevated biosynthetic gene clusters (BGCs) within these ARG-carrying MAGs, with a third encoding at least one BGC. This suggests a link between active ARBs and secondary metabolism, enhancing the environmental adaptability and competitive advantage of these organisms in warmer environments. CONCLUSIONS The study underscores the complex interactions between soil warming and antibiotic resistance in the gut microbiome of the giant African snail, highlighting a potential escalation in environmental health risks due to global warming. These findings emphasize the urgent need for integrated environmental and health strategies to manage the rising threat of antibiotic resistance in the context of global climate change. Video Abstract.
Collapse
Affiliation(s)
- Yiyue Zhang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
| | - Hong-Zhe Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
| | - Martin Breed
- College of Science & Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Zhonghui Tang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- School of Life Sciences, Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Li Cui
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xin Sun
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
18
|
Runnel K, Tedersoo L, Krah FS, Piepenbring M, Scheepens JF, Hollert H, Johann S, Meyer N, Bässler C. Toward harnessing biodiversity-ecosystem function relationships in fungi. Trends Ecol Evol 2025; 40:180-190. [PMID: 39532622 DOI: 10.1016/j.tree.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.
Collapse
Affiliation(s)
- Kadri Runnel
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany; University of Tartu, Institute of Ecology and Earth Sciences, 50409 Tartu, Estonia.
| | - Leho Tedersoo
- University of Tartu, Institute of Ecology and Earth Sciences, 50409 Tartu, Estonia
| | - Franz-Sebastian Krah
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Fungal Ecology, 95440 Bayreuth, Germany; Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| | - Meike Piepenbring
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - J F Scheepens
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Sarah Johann
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - Nele Meyer
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - Claus Bässler
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany; University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Fungal Ecology, 95440 Bayreuth, Germany; Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| |
Collapse
|
19
|
Ochs C, Hayer M, Schwartz E, Hungate B, Marks J. From treetops to river bottoms: Exploring the role of phyllosphere fungi in aquatic fungal communities. Ecology 2025; 106:e4513. [PMID: 39807626 DOI: 10.1002/ecy.4513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 01/16/2025]
Abstract
Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems. We used internal transcribed spacer (ITS) fungal sequencing to follow phyllosphere fungi onto submerged litter, and quantitative stable isotope probing (qSIP) to differentiate active and inactive fungi. We found that around 30% of fungi active on aquatic litter entered the stream with the leaf and that these phyllosphere fungi were as active, if not more active than, as the fungi colonizing from the water column. These results demonstrate that phyllosphere fungi are an important part of aquatic fungal communities.
Collapse
Affiliation(s)
- Callie Ochs
- Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce Hungate
- Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jane Marks
- Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
20
|
Kang X, Zhao C, Chen S, Yang S, Zhang X, Xue B, Li C, Wang S, Yang X, Li C, Qiu Z, Wang J, Shen Z. A Novel Approach Using LuxSit-i Enhanced Toehold Switches for the Rapid Detection of Vibrio parahaemolyticus. BIOSENSORS 2024; 14:637. [PMID: 39727902 DOI: 10.3390/bios14120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a significant concern, as it can cause severe infections and hemolytic trauma. Given its prevalence in seawater and coastal seafood, it poses a substantial risk as a foodborne pathogen. Biosensor-based detection technology has been continuously evolving, and toehold switches have emerged as a promising area within it, especially in the detection of RNA viruses. Here, we have developed a cell-free toehold switch sensor for V. parahaemolyticus detection. Traditional toehold switch detection methods usually use green fluorescent protein (GFP) or enzyme LacZ as the output signal, with an incubation time as long as 2 h, and are also mainly applied to the detection of RNA viruses. In this study, we introduced a novel, artificially designed luciferase (LuxSit-i) as an output signal and constructed toehold switches with two different output signals (sfGFP, LuxSit-i), aimed at reducing the incubation time of toehold switches. Moreover, to further improve the detection process, we separately utilize recombinase polymerase amplification (RPA) and nucleic acid sequence-based amplification (NASBA) to amplify dead and live bacterial suspensions for detection and attempt to distinguish between dead and live bacteria. This study provided a convenient, rapid, and accurate method for the on-site detection of V. parahaemolyticus, especially beneficial for resource-limited settings. By eliminating the requirement for specialized facilities and personnel, this system has the potential to be a valuable tool in improving public health responses, especially in developing regions.
Collapse
Affiliation(s)
- Xiaodan Kang
- Military Medical Sciences Academy, Tianjin 300050, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chen Zhao
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Shuting Chen
- Military Medical Sciences Academy, Tianjin 300050, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuran Yang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Xi Zhang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Bin Xue
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Chenyu Li
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Shang Wang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Xiaobo Yang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Chao Li
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Zhigang Qiu
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Jingfeng Wang
- Military Medical Sciences Academy, Tianjin 300050, China
| | - Zhiqiang Shen
- Military Medical Sciences Academy, Tianjin 300050, China
| |
Collapse
|
21
|
Pu Q, Zhang K, Liu J, Zhang Q, Abdelhafiz MA, Meng B, Feng X. Key active mercury methylating microorganisms and their synergistic effects on methylmercury production in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136481. [PMID: 39536346 DOI: 10.1016/j.jhazmat.2024.136481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils. In this study, active Hg-methylating microorganisms in paddy soils were identified using a combination of DNA-SIP, Hg isotope labelling, and Hg methylation gene sequencing techniques. Our findings revealed that Geobacter and Anaerolinea are pivotal active Hg-methylating microorganisms across a contamination gradient in paddy soils. Transcriptomic analysis of soils from major rice-producing provinces in China confirmed the widespread and synergistic involvement of these microorganisms. Microbial incubation further validated their interaction significantly enhances Hg methylation, with Me198Hg concentrations increasing 2.8-fold compared to Geobacter alone and 5.2-fold compared to Anaerolinea alone. These findings enhance our understanding of microbial Hg methylation in paddy soils, providing critical insights for accurately predicting soil MeHg load, rice grain MeHg contamination, and human MeHg exposure risks.
Collapse
Affiliation(s)
- Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianshuo Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Wu W, Hsieh CH, Logares R, Lennon JT, Liu H. Ecological processes shaping highly connected bacterial communities along strong environmental gradients. FEMS Microbiol Ecol 2024; 100:fiae146. [PMID: 39479791 DOI: 10.1093/femsec/fiae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
Along the river-sea continuum, microorganisms are directionally dispersed by water flow while being exposed to strong environmental gradients. To compare the two assembly mechanisms that may strongly and differently influence metacommunity dynamics, namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putatively active (16S rRNA transcript) bacterial communities in the Pearl River-South China Sea Continuum, during the wet (summer) and dry (winter) seasons using high-throughput sequencing. Moreover, well-defined sampling was conducted by including freshwater, oligohaline, mesohaline, polyhaline, and marine habitats. We found that heterogeneous selection exceeded homogenizing dispersal in both the total and active fractions of bacterial communities in two seasons. However, homogeneous selection was prevalent (the dominant except in active bacterial communities during summer), which was primarily due to the bacterial communities' tremendous diversity (associated with high rarity) and our specific sampling design. In either summer or winter seasons, homogeneous and heterogeneous selection showed higher relative importance in total and active communities, respectively, implying that the active bacteria were more responsive to environmental gradients than were the total bacteria. In summary, our findings provide insight into the assembly of bacterial communities in natural ecosystems with high spatial connectivity and environmental heterogeneity.
Collapse
Affiliation(s)
- Wenxue Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Chinese mainland
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, Chinese mainland
- School of Marine Science, Sun Yat-sen University, Zhuhai 519082, Chinese mainland
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan
| | - Ramiro Logares
- Institute of Marine Sciences, CSIC, Barcelona 08003, Spain
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, Chinese mainland
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong
| |
Collapse
|
23
|
Yun KW, Son HS, Seong MJ, Lee SM, Kim MC. Enhanced eDNA monitoring for detection of viable harmful algal bloom species using propidium monoazide. HARMFUL ALGAE 2024; 139:102725. [PMID: 39567079 DOI: 10.1016/j.hal.2024.102725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
This study investigated the use of propidium monoazide (PMA) to improve the accuracy of environmental DNA (eDNA) monitoring by selectively detecting intracellular DNA (iDNA) from living cells, while excluding extracellular DNA (exDNA) from dead organisms. eDNA samples were collected from various depths off the coast of Tongyeong, South Korea, and analyzed alongside environmental factors, such as temperature, dissolved oxygen, turbidity, and nutrient levels. The results showed that PMA-treated iDNA provided a more accurate estimate of viable harmful algal bloom species (HABs) than total eDNA and DNase-treated iDNA. Strong correlations were found between iDNA (PMA) and environmental factors, particularly nutrient levels and turbidity, suggesting its effectiveness in biological environments. The iDNA (PMA) concentrations were higher in the surface and bottom layers, indicating that these layers were more indicative of living organisms in marine environments. The application of PMA in eDNA monitoring reduces false positives and enhances the detection accuracy of viable HAB species, representing a promising tool for real-time monitoring and management of marine ecosystems.
Collapse
Affiliation(s)
- Kun-Woo Yun
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Hwa-Seong Son
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Min-Jun Seong
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Seung-Min Lee
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Mu-Chan Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea.
| |
Collapse
|
24
|
Jiménez-Hernández A, Carbajal-Valenzuela IA, Torres-Pacheco I, Rico-García E, Ocampo-Velazquez RV, Feregrino-Pérez AA, Guevara-Gonzalez RG. Extracellular DNA as a Strategy to Manage Vascular Wilt Caused by Fusarium oxysporum in Tomato ( Solanum lycopersicum L.) Based on Its Action as a Damage-Associated Molecular Pattern (DAMP) or Pathogen-Associated Molecular Pattern (PAMP). PLANTS (BASEL, SWITZERLAND) 2024; 13:2999. [PMID: 39519922 PMCID: PMC11547959 DOI: 10.3390/plants13212999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Vascular wilt is an important tomato disease that affects culture yields worldwide, with Fusarium oxysporum (F.o) being the causal agent of this infection. Several management strategies have lost effectiveness due to the ability of this pathogen to persist in soil and its progress in vascular tissues. However, nowadays, research has focused on understanding the plant defense mechanisms to cope with plant diseases. One recent and promising approach is the use of extracellular DNA (eDNA) based on the ability of plants to detect their self-eDNA as damage-associated molecular patterns (DAMPs) and pathogens' (non-self) eDNA as pathogen-associated molecular patterns (PAMPs). The aim of this work was to evaluate the effect of the eDNA of F.o (as a DAMP for the fungus and a PAMP for tomato plants) applied on soil, and of tomato's eDNA (as a DAMP of tomato plants) sprayed onto tomato plants, to cope with the disease. Our results suggested that applications of the eDNA of F.o (500 ng/µL) as a DAMP for this pathogen in soil offered an alternative for the management of the disease, displaying significantly lower disease severity levels in tomato, increasing the content of some phenylpropanoids, and positively regulating the expression of some defense genes. Thus, the eDNA of F.o applied in soil was shown to be an interesting strategy to be further evaluated as a new element within the integrated management of vascular wilt in tomato.
Collapse
Affiliation(s)
- Alejandra Jiménez-Hernández
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Ireri Alejandra Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Enrique Rico-García
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Rosalía V. Ocampo-Velazquez
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Ana Angélica Feregrino-Pérez
- Posgraduate Studies Division, C.A Basic and Applied Bioengineering, School of Engineering, Autonomous University of Queretaro, C.U Cerro de las Campanas, S/N, Colonia Las Campanas, Santiago de Querétaro C.P. 76010, QRO, Mexico;
| | - Ramón Gerardo Guevara-Gonzalez
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| |
Collapse
|
25
|
Wiener EA, Ewald JM, LeFevre GH. Fungal diversity and key functional gene abundance in Iowa bioretention cells: implications for stormwater remediation potential. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1796-1810. [PMID: 39192758 DOI: 10.1039/d4em00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Stormwater bioretention cells are green stormwater infrastructure systems that can help mitigate flooding and remove contaminants. Plants and bacteria improve nutrient removal and degrade organic contaminants; however, the roles of fungi in bioretention cells are less known. Although mycorrhizal fungi aid in plant growth/improve nutrient uptake, there is a notable lack of research investigating fungal diversity in bioretention cells. Other types of fungi could benefit bioretention cells (e.g., white rot fungi degrade recalcitrant contaminants). This study addresses the knowledge gap of fungal function and diversity within stormwater bioretention cells. We collected multiple soil samples from 27 different bioretention cells in temperate-climate eastern Iowa USA, characterized soil physicochemical parameters, sequenced the internal transcribed spacer (ITS) amplicon to identify fungal taxa from extracted DNA, and measured functional gene abundances for two fungal laccases (Cu1, Cu1A) and a fungal nitrite reductase gene (nirKf). Fungal biodegradation functional genes were present in bioretention soils (mean copies per g: 7.4 × 105nirKf, 3.2 × 106Cu1, 4.0 × 108Cu1A), with abundance of fungal laccase and fungal nitrite reductase genes significantly positively correlated with soil pH and organic matter (Pearson's R: >0.39; rho < 0.05). PERMANOVA analysis determined soil characteristics were not significant explanatory variables for community composition (beta diversity). In contrast, planting specifications significantly impacted fungal diversity; the presence/absence of a few planting types and predominant vegetation type in the cell explained 89% of variation in fungal diversity. These findings further emphasize the importance of plants and media as key design parameters for bioretention cells, with implications for fungal bioremediation of captured stormwater contaminants.
Collapse
Affiliation(s)
- Erica A Wiener
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Jessica M Ewald
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
de Celis M, Ruiz J, Benitez-Dominguez B, Vicente J, Tomasi S, Izquierdo-Gea S, Rozés N, Ruiz-de-Villa C, Gombau J, Zamora F, Barroso-delJesus A, Terron-Camero LC, Andres-Leon E, Santos A, Belda I. Multi-omics framework to reveal the molecular determinants of fermentation performance in wine yeast populations. MICROBIOME 2024; 12:203. [PMID: 39407259 PMCID: PMC11481383 DOI: 10.1186/s40168-024-01930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Connecting the composition and function of industrial microbiomes is a major aspiration in microbial biotechnology. Here, we address this question in wine fermentation, a model system where the diversity and functioning of fermenting yeast species are determinant of the flavor and quality of the resulting wines. RESULTS First, we surveyed yeast communities associated with grape musts collected across wine appellations, revealing the importance of environmental (i.e., biogeography) and anthropic factors (i.e., farming system) in shaping community composition and structure. Then, we assayed the fermenting yeast communities in synthetic grape must under common winemaking conditions. The dominating yeast species defines the fermentation performance and metabolite profile of the resulting wines, and it is determined by the initial fungal community composition rather than the imposed fermentation conditions. Yeast dominance also had a more pronounced impact on wine meta-transcriptome than fermentation conditions. We unveiled yeast-specific transcriptomic profiles, leveraging different molecular functioning strategies in wine fermentation environments. We further studied the orthologs responsible for metabolite production, revealing modules associated with the dominance of specific yeast species. This emphasizes the unique contributions of yeast species to wine flavor, here summarized in an array of orthologs that defines the individual contribution of yeast species to wine ecosystem functioning. CONCLUSIONS Our study bridges the gap between yeast community composition and wine metabolite production, providing insights to harness diverse yeast functionalities with the final aim to producing tailored high-quality wines. Video Abstract.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain.
- Department of Soil, Plant and Environmental Quality Institute of Agricultural Sciences, (ICA-CSIC), C/ de Serrano 115B, Madrid, 28006, Spain.
| | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Belen Benitez-Dominguez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
- Institute of Functional Biology and Genomics (IBFG-CSIC), University of Salamanca, C/ Zacarias Gonzalez 2, Salamanca, 37007, Spain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Sandra Tomasi
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Sergio Izquierdo-Gea
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Nicolás Rozés
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Candela Ruiz-de-Villa
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Jordi Gombau
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Fernando Zamora
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Alicia Barroso-delJesus
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN-CSIC), PT Salud, Granada, 18016, Spain
| | - Laura C Terron-Camero
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN-CSIC), PT Salud, Granada, 18016, Spain
| | - Eduardo Andres-Leon
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN-CSIC), PT Salud, Granada, 18016, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain.
| |
Collapse
|
27
|
Cheng X, Jiang L, Zhao X, Wang S, Li J, Luo C, Zhang G. Synergism of endophytic microbiota and plants promotes the removal of polycyclic aromatic hydrocarbons from the Alfalfa rhizosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135513. [PMID: 39178770 DOI: 10.1016/j.jhazmat.2024.135513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Endophytic bacteria can promote plant growth and accelerate pollutant degradation. However, it is unclear whether endophytic consortia (Consortium_E) can stabilize colonisation and degradation. We inoculated Consortium_E into the rhizosphere to enhance endophytic bacteria survival and promote pollutant degradation. Rhizosphere-inoculated Consortium_E enhanced polycyclic aromatic hydrocarbon (PAH) degradation rates by 11.5-13.1 % compared with sole bioaugmentation and plant treatments. Stable-isotope-probing (SIP) showed that the rhizosphere-inoculated Consortium_E had the largest number of degraders (8 amplicon sequence variants). Furthermore, only microbes from Consortium_E were identified among the degraders in bioaugmentation treatments, indicating that directly participated in phenanthrene metabolism. Interestingly, Consortium_E reshaped the community structure of degraders without significantly altering the rhizosphere community structure, and strengthened the core position of degraders in the network, facilitating close interactions between degraders and non-degraders in the rhizosphere, which were crucial for ensuring stable functionality. The synergistic effect between plants and Consortium_E significantly enhanced the upregulation of aromatic hydrocarbon degradation and auxiliary degradation pathways in the rhizosphere. These pathways showed a non-significant increasing trend in the uninoculated rhizosphere compared with the control, indicating that Consortium_E primarily promotes rhizosphere effects. Our results explore the Consortium_E bioaugmentation mechanism, providing a theoretical basis for the ecological restoration of contaminated soils.
Collapse
Affiliation(s)
- Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xuan Zhao
- College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China
| | - Shuang Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610000, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
28
|
Wang X, Ganzert L, Bartholomäus A, Amen R, Yang S, Guzmán CM, Matus F, Albornoz MF, Aburto F, Oses-Pedraza R, Friedl T, Wagner D. The effects of climate and soil depth on living and dead bacterial communities along a longitudinal gradient in Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173846. [PMID: 38871316 DOI: 10.1016/j.scitotenv.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.
Collapse
Affiliation(s)
- Xiuling Wang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Lars Ganzert
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Rahma Amen
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Temuco 4780000, Chile
| | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile; Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Maria Fernanda Albornoz
- Laboratorio de Investigación de Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Pedology and Soil Biogeochemistry Lab, Soil and Crop Sciences Department, Texas A&M University, College Station, TX, USA
| | - Rómulo Oses-Pedraza
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, 37073 Göttingen, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
29
|
Halbrook S, Wilber W, Barrow ME, Farrer EC. Bacterial community response to novel and repeated disturbances. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70022. [PMID: 39387551 PMCID: PMC11465558 DOI: 10.1111/1758-2229.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long-term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.
Collapse
Affiliation(s)
- Susannah Halbrook
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| | - William Wilber
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Mary Elizabeth Barrow
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| | - Emily C. Farrer
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| |
Collapse
|
30
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
31
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
32
|
Anthony WE, Allison SD, Broderick CM, Chavez Rodriguez L, Clum A, Cross H, Eloe-Fadrosh E, Evans S, Fairbanks D, Gallery R, Gontijo JB, Jones J, McDermott J, Pett-Ridge J, Record S, Rodrigues JLM, Rodriguez-Reillo W, Shek KL, Takacs-Vesbach T, Blanchard JL. From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology. ENVIRONMENTAL MICROBIOME 2024; 19:56. [PMID: 39095861 PMCID: PMC11295382 DOI: 10.1186/s40793-024-00599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.
Collapse
Affiliation(s)
| | - Steven D Allison
- University of California Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Caitlin M Broderick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | | | - Alicia Clum
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hugh Cross
- National Ecological Observatory Network - Battelle, Boulder, CO, USA
| | | | - Sarah Evans
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Dawson Fairbanks
- University of California Riverside, Riverside, CA, USA
- The University of Arizona, Tucson, AZ, USA
| | | | | | - Jennifer Jones
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Jason McDermott
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, 95343, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kong L, Wang Y, Cui D, He W, Zhang C, Zheng C. Application of single-cell Raman-deuterium isotope probing to reveal the resistance of marine ammonia-oxidizing archaea SCM1 against common antibiotics. CHEMOSPHERE 2024; 362:142500. [PMID: 38852635 DOI: 10.1016/j.chemosphere.2024.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance (AMR) in oceans poses a significant threat to human health through the seafood supply chain. Ammonia-oxidizing archaea (AOA) are important marine microorganisms and play a key role in the biogeochemical nitrogen cycle around the world. However, the AMR of marine AOA to aquicultural antibiotics is poorly explored. Here, Raman-deuterium isotope probing (Raman-DIP), a single-cell tool, was developed to reveal the AMR of a typical marine species of AOA, Nitrosopumilus maritimus (designated SCM1), against six antibiotics, including erythromycin, tetracycline, novobiocin, neomycin, bacitracin, and vancomycin. The D2O concentration (30% v/v) and culture period (9 days) were optimized for the precise detection of metabolic activity in SCM1 cells through Raman-DIP. The relative metabolic activity of SCM1 upon exposure to antibiotics was semi-quantitatively calculated based on single-cell Raman spectra. SCM1 exhibited high resistance to erythromycin, tetracycline, novobiocin, neomycin, and vancomycin, with minimum inhibitory concentration (MIC) values between 100 and 400 mg/L, while SCM1 is very sensitive to bacitracin (MIC: 0.8 mg/L). Notably, SCM1 cells were completely inactive under the metabolic activity minimum inhibitory concentration conditions (MA-MIC: 1.6-800 mg/L) for the six antibiotics. Further genomic analysis revealed the antibiotic resistance genes (ARGs) of SCM1, including 14 types categorized into 33 subtypes. This work increases our knowledge of the AMR of marine AOA by linking the resistant phenome to the genome, contributing to the risk assessment of AMR in the underexplored ocean environment. As antibiotic resistance in marine microorganisms is significantly affected by the concentration of antibiotics in coastal environments, we encourage more studies concentrating on both the phenotypic and genotypic antibiotic resistance of marine archaea. This may facilitate a comprehensive evaluation of the capacity of marine microorganisms to spread AMR and the implementation of suitable control measures to protect environmental safety and human health.
Collapse
Affiliation(s)
- Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| | - Yi Wang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China.
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| |
Collapse
|
34
|
Li HZ, Peng J, Yang K, Zhang Y, Chen QL, Zhu YG, Cui L. Single-cell exploration of active phosphate-solubilizing bacteria across diverse soil matrices for sustainable phosphorus management. NATURE FOOD 2024; 5:673-683. [PMID: 39103543 DOI: 10.1038/s43016-024-01024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are crucial for enhancing phosphorus bioavailability and regulating phosphorus transformation processes. However, the in situ phosphorus-solubilizing activity and the link between phenotypes and genotypes for PSB remain unidentified. Here we employed single-cell Raman spectroscopy combined with heavy water to discern and quantify soil active PSB. Our results reveal that PSB abundance and in situ activity differed significantly between soil types and fertilization treatments. Inorganic fertilizer input was the key driver for active PSB distribution. Targeted single-cell sorting and metagenomic sequencing of active PSB uncovered several low-abundance genera that are easily overlooked within bulk soil microbiota. We elucidate the underlying functional genes and metabolic pathway, and the interplay between phosphorus and carbon cycling involved in high phosphorus solubilization activity. Our study provides a single-cell approach to exploring PSB from native environments, enabling the development of a microbial solution for the efficient agronomic use of phosphorus and mitigating the phosphorus crisis.
Collapse
Affiliation(s)
- Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yiyue Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| |
Collapse
|
35
|
Baptista MS, Lee CK, Monteiro MR, Torgo L, Cary SC, Magalhães C. Soils of two Antarctic Dry Valleys exhibit unique microbial community structures in response to similar environmental disturbances. ENVIRONMENTAL MICROBIOME 2024; 19:52. [PMID: 39060935 PMCID: PMC11282855 DOI: 10.1186/s40793-024-00587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances. RESULTS The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions. CONCLUSIONS Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.
Collapse
Affiliation(s)
- Mafalda S Baptista
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Luís Torgo
- Faculty of Sciences, University of Porto, Porto, Portugal
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
- Faculty of Sciences, University of Porto, Porto, Portugal.
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
36
|
Li HZ, Li WJ, Wang ZJ, Chen QL, Staal Jensen MK, Qiao M, Cui L. Integrating Multiple Bacterial Phenotypes and Bayesian Network for Analyzing Health Risks of Pathogens in Plastisphere. Anal Chem 2024; 96:11374-11382. [PMID: 38949233 DOI: 10.1021/acs.analchem.4c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Plastic pollution represents a critical threat to soil ecosystems and even humans, as plastics can serve as a habitat for breeding and refuging pathogenic microorganisms against stresses. However, evaluating the health risk of plastispheres is difficult due to the lack of risk factors and quantification model. Here, DNA sequencing, single-cell Raman-D2O labeling, and transformation assay were used to quantify key risk factors of plastisphere, including pathogen abundance, phenotypic resistance to various stresses (antibiotic and pesticide), and ability to acquire antibiotic resistance genes. A Bayesian network model was newly introduced to integrate these three factors and infer their causal relationships. Using this model, the risk of pathogen in the plastisphere is found to be nearly 3 magnitudes higher than that in free-living state. Furthermore, this model exhibits robustness for risk prediction, even in the absence of one factor. Our framework offers a novel and practical approach to assessing the health risk of plastispheres, contributing to the management of plastic-related threats to human health.
Collapse
Affiliation(s)
- Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Jian Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mia Kristine Staal Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Min Qiao
- Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
37
|
Kang L, Song Y, Mackelprang R, Zhang D, Qin S, Chen L, Wu L, Peng Y, Yang Y. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nat Commun 2024; 15:5920. [PMID: 39004662 PMCID: PMC11247091 DOI: 10.1038/s41467-024-50276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Permafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited. Here, we analyze microbial community structure and functional potential based on 16S rRNA gene amplicon sequencing and metagenomic data obtained from an ∼1000 km permafrost transect on the Tibetan Plateau. We find that microbial alpha diversity declines but beta diversity increases down the soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with the importance of drift decreasing but that of dispersal limitation increasing with soil depth. Moreover, genes related to reduction reactions (e.g., ferric iron reduction, dissimilatory nitrate reduction, and denitrification) are enriched in the subsurface and permafrost layers. In addition, microbial groups involved in alternative electron accepting processes are more diverse and contribute highly to community-level metabolic profiles in the subsurface and permafrost layers, likely reflecting the lower redox potential and more complicated trophic strategies for microorganisms in deeper soils. Overall, these findings provide comprehensive insights into large-scale stratigraphic profiles of microbial community structure and functional potentials in permafrost regions.
Collapse
Affiliation(s)
- Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Lacroix EM, Gomes A, Heitmann GB, Schuler D, Dekas AE, Liptzin D, Aberle E, Watts DB, Nelson KA, Culman S, Fendorf S. Microbial Proxies for Anoxic Microsites Vary with Management and Partially Explain Soil Carbon Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11459-11469. [PMID: 38875507 PMCID: PMC11223465 DOI: 10.1021/acs.est.4c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Anoxic microsites are potentially important but unresolved contributors to soil organic carbon (C) storage. How anoxic microsites vary with soil management and the degree to which anoxic microsites contribute to soil C stabilization remain unknown. Sampling from four long-term agricultural experiments in the central United States, we examined how anoxic microsites varied with management (e.g., cultivation, tillage, and manure amendments) and whether anoxic microsites determine soil C concentration in surface (0-15 cm) soils. We used a novel approach to track anaerobe habitat space and, hence, anoxic microsites using DNA copies of anaerobic functional genes over a confined volume of soil. No-till practices inconsistently increased anoxic microsite extent compared to conventionally tilled soils, and within one site organic matter amendments increased anaerobe abundance in no-till soils. Across all long-term tillage trials, uncultivated soils had ∼2-4 times more copies of anaerobic functional genes than their cropland counterparts. Finally, anaerobe abundance was positively correlated to soil C concentration. Even when accounting for other soil C protection mechanisms, anaerobe abundance, our proxy for anoxic microsites, explained 41% of the variance and 5% of the unique variance in soil C concentration in cropland soils, making anoxic microsites the strongest management-responsive predictor of soil C concentration. Our results suggest that careful management of anoxic microsites may be a promising strategy to increase soil C storage within agricultural soils.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, Lausanne 1015, Switzerland
| | - Anna Gomes
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | | | - Dylan Schuler
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Anne E. Dekas
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Daniel Liptzin
- Soil
Health Institute, Morrisville, North Carolina 27560, United States
| | - Ezra Aberle
- Carrington
Research Extension Center, North Dakota
State University, Carrington, North Dakota 58421, United States
| | - Dexter B. Watts
- National
Soils Dynamics Lab, Agricultural Research
Service, U.S. Department of Agriculture, Auburn, Alabama 36830, United States
| | - Kelly A. Nelson
- Lee
Greenley
Jr. Memorial Research Center, University
of Missouri, Novelty, Missouri 63460, United States
| | - Steven Culman
- Department
of Crop and Soil Science, Washington State
University, Pullman, Washington 99164, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Graham EB, Camargo AP, Wu R, Neches RY, Nolan M, Paez-Espino D, Kyrpides NC, Jansson JK, McDermott JE, Hofmockel KS. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat Microbiol 2024; 9:1873-1883. [PMID: 38902374 PMCID: PMC11222151 DOI: 10.1038/s41564-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024]
Abstract
Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry.
Collapse
Affiliation(s)
- Emily B Graham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Antonio Pedro Camargo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Russell Y Neches
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| |
Collapse
|
40
|
Wang S, Tian R, Bi Y, Meng F, Zhang R, Wang C, Wang D, Liu L, Zhang B. A review of distribution and functions of extracellular DNA in the environment and wastewater treatment systems. CHEMOSPHERE 2024; 359:142264. [PMID: 38714248 DOI: 10.1016/j.chemosphere.2024.142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Extracellular DNA refers to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer, and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Ruimin Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Bo Zhang
- Tianjin Eco-City Water Investment and Construction Co. Ltd, Hexu Road 276, Tianjin, 300467, China
| |
Collapse
|
41
|
Huang L, Rosado AS, Wright A, Corrêa RS, Silva L, Mazza Rodrigues JL. Microbiota recovery in a chronosquences of impoverished Cerrado soils with biosolids applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172958. [PMID: 38714255 DOI: 10.1016/j.scitotenv.2024.172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Mining activities put the Brazilian savannas, a global biodiversity hotspot, in danger of species and soil carbon losses. Experiments employing biosolids have been applied to rejuvenate this degraded ecosystem, but a lingering question yet to be answered is whether the microbiota that inhabits these impoverished soils can be recovered towards its initial steady state after vegetation recovery. Here, we selected an 18-year-old restoration chronosequence of biosolids-treated, untreated mining and native soils to investigate the soil microbiota recovery based on composition, phylogeny, and diversity, as well as the potential factors responsible for ecosystem recovery. Our results revealed that the soil microbiota holds a considerable recovery potential in the degraded Cerrado biome. Biosolids application not only improved soil health, but also led to 41.7 % recovery of the whole microbial community, featuring significantly higher microbiota diversity and enriched groups (e.g., Firmicutes) that benefit carbon storage compared to untreated mining and native soils. The recovered community showed significant compositional distinctions from the untreated mining or native soils, rather than phylogenetic differences, with physiochemical properties explaining 55 % of the overall community changes. This study advances our understanding of soil microbiota dynamics in response to disturbance and restoration by shedding light on its recovery associated with biosolid application in a degraded biodiverse ecosystem.
Collapse
Affiliation(s)
- Laibin Huang
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alonna Wright
- Genome Center, University of California, Davis, CA 95616, USA
| | - Rodrigo Studart Corrêa
- Postgraduate Program in Environmental Sciences, University of Brasília - UnB/FUP/ PPGCA, Brasília, DF 70910, Brazil
| | - Lucas Silva
- Environmental Studies Program, Department of Geography, Institute of Ecology and Evolution, University of Oregon, Eugene 97403, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
42
|
Louisson Z, Gutiérrez-Ginés MJ, Taylor M, Buckley HL, Hermans SM, Lear G. Soil conditions are a more important determinant of microbial community composition and functional potential than neighboring plant diversity. iScience 2024; 27:110056. [PMID: 38883816 PMCID: PMC11176639 DOI: 10.1016/j.isci.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Replanting is an important tool for ecological recovery. Management strategies, such as planting areas with monocultures or species mixtures, have implications for restoration success. We used 16S and ITS rRNA gene amplicon sequencing and shotgun metagenomics to assess how the diversity of neighboring tree species impacted soil bacterial and fungal communities, and their functional potential, within the root zone of mānuka (Leptospermum scoparium) trees. We compared data from monoculture and mixed tree species plots and confirmed that soil microbial taxonomic and functional community profiles significantly differed (p < 0.001). Compared to the diversity of neighboring tree species within the plot, soil environmental conditions and geographic distance was more important for structuring the microbial communities. The bacterial communities appeared more impacted by soil conditions, while the fungal communities displayed stronger spatial structuring, possibly due to wider bacterial dispersal. The different mechanisms structuring bacterial and fungal communities could have implications for ecological restoration outcomes.
Collapse
Affiliation(s)
- Ziva Louisson
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Maria J Gutiérrez-Ginés
- Institute of Environmental Science and Research Ltd., 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Matthew Taylor
- Waikato Regional Council, 160 Ward St, Hamilton 3204, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland 1010, New Zealand
| | - Syrie M Hermans
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
43
|
Bourdin T, Benoit MÈ, Prévost M, Charron D, Quach C, Déziel E, Constant P, Bédard E. Disinfection of sink drains to reduce a source of three opportunistic pathogens, during Serratia marcescens clusters in a neonatal intensive care unit. PLoS One 2024; 19:e0304378. [PMID: 38865328 PMCID: PMC11168660 DOI: 10.1371/journal.pone.0304378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVE Evaluate the effects of five disinfection methods on bacterial concentrations in hospital sink drains, focusing on three opportunistic pathogens (OPs): Serratia marcescens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. DESIGN Over two years, three sampling campaigns were conducted in a neonatal intensive care unit (NICU). Samples from 19 sink drains were taken at three time points: before, during, and after disinfection. Bacterial concentration was measured using culture-based and flow cytometry methods. High-throughput short sequence typing was performed to identify the three OPs and assess S. marcescens persistence after disinfection at the genotypic level. SETTING This study was conducted in a pediatric hospitals NICU in Montréal, Canada, which is divided in an intensive and intermediate care side, with individual rooms equipped with a sink. INTERVENTIONS Five treatments were compared: self-disinfecting drains, chlorine disinfection, boiling water disinfection, hot tap water flushing, and steam disinfection. RESULTS This study highlights significant differences in the effectiveness of disinfection methods. Chlorine treatment proved ineffective in reducing bacterial concentration, including the three OPs. In contrast, all other drain interventions resulted in an immediate reduction in culturable bacteria (4-8 log) and intact cells (2-3 log). Thermal methods, particularly boiling water and steam treatments, exhibited superior effectiveness in reducing bacterial loads, including OPs. However, in drains with well-established bacterial biofilms, clonal strains of S. marcescens recolonized the drains after heat treatments. CONCLUSIONS Our study supports thermal disinfection (>80°C) for pathogen reduction in drains but highlights the need for additional trials and the implementation of specific measures to limit biofilm formation.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Quach
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | | |
Collapse
|
44
|
Duan Z, Huang K, Huang W, Wang B, Shi J, Xia H, Li F. Bacterial dispersal enhances the elimination of active fecal coliforms during vermicomposting of fruit and vegetable wastes: The overlooked role of earthworm mucus. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134280. [PMID: 38636233 DOI: 10.1016/j.jhazmat.2024.134280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.
Collapse
Affiliation(s)
- Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Wenqi Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bangchi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiwei Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
45
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
46
|
Sorochkina K, Martens-Habbena W, Reardon CL, Inglett PW, Strauss SL. Nitrogen-fixing bacterial communities differ between perennial agroecosystem crops. FEMS Microbiol Ecol 2024; 100:fiae064. [PMID: 38637314 DOI: 10.1093/femsec/fiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.
Collapse
Affiliation(s)
- Kira Sorochkina
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Catherine L Reardon
- Soil and Water Conservation Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pendleton, OR, United States
| | - Patrick W Inglett
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Sarah L Strauss
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| |
Collapse
|
47
|
Zhang Z, Xu D, Huang T, Zhang Q, Li Y, Zhou J, Zou R, Li X, Chen J. High levels of cadmium altered soil archaeal activity, assembly, and co-occurrence network in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171529. [PMID: 38453065 DOI: 10.1016/j.scitotenv.2024.171529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Soil microbial communities are essential to biogeochemical cycles. However, the responses of microorganisms in volcanic soil with high heavy metal levels remain poorly understood. Here, two areas with high levels of cadmium (Cd) from the same volcano were investigated to determine their archaeal composition and assembly. In this study, the Cd concentrations (0.32-0.38 mg/ kg) in the volcanic soils exceeded the standard risk screening values (GB15618-2018) and correlated with archaeal communities strongly (P < 0.05). Moreover, the area with elevated levels of Cd (periphery) exhibited a greater diversity of archaeal species, albeit with reduced archaeal activity, compared to the area with lower levels of Cd (center). Besides, stochastic processes mainly governed the archaeal communities. Furthermore, the co-occurrence network was simplest in the periphery. The proportion of positive links between taxa increased positively with Cd concentration. Moreover, four keystone taxa (all from the family Nitrososphaeraceae) were identified from the archaeal networks. In its entirety, this study has expanded our comprehension of the variations of soil archaeal communities in volcanic areas with elevated cadmium levels and serves as a point of reference for the agricultural development of volcanic soils in China.
Collapse
Affiliation(s)
- Zihua Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Daolong Xu
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, Inner Mongolia, China
| | - Tao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yingyue Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
48
|
Schlegel M, Treindl AD, Panziera J, Zengerer V, Zani D, Brännhage J, Gross A. A case study on the application of spore sampling for the monitoring of macrofungi. Mol Ecol Resour 2024; 24:e13941. [PMID: 38409666 DOI: 10.1111/1755-0998.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Fungi play a vital role in ecosystem functioning, yet significant knowledge gaps persist in understanding their diversity and distribution leading to uncertainties about their threat status and extinction risk. This is partly owed to the difficulty of monitoring fungi using traditional fruiting body surveys. The present study evaluates airborne environmental DNA (eDNA) sampling as a monitoring tool with a focus on grassland macrofungi. We applied active and passive air sampling methods, complemented by extensive field surveys of waxcap and clavarioid fungi-species groups of high relevance for conservation. Twenty-nine species were recorded during the field surveys, 19 of which were also detectable by ITS2 metabarcoding of the collected samples. An additional 12 species from the studied genera were identified exclusively in air eDNA. We found that the patterns of species detection and read abundance in air samples reflected the abundance and occurrence of fruiting bodies on the field. Dispersal kernels fitted for the three dominant species predicted rapidly decreasing spore concentrations with increasing distance from fruitbodies. Airborne assemblages were dominated by a high diversity of common species, while rare and threatened red-listed species were under-represented, which underscores the difficulty in detecting rare species, not only in conventional surveys. Considering the benefits and drawbacks of air sampling and fruitbody surveys, we conclude that air sampling serves as a cost- and time-efficient tool to characterize local macrofungal communities, providing the potential to facilitate and improve future fungal monitoring efforts.
Collapse
Affiliation(s)
- Markus Schlegel
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jenny Panziera
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Deborah Zani
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Jonas Brännhage
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrin Gross
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
49
|
Haelewaters D, Quandt CA, Bartrop L, Cazabonne J, Crockatt ME, Cunha SP, De Lange R, Dominici L, Douglas B, Drechsler-Santos ER, Heilmann-Clausen J, Irga PJ, Jakob S, Lofgren L, Martin TE, Muchane MN, Stallman JK, Verbeken A, Walker AK, Gonçalves SC. The power of citizen science to advance fungal conservation. Conserv Lett 2024; 17:e13013. [PMID: 39371387 PMCID: PMC11452162 DOI: 10.1111/conl.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 10/08/2024] Open
Abstract
Fungal conservation is gaining momentum globally, but many challenges remain. To advance further, more data are needed on fungal diversity across space and time. Fundamental information regarding population sizes, trends, and geographic ranges is also critical to accurately assess the extinction risk of individual species. However, obtaining these data is particularly difficult for fungi due to their immense diversity, complex and problematic taxonomy, and cryptic nature. This paper explores how citizen science (CS) projects can be lever-aged to advance fungal conservation efforts. We present several examples of past and ongoing CS-based projects to record and monitor fungal diversity. These include projects that are part of broad collecting schemes, those that provide participants with targeted sampling methods, and those whereby participants collect environmental samples from which fungi can be obtained. We also examine challenges and solutions for how such projects can capture fungal diversity, estimate species absences, broaden participation, improve data curation, and translate resulting data into actionable conservation measures. Finally, we close the paper with a call for professional mycologists to engage with amateurs and local communities, presenting a framework to determine whether a given project would likely benefit from participation by citizen scientists.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lachlan Bartrop
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jonathan Cazabonne
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Amos, Canada
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Canada
| | - Martha E. Crockatt
- Leverhulme Centre for Nature Recovery, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Susana P. Cunha
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Ruben De Lange
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Laura Dominici
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | | | | | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peter J. Irga
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | - Sigrid Jakob
- Fungal Diversity Survey, Sebastopol, California, USA
| | - Lotus Lofgren
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Thomas E. Martin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, Wales, UK
| | | | - Jeffery K. Stallman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Allison K. Walker
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Susana C. Gonçalves
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Wu LY, Wijesekara Y, Piedade GJ, Pappas N, Brussaard CPD, Dutilh BE. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes. Genome Biol 2024; 25:97. [PMID: 38622738 PMCID: PMC11020464 DOI: 10.1186/s13059-024-03236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.
Collapse
Affiliation(s)
- Ling-Yi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Yasas Wijesekara
- Institute of Bioinformatics, University Medicine Greifswald, Felix Hausdorff Str. 8, 17475, Greifswald, Germany
| | - Gonçalo J Piedade
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Nikolaos Pappas
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Corina P D Brussaard
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|