1
|
Zhong X, Gu H, Lim J, Zhang P, Wang G, Zhang K, Li X. Genetically encoded sensors illuminate in vivo detection for neurotransmission: Development, application, and optimization strategies. IBRO Neurosci Rep 2025; 18:476-490. [PMID: 40177704 PMCID: PMC11964776 DOI: 10.1016/j.ibneur.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Limitations in existing tools have hindered neuroscientists from achieving a deeper understanding of complex behaviors and diseases. The recent development and optimization of genetically encoded sensors offer a powerful solution for investigating intricate dynamics such as calcium influx, membrane potential, and the release of neurotransmitters and neuromodulators. In contrast, traditional methods are constrained by insufficient spatial and/or temporal resolution, low sensitivity, and stringent application conditions. Genetically encoded sensors have gained widespread popularity due to their advantageous features, which stem from their genetic encoding and optical imaging capabilities. These include broad applicability, tissue specificity, and non-invasive operation. When combined with advanced microscopic techniques, optogenetics, and machine learning approaches, these sensors have become versatile tools for studying neuronal circuits in intact living systems, providing millisecond-scale temporal resolution and spatial resolution ranging from nanometers to micrometers. In this review, we highlight the advantages of genetically encoded sensors over traditional methods in the study of neurotransmission. We also discuss their recent advancements, diverse applications, and optimization strategies.
Collapse
Affiliation(s)
- Xiaoyu Zhong
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengyu Gu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juyao Lim
- Malaysian Medics International-Hospital Raja Permaisuri Bainun, Ipoh, Malaysia
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Martínez-Andrade JM, Salgado-Bautista D, Ramirez-Acosta K, Cadena-Nava RD, Riquelme M. A practical protocol for correlative confocal fluorescence and transmission electron microscopy characterization of extracellular vesicles. Microbiol Spectr 2025:e0302624. [PMID: 40401966 DOI: 10.1128/spectrum.03026-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/09/2025] [Indexed: 05/23/2025] Open
Abstract
Extracellular vesicles (EVs) have gained considerable attention in fungal biology research. However, imaging these membrane-bound particles presents challenges due to their nanoscopic size (typically <200 nm), which exceeds the resolution limit of conventional diffraction-limited laser scanning confocal microscopy (LSCM). While high-resolution techniques like transmission electron microscopy (TEM) offer superior spatial resolution, they are time-consuming, require specialized expertise, and are prone to artifacts that can interfere with accurate results. In this study, we propose a rapid method for confirming the vesicular nature of EVs using a correlative light and electron microscopy (CLEM) approach. EVs were isolated from culture filtrates of the model filamentous fungus Neurospora crassa, and their membranes were stained with the fluorogenic styryl dye FM1-43 for analysis. Fluorescent microspheres were used as fiducial markers alongside the stained EVs during sample preparation. Samples were first examined using LSCM, followed by negative staining with OsO4 vapors or uranyl acetate. The same regions observed with LSCM were subsequently analyzed with TEM. CLEM analysis revealed that vesicle-like structures with membranous features, as observed under TEM, corresponded to the dispersed green fluorescence signal seen with LSCM. These findings validate CLEM as a reliable method to examine the presence of EVs. This method can be implemented easily in labs that do not have access to a core facility with sophisticated multimodal microscopes. Furthermore, this method can be extended to study other structures, such as secretory vesicles, viral particles, protein nanoparticles, and polymeric nanoparticles.IMPORTANCEThis study presents an efficient and cost-effective correlative light and electron microscopy workflow for imaging nanosized extracellular vesicles (EVs) and other biological samples. The methodology involves sequential imaging using laser scanning confocal microscopy (LSCM) followed by transmission electron microscopy (TEM), enabling comprehensive characterization of EVs. This protocol uses fluorescence microscopy dyes to stain EV membranes and OsO4 vapors for negative or positive staining in TEM. This approach provides a reliable, versatile tool for studying nanoscale biological structures, with broad applications in cellular biology, nanomedicine, and related research fields.
Collapse
Affiliation(s)
- Juan M Martínez-Andrade
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Daniel Salgado-Bautista
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Kendra Ramirez-Acosta
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Ruben Darío Cadena-Nava
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
3
|
Zufferey V, Barve A, Parietti E, Belinga L, Bringaud A, Varisco Y, Fabbri K, Capotosti F, Bezzi P, Déglon N, Marquet P, Preitner N, Richetin K. Extracellular PHF-tau modulates astrocyte mitochondrial dynamics and mediates neuronal connectivity. Transl Neurodegener 2025; 14:13. [PMID: 40122883 PMCID: PMC11931834 DOI: 10.1186/s40035-025-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Tau is an intracellular protein that plays a crucial role in stabilizing microtubules. However, it can aggregate into various forms under pathological conditions and be secreted into the brain parenchyma. While the consequences of tau aggregation within neurons have been extensively studied, the effects of extracellular paired helical filaments of tau (ePHF-tau) on neurons and astrocytes are still poorly understood. METHODS This study examined the effect of human ePHF-tau (2N4R) on primary cultures of rat neuroglia, focusing on changes in neurites or synapses by microscopy and analysis of synaptosome and mitochondria proteomic profiles after treatment. In addition, we monitored the behavior of mitochondria in neurons and astrocytes separately over three days using high-speed imaging and high-throughput acquisition and analysis. RESULTS ePHF-tau was efficiently cleared by astrocytes within two days in a 3D neuron-astrocyte co-culture model. Treatment with ePHF-tau led to a rapid increase in synaptic vesicle production and active zones, suggesting a potential excitotoxic response. Proteomic analyses of synaptosomal and mitochondrial fractions revealed distinct mitochondrial stress adaptations: astrocytes exhibited elevated mitochondrial biogenesis and turnover, whereas neuronal mitochondria displayed only minor oxidative modifications. In a mixed culture model, overexpression of tau 1N4R specifically in astrocytes triggered a marked increase in mitochondrial biogenesis, coinciding with enhanced synaptic vesicle formation in dendrites. Similarly, astrocyte-specific overexpression of PGC1alpha produced a comparable pattern of synaptic vesicle production, indicating that astrocytic mitochondrial adaptation to ePHF-tau may significantly influence synaptic function. CONCLUSIONS These findings suggest that the accumulation of PHF-tau within astrocytes drives changes in mitochondrial biogenesis, which may influence synaptic regulation. This astrocyte-mediated adaptation to tauopathy highlights the potential role of astrocytes in modulating synaptic dynamics in response to tau stress, opening avenues for therapeutic strategies aimed at astrocytic mechanisms in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentin Zufferey
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Aatmika Barve
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Enea Parietti
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Luc Belinga
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Leenaards Memory Centre, Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Audrey Bringaud
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Service for Autism Spectrum Disorders (STSA), Department of Psychiatry, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | | | | | | | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne (UNIL), 1005, Lausanne, Switzerland
| | - Nicole Déglon
- Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Pierre Marquet
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Nicolas Preitner
- Service for Autism Spectrum Disorders (STSA), Department of Psychiatry, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Kevin Richetin
- Centre for Psychiatric Neurosciences (CNP), Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1015, Lausanne, Switzerland.
- Leenaards Memory Centre, Lausanne University Hospital (CHUV) - University of Lausanne (UNIL), 1011, Lausanne, Switzerland.
- Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
4
|
Wu P, Zuo J, Han Z, Peng X, He Z, Yin W, Feng H, Zhu E, Rao Y, Qian Z. Green fluorescent FM dyes with prolonged retention for 4D tracking of plasma membrane dynamics in live plants under environmental stress. Biosens Bioelectron 2025; 271:117039. [PMID: 39662173 DOI: 10.1016/j.bios.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Macroscopic phenotypic changes in plants are frequently employed as a means of evaluating the biological response of plants to external environmental stresses. However, the lack of effective observational tools at the microscopic cellular level hinders the ability to fully comprehend the intricacies of this response. Herein, we developed a plasma membrane fluorescent dye with target-activated green emission complemented with conventional FM dyes, and established a four-dimensional (4D) imaging approach based on this dye for spatio-temporal monitoring of plasma membrane dynamics during cellular responses to external environmental stress. A green fluorescent dye, designated FMG-DBO, was constructed by modifying the bridged unit between the aniline donor and the pyridinium acceptor. Its green emission can be combined with that of conventional FM dyes, enabling high-resolution imaging of plant leaf cells containing chlorophyll. The anchoring ability of the dyes was enhanced by incorporating a rigid diaza[2.2.2]octane unit as an anti-permeability group. The long retention time of the FMG-DBO dye in the plasma membrane enables the tracking of three-dimensional dynamics of the plasma membrane of plant cells. Consequently, an FMG-DBO-based four-dimensional imaging approach was established to monitor dynamic changes of plant cells under external environmental stress at the cellular level. The biological responses of two different drought-tolerant rice root cells to drought stress were examined by this four-dimensional imaging approach. It was observed that the two types of rice root cells exhibited disparate responses to the drought environmen. This approach offers alternative cell-level visualization tools for evaluating the biological responses of plant cells under environmental stress.
Collapse
Affiliation(s)
- Penglei Wu
- Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jiaqi Zuo
- Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhengdong Han
- Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Xin Peng
- Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ziqing He
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wenjing Yin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Hui Feng
- Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Engao Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Zhaosheng Qian
- Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
5
|
Noronha-Matos JB, Sousa-Soares C, Correia-de-Sá P. Differential participation of CaMKII/ROCK and NOS pathways in the cholinergic inhibitory drive operated by nicotinic α7 receptors in perisynaptic Schwann cells. Biochem Pharmacol 2025; 231:116649. [PMID: 39581530 DOI: 10.1016/j.bcp.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Nicotinic α7 receptors (α7 nAChRs) present in perisynaptic Schwann cells (PSCs) control acetylcholine (ACh) spillover from the neuromuscular synapse by transiently increasing intracellular Ca2+, which fosters adenosine release via type 1 equilibrative nucleoside transporters (ENT1) and retrograde activation of presynaptic A1 inhibitory receptors. The putative Ca2+-dependent pathways downstream α7 nAChRs involved in the sensing inhibitory drive operated by PSCs is unknown. Herein, we used phrenic nerve-hemidiaphragm preparations from Wistar rats. Time-lapse video-microscopy was instrumental to assess nerve-evoked (50-Hz bursts) transmitter exocytosis and intracellular NO oscillations in nerve terminals and PSCs loaded with FM4-64 and DAF-FM diacetate fluorescent dyes, respectively. Selective activation of α7 nAChRs with PNU 282987 reduced transmitter exocytosis (FM4-64 dye unloading) during 50-Hz bursts. Inhibition of calmodulin activity (with W-7), Ca2+/calmodulin-dependent protein kinase II (CaMKII; with KN-62) and Rho-kinase (ROCK; with H1152) all prevented the release inhibitory effect of PNU 282987. The α7 nAChR agonist transiently increased NO inside PSCs; the same occurred during phrenic nerve stimulation with 50-Hz bursts in the presence of the cholinesterase inhibitor, neostigmine. The nitric oxide synthase (NOS) inhibitor, L-NOARG, but not with the guanylylcyclase (GC) inhibitor, ODQ, prevented inhibition of transmitter exocytosis by PNU 282987. Inhibition of adenosine kinase with ABT 702 favors the intracellular accumulation and translocation of the nucleoside to the synaptic cleft, thus overcoming prevention of the PNU 282987 effect caused by H1152, but not by L-NOARG. In conclusion, the α7nAChR-mediated cholinergic inhibitory drive operated by PSCs involves two distinct Ca2+-dependent intracellular pathways: a CaMKII/ROCK cascade along with a GC-independent NO pathway with divergent end-effects concerning ADK inhibition.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Carlos Sousa-Soares
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Wang C, Zhang K, Cai B, Haller JE, Carnazza KE, Hu J, Zhao C, Tian Z, Hu X, Hall D, Qiang J, Hou S, Liu Z, Gu J, Zhang Y, Seroogy KB, Burré J, Fang Y, Liu C, Brunger AT, Li D, Diao J. VAMP2 chaperones α-synuclein in synaptic vesicle co-condensates. Nat Cell Biol 2024; 26:1287-1295. [PMID: 38951706 PMCID: PMC11786254 DOI: 10.1038/s41556-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (α-Syn) aggregation is closely associated with Parkinson's disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)-a component of the SNARE complex that resides on SVs-directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn's function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn's function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson's disease.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel Hall
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Ding S, Aziz T, Meng A, Jia S. Aagab is required for zebrafish larval development by regulating neural activity. J Genet Genomics 2024; 51:630-641. [PMID: 38253235 DOI: 10.1016/j.jgg.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Clathrin-mediated endocytosis has been implicated in various physiological processes, including nutrient uptake, signal transduction, synaptic vesicle recycling, maintenance of cell polarity, and antigen presentation. Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis, the physiological function of α- and γ-adaptin binding protein (aagab) remains elusive. In this study, we investigate the biological function of aagab during zebrafish development. We establish a loss-of-function mutant of aagab in zebrafish, revealing impaired swimming and early larval mortality. Given the high expression level of aagab in the brain, we probe into its physiological role in the nervous system. aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons, aligning with reduced neurotransmitter release (e.g., norepinephrine) in the tectal neuropil of aagab mutants. Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release, calcium responses, swimming ability, and survival. Furthermore, our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells, pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling. In conclusion, our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.
Collapse
Affiliation(s)
- Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tursunjan Aziz
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, Guangdong 510320, China
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Rodriguez Gotor JJ, Mahfooz K, Perez-Otano I, Wesseling JF. Parallel processing of quickly and slowly mobilized reserve vesicles in hippocampal synapses. eLife 2024; 12:RP88212. [PMID: 38727712 PMCID: PMC11087054 DOI: 10.7554/elife.88212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.
Collapse
Affiliation(s)
| | - Kashif Mahfooz
- Department of Pharmacology, University of OxfordOxfordUnited Kingdom
| | - Isabel Perez-Otano
- Instituto de Neurociencias de Alicante CSIC-UMHSan Juan de AlicanteSpain
| | - John F Wesseling
- Instituto de Neurociencias de Alicante CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
9
|
Patil SS, Sanghrajka K, Sriram M, Chakraborty A, Majumdar S, Bhaskar BR, Das D. Synaptobrevin2 monomers and dimers differentially engage to regulate the functional trans-SNARE assembly. Life Sci Alliance 2024; 7:e202402568. [PMID: 38238088 PMCID: PMC10796598 DOI: 10.26508/lsa.202402568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The precise cell-to-cell communication relies on SNARE-catalyzed membrane fusion. Among ∼70 copies of synaptobrevin2 (syb2) in synaptic vesicles, only ∼3 copies are sufficient to facilitate the fusion process at the presynaptic terminal. It is unclear what dictates the number of SNARE complexes that constitute the fusion pore assembly. The structure-function relation of these dynamic pores is also unknown. Here, we demonstrate that syb2 monomers and dimers differentially engage in regulating the trans-SNARE assembly during membrane fusion. The differential recruitment of two syb2 structures at the membrane fusion site has consequences in regulating individual nascent fusion pore properties. We have identified a few syb2 transmembrane domain residues that control monomer/dimer conversion. Overall, our study indicates that syb2 monomers and dimers are differentially recruited at the release sites for regulating membrane fusion events.
Collapse
Affiliation(s)
- Swapnali S Patil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kinjal Sanghrajka
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Malavika Sriram
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Aritra Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sougata Majumdar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Bhavya R Bhaskar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debasis Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
10
|
Markovinovic A, Martín-Guerrero SM, Mórotz GM, Salam S, Gomez-Suaga P, Paillusson S, Greig J, Lee Y, Mitchell JC, Noble W, Miller CCJ. Stimulating VAPB-PTPIP51 ER-mitochondria tethering corrects FTD/ALS mutant TDP43 linked Ca 2+ and synaptic defects. Acta Neuropathol Commun 2024; 12:32. [PMID: 38395965 PMCID: PMC10885568 DOI: 10.1186/s40478-024-01742-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3β (GSK3β). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3β. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.
| | - Sandra M Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Gábor M Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Patricia Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Younbok Lee
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Jacqueline C Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9RX, London, UK.
| |
Collapse
|
11
|
Cho W, Jung M, Yoon SH, Jeon J, Oh MA, Kim JY, Park M, Kang CM, Chung TD. On-Site Formation of Functional Dopaminergic Presynaptic Terminals on Neuroligin-2-Modified Gold-Coated Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3082-3092. [PMID: 38206769 DOI: 10.1021/acsami.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Advancements in neural interface technologies have enabled the direct connection of neurons and electronics, facilitating chemical communication between neural systems and external devices. One promising approach is a synaptogenesis-involving method, which offers an opportunity for synaptic signaling between these systems. Janus synapses, one type of synaptic interface utilizing synaptic cell adhesion molecules for interface construction, possess unique features that enable the determination of location, direction of signal flow, and types of neurotransmitters involved, promoting directional and multifaceted communication. This study presents the first successful establishment of a Janus synapse between dopaminergic (DA) neurons and abiotic substrates by using a neuroligin-2 (NLG2)-mediated synapse-inducing method. NLG2 immobilized on gold-coated microspheres can induce synaptogenesis upon contact with spatially isolated DA axons. The induced DA Janus synapses exhibit stable synaptic activities comparable to that of native synapses over time, suggesting their suitability for application in neural interfaces. By calling for DA presynaptic organizations, the NLG2-immobilized abiotic substrate is a promising tool for the on-site detection of synaptic dopamine release.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjung Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
12
|
Ye W, Lui ST, Zhao Q, Wong YM, Cheng A, Sung HHY, Williams ID, Qian PY, Huang P. Novel marine natural products as effective TRPV1 channel blockers. Int J Biol Macromol 2023; 253:127136. [PMID: 37776932 DOI: 10.1016/j.ijbiomac.2023.127136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Chronic pain management poses a formidable challenge to healthcare, exacerbated by current analgesic options' limitations and adverse effects. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, has emerged as a promising target for novel analgesics. However, safety and tolerability concerns have constrained the development of TRPV1 modulators. In this study, we explored marine-derived natural products as a source of potential TRPV1 modulators using high-throughput dye-uptake assays. We identified chrexanthomycins, a family of hexacyclic xanthones, exhibited potent TRPV1 inhibitory effects, with compounds cC and cF demonstrating the most significant activity. High-resolution patch-clamp assays confirmed the direct action of these compounds on the TRPV1 channel. Furthermore, in vivo assays revealed that cC and cF effectively suppressed capsaicin-induced pain sensation in mice, comparable to the known TRPV1 inhibitor, capsazepine. Structural-activity relationship analysis highlighted the importance of specific functional groups in modulating TRPV1 activity. Our findings underscore the therapeutic potential of chrexanthomycins and pave the way for further investigations into marine-derived TRPV1 modulators for pain management.
Collapse
Affiliation(s)
- Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Sin Tung Lui
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qirui Zhao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuk Ming Wong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Pingbo Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
13
|
Song P, Peng W, Sauve V, Fakih R, Xie Z, Ysselstein D, Krainc T, Wong YC, Mencacci NE, Savas JN, Surmeier DJ, Gehring K, Krainc D. Parkinson's disease-linked parkin mutation disrupts recycling of synaptic vesicles in human dopaminergic neurons. Neuron 2023; 111:3775-3788.e7. [PMID: 37716354 PMCID: PMC11977536 DOI: 10.1016/j.neuron.2023.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Parkin-mediated mitophagy has been studied extensively, but whether mutations in parkin contribute to Parkinson's disease pathogenesis through alternative mechanisms remains unexplored. Using patient-derived dopaminergic neurons, we found that phosphorylation of parkin by Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) at Ser9 leads to activation of parkin in a neuronal-activity-dependent manner. Activated parkin ubiquitinates synaptojanin-1, facilitating its interaction with endophilin A1 and synaptic vesicle recycling. Neurons from PD patients with mutant parkin displayed defective recycling of synaptic vesicles, leading to accumulation of toxic oxidized dopamine that was attenuated by boosting endophilin A1 expression. Notably, combined heterozygous parkin and homozygous PTEN-induced kinase 1 (PINK1) mutations led to earlier disease onset compared with homozygous mutant PINK1 alone, further underscoring a PINK1-independent role for parkin in contributing to disease. Thus, this study identifies a pathway for selective activation of parkin at human dopaminergic synapses and highlights the importance of this mechanism in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Pingping Song
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wesley Peng
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Veronique Sauve
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Ysselstein
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Talia Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yvette C Wong
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Pati E, Franceschi Biagioni A, Casani R, Lozano N, Kostarelos K, Cellot G, Ballerini L. Delivery of graphene oxide nanosheets modulates glutamate release and normalizes amygdala synaptic plasticity to improve anxiety-related behavior. NANOSCALE 2023; 15:18581-18591. [PMID: 37955642 DOI: 10.1039/d3nr04490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Graphene oxide nanosheets (GO) were reported to alter neurobiological processes involving cell membrane dynamics. GO ability to reversibly downregulate specifically glutamatergic synapses underpins their potential in future neurotherapeutic developments. Aberrant glutamate plasticity contributes to stress-related psychopathology and drugs which target dysregulated glutamate represent promising treatments. We find that in a rat model of post-traumatic stress disorder (PTSD), a single injection of GO to the lateral amygdala following the stressful event induced PTSD-related behavior remission and reduced dendritic spine densities. We explored from a mechanistic perspective how GO could impair glutamate synaptic plasticity. By simultaneous patch clamp pair recordings of unitary synaptic currents, live-imaging of presynaptic vesicle release and confocal microscopy, we report that GO nanosheets altered the probability of release enhancing the extinction of synaptic plasticity in the amygdala. These findings show that the modulation of presynaptic glutamate release might represent an unexplored target for (nano)pharmacological interventions of stress-related disorders.
Collapse
Affiliation(s)
- Elisa Pati
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy.
| | | | - Raffaele Casani
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy.
| | - Neus Lozano
- Nanomedicine Lab Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kostas Kostarelos
- Nanomedicine Lab Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Nanomedicine Lab, and Faculty of Biology, Medicine & Health, The National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Giada Cellot
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy.
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy.
| |
Collapse
|
15
|
Bingham D, Jakobs CE, Wernert F, Boroni-Rueda F, Jullien N, Schentarra EM, Friedl K, Da Costa Moura J, van Bommel DM, Caillol G, Ogawa Y, Papandréou MJ, Leterrier C. Presynapses contain distinct actin nanostructures. J Cell Biol 2023; 222:e202208110. [PMID: 37578754 PMCID: PMC10424573 DOI: 10.1083/jcb.202208110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
The architecture of the actin cytoskeleton that concentrates at presynapses remains poorly known, hindering our understanding of its roles in synaptic physiology. In this work, we measure and visualize presynaptic actin by diffraction-limited and super-resolution microscopy, thanks to a validated model of bead-induced presynapses in cultured neurons. We identify a major population of actin-enriched presynapses that concentrates more presynaptic components and shows higher synaptic vesicle cycling than their non-enriched counterparts. Pharmacological perturbations point to an optimal actin amount and the presence of distinct actin structures within presynapses. We directly visualize these nanostructures using Single Molecule Localization Microscopy (SMLM), defining three distinct types: an actin mesh at the active zone, actin rails between the active zone and deeper reserve pools, and actin corrals around the whole presynaptic compartment. Finally, CRISPR-tagging of endogenous actin allows us to validate our results in natural synapses between cultured neurons, confirming the role of actin enrichment and the presence of three types of presynaptic actin nanostructures.
Collapse
Affiliation(s)
- Dominic Bingham
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Florian Wernert
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Fanny Boroni-Rueda
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Nicolas Jullien
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Karoline Friedl
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
- Abbelight, Cachan, France
| | | | | | - Ghislaine Caillol
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
16
|
Bertin F, Jara-Wilde J, Auer B, Köhler-Solís A, González-Silva C, Thomas U, Sierralta J. Drosophila Atlastin regulates synaptic vesicle mobilization independent of bone morphogenetic protein signaling. Biol Res 2023; 56:49. [PMID: 37710314 PMCID: PMC10503011 DOI: 10.1186/s40659-023-00462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) contacts endosomes in all parts of a motor neuron, including the axon and presynaptic terminal, to move structural proteins, proteins that send signals, and lipids over long distances. Atlastin (Atl), a large GTPase, is required for membrane fusion and the structural dynamics of the ER tubules. Atl mutations are the second most common cause of Hereditary Spastic Paraplegia (HSP), which causes spasticity in both sexes' lower extremities. Through an unknown mechanism, Atl mutations stimulate the BMP (bone morphogenetic protein) pathway in vertebrates and Drosophila. Synaptic defects are caused by atl mutations, which affect the abundance and distribution of synaptic vesicles (SV) in the bouton. We hypothesize that BMP signaling, does not cause Atl-dependent SV abnormalities in Drosophila. RESULTS We show that atl knockdown in motor neurons (Atl-KD) increases synaptic and satellite boutons in the same way that constitutively activating the BMP-receptor Tkv (thick veins) (Tkv-CA) increases the bouton number. The SV proteins Cysteine string protein (CSP) and glutamate vesicular transporter are reduced in Atl-KD and Tkv-CA larvae. Reducing the activity of the BMP receptor Wishful thinking (wit) can rescue both phenotypes. Unlike Tkv-CA larvae, Atl-KD larvae display altered activity-dependent distributions of CSP staining. Furthermore, Atl-KD larvae display an increased FM 1-43 unload than Control and Tkv-CA larvae. As decreasing wit function does not reduce the phenotype, our hypothesis that BMP signaling is not involved is supported. We also found that Rab11/CSP colocalization increased in Atl-KD larvae, which supports the concept that late recycling endosomes regulate SV movements. CONCLUSIONS Our findings reveal that Atl modulates neurotransmitter release in motor neurons via SV distribution independently of BMP signaling, which could explain the observed SV accumulation and synaptic dysfunction. Our data suggest that Atl is involved in membrane traffic as well as formation and/or recycling of the late endosome.
Collapse
Affiliation(s)
- Francisca Bertin
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Computational Sciences, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Andrés Köhler-Solís
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ulrich Thomas
- Functional Genetics of the Synapse, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Cawley J, Berger BA, Odudimu AT, Singh AN, Santa DE, McDarby AI, Honerkamp-Smith AR, Wittenberg NJ. Imaging Giant Vesicle Membrane Domains with a Luminescent Europium Tetracycline Complex. ACS OMEGA 2023; 8:29314-29323. [PMID: 37599986 PMCID: PMC10433515 DOI: 10.1021/acsomega.3c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Microdomains in lipid bilayer membranes are routinely imaged using organic fluorophores that preferentially partition into one of the lipid phases, resulting in fluorescence contrast. Here, we show that membrane microdomains in giant unilamellar vesicles (GUVs) can be visualized with europium luminescence using a complex of europium III (Eu3+) and tetracycline (EuTc). EuTc is unlike typical organic lipid probes in that it is a coordination complex with a unique excitation/emission wavelength combination (396/617 nm), a very large Stokes shift (221 nm), and a very narrow emission bandwidth (8 nm). The probe preferentially interacts with liquid disordered domains in GUVs, which results in intensity contrast across the surface of phase-separated GUVs. Interestingly, EuTc also alters GM1 ganglioside partitioning. GM1 typically partitions into liquid ordered domains, but after labeling phase-separated GUVs with EuTc, cholera toxin B-subunit (CTxB), which binds GM1, labels liquid disordered domains. We also demonstrate that EuTc, but not free Eu3+ or Tc, significantly reduces lipid diffusion coefficients. Finally, we show that EuTc can be used to label cellular membranes similar to a traditional membrane probe. EuTc may find utility as a membrane imaging probe where its large Stokes shift and sharp emission band would enable multicolor imaging.
Collapse
Affiliation(s)
- Jennie
L. Cawley
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A. Berger
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T. Odudimu
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N. Singh
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E. Santa
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Ariana I. McDarby
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aurelia R. Honerkamp-Smith
- Department
of Physics, Lehigh University, 17 Memorial Drive East, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
18
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
19
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Serrano-Buitrago S, Muñoz-Úbeda M, Almendro-Vedia VG, Sánchez-Camacho J, Maroto BL, Moreno F, Bañuelos J, García-Moreno I, López-Montero I, de la Moya S. Polar ammoniostyryls easily converting a clickable lipophilic BODIPY in an advanced plasma membrane probe. J Mater Chem B 2023; 11:2108-2114. [PMID: 36808432 DOI: 10.1039/d2tb02516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A very simple, small and symmetric, but highly bright, photostable and functionalizable molecular probe for plasma membrane (PM) has been developed from an accessible, lipophilic and clickable organic dye based on BODIPY. To this aim, two lateral polar ammoniostyryl groups were easily linked to increase the amphiphilicity of the probe and thus its lipid membrane partitioning. Compared to the BODIPY precursor, the transversal diffusion across lipid bilayers of the ammoniostyryled BODIPY probe was highly reduced, as evidenced by fluorescence confocal microscopy on model membranes built up as giant unilamellar vesicles (GUVs). Moreover, the ammoniostyryl groups endow the new BODIPY probe with the ability to optically work (excitation and emission) in the bioimaging-useful red region, as shown by staining of the plasma membrane of living mouse embryonic fibroblasts (MEFs). Upon incubation, this fluorescent probe rapidly entered the cell through the endosomal pathway. By blocking the endocytic trafficking at 4 °C, the probe was confined within the PM of MEFs. Our experiments show the developed ammoniostyrylated BODIPY as a suitable PM fluorescent probe, and confirm the synthetic approach for advancing PM probes, imaging and science.
Collapse
Affiliation(s)
- Sergio Serrano-Buitrago
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Mónica Muñoz-Úbeda
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.,Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Víctor G Almendro-Vedia
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.,Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Juan Sánchez-Camacho
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Jorge Bañuelos
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), Barrio Sarriena s/n, 48080, Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química Física Rocasolano, C.S.I.C., 28006, Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.,Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain. .,Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo de Juan XXIII 1, 28040, Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
21
|
Biasetti L, Rey S, Fowler M, Ratnayaka A, Fennell K, Smith C, Marshall K, Hall C, Vargas-Caballero M, Serpell L, Staras K. Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cereb Cortex 2023; 33:1263-1276. [PMID: 35368053 PMCID: PMC9930632 DOI: 10.1093/cercor/bhac134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is linked to increased levels of amyloid beta (Aβ) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aβ. Using an optical readout method in cultured hippocampal neurons, we show that acute Aβ42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aβ transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aβ is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aβ-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- National Physical Laboratory, Middlesex, TW11 0LW, United Kingdom
| | - Milena Fowler
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Arjuna Ratnayaka
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- Faculty of Medicine, University of Southampton, SO17 1BJ, United Kingdom
| | - Kate Fennell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Karen Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Hall
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
22
|
Müller S, Filali L, Puissegur MP, Valitutti S. Measuring CTL Lytic Granule Secretion and Target Cell Membrane Repair by Fluorescent Lipophilic Dye Uptake at the Lytic Synapse. Methods Mol Biol 2023; 2654:463-476. [PMID: 37106201 DOI: 10.1007/978-1-0716-3135-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
CD8+ cytotoxic T lymphocytes (CTL) play a key role in anti-tumor immune response. They are therefore at the heart of current immunotherapy protocols against cancer. Despite current strategies to potentiate CTL responses, cancer cells can resist CTL attack, thus limiting the efficacy of immunotherapies. To optimize immunotherapy, it is urgent to develop rapid assays allowing to assess CTL-cancer cell confrontation at the lytic synapse.In this chapter, we describe a flow cytometry-based method to simultaneously assess the extent of CTL activation and of tumor cell reparative membrane turnover in CTL/target cell conjugates. Such a method can be performed using a limited number of cells. It can therefore be employed in clinical settings when only a few patient-derived cells might be available.
Collapse
Affiliation(s)
- Sabina Müller
- INSERM UMR1037, CNRS UMR5071, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Liza Filali
- INSERM UMR1037, CNRS UMR5071, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
- Luxembourg Institute of Health, Department of Cancer Research, Strassen, Luxembourg
| | - Marie-Pierre Puissegur
- INSERM UMR1037, CNRS UMR5071, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Salvatore Valitutti
- INSERM UMR1037, CNRS UMR5071, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse (IUCT), Toulouse Cédex, France.
| |
Collapse
|
23
|
Liu J, Jing X, Liu M, Li F, Li M, Li Q, Shi J, Li J, Wang L, Mao X, Zuo X, Fan C. Mechano-fluorescence actuation in single synaptic vesicles with a DNA framework nanomachine. Sci Robot 2022; 7:eabq5151. [PMID: 36542686 DOI: 10.1126/scirobotics.abq5151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomimetic machines that can convert mechanical actuation to adaptive coloration in a manner analogous to cephalopods have found widespread applications at various length scales. At the nanoscale, a transmutable nanomachine with adaptive colors that can sense and mediate cellular or intracellular interactions is highly desirable. Here, we report the design of a DNA framework nanomachine (DFN) that can autonomously change shape in response to pH variations in single synaptic vesicles, which, in turn, displays adaptive fluorescent colors with a mechano-fluorescence actuation mechanism. To construct a DFN, we used a tetrahedral DNA nanostructure as the framework to incorporate an embedded pH-responsive, i-motif sequence tagged with a Förster resonance energy transfer pair and an affinity cholesterol moiety targeting vesicular membranes. We found that endocytosed DFNs are individually trapped in single endocytic vesicles in living synaptic cells due to the size-exclusion effect. The adaptive fluorescence coloration of DFNs enabled single-vesicle quantification of resting pH values in a processive manner, allowing long-term tracking of the exocytosis and fusion dynamics in intracellular processes and cell-cell communications.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinxin Jing
- School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Pneumolysin boosts the neuroinflammatory response to Streptococcus pneumoniae through enhanced endocytosis. Nat Commun 2022; 13:5032. [PMID: 36028511 PMCID: PMC9418233 DOI: 10.1038/s41467-022-32624-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.
Collapse
|
25
|
Illuminating membrane structural dynamics of fusion and endocytosis with advanced light imaging techniques. Biochem Soc Trans 2022; 50:1157-1167. [PMID: 35960003 PMCID: PMC9444071 DOI: 10.1042/bst20210263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Visualization of cellular dynamics using fluorescent light microscopy has become a reliable and indispensable source of experimental evidence for biological studies. Over the past two decades, the development of super-resolution microscopy platforms coupled with innovations in protein and molecule labeling led to significant biological findings that were previously unobservable due to the barrier of the diffraction limit. As a result, the ability to image the dynamics of cellular processes is vastly enhanced. These imaging tools are extremely useful in cellular physiology for the study of vesicle fusion and endocytosis. In this review, we will explore the power of stimulated emission depletion (STED) and confocal microscopy in combination with various labeling techniques in real-time observation of the membrane transformation of fusion and endocytosis, as well as their underlying mechanisms. We will review how STED and confocal imaging are used to reveal fusion and endocytic membrane transformation processes in live cells, including hemi-fusion; hemi-fission; hemi-to-full fusion; fusion pore opening, expansion, constriction and closure; shrinking or enlargement of the Ω-shape membrane structure after vesicle fusion; sequential compound fusion; and the sequential endocytic membrane transformation from flat- to O-shape via the intermediate Λ- and Ω-shape transition. We will also discuss how the recent development of imaging techniques would impact future studies in the field.
Collapse
|
26
|
Meng L, Zou L, Xiong M, Chen J, Zhang X, Yu T, Li Y, Liu C, Chen G, Wang Z, Ye K, Zhang Z. A synapsin Ⅰ cleavage fragment contributes to synaptic dysfunction in Alzheimer's disease. Aging Cell 2022; 21:e13619. [PMID: 35443102 PMCID: PMC9124304 DOI: 10.1111/acel.13619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic dysfunction is a key feature of Alzheimer's disease (AD). However, the molecular mechanisms underlying synaptic dysfunction remain unclear. Here, we show that synapsin Ⅰ, one of the most important synaptic proteins, is fragmented by the cysteine proteinase asparagine endopeptidase (AEP). AEP cleaves synapsin at N82 in the brains of AD patients and generates the C‐terminal synapsin Ⅰ (83–705) fragment. This fragment is abnormally distributed in neurons and induces synaptic dysfunction. Overexpression of AEP in the hippocampus of wild‐type mice results in the production of the synapsin Ⅰ (83–705) fragment and induces synaptic dysfunction and cognitive deficits. Moreover, overexpression of the AEP‐generated synapsin Ⅰ (83–705) fragment in the hippocampus of tau P301S transgenic mice and wild‐type mice promotes synaptic dysfunction and cognitive deficits. These findings suggest a novel mechanism of synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Li Zou
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
- Department of Neurology Zhongnan Hospital of Wuhan University Wuhan China
| | - Min Xiong
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Jiehui Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Xingyu Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Ting Yu
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Yiming Li
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Congcong Liu
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Guiqin Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Zhihao Wang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Zhentao Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
27
|
Filali L, Puissegur MP, Cortacero K, Cussat-Blanc S, Khazen R, Van Acker N, Frenois FX, Abreu A, Lamant L, Meyer N, Vergier B, Müller S, McKenzie B, Valitutti S. Ultrarapid lytic granule release from CTLs activates Ca 2+-dependent synaptic resistance pathways in melanoma cells. SCIENCE ADVANCES 2022; 8:eabk3234. [PMID: 35171665 PMCID: PMC8849291 DOI: 10.1126/sciadv.abk3234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human cytotoxic T lymphocytes (CTLs) exhibit ultrarapid lytic granule secretion, but whether melanoma cells mobilize defense mechanisms with commensurate rapidity remains unknown. We used single-cell time-lapse microscopy to offer high spatiotemporal resolution analyses of subcellular events in melanoma cells upon CTL attack. Target cell perforation initiated an intracellular Ca2+ wave that propagated outward from the synapse within milliseconds and triggered lysosomal mobilization to the synapse, facilitating membrane repair and conferring resistance to CTL induced cytotoxicity. Inhibition of Ca2+ flux and silencing of synaptotagmin VII limited synaptic lysosomal exposure and enhanced cytotoxicity. Multiplexed immunohistochemistry of patient melanoma nodules combined with automated image analysis showed that melanoma cells facing CD8+ CTLs in the tumor periphery or peritumoral area exhibited significant lysosomal enrichment. Our results identified synaptic Ca2+ entry as the definitive trigger for lysosomal deployment to the synapse upon CTL attack and highlighted an unpredicted defensive topology of lysosome distribution in melanoma nodules.
Collapse
Affiliation(s)
- Liza Filali
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Marie-Pierre Puissegur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Kevin Cortacero
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Sylvain Cussat-Blanc
- Institut de Recherche en Informatique de Toulouse (IRIT) - University Toulouse Capitole Centre national de la recherche scientifique (CNRS) UMR5505, Artificial and Natural Intelligence Toulouse Institute, Toulouse, France
| | - Roxana Khazen
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Nathalie Van Acker
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Arnaud Abreu
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Laurence Lamant
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Nicolas Meyer
- Department of Dermatology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Béatrice Vergier
- Service de Pathologie, CHU de Bordeaux, Bordeaux, France
- Equipe INSERM U1053-UMR BaRITOn (Eq 3), Université de Bordeaux, Bordeaux, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Brienne McKenzie
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| |
Collapse
|
28
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
29
|
Dagar S, Teng Z, Gottmann K. Transsynaptic N-Cadherin Adhesion Complexes Control Presynaptic Vesicle and Bulk Endocytosis at Physiological Temperature. Front Cell Neurosci 2021; 15:713693. [PMID: 34759800 PMCID: PMC8573734 DOI: 10.3389/fncel.2021.713693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
At mammalian glutamatergic synapses, most basic elements of synaptic transmission have been shown to be modulated by specific transsynaptic adhesion complexes. However, although crucial for synapse homeostasis, a physiological regulation of synaptic vesicle endocytosis by adhesion molecules has not been firmly established. The homophilic adhesion protein N-cadherin is localized at the peri-active zone, where the highly temperature-dependent endocytosis of vesicles occurs. Here, we demonstrate an important modulatory role of N-cadherin in endocytosis at near physiological temperature by synaptophysin-pHluorin imaging. Different modes of endocytosis including bulk endocytosis were dependent on N-cadherin expression and function. N-cadherin modulation might be mediated by actin filaments because actin polymerization ameliorated the knockout-induced endocytosis defect. Using super-resolution imaging, we found strong recruitment of N-cadherin to glutamatergic synapses upon massive vesicle release, which might in turn enhance vesicle endocytosis. This provides a novel, adhesion protein-mediated mechanism for efficient coupling of exo- and endocytosis.
Collapse
Affiliation(s)
- Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zenghui Teng
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
CDH2 mutation affecting N-cadherin function causes attention-deficit hyperactivity disorder in humans and mice. Nat Commun 2021; 12:6187. [PMID: 34702855 PMCID: PMC8548587 DOI: 10.1038/s41467-021-26426-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder characterized by inattention, impulsivity and hyperactivity. ADHD exhibits substantial heritability, with rare monogenic variants contributing to its pathogenesis. Here we demonstrate familial ADHD caused by a missense mutation in CDH2, which encodes the adhesion protein N-cadherin, known to play a significant role in synaptogenesis; the mutation affects maturation of the protein. In line with the human phenotype, CRISPR/Cas9-mutated knock-in mice harboring the human mutation in the mouse ortholog recapitulated core behavioral features of hyperactivity. Symptoms were modified by methylphenidate, the most commonly prescribed therapeutic for ADHD. The mutated mice exhibited impaired presynaptic vesicle clustering, attenuated evoked transmitter release and decreased spontaneous release. Specific downstream molecular pathways were affected in both the ventral midbrain and prefrontal cortex, with reduced tyrosine hydroxylase expression and dopamine levels. We thus delineate roles for CDH2-related pathways in the pathophysiology of ADHD. Molecular mechanisms of attention-deficit hyperactivity disorder (ADHD) are not fully understood. Here the authors demonstrate a mutation in CDH2, encoding N-cadherin, that is associated with ADHD, and in a mouse model, delineate molecular electrophysiological characteristics associated with this mutation.
Collapse
|
31
|
Ganguly A, Sharma R, Boyer NP, Wernert F, Phan S, Boassa D, Parra L, Das U, Caillol G, Han X, Yates JR, Ellisman MH, Leterrier C, Roy S. Clathrin packets move in slow axonal transport and deliver functional payloads to synapses. Neuron 2021; 109:2884-2901.e7. [PMID: 34534453 PMCID: PMC8457040 DOI: 10.1016/j.neuron.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
In non-neuronal cells, clathrin has established roles in endocytosis, with clathrin cages enclosing plasma membrane infoldings, followed by rapid disassembly and reuse of monomers. However, in neurons, clathrin is conveyed in slow axonal transport over days to weeks, and the underlying transport/targeting mechanisms, mobile cargo structures, and even its precise presynaptic localization and physiologic role are unclear. Combining live imaging, photobleaching/conversion, mass spectrometry, electron microscopy, and super-resolution imaging, we found that unlike in dendrites, where clathrin cages rapidly assemble and disassemble, in axons, clathrin and related proteins organize into stable "transport packets" that are unrelated to endocytosis and move intermittently on microtubules, generating an overall slow anterograde flow. At synapses, multiple clathrin packets abut synaptic vesicle (SV) clusters, and clathrin packets also exchange between synaptic boutons in a microtubule-dependent "superpool." Within synaptic boundaries, clathrin is surprisingly dynamic, continuously exchanging between local clathrin assemblies, and its depletion impairs SV recycling. Our data provide a conceptual framework for understanding clathrin trafficking and presynaptic targeting that has functional implications.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Rohan Sharma
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas P Boyer
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Sébastien Phan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Leonardo Parra
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Utpal Das
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ghislaine Caillol
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Xuemei Han
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark H Ellisman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Oh MA, Shin CI, Kim M, Kim J, Kang CM, Han SH, Sun JY, Oh SS, Kim YR, Chung TD. Inverted Ion Current Rectification-Based Chemical Delivery Probes for Stimulation of Neurons. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26748-26758. [PMID: 34078075 DOI: 10.1021/acsami.1c04949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion current rectification (ICR), diodelike behavior in surface-charged nanopores, shows promise in the design of delivery probes for manipulation of neural networks as it can solve diffusive leakages that might be critical in clinical and research applications. However, it has not been achieved because ICR has restrictions in nanosized dimension and low electrolyte concentration, and rectification direction is inappropriate for delivery. Herein, we present a polyelectrolyte gel-filled (PGF) micropipette harnessing inverted ICR as a delivery probe, which quantitatively transports glutamate to stimulate primary cultured neurons with high efficiency while minimizing leakages. Since the gel works as an ensemble of numerous surface-charged nanopores, the current is rectified in the micro-opening and physiological environment. By extending the charge-selective region using the gel, inverted ICR is generated, which drives outward deliveries of major charge carriers. This study will help in exploring new aspects of ICR and broaden its applications for advanced chemical delivery.
Collapse
Affiliation(s)
- Min-Ah Oh
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Moonjoo Kim
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jayol Kim
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chung Mu Kang
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Seok Hee Han
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, 08826 Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Yang-Rae Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, 08826 Seoul, Republic of Korea
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, 16229 Suwon-Si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
33
|
Zhang X, Zou L, Meng L, Xiong M, Pan L, Chen G, Zheng Y, Xiong J, Wang Z, Duong DM, Zhang Z, Cao X, Wang T, Tang L, Ye K, Zhang Z. Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction. eLife 2021; 10:e65301. [PMID: 34018922 PMCID: PMC8139826 DOI: 10.7554/elife.65301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Neurofibrillary tangles composed of hyperphosphorylated tau and synaptic dysfunction are characteristics of Alzheimer's disease (AD). However, the underlying molecular mechanisms remain poorly understood. Here, we identified Amphiphysin I mediates both tau phosphorylation and synaptic dysfunction in AD. Amphiphysin I is cleaved by a cysteine proteinase asparagine endopeptidase (AEP) at N278 in the brains of AD patients. The amount of AEP-generated N-terminal fragment of Amphiphysin I (1-278) is increased with aging. Amphiphysin I (1-278) inhibits clathrin-mediated endocytosis and induces synaptic dysfunction. Furthermore, Amphiphysin I (1-278) binds p35 and promotes its transition to p25, thus activates CDK5 and enhances tau hyperphosphorylation. Overexpression of Amphiphysin I (1-278) in the hippocampus of Tau P301S mice induces synaptic dysfunction, tau hyperphosphorylation, and cognitive deficits. However, overexpression of the N278A mutant Amphiphysin I, which resists the AEP-mediated cleavage, alleviates the pathological and behavioral defects. These findings suggest a mechanism of tau hyperphosphorylation and synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Zhihao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Duc M Duong
- Department of Biochemistry, Emory University School of MedicineAtlantaUnited States
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Li Tang
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
34
|
Quentin C, Gerasimaitė R, Freidzon A, Atabekyan LS, Lukinavičius G, Belov VN, Mitronova GY. Direct Visualization of Amlodipine Intervention into Living Cells by Means of Fluorescence Microscopy. Molecules 2021; 26:molecules26102997. [PMID: 34070063 PMCID: PMC8158129 DOI: 10.3390/molecules26102997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.
Collapse
Affiliation(s)
- Christine Quentin
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; (C.Q.); (V.N.B.)
| | - Rūta Gerasimaitė
- Chromatin Imaging and Labeling Group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; (R.G.); (G.L.)
| | - Alexandra Freidzon
- Federal Research Center Crystallography and Photonics, Photochemistry Center, Russian Academy of Sciences, Novatorov 7a, 119421 Moscow, Russia; (A.F.); (L.S.A.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, 115409 Moscow, Russia
| | - Levon S. Atabekyan
- Federal Research Center Crystallography and Photonics, Photochemistry Center, Russian Academy of Sciences, Novatorov 7a, 119421 Moscow, Russia; (A.F.); (L.S.A.)
| | - Gražvydas Lukinavičius
- Chromatin Imaging and Labeling Group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; (R.G.); (G.L.)
| | - Vladimir N. Belov
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; (C.Q.); (V.N.B.)
| | - Gyuzel Y. Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; (C.Q.); (V.N.B.)
- Correspondence:
| |
Collapse
|
35
|
Jeon J, Yoon SH, Oh MA, Cho W, Kim JY, Shin CI, Kim EJ, Chung TD. Neuroligin-1-Modified Electrodes for Specific Coupling with a Presynaptic Neuronal Membrane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21944-21953. [PMID: 33909393 DOI: 10.1021/acsami.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coordination of synapses onto electrodes with high specificity and maintaining a stable and long-lasting interface have importance in the field of neural interfaces. One potential approach is to present ligands on the surface of electrodes that would be bound through a protein-protein interaction to specific areas of neuronal cells. Here, we functionalize electrode surfaces with genetically engineered neuroligin-1 protein and demonstrate the formation of a nascent presynaptic bouton upon binding to neurexin-1 β on the presynaptic membrane of neurons. The resulting synaptically connected electrode shows an assembly of presynaptic proteins and comparable exocytosis kinetics to that of native synapses. Importantly, a neuroligin-1-induced synapse-electrode interface exhibits type specificity and structural robustness. We envision that the use of synaptic adhesion proteins in modified neural electrodes may lead to new approaches in the interfacing of neural circuity and electronics.
Collapse
Affiliation(s)
- Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Joong Kim
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
36
|
Caló L, Hidari E, Wegrzynowicz M, Dalley JW, Schneider BL, Podgajna M, Anichtchik O, Carlson E, Klenerman D, Spillantini MG. CSPα reduces aggregates and rescues striatal dopamine release in α-synuclein transgenic mice. Brain 2021; 144:1661-1669. [PMID: 33760024 PMCID: PMC8320296 DOI: 10.1093/brain/awab076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 02/02/2023] Open
Abstract
α-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and α-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like α-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release. α-Synuclein can rescue neurodegeneration in CSPαKO mice. However, whether α-synuclein aggregation alters CSPα expression and function is unknown. Here we show that α-synuclein aggregation at the synapse is associated with a decrease in synaptic CSPα and a reduction in the complexes that CSPα forms with HSC70 and STGa. We further show that viral delivery of CSPα rescues in vitro the impaired vesicle recycling in PC12 cells with α-synuclein aggregates and in vivo reduces synaptic α-synuclein aggregates increasing monomeric α-synuclein and restoring normal dopamine release in 1-120hαSyn mice. These novel findings reveal a mechanism by which α-synuclein aggregation alters CSPα at the synapse, and show that CSPα rescues α-synuclein aggregation-related phenotype in 1-120hαSyn mice similar to the effect of α-synuclein in CSPαKO mice. These results implicate CSPα as a potential therapeutic target for the treatment of early-stage Parkinson's disease.
Collapse
Affiliation(s)
- Laura Caló
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK,Dementia Research Institute, University of Cambridge, Cambridge, UK,Correspondence may also be addressed to: Dr Laura Caló E-mail:
| | - Eric Hidari
- Dementia Research Institute, University of Cambridge, Cambridge, UK,Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michal Wegrzynowicz
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK,Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, University of Cambridge, Cambridge, UK
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland,Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Martyna Podgajna
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Oleg Anichtchik
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK
| | - Emma Carlson
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK
| | - David Klenerman
- Dementia Research Institute, University of Cambridge, Cambridge, UK,Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK,Correspondence to: Prof. Maria Grazia Spillantini Department of Clinical Neurosciences Clifford Allbutt Building, Hills Road, Cambridge CB2 0AH, UK E-mail:
| |
Collapse
|
37
|
Methods of measuring presynaptic function with fluorescence probes. Appl Microsc 2021; 51:2. [PMID: 33730244 PMCID: PMC7969681 DOI: 10.1186/s42649-021-00051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.
Collapse
|
38
|
Rey S, Marra V, Smith C, Staras K. Nanoscale Remodeling of Functional Synaptic Vesicle Pools in Hebbian Plasticity. Cell Rep 2021; 30:2006-2017.e3. [PMID: 32049027 PMCID: PMC7016504 DOI: 10.1016/j.celrep.2020.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Vesicle pool properties are known determinants of synaptic efficacy, but their potential role as modifiable substrates in forms of Hebbian plasticity is still unclear. Here, we investigate this using a nanoscale readout of functionally recycled vesicles in natively wired hippocampal CA3→CA1 circuits undergoing long-term potentiation (LTP). We show that the total recycled vesicle pool is larger after plasticity induction, with the smallest terminals exhibiting the greatest relative expansion. Changes in the spatial organization of vesicles accompany potentiation including a specific increase in the number of recycled vesicles at the active zone, consistent with an ultrastructural remodeling component of synaptic strengthening. The cAMP-PKA pathway activator, forskolin, selectively mimics some features of LTP-driven changes, suggesting that distinct and independent modules of regulation accompany plasticity expression. Our findings provide evidence for a presynaptic locus of LTP encoded in the number and arrangement of functionally recycled vesicles, with relevance for models of long-term plasticity storage.
Collapse
Affiliation(s)
- Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester L1 7RH, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
39
|
Zou L, Zhang X, Xiong M, Meng L, Tian Y, Pan L, Yuan X, Chen G, Wang Z, Bu L, Yao Z, Zhang Z, Ye K, Zhang Z. Asparagine endopeptidase cleaves synaptojanin 1 and triggers synaptic dysfunction in Parkinson's disease. Neurobiol Dis 2021; 154:105326. [PMID: 33677035 DOI: 10.1016/j.nbd.2021.105326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, which is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway. Synaptic dysfunction impairs dopamine turnover and contributes to the degeneration of dopaminergic neurons. However, the molecular mechanisms underlying synaptic dysfunction and dopaminergic neuronal vulnerability in PD are not clear. Here, we report that synaptojanin 1 (SYNJ1), a polyphosphoinositide phosphatase concentrated at nerve terminals, is a substrate of a cysteine proteinase, asparagine endopeptidase (AEP). SYNJ1 is cleaved by the cysteine proteinase AEP at N599 in the brains of PD patients. AEP-mediated cleavage of SYNJ1 disrupts neuronal phosphoinositide homeostasis and causes synaptic dysfunction. Overexpression of the AEP-generated fragments of SYNJ1 triggers synaptic dysfunction and the degeneration of dopaminergic neurons, inducing motor defects in the α-synuclein transgenic mice. Blockage of AEP-mediated cleavage of SYJN1 alleviates the pathological and behavioral defects in a mouse model of PD. Our results demonstrate that the fragmentation of SYNJ1 by AEP mediates synaptic dysfunction and dopaminergic neuronal degeneration in PD.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhihao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
40
|
Magalhães-Gomes MPS, Camargos W, Valadão PAC, Garcias RS, Rodrigues HA, Andrade JN, Teixeira VP, Naves LA, Cavalcante WLG, Gallaci M, Guatimosim S, Prado VF, Prado MAM, Guatimosim C. Increased Cholinergic Tone Causes Pre-synaptic Neuromuscular Degeneration and is Associated with Impaired Diaphragm Function. Neuroscience 2021; 460:31-42. [PMID: 33548369 DOI: 10.1016/j.neuroscience.2020.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
In vertebrates, muscle activity is dependent on acetylcholine (ACh) released from neuromuscular junctions (NMJs), and changes in cholinergic neurotransmission are linked to a variety of neuromuscular diseases, including congenital myasthenic syndromes (CMS). The storage and release of ACh depends on the activity of the Vesicular Acetylcholine Transporter (VAChT), a rate-limiting step for cholinergic neurotransmission whose loss of function mutations was shown to cause human congenital myasthenia. However, we know much less about increased VAChT activity, due to copy number variations, for example. Therefore, here we investigated the impact of increased VAChT expression and consequently ACh levels at the synaptic cleft of the diaphragm NMJs. We analyzed structure and function of nerve and muscles from a mouse model of cholinergic hyperfunction (ChAT-ChR2-EYFP) with increased expression of VAChT. Our results showed a significant increase of ACh released under evoked stimuli. However, we observed deleterious changes in synaptic vesicles cycle (impaired endocytosis and decrease in vesicles number), together with structural alterations of NMJs. Interestingly, ultrastructure analyses showed that synaptic vesicles from ChAT-ChR2-EYFP mice NMJs were larger, which might be related to increased ACh load. We also observed that these larger synaptic vesicles were less rounded in comparison with control. Finally, we showed that ChAT-ChR2-EYFP mice NMJs have compromised safety factor, possible due to the structural alterations we described. These findings reveal that physiological cholinergic activity is important to maintain the structure and function of the neuromuscular system and help to understand some of the neuromuscular adverse effects experienced by chronically increased NMJ neurotransmission, such as individuals treated with cholinesterase inhibitors.
Collapse
Affiliation(s)
- Matheus P S Magalhães-Gomes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Medicina, Faculdade Ciências Médicas de Minas Gerais, FCMMG, Belo Horizonte, MG, Brazil.
| | - Wallace Camargos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Priscila A C Valadão
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rubens S Garcias
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hermann A Rodrigues
- Departamento de Ciências Básicas da Vida, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, UFJF, Governador Valadares, MG, Brazil
| | - Jéssica N Andrade
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa P Teixeira
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lígia A Naves
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walter L G Cavalcante
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcia Gallaci
- Departamento de Farmacologia, Instituto de Biociências, UNESP, Distrito de Rubião Jr., Botucatu, São Paulo, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vânia F Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Marco A M Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
41
|
Kopach O, Pavlov AM, Sindeeva OA, Sukhorukov GB, Rusakov DA. Biodegradable Microcapsules Loaded with Nerve Growth Factor Enable Neurite Guidance and Synapse Formation. Pharmaceutics 2020; 13:E25. [PMID: 33375672 PMCID: PMC7823884 DOI: 10.3390/pharmaceutics13010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders and traumas often involve loss of specific neuronal connections, which would require intervention with high spatial precision. We have previously demonstrated the biocompatibility and therapeutic potential of the layer-by-layer (LbL)-fabricated microcapsules aimed at the localized delivery of specific channel blockers to peripheral nerves. Here, we explore the potential of LbL-microcapsules to enable site-specific, directional action of neurotrophins to stimulate neuronal morphogenesis and synaptic circuit formation. We find that nanoengineered biodegradable microcapsules loaded with nerve growth factor (NGF) can guide the morphological development of hippocampal neurons in vitro. The presence of NGF-loaded microcapsules or their clusters increases the neurite outgrowth rate while boosting neurite branching. Microcapsule clusters appear to guide the trajectory of developing individual axons leading to the formation of functional synapses. Our observations highlight the potential of NGF-loaded, biodegradable LbL-microcapsules to help guide axonal development and possibly circuit regeneration in neuropathology.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anton M. Pavlov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Remote Controlled Theranostic Systems Laboratory, Saratov State University, 83 Astrakhanskaya Street, 410012 Saratov, Russia
| | - Olga A. Sindeeva
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
42
|
Balestrini PA, Jabloñski M, Schiavi-Ehrenhaus LJ, Marín-Briggiler CI, Sánchez-Cárdenas C, Darszon A, Krapf D, Buffone MG. Seeing is believing: Current methods to observe sperm acrosomal exocytosis in real time. Mol Reprod Dev 2020; 87:1188-1198. [PMID: 33118273 DOI: 10.1002/mrd.23431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
Sambri I, Massa F, Gullo F, Meneghini S, Cassina L, Carraro M, Dina G, Quattrini A, Patanella L, Carissimo A, Iuliano A, Santorelli F, Codazzi F, Grohovaz F, Bernardi P, Becchetti A, Casari G. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine 2020; 61:103050. [PMID: 33045469 PMCID: PMC7553352 DOI: 10.1016/j.ebiom.2020.103050] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca2+ and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function. Methods We use a fluorescence-based approach to measure mPTP flickering in living cells and biochemical and molecular biology techniques to dissect the pathogenic mechanism of SPG7. In the SPG7 animal model we evaluate the potential improvement of the motor defect, neuroinflammation and neurodegeneration by means of an mPTP inducer, the benzodiazepine Bz-423. Findings We demonstrate that paraplegin is required for efficient transient opening of the mPTP, that is impaired in both SPG7 patients-derived fibroblasts and primary neurons from Spg7−/− mice. We show that dysregulation of mPTP opening at the pre-synaptic terminal impairs neurotransmitter release leading to ineffective synaptic transmission. Lack of paraplegin impairs mPTP flickering by a mechanism involving increased expression and activity of sirtuin3, which promotes deacetylation of cyclophilin D, thus hampering mPTP opening. Pharmacological treatment with Bz-423, which bypasses the activity of CypD, normalizes synaptic transmission and rescues the motor impairment of the SPG7 mouse model. Interpretation mPTP targeting opens a new avenue for the potential therapy of this form of spastic paraplegia. Funding Telethon Foundation grant (TGMGCSBX16TT); Dept. of Defense, US Army, grant W81XWH-18–1–0001
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | | | | | | | | | | | | | - Lorenzo Patanella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy; Institute for Applied Mathematics 'Mauro Picone', National Research Council, Naples, Italy
| | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | | | | | | | | | | | - Giorgio Casari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
44
|
Sharda N, Pengo T, Wang Z, Kandimalla KK. Amyloid-β Peptides Disrupt Interactions Between VAMP-2 and SNAP-25 in Neuronal Cells as Determined by FRET/FLIM. J Alzheimers Dis 2020; 77:423-435. [DOI: 10.3233/jad-200065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Synaptic dysfunction prevalent in Alzheimer’s disease (AD) brain is closely associated with increased accumulation of amyloid-β (Aβ) peptides in the brain parenchyma. It is widely believed that Aβ peptides trigger synaptic dysfunction by interfering with the synaptic vesicular fusion and the release of neurotransmitters, primarily facilitated by the SNARE protein complexes formed by VAMP-2, SNAP-25, and syntaxin-1. However, Aβ interactions with SNARE proteins to ultimately disrupt synaptic vesicular fusion are not well understood. Objective: Our objective is to elucidate mechanisms by which Aβ peptides perturb SNARE complexes. Methods: Intensity (qualitative) and lifetime (quantitative) based measurements involving Forster (fluorescence) resonance energy transfer (FRET) followed by fluorescence lifetime imaging microscopy (FLIM) were employed to investigate the effect of Aβ peptides on dynamic interactions between VAMP-2, labeled with cerulean (Cer) at the N-terminus (FRET donor), and SNAP-25 labeled with citrine (Cit) on the N-terminus (FRET acceptor). The FRET and FLIM interactions at the exocytosis locations on the pre-synaptic membrane were recorded under spontaneous and high potassium evoked conditions. Moreover, cellular accumulation of fluorescein labeled Aβ (F-Aβ) peptides and their co-localization with Cer-VAMP2 was investigated by confocal microscopy. Results: The F-Aβ40 and F-Aβ42 are internalized by differentiated N2A cells, where they colocalize with Cer-VAMP2. Both Aβ40 and Aβ42 decrease interactions between the N-termini of Cer-VAMP2 and Cit-SNAP25 in N2A cells, as determined by FRET/FLIM. Conclusion: By perturbing the N-terminal interactions between VAMP-2 and SNAP-25, Aβ40 and Aβ42, can directly interfere with the SNARE complex formation, which is critical for the docking and fusion of synaptic vesicles.
Collapse
Affiliation(s)
- Nidhi Sharda
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University Imaging Center, University of Minnesota, Minneapolis, MN, USA
| | - Zengtao Wang
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Karunya K. Kandimalla
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
45
|
Kleine AD, Reuss B. Interactions of Antibodies to the Gram-Negative Gastric Bacterium Helicobacter pylori with the Synaptic Calcium Sensor Synaptotagmin 5, Correlate to Impaired Vesicle Recycling in SiMa Human Neuroblastoma Cells. J Mol Neurosci 2020; 71:481-505. [PMID: 32860155 PMCID: PMC7851109 DOI: 10.1007/s12031-020-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/15/2020] [Indexed: 11/29/2022]
Abstract
Due to molecular mimicry, maternal antibacterial antibodies are suspected to promote neurodevelopmental changes in the offspring that finally can cause disorders like autism and schizophrenia. Using a human first trimester prenatal brain multiprotein array (MPA), we demonstrate here that antibodies to the digestive tract bacteria Helicobacter pylori (α-HPy) and Campylobacter jejuni (α-CJe) interact with different synaptic proteins, including the calcium sensor synaptotagmin 5 (Syt5). Interactions of both antisera with Syt5 were confirmed by Western blot with a HEK293-cells overexpression lysate of this protein. Immunofluorescence and Western blotting revealed SiMa cells to express Syt5, which also co-migrated with a band/spot labeled by either α-HPy or α-CJe. Functionally, a 12-h pretreatment of SiMa cells with 10 μg/ml of either α-HPy or α-CJe resulted in a significant reduction of acetylcholine(ACh)-dependent calcium signals as compared to controls. Also ACh-dependent vesicle recycling was significantly reduced in cells pretreated with either α-HPy or α-CJe. Similar effects were observed upon pretreatment of SiMa cells with Syt5-specific antibodies. In conclusion, the present study supports the view that prenatal maternal antibacterial immune responses towards HPy and by this to Syt5 are able to cause functional changes, which in the end might contribute also to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aaron David Kleine
- Institute for Neuroanatomy, University Medicine Göttingen Kreuzbergring 36, 37075, Göttingen, Federal Republic of Germany
| | - Bernhard Reuss
- Institute for Neuroanatomy, University Medicine Göttingen Kreuzbergring 36, 37075, Göttingen, Federal Republic of Germany.
| |
Collapse
|
46
|
Heaton GR, Landeck N, Mamais A, Nalls MA, Nixon-Abell J, Kumaran R, Beilina A, Pellegrini L, Li Y, Harvey K, Cookson MR. Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis. Neurobiol Dis 2020; 141:104948. [PMID: 32434048 PMCID: PMC7339134 DOI: 10.1016/j.nbd.2020.104948] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.
Collapse
Affiliation(s)
- George R Heaton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Natalie Landeck
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yan Li
- Mass spectrometry Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 20814, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
47
|
Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K, Wen X, Westergard T, Ma L, Haeusler AR, Edbauer D, Pasinelli P, Trotti D. Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol Med 2020; 12:e10722. [PMID: 32347002 PMCID: PMC7207170 DOI: 10.15252/emmm.201910722] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.
Collapse
Affiliation(s)
- Brigid K Jensen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Martin H Schuldi
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Kevin McAvoy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Katelyn A Russell
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ashley Boehringer
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Bridget M Curran
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xinmei Wen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Thomas Westergard
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Le Ma
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Aaron R Haeusler
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Piera Pasinelli
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Davide Trotti
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
48
|
Yan ML, Zhang S, Zhao HM, Xia SN, Jin Z, Xu Y, Yang L, Qu Y, Huang SY, Duan MJ, Mao M, An XB, Mishra C, Zhang XY, Sun LH, Ai J. MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion. Cell Commun Signal 2020; 18:57. [PMID: 32252776 PMCID: PMC7137307 DOI: 10.1186/s12964-020-00551-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic brain hypoperfusion (CBH) is closely related to Alzheimer’s disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. Methods In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1–43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). Results Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1–43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2′-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3′ untranslated region (3’UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. Conclusions Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3’UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ming-Jing Duan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Meng Mao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xin-Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
49
|
Hu Y, Huang H, Chen M, Shen Y. Non-localized Increase in Lipid Content and Striation Pattern Formation Characterize the Sonoporated Plasma Membrane. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3005-3017. [PMID: 31421866 DOI: 10.1016/j.ultrasmedbio.2019.07.411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic cells can survive sonoporation and repair their plasma membrane wounds. However, it is not clear how the repaired plasma membranes will differ from the intact ones. To answer this question, we used high-resolution confocal microscopy and scanning electron microscopy to study plasma membrane lipid alterations induced by sonoporation. First, we found that the wound-induced increase in membrane lipid content was not limited to the sonoporation sites. The degree of lipid increase was dependent on pore distance, calcium influx and pore size. Second, we observed interesting lipid striation patterns on the sonoporated plasma membranes. This patterning effect was reversible in the cell subjected to small-scale sonoporation and could be recognized using digital image orientation analysis. Third, we showed that actin stress fibers underneath the plasma membrane hindered the addition and the protrusion of lipids to produce the patterning effect. Our findings demonstrated that the sonoporated and repaired plasma membranes have distinct lipid distribution characteristics.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China.
| | - Haoqiang Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| | - Mengting Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Bilkey J, Nahirney PC, Delaney KR. Time and exposure to serotonin affect releasability of recycled vesicles at crayfish claw opener muscle synapses. Synapse 2019; 74:e22136. [PMID: 31574172 DOI: 10.1002/syn.22136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 11/10/2022]
Abstract
The crayfish claw opener neuromuscular junction is a biological model for studying presynaptic neuromodulation by serotonin (5HT) and synaptic vesicle recycling. It has been hypothesized that 5HT enhances release by recruiting a population of either previously nonrecycling or "reluctant" vesicles to increase the readily releasable pool. To determine if 5HT activates a distinct population of synaptic vesicles, recycling membranes were labeled with the membrane dye, FM1-43. Unloading (destaining) protocols could not resolve a population of vesicles that were only releasable in the presence of 5HT. Instead, we conclude synaptic vesicles change behavior in axon terminals independent of 5HT, becoming less likely to exocytose and unload dye over periods of >1 hr after recycling. We hypothesized this to be due to the slow conversion of a portion of recycled vesicles to a difficult to release state. The possibility that vesicles in these pools were spatially separated within the terminal was tested using photoconversion of FM1-43 and transmission electron microscopy. The location of FM1-43-labeled vesicles fixed 2 min following 3 min of 20-Hz stimulation did not reveal preferential localization of recycling vesicles specifically near release sites and the distribution of labeled vesicles was not significantly different between early (2 min) and late (180 min) time points. Terminals fixed 30 s following stimulation contained a significant proportion of vesicular structures equivalent in diameter to 2-5 regular vesicles, with multivesicular bodies and calveoli rarely seen, suggesting that endocytosis during sustained release at crayfish terminals occurs via multiple routes, most commonly through large "vesicle" intermediates.
Collapse
Affiliation(s)
- Jessica Bilkey
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|