1
|
Cookson MW, Gonzalez T, Bye EM, Seedorf G, Ellor S, Smith BJ, Fleet JC, Mandell EW. Intraamniotic vitamin D preserves lung development and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia due to intraamniotic sFlt-1. Am J Physiol Lung Cell Mol Physiol 2025; 328:L603-L615. [PMID: 40125892 DOI: 10.1152/ajplung.00409.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Preterm infants born to mothers with preeclampsia, a disease of vascular dysfunction, are at increased risk for bronchopulmonary dysplasia (BPD). Endothelial cells are critical in both maintaining proper vascular function and coordinating lung development. Understanding the mechanisms contributing to BPD in the setting of preeclampsia and how preeclampsia impacts pulmonary endothelial cells (PECs) in the newborn lung are required to decrease the burden of BPD. Vitamin D has been shown to improve lung angiogenesis and lung development in inflammatory models of BPD, but its therapeutic potential in the setting of preeclampsia is unknown. We hypothesized that intraamniotic (IA) treatment with the biologically active form of vitamin D, 1,25 dihydroxyvitamin D [1,25(OH)2D], will preserve lung growth in an experimental model of BPD induced by antenatal exposure to soluble vascular endothelial growth factor receptor-1 [sFlt-1 (soluble fms-like tyrosine kinase 1)]. Fetal rats were exposed to saline (control), sFlt-1 alone, 1,25(OH)2D alone, or simultaneous sFlt-1 + 1,25(OH)2D via IA injection during the late canalicular stage of lung development and delivered 2 days later. IA treatment with 1,25(OH)2D in sFlt-1-exposed pups improved lung alveolar and vascular growth and function at 14 days of life. PECs orchestrate alveolar development, and we demonstrate that IA sFlt-1 exposure alone decreased in vitro growth and tube formation of PECs isolated from newborn pups and that PECs from pups coexposed to IA sFlt-1 and 1,25(OH)2D demonstrated increased growth and tube formation. We conclude that IA 1,25(OH)2D treatment improves distal lung development during sFlt-1 exposure through preservation of angiogenesis in the developing lung.NEW & NOTEWORTHY This study highlights that experimental BPD induced by intraamniotic sFlt-1 is associated with impaired growth in postnatal pulmonary endothelial cells. We demonstrate that 1,25(OH)2D may be a therapeutic option to improve lung development through enhancement of VEGF signaling and preservation of early pulmonary endothelial growth in the newborn rat lung.
Collapse
Affiliation(s)
- Michael W Cookson
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Anschutz School of Medicine, Aurora, Colorado, United States
| | - Tania Gonzalez
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Anschutz School of Medicine, Aurora, Colorado, United States
| | - Elisa M Bye
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Anschutz School of Medicine, Aurora, Colorado, United States
| | - Greg Seedorf
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Anschutz School of Medicine, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
| | - Sarah Ellor
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Anschutz School of Medicine, Aurora, Colorado, United States
| | - Bradford J Smith
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - James C Fleet
- Department of Nutritional Sciences, University of Texas, Austin, Texas, United States
| | - Erica W Mandell
- Section of Neonatology, Department of Pediatrics, University of Colorado, Anschutz School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado, Anschutz School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
2
|
Song Q, Zhou A, Cheng W, Zhao Y, Liu C, Zeng Y, Lin L, Zhou Z, Peng Y, Chen P. Bone Marrow Mesenchymal Stem Cells-Derived Exosomes Inhibit Apoptosis of Pulmonary Microvascular Endothelial Cells in COPD Mice Through miR-30b/Wnt5a Pathway. Int J Nanomedicine 2025; 20:1191-1211. [PMID: 39906523 PMCID: PMC11791674 DOI: 10.2147/ijn.s487097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes are rich in a variety of active substances, including microRNA (miR) and have shown powerful therapeutic effects to ameliorate cell injury and diseases. However, the role of BMSCs-derived exosomes on chronic obstructive pulmonary disease (COPD) has been poorly studied. In addition, pulmonary microvascular endothelial cells (PMVECs) apoptosis contributes to the onset of COPD. Inhibition of PMVECs apoptosis can reverse COPD changes. Therefore, the aim of this study was to explore the role of BMSCs-derived exosomes in the apoptosis of PMVECs in COPD and to investigate the potential mechanisms. Methods We isolated and characterized normal mouse BMSCs-derived exosomes and PMVECs. We performed miR sequencing of BMSCs-derived exosomes. We transfected PMVECs with the miR-30b mimic and Wnt5a overexpression plasmid to assess the underlying mechanisms. Cigarette smoke extract (CSE)-induced COPD mice were treated with exosomes and HBLV-mmu-miR-30b via intratracheal instillation. Finally, we determined the expression of miR-30b and Wnt5a in tissues from patients with COPD. Results BMSCs-derived exosomes could significantly reduce apoptosis of CSE-induced PMVECs and increase the expression of miR-30b (p<0.05). Based on miR sequencing, miR-30b was highly enriched in BMSCs-derived exosomes. The knockdown of miR-30b in BMSCs-derived exosomes could increase the apoptosis of CSE-induced PMVECs (p<0.05). miR-30b overexpression significantly reduced apoptosis and repressed Wnt5a protein expression in CSE-induced PMVECs (p<0.05). Furthermore, Wnt5a overexpression reversed the anti-apoptotic effect of miR-30b on CSE-induced PMVECs (p<0.05). In addition, compared with the COPD group, treatment with BMSCs-derived exosomes and miR-30b overexpression could alleviate emphysema changes, decrease the mean linear intercept and alveolar destructive index, reduce apoptosis, increase the expression of miR-30b, and decrease the expression of Wnt5a in lung tissue (p<0.05). Finally, miR-30b expression was decreased in patients with COPD, while Wnt5a expression was increased in these patients (p<0.05). Conclusion BMSCs-derived exosomes could improve the damage of COPD perhaps by delivering miR-30b. miR-30b could reduce apoptosis of CSE-induced PMVECs by targeting Wnt5a.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Aiyuan Zhou
- Department of Respiratory and Critical Care Medicine, the Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Wei Cheng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yiyang Zhao
- Ultrasound Imaging Department, Xiangya Hospital of Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Cong Liu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yuqin Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ling Lin
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Zijing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yating Peng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
3
|
Iriondo C, Koornneef S, Skarp KP, Buscop-van Kempen M, Boerema-de Munck A, Rottier RJ. Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air-Liquid Interface. ACS Biomater Sci Eng 2025; 11:451-462. [PMID: 39719361 PMCID: PMC11734690 DOI: 10.1021/acsbiomaterials.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Immortalized epithelial cell lines and animal models have been used in fundamental and preclinical research to study pulmonary diseases. However valuable, though, these models incompletely recapitulate the in vivo human lung, which leads to low predictive outcomes in potential respiratory treatments. Advanced technology and cell culture techniques stimulate the development of improved models that more closely mimic the physiology of the human lung. Nonetheless, most of these models are technically demanding and have a low throughput and reproducibility. Here, we describe a robust fluidic device consisting of a biocompatible and customizable 3D-printed cell culture plate, the Simple-Flow, which has medium throughput, is simple to manufacture, and is easy to set up. As a proof of principle, human primary bronchial epithelial cells (hPBECs) and human pulmonary microvascular endothelial cells (hMVECs) were cocultured on the apical and basolateral sides of the inset membranes, respectively. While hPBECs were cultured at the air-liquid interface to induce mucociliary differentiation, hMVECs were exposed to flow medium for up to 2 weeks. We show the versatility of 3D-printing technology in designing in vitro models for cell culturing applications, such as pediatric lung diseases or other pulmonary disorders.
Collapse
Affiliation(s)
- Cinta Iriondo
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Sem Koornneef
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Kari-Pekka Skarp
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Marjon Buscop-van Kempen
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Anne Boerema-de Munck
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Robbert J. Rottier
- Department
of Pediatric Surgery, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department
of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| |
Collapse
|
4
|
Edel GG, van Kempen M, Munck ABD, Huisman CN, Naalden CAP, Brouwer RWW, Koornneef S, van IJcken WFJ, Wijnen RMH, Rottier RJ. The molecular consequences of FOXF1 missense mutations associated with alveolar capillary dysplasia with misalignment of pulmonary veins. J Biomed Sci 2024; 31:100. [PMID: 39497128 PMCID: PMC11536904 DOI: 10.1186/s12929-024-01088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/06/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a fatal congenital lung disorder strongly associated with genomic alterations in the Forkhead box F1 (FOXF1) gene and its regulatory region. However, little is known about how FOXF1 genomic alterations cause ACD/MPV and what molecular mechanisms are affected by these mutations. Therefore, the effect of ACD/MPV patient-specific mutations in the FOXF1 gene on the molecular function of FOXF1 was studied. METHODS Epitope-tagged FOXF1 constructs containing one of the ACD/MPV-associated mutations were expressed in mammalian cell lines to study the effect of FOXF1 mutations on protein function. EMSA binding assays and luciferase assays were performed to study the effect on target gene binding and activation. Immunoprecipitation followed by SDS‒PAGE and western blotting were used to study protein‒protein interactions. Protein phosphorylation was studied using phos-tag western blotting. RESULTS An overview of the localization of ACD/MPV-associated FOXF1 mutations revealed that the G91-S101 region was frequently mutated. A three-dimensional model of the forkhead DNA-binding domain of FOXF1 showed that the G91-S101 region consists of an α-helix and is predicted to be important for DNA binding. We showed that FOXF1 missense mutations in this region differentially affect the DNA binding of the FOXF1 protein and influence the transcriptional regulation of target genes depending on the location of the mutation. Furthermore, we showed that some of these mutations can affect the FOXF1 protein at the posttranscriptional level, as shown by altered phosphorylation by MST1 and MST2 kinases. CONCLUSION Missense mutations in the coding region of the FOXF1 gene alter the molecular function of the FOXF1 protein at multiple levels, such as phosphorylation, DNA binding and target gene activation. These results indicate that FOXF1 molecular pathways may be differentially affected in ACD/MPV patients carrying missense mutations in the DNA-binding domain and may explain the phenotypic heterogeneity of ACD/MPV.
Collapse
Affiliation(s)
- G G Edel
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - M van Kempen
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A Boerema-de Munck
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - C N Huisman
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - C A P Naalden
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - R W W Brouwer
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Erasmus Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - S Koornneef
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - W F J van IJcken
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Erasmus Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - R M H Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - R J Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands.
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee-1034B, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Liu Y, Lyons CJ, Ayu C, O'Brien T. Recent advances in endothelial colony-forming cells: from the transcriptomic perspective. J Transl Med 2024; 22:313. [PMID: 38532420 PMCID: PMC10967123 DOI: 10.1186/s12967-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Christine Ayu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Jing Jia, Ma B, Zhao X. Fetal endothelial colony-forming cells: Possible targets for prevention of the fetal origins of adult diseases. Placenta 2024; 145:80-88. [PMID: 38100962 DOI: 10.1016/j.placenta.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Endothelial colony-forming cells (ECFCs), a subset of circulating and resident endothelial progenitor cells, are capable of self-renewal and de novo vessel formation, and are known key regulators of vascular integrity and homeostasis. Numerous studies have found that exposure to hostile environment during the fetal development exerts a profound influence on the level and function of ECFCs, which may be the underlying factor linking endothelial dysfunction to cardiovascular disease of the offspring in later life. Herein, we focus on the latest findings regarding the effects of pregnancy-related disorders on the frequency and function of fetal ECFCs. Subsequently, we discuss about placental ECFCs and put forward some details that should be paid attention to in the process of ECFC isolation and culture. Overall, the information presented in this review highlight the potential of ECFCs as a future biomarker or even therapeutic targets for the pregnancy-related adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Baitao Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Del Rio APT, Frade-Guanaes JO, Ospina-Prieto S, Duarte BKL, Bertolo MB, Ozelo MC, Sachetto Z. Impaired repair properties of endothelial colony-forming cells in patients with granulomatosis with polyangiitis. J Cell Mol Med 2022; 26:5044-5053. [PMID: 36052734 PMCID: PMC9549508 DOI: 10.1111/jcmm.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In patients with ANCA‐associated vasculitis, interactions between neutrophils and endothelial cells cause endothelial damage and imbalance. Endothelial colony‐forming cells (ECFCs) represent a cellular population of the endothelial lineage with proliferative capacity and vasoreparative properties. This study aimed to evaluate the angiogenic capacity of ECFCs of patients with granulomatosis with polyangiitis (GPA). The ECFCs of 13 patients with PR3‐positive GPA and 14 healthy controls were isolated and characterized using fluorescence‐activated cell sorting, capillary tube formation measurement, scratching assays and migration assays with and without plasma stimulation. Furthermore, three patients with active disease underwent post‐treatment recollection of ECFCs for longitudinal evaluation. The ECFCs from the patients and controls showed similar capillary structure formation. However, the ECFCs from the patients with inactive GPA exhibited early losses of angiogenic capacity. Impairments in the migration capacities of the ECFCs were also observed in patients with GPA and controls (12th h, p = 0.05). Incubation of ECFCs from patients with GPA in remission with plasma from healthy controls significantly decreased migration capacity (p = 0.0001). Longitudinal analysis revealed that treatment significantly lowered ECFC migration rates. This study revealed that ECFCs from the patients with PR3‐positive GPA in remission demonstrated early losses of tube formation and reduced migration capacity compared to those of the healthy controls, suggesting impairment of endothelial function.
Collapse
Affiliation(s)
- Ana Paula Toledo Del Rio
- Rheumatology Discipline, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jéssica O Frade-Guanaes
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Stephanie Ospina-Prieto
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno K L Duarte
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Manoel Barros Bertolo
- Rheumatology Discipline, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Margareth C Ozelo
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Zoraida Sachetto
- Rheumatology Discipline, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Wang Y, Keshavarz M, Barhouse P, Smith Q. Strategies for Regenerative Vascular Tissue Engineering. Adv Biol (Weinh) 2022; 7:e2200050. [PMID: 35751461 DOI: 10.1002/adbi.202200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Vascularization remains one of the key challenges in creating functional tissue-engineered constructs for therapeutic applications. This review aims to provide a developmental lens on the necessity of blood vessels in defining tissue function while exploring stem cells as a suitable source for vascular tissue engineering applications. The intersections of stem cell biology, material science, and engineering are explored as potential solutions for directing vascular assembly.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Mozhgan Keshavarz
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Patrick Barhouse
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
9
|
Antonyshyn JA, Mazzoli V, McFadden MJ, Gramolini AO, Hofer SOP, Simmons CA, Santerre PJ. Immunomagnetic Isolation and Enrichment of Microvascular Endothelial Cells from Human Adipose Tissue. Bio Protoc 2022; 12:e4422. [PMID: 35865115 PMCID: PMC9257843 DOI: 10.21769/bioprotoc.4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Human adipose tissue-resident microvascular endothelial cells are not only garnering attention for their emergent role in the pathogenesis of obesity-related metabolic disorders, but are also of considerable interest for vascular tissue engineering due, in part, to the abundant, accessible, and uniquely dispensable nature of the tissue. Here, we delineate a protocol for the acquisition of microvascular endothelial cells from human fat. A cheaper, smaller, and simpler alternative to fluorescence-assisted cell sorting for the immunoselection of cells, our protocol adapts magnet-assisted cell sorting for the isolation of endothelial cells from enzymatically digested adipose tissue and the subsequent enrichment of their primary cultures. Strategies are employed to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the reproducible acquisition of human adipose tissue-resident microvascular endothelial cells with purities ≥98%. They exhibit morphological, molecular, and functional hallmarks of endothelium, yet retain a unique proteomic signature when compared with endothelial cells derived from different vascular beds. Their cultures can be expanded for >10 population doublings and can be maintained at confluence for at least 28 days without being overgrown by residual stromal cells from the cell sorting procedure. The isolation of human adipose tissue-resident microvascular endothelial cells can be completed within 6 hours and their enrichment within 2 hours, following approximately 7 days in culture. Graphical abstract.
Collapse
Affiliation(s)
- Jeremy A. Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
,
Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Vienna Mazzoli
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
,
Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Meghan J. McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
,
Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Anthony O. Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
,
Department of Physiology, University of Toronto, Toronto, Canada
| | - Stefan O. P. Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, Canada
,
Departments of Surgery and Surgical Oncology, University Health Network, Toronto, Canada
| | - Craig A. Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
,
Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
,
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Paul J. Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
,
Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
,
Faculty of Dentistry, University of Toronto, Toronto, Canada
,
*For correspondence:
| |
Collapse
|
10
|
Liu X, Xia F, Wu X, Tang Y, Wang L, Sun Q, Xue M, Chang W, Liu L, Guo F, Yang Y, Qiu H. Isolation of Primary Mouse Pulmonary Microvascular Endothelial Cells and Generation of an Immortalized Cell Line to Obtain Sufficient Extracellular Vesicles. Front Immunol 2021; 12:759176. [PMID: 34956190 PMCID: PMC8692730 DOI: 10.3389/fimmu.2021.759176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary microvascular endothelial cells (PMECs) and the extracellular vesicles (EVs) derived from PMECs participate in maintaining pulmonary homeostasis and mediating the inflammatory response. However, obtaining a high-purity population of PMECs and their EVs from mouse is still notoriously difficult. Herein we provide a method to isolate primary mouse PMECs (pMPMECs) and to transduce SV40 lentivirus into pMPMECs to establish an immortalized cell line (iMPMECs), which provides sufficient quantities of EVs for further studies. pMPMECs and iMPMECs can be identified using morphologic criteria, a phenotypic expression profile (e.g., CD31, CD144, G. simplicifolia lectin binding), and functional properties (e.g., Dil-acetylated low-density protein uptake, Matrigel angiogenesis). Furthermore, pMPMEC-EVs and iMPMEC-EVs can be identified and compared. The characteristics of pMPMEC-EVs and iMPMEC-EVs are ascertained by transmission electron microscopy, nanoparticle tracking analysis, and specific protein markers. iMPMECs produce far more EVs than pMPMECs, while their particle size distribution is similar. Our detailed protocol to isolate and immortalize MPMECs will provide researchers with an in vitro model to investigate the specific roles of EVs in pulmonary physiology and diseases.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feiping Xia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Yuan Y, Leiby KL, Greaney AM, Raredon MSB, Qian H, Schupp JC, Engler AJ, Baevova P, Adams TS, Kural MH, Wang J, Obata T, Yoder MC, Kaminski N, Niklason LE. A Pulmonary Vascular Model From Endothelialized Whole Organ Scaffolds. Front Bioeng Biotechnol 2021; 9:760309. [PMID: 34869270 PMCID: PMC8640093 DOI: 10.3389/fbioe.2021.760309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
The development of an in vitro system for the study of lung vascular disease is critical to understanding human pathologies. Conventional culture systems fail to fully recapitulate native microenvironmental conditions and are typically limited in their ability to represent human pathophysiology for the study of disease and drug mechanisms. Whole organ decellularization provides a means to developing a construct that recapitulates structural, mechanical, and biological features of a complete vascular structure. Here, we developed a culture protocol to improve endothelial cell coverage in whole lung scaffolds and used single-cell RNA-sequencing analysis to explore the impact of decellularized whole lung scaffolds on endothelial phenotypes and functions in a biomimetic bioreactor system. Intriguingly, we found that the phenotype and functional signals of primary pulmonary microvascular revert back—at least partially—toward native lung endothelium. Additionally, human induced pluripotent stem cell-derived endothelium cultured in decellularized lung systems start to gain various native human endothelial phenotypes. Vascular barrier function was partially restored, while small capillaries remained patent in endothelial cell-repopulated lungs. To evaluate the ability of the engineered endothelium to modulate permeability in response to exogenous stimuli, lipopolysaccharide (LPS) was introduced into repopulated lungs to simulate acute lung injury. After LPS treatment, proinflammatory signals were significantly increased and the vascular barrier was impaired. Taken together, these results demonstrate a novel platform that recapitulates some pulmonary microvascular functions and phenotypes at a whole organ level. This development may help pave the way for using the whole organ engineering approach to model vascular diseases.
Collapse
Affiliation(s)
- Yifan Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Katherine L Leiby
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Medical Scientist Training Program, Yale University, New Haven, CT, United States
| | - Allison M Greaney
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Micha Sam Brickman Raredon
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Medical Scientist Training Program, Yale University, New Haven, CT, United States
| | - Hong Qian
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Alexander J Engler
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Pavlina Baevova
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Juan Wang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Tomohiro Obata
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Laura E Niklason
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Antonyshyn JA, Mazzoli V, McFadden MJ, Gramolini AO, Hofer SOP, Simmons CA, Santerre JP. Mitigating the non-specific uptake of immunomagnetic microparticles enables the extraction of endothelium from human fat. Commun Biol 2021; 4:1205. [PMID: 34671074 PMCID: PMC8528810 DOI: 10.1038/s42003-021-02732-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells are among the fundamental building blocks for vascular tissue engineering. However, a clinically viable source of endothelium has continued to elude the field. Here, we demonstrate the feasibility of sourcing autologous endothelium from human fat – an abundant and uniquely dispensable tissue that can be readily harvested with minimally invasive procedures. We investigate the challenges underlying the overgrowth of human adipose tissue-derived microvascular endothelial cells by stromal cells to facilitate the development of a reliable method for their acquisition. Magnet-assisted cell sorting strategies are established to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the enrichment of endothelial cells to purities that prevent their overgrowth by stromal cells. This work delineates a reliable method for acquiring human adipose tissue-derived microvascular endothelial cells in large quantities with high purities that can be readily applied in future vascular tissue engineering applications. Antonyshyn et al. establish a methodology for acquiring human adipose tissue-derived microvascular endothelial cells that can be readily applied in future vascular tissue engineering applications. The authors developed strategies to mitigate the non-specific uptake of immunomagnetic microparticles to facilitate the immunoselection of endothelial cells by magnet-assisted cell sorting.
Collapse
Affiliation(s)
- Jeremy A Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Vienna Mazzoli
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Meghan J McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stefan O P Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, ON, Canada.,Departments of Surgery and Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada. .,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
14
|
Liu YB, Xu BC, Chen YT, Yuan X, Liu JY, Liu T, Du GZ, Jiang W, Yang Y, Zhu Y, Chen LJ, Ding BS, Wei YQ, Yang L. Directed evolution of AAV accounting for long-term and enhanced transduction of cardiovascular endothelial cells in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:148-161. [PMID: 34485601 PMCID: PMC8397840 DOI: 10.1016/j.omtm.2021.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Cardiac endothelial cells (ECs) are important targets for cardiovascular gene therapy. However, the approach of stably transducing ECs in vivo using different vectors, including adeno-associated virus (AAV), remains unexamined. Regarding this unmet need, two AAV libraries from DNA shuffling and random peptide display were simultaneously screened in a transgenic mouse model. Cardiac ECs were isolated by cell sorting for salvage of EC-targeting AAV. Two AAV variants, i.e., EC71 and EC73, enriched in cardiac EC, were further characterized for their tissue tropism. Both of them demonstrated remarkably enhanced transduction of cardiac ECs and reduced infection of liver ECs in comparison to natural AAVs after intravenous injection. Significantly, persistent transgene expression was maintained in mouse cardiac ECs in vivo for at least 4 months. The EC71 vector was selected for delivery of the endothelial nitric oxide synthase (eNOS) gene into cardiac ECs in a mouse model of myocardial infarction. Enhanced eNOS activity was observed in the mouse heart and lung, which was correlated with partially improved cardiac function. Taken together, two AAV capsids were evolved with more efficient transduction in cardiovascular endothelium in vivo, but their endothelial tropism might need to be further optimized for practical application to cardiac gene therapy.
Collapse
Affiliation(s)
- Y B Liu
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - B C Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y T Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - X Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Y Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - T Liu
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - G Z Du
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Y Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L J Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - B S Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Y Q Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L Yang
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|
16
|
Hui KPY, Cheung MC, Lai KL, Ng KC, Ho JCW, Peiris M, Nicholls JM, Chan MCW. Role of epithelial-endothelial cell interaction in the pathogenesis of SARS-CoV-2 infection. Clin Infect Dis 2021; 74:199-209. [PMID: 33956935 PMCID: PMC8135938 DOI: 10.1093/cid/ciab406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health globally. Patients with severe COVID-19 disease progress to acute respiratory distress syndrome, with respiratory and multiple organ failure. It is believed that dysregulated production of proinflammatory cytokines and endothelial dysfunction contribute to the pathogenesis of severe diseases. However, the mechanisms of SARS-CoV-2 pathogenesis and the role of endothelial cells are poorly understood. Methods Well-differentiated human airway epithelial cells were used to explore cytokine and chemokine production after SARS-CoV-2 infection. We measured the susceptibility to infection, immune response, and expression of adhesion molecules in human pulmonary microvascular endothelial cells (HPMVECs) exposed to conditioned medium from infected epithelial cells. The effect of imatinib on HPMVECs exposed to conditioned medium was evaluated. Results We demonstrated the production of interleukin-6, interferon gamma-induced protein-10, and monocyte chemoattractant protein-1 from the infected human airway cells after infection with SARS-CoV-2. Although HPMVECs did not support productive replication of SARS-CoV-2, treatment of HPMVECs with conditioned medium collected from infected airway cells induced an upregulation of proinflammatory cytokines, chemokines, and vascular adhesion molecules. Imatinib inhibited the upregulation of these cytokines, chemokines, and adhesion molecules in HPMVECs treated with conditioned medium. Conclusions We evaluated the role of endothelial cells in the development of clinical disease caused by SARS-CoV-2 and the importance of endothelial cell–epithelial cell interaction in the pathogenesis of human COVID-19 diseases.
Collapse
Affiliation(s)
- Kenrie Pui-Yan Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Immunology and Infection (C2I), Hong Kong Science Park, Hong Kong SAR, China
| | - Man-Chun Cheung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ka-Ling Lai
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ka-Chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - John Chi-Wang Ho
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Immunology and Infection (C2I), Hong Kong Science Park, Hong Kong SAR, China
| | - John Malcolm Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Michael Chi-Wai Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Immunology and Infection (C2I), Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
17
|
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules 2020; 10:biom10121614. [PMID: 33260307 PMCID: PMC7759989 DOI: 10.3390/biom10121614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.
Collapse
|
18
|
Rüger BM, Buchacher T, Dauber EM, Pasztorek M, Uhrin P, Fischer MB, Breuss JM, Leitner GC. De novo Vessel Formation Through Cross-Talk of Blood-Derived Cells and Mesenchymal Stromal Cells in the Absence of Pre-existing Vascular Structures. Front Bioeng Biotechnol 2020; 8:602210. [PMID: 33330432 PMCID: PMC7718010 DOI: 10.3389/fbioe.2020.602210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The generation of functional blood vessels remains a key challenge for regenerative medicine. Optimized in vitro culture set-ups mimicking the in vivo perivascular niche environment during tissue repair may provide information about the biological function and contribution of progenitor cells to postnatal vasculogenesis, thereby enhancing their therapeutic potential. AIM We established a fibrin-based xeno-free human 3D in vitro vascular niche model to study the interaction of mesenchymal stromal cells (MSC) with peripheral blood mononuclear cells (PBMC) including circulating progenitor cells in the absence of endothelial cells (EC), and to investigate the contribution of this cross-talk to neo-vessel formation. MATERIALS AND METHODS Bone marrow-derived MSC were co-cultured with whole PBMC, enriched monocytes (Mo), enriched T cells, and Mo together with T cells, respectively, obtained from leukocyte reduction chambers generated during the process of single-donor platelet apheresis. Cells were embedded in 3D fibrin matrices, using exclusively human-derived culture components without external growth factors. Cytokine secretion was analyzed in supernatants of 3D cultures by cytokine array, vascular endothelial growth factor (VEGF) secretion was quantified by ELISA. Cellular and structural re-arrangements were characterized by immunofluorescence and confocal laser-scanning microscopy of topographically intact 3D fibrin gels. RESULTS 3D co-cultures of MSC with PBMC, and enriched Mo together with enriched T cells, respectively, generated, within 2 weeks, complex CD31+/CD34+ vascular structures, surrounded by basement membrane collagen type-IV+ cells and matrix, in association with increased VEGF secretion. PBMC contained CD31+CD34+CD45dimCD14- progenitor-type cells, and EC of neo-vessels were PBMC-derived. Vascular structures showed intraluminal CD45+ cells that underwent apoptosis thereby creating a lumen. Cross-talk of MSC with enriched Mo provided a pro-angiogenic paracrine environment. MSC co-cultured with enriched T cells formed "cell-in-cell" structures generated through internalization of T cells by CD31+CD45 dim/ - cells. No vascular structures were detected in co-cultures of MSC with either Mo or T cells. CONCLUSION Our xeno-free 3D in vitro vascular niche model demonstrates that a complex synergistic network of cellular, extracellular and paracrine cross-talk can contribute to de novo vascular development through self-organization via co-operation of immune cells with blood-derived progenitor cells and MSC, and thereby may open a new perspective for advanced vascular tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- Beate M. Rüger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eva-Maria Dauber
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Pasztorek
- Department of Health Sciences, Medicine and Research, Faculty of Health and Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
- Department of Health Sciences, Medicine and Research, Faculty of Health and Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerda C. Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
20
|
Kong Z, Chen M, Jiang J, Zhu J, Liu Y. A new method of culturing rat bone marrow endothelial progenitor cells in vitro. Cardiovasc Diagn Ther 2020; 10:1270-1279. [PMID: 33224751 PMCID: PMC7666940 DOI: 10.21037/cdt-20-536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/30/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play an important role in the re-endothelialization of ischemic cerebrovascular disease. However, the current acquisition method has some deficiencies. This study aimed to design a new and practical method for obtaining EPCs. METHODS Bone marrow was obtained autologously from the right tibia of living rats. Briefly, the right tibia bone was carefully exposed and two holes (1 mm in diameter) were made in the tuberosity and lower one-third of the tibia, respectively. A PE-50 catheter and syringe (5 mL) were inserted through the holes to aspirate the bone marrow. Bone marrow mononuclear cells (BMMCs) were isolated by density-gradient centrifugation with Ficoll and counted. Adherent cell culture continued for 2 weeks, and the medium was replaced every 3 days. RESULTS During the first days of culture, adherent cells formed a monolayer, consisting predominantly of small-sized cells. Single large cells with endothelial morphology were observed. On day 4, the nonadherent cells were removed, and the adherent cells were left for further culture. On day 6-7, a proliferating population of round cells formed clusters in the culture chamber, and morphological analysis revealed a homogeneous population of colony-forming units (CFUs). Large, flat cells with endothelial morphology sprouted from the CFUs, which had nearly disappeared by day 14 of culture. The adherent cells were positive for CD133 and vascular endothelial growth factor receptor 2 (VEGFR2), internalized acetylated low-density lipoprotein, and bound ulex europaeus-agglutinin-I, but were negative for CD45, which correlated with the endothelial morphology and ability to form capillaries of EPCs. CONCLUSIONS Our results are direct evidence that mononuclear cells (MCS) from living rat bone marrow can be used to culture EPCs in vitro under certain culture conditions, providing a new method for the further study of autologous EPC transplantation.
Collapse
Affiliation(s)
- Zhaohong Kong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meixin Chen
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Jiang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Zhu
- Department of Neurology, The First Hospital of Yulin, Yulin, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Onufer EJ, Aladegbami B, Imai T, Seiler K, Bajinting A, Courtney C, Sutton S, Bustos A, Yao J, Yeh CH, Sescleifer A, Wang LV, Guo J, Warner BW. EGFR in enterocytes & endothelium and HIF1α in enterocytes are dispensable for massive small bowel resection induced angiogenesis. PLoS One 2020; 15:e0236964. [PMID: 32931498 PMCID: PMC7491746 DOI: 10.1371/journal.pone.0236964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Short bowel syndrome (SBS) results from significant loss of small intestinal length. In response to this loss, adaptation occurs, with Epidermal Growth Factor Receptor (EGFR) being a key driver. Besides enhanced enterocyte proliferation, we have revealed that adaptation is associated with angiogenesis. Further, we have found that small bowel resection (SBR) is associated with diminished oxygen delivery and elevated levels of hypoxia-inducible factor 1-alpha (HIF1α). Methods We ablated EGFR in the epithelium and endothelium as well as HIF1α in the epithelium, ostensibly the most hypoxic element. Using these mice, we determined the effects of these genetic manipulations on intestinal blood flow after SBR using photoacoustic microscopy (PAM), intestinal adaptation and angiogenic responses. Then, given that endothelial cells require a stromal support cell for efficient vascularization, we ablated EGFR expression in intestinal subepithelial myofibroblasts (ISEMFs) to determine its effects on angiogenesis in a microfluidic model of human small intestine. Results Despite immediate increased demand in oxygen extraction fraction measured by PAM in all mouse lines, were no differences in enterocyte and endothelial cell EGFR knockouts or enterocyte HIF1α knockouts by POD3. Submucosal capillary density was also unchanged by POD7 in all mouse lines. Additionally, EGFR silencing in ISEMFs did not impact vascular network development in a microfluidic device of human small intestine. Conclusions Overall, despite the importance of EGFR in facilitating intestinal adaptation after SBR, it had no impact on angiogenesis in three cell types–enterocytes, endothelial cells, and ISEMFs. Epithelial ablation of HIF1α also had no impact on angiogenesis in the setting of SBS.
Collapse
Affiliation(s)
- Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Bola Aladegbami
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Toru Imai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Kristen Seiler
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Adam Bajinting
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Stephanie Sutton
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Aiza Bustos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Cheng-Hung Yeh
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Anne Sescleifer
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Lihong V. Wang
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
22
|
Baker EK, Jacobs SE, Lim R, Wallace EM, Davis PG. Cell therapy for the preterm infant: promise and practicalities. Arch Dis Child Fetal Neonatal Ed 2020; 105:563-568. [PMID: 32253200 DOI: 10.1136/archdischild-2019-317896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Recent decades have seen the rapid progress of neonatal intensive care, and the survival rates of the most preterm infants are improving. This improvement is associated with changing patterns of morbidity and new phenotypes of bronchopulmonary dysplasia and preterm brain injury are recognised. Inflammation and immaturity are known contributors to their pathogenesis. However, a new phenomenon, the exhaustion of progenitor cells is emerging as an important factor. Current therapeutic approaches do not adequately address these new mechanisms of injury. Cell therapy, that is the use of stem and stem-like cells, with its potential to both repair and prevent injury, offers a new approach to these challenging conditions. This review will examine the rationale for cell therapy in the extremely preterm infant, the preclinical and early clinical evidence to support its use in bronchopulmonary dysplasia and preterm brain injury. Finally, it will address the challenges in translating cell therapy from the laboratory to early clinical trials.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia .,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
24
|
Bhagwani A, Thompson AAR, Farkas L. When Innate Immunity Meets Angiogenesis-The Role of Toll-Like Receptors in Endothelial Cells and Pulmonary Hypertension. Front Med (Lausanne) 2020; 7:352. [PMID: 32850883 PMCID: PMC7410919 DOI: 10.3389/fmed.2020.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors serve a central role in innate immunity, but they can also modulate cell function in various non-immune cell types including endothelial cells. Endothelial cells are necessary for the organized function of the vascular system, and part of their fundamental role is also the regulation of immune function and inflammation. In this review, we summarize the current knowledge of how Toll-like receptors contribute to the immune and non-immune functions of the endothelial cells.
Collapse
Affiliation(s)
- Aneel Bhagwani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - A. A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:85-115. [PMID: 32588325 DOI: 10.1007/978-3-030-44518-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vascularization refers to the formation of new blood vessels within a tumor and is considered one of the hallmarks of cancer. Tumor vessels supply the tumor with oxygen and nutrients, required to sustain tumor growth and progression, and provide a gateway for tumor metastasis through the blood or lymphatic vasculature. Blood vessels display an angiocrine capacity of supporting the survival and proliferation of tumor cells through the production of growth factors and cytokines. Although tumor vasculature plays an essential role in sustaining tumor growth, it represents at the same time an essential way to deliver drugs and immune cells to the tumor. However, tumor vasculature exhibits many morphological and functional abnormalities, thus resulting in the formation of hypoxic areas within tumors, believed to represent a mechanism to maintain tumor cells in an invasive state.Tumors are vascularized through a variety of modalities, mainly represented by angiogenesis, where VEGF and other members of the VEGF family play a key role. This has represented the basis for the development of anti-VEGF blocking agents and their use in cancer therapy: however, these agents failed to induce significant therapeutic effects.Much less is known about the cellular origin of vessel network in tumors. Various cell types may contribute to tumor vasculature in different tumors or in the same tumor, such as mature endothelial cells, endothelial progenitor cells (EPCs), or the same tumor cells through a process of transdifferentiation. Early studies have suggested a role for bone marrow-derived EPCs; these cells do not are true EPCs but myeloid progenitors differentiating into monocytic cells, exerting a proangiogenic effect through a paracrine mechanism. More recent studies have shown the existence of tissue-resident endothelial vascular progenitors (EVPs) present at the level of vessel endothelium and their possible involvement as cells of origin of tumor vasculature.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
Chan LLY, Hui KPY, Kuok DIT, Bui CHT, Ng KC, Mok CKP, Yang ZF, Guan W, Poon LLM, Zhong N, Peiris JSM, Nicholls JM, Chan MCW. Risk Assessment of the Tropism and Pathogenesis of the Highly Pathogenic Avian Influenza A/H7N9 Virus Using Ex Vivo and In Vitro Cultures of Human Respiratory Tract. J Infect Dis 2020; 220:578-588. [PMID: 31001638 DOI: 10.1093/infdis/jiz165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/15/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza (HPAI)-H7N9 virus arising from low pathogenic avian influenza (LPAI)-H7N9 virus with polybasic amino acid substitutions in the hemagglutinin was detected in 2017. METHODS We compared the tropism, replication competence, and cytokine induction of HPAI-H7N9, LPAI-H7N9, and HPAI-H5N1 in ex vivo human respiratory tract explants, in vitro culture of human alveolar epithelial cells (AECs) and pulmonary microvascular endothelial cells (HMVEC-L). RESULTS Replication competence of HPAI- and LPAI-H7N9 were comparable in ex vivo cultures of bronchus and lung. HPAI-H7N9 predominantly infected AECs, whereas limited infection was observed in bronchus. The reduced tropism of HPAI-H7N9 in bronchial epithelium may explain the lack of human-to-human transmission despite a number of mammalian adaptation markers. Apical and basolateral release of virus was observed only in HPAI-H7N9- and H5N1-infected AECs regardless of infection route. HPAI-H7N9, but not LPAI-H7N9 efficiently replicated in HMVEC-L. CONCLUSIONS Our findings demonstrate that a HPAI-H7N9 virus efficiently replicating in ex vivo cultures of human bronchus and lung. The HPAI-H7N9 was more efficient at replicating in human AECs and HMVEC-L than LPAI-H7N9 implying that endothelial tropism may involve in pathogenesis of HPAI-H7N9 disease.
Collapse
Affiliation(s)
- Louisa L Y Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Kenrie P Y Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Denise I T Kuok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Christine H T Bui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Ka-Chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Chris K P Mok
- The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China.,Macau University of Science and Technology, Macau, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - John M Nicholls
- Department of Pathology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C W Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| |
Collapse
|
27
|
Gadomski S, Singh SK, Singh S, Sarkar T, Klarmann KD, Berenschot M, Seaman S, Jakubison B, Gudmundsson KO, Lockett S, Keller JR. Id1 and Id3 Maintain Steady-State Hematopoiesis by Promoting Sinusoidal Endothelial Cell Survival and Regeneration. Cell Rep 2020; 31:107572. [PMID: 32348770 PMCID: PMC8459380 DOI: 10.1016/j.celrep.2020.107572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Investigating mechanisms that regulate endothelial cell (EC) growth and survival is important for understanding EC homeostasis and how ECs maintain stem cell niches. We report here that targeted loss of Id genes in adult ECs results in dilated, leaky sinusoids and a pro-inflammatory state that increases in severity over time. Disruption in sinusoidal integrity leads to increased hematopoietic stem cell (HSC) proliferation, differentiation, migration, and exhaustion. Mechanistically, sinusoidal ECs (SECs) show increased apoptosis because of reduced Bcl2-family gene expression following Id gene ablation. Furthermore, Id1-/-Id3-/- SECs and upstream type H vessels show increased expression of cyclin-dependent kinase inhibitors p21 and p27 and impaired ability to proliferate, which is rescued by reducing E2-2 expression. Id1-/-Id3-/- mice do not survive sublethal irradiation because of impaired vessel regeneration and hematopoietic failure. Thus, Id genes are required for the survival and regeneration of BM SECs during homeostasis and stress to maintain HSC development.
Collapse
Affiliation(s)
- Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra K Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maximillian Berenschot
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Steven Seaman
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristbjorn O Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
28
|
Yanagiya M, Kitano K, Yotsumoto T, Asahina H, Nagayama K, Nakajima J. Transplantation of Bioengineered Lungs Created From Recipient-Derived Cells Into a Large Animal Model. Semin Thorac Cardiovasc Surg 2020; 33:263-271. [PMID: 32348880 DOI: 10.1053/j.semtcvs.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/28/2022]
Abstract
The use of bioartificial lungs may represent a breakthrough for the treatment of end-stage lung disease. The present study aimed to evaluate the feasibility of transplanting bioengineered lungs created from autologous cells. Porcine decellularized lung scaffolds were seeded with porcine recipient-derived airway and vascular cells. The porcine recipient-derived cells were collected from lung tissue obtained by pulmonary wedge resection. Following culture of autologous cells in the scaffolds, the resulting grafts were unilaterally transplanted into porcine recipients (n = 3). Allograft left unilateral lung transplantation was performed in the control group (n = 3). Left unilateral transplantation of decellularized grafts was also performed in a separate control group (n = 2). In vivo functions were assessed for 2 hours after transplantation. Histologic evaluation and immunostaining showed the presence of airway and vascular cells in the bioengineered lungs. No animals survived in the decellularized transplant group, whereas all animals survived in the bioengineered transplant and allotransplant groups. However, bioengineered lung grafts showed marked bullous changes. The oxygen exchange was comparable between the bioengineered lung graft transplant and allograft transplant groups. However, the carbon dioxide gas exchange of the bioengineered lung graft transplant group was significantly lower than that of the allograft transplant group at 2 hours after transplantation (4.10 ± 0.87 mm Hg vs 24.7 ± 10.1 mm Hg, P = 0.02). Transplantation of bioartificial lung grafts created from autologous cells was feasible in the super-acute phase. However, bullous changes and poor carbon dioxide gas exchange remain limitations of this method.
Collapse
Affiliation(s)
- Masahiro Yanagiya
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Kentaro Kitano
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuma Yotsumoto
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiromichi Asahina
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR, Velikanova EA. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells 2020; 9:cells9040876. [PMID: 32260159 PMCID: PMC7226818 DOI: 10.3390/cells9040876] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
- Correspondence: ; Tel.: +7-960-907-70-67
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (A.E.T.); (M.R.K.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Daria K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (A.E.T.); (M.R.K.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| |
Collapse
|
30
|
Bertelli PM, Pedrini E, Guduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, Medina RJ. Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. Curr Eye Res 2020; 45:372-384. [PMID: 31609636 DOI: 10.1080/02713683.2019.1681004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
Retinal vascular diseases, such as diabetic retinopathy, retinopathy of prematurity, retinal vein occlusion, ocular ischemic syndrome and ischemic optic neuropathy, are leading causes of vision impairment and blindness. Whilst drug, laser or surgery-based treatments for the late stage complications of many of these diseases are available, interventions that target the early vasodegenerative stages are lacking. Progressive vasculopathy and ensuing ischemia is an underpinning pathology in many of these diseases, leading to hypoperfusion, hypoxia, and ultimately pathological neovascularization and/or edema in the retina and other ocular tissues, such as the optic nerve and iris. Therefore, repairing the retinal vasculature may prevent progression of ischemic retinopathies into late stage vascular complications. Various cell types have been explored for their vascular repair potential. Endothelial progenitor cells, mesenchymal stem cells and induced pluripotent stem cells are studied for their potential to integrate with the damaged retinal vasculature and limit ischemic injury. Clinical trials for some of these cell types have confirmed safety and feasibility in the treatment of ischemic diseases, including some retinopathies. Another promising avenue is mobilization of endogenous endothelial progenitors, whereby reparative cells are moved from their niche to circulating blood to target and home into ischemic tissues. Several aspects and properties of these cell types have yet to be elucidated. Nevertheless, we foresee that cell therapy, whether through delivery of exogenous or enhancement of endogenous reparative cells, will become a valuable and beneficial treatment for ischemic retinopathies.
Collapse
Affiliation(s)
- Pietro Maria Bertelli
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Elisa Peixoto
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Varun Pathak
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
31
|
Clonally selected primitive endothelial cells promote occlusive pulmonary arteriopathy and severe pulmonary hypertension in rats exposed to chronic hypoxia. Sci Rep 2020; 10:1136. [PMID: 31980720 PMCID: PMC6981224 DOI: 10.1038/s41598-020-58083-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
One current concept suggests that unchecked proliferation of clonally selected precursors of endothelial cells (ECs) contribute to severe pulmonary arterial hypertension (PAH). We hypothesized that clonally selected ECs expressing the progenitor marker CD117 promote severe occlusive pulmonary hypertension (PH). The remodelled pulmonary arteries of PAH patients harboured CD117+ ECs. Rat lung CD117+ ECs underwent four generations of clonal expansion to enrich hyperproliferative ECs. The resulting clonally enriched ECs behaved like ECs, as measured by in vitro and in vivo angiogenesis assays. The same primitive ECs showed a limited ability for mesenchymal lineage differentiation. Endothelial differentiation and function were enhanced by blocking TGF-β signalling, promoting bone morphogenic protein (BMP) signalling. The transplantation of the EC clones caused arterio-occlusive PH in rats exposed to chronic hypoxia. These EC clones engrafted in the pulmonary arteries. Yet cessation of chronic hypoxia promoted lung cell apoptosis and resolution of vascular lesions. In conclusion, this is to the best of our knowledge, the first report that clonally enriched primitive ECs promote occlusive pulmonary arteriopathy and severe PH. These primitive EC clones further give rise to cells of endothelial and mesenchymal lineage as directed by BMP and TGF-β signaling.
Collapse
|
32
|
Schneller D, Hofer-Warbinek R, Sturtzel C, Lipnik K, Gencelli B, Seltenhammer M, Wen M, Testori J, Bilban M, Borowski A, Windwarder M, Kapel SS, Besemfelder E, Cejka P, Habertheuer A, Schlechta B, Majdic O, Altmann F, Kocher A, Augustin HG, Luttmann W, Hofer E. Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor Cells. Circ Res 2019; 124:243-255. [PMID: 30582450 DOI: 10.1161/circresaha.118.313645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Endothelial colony forming cells (ECFCs) or late blood outgrowth endothelial cells can be isolated from human cord or peripheral blood, display properties of endothelial progenitors, home into ischemic tissues and support neovascularization in ischemic disease models. OBJECTIVE To assess the functions of CYTL1 (cytokine-like 1), a factor we found preferentially produced by ECFCs, in regard of vessel formation. METHODS AND RESULTS We show by transcriptomic analysis that ECFCs are distinguished from endothelial cells of the vessel wall by production of high amounts of CYTL1. Modulation of expression demonstrates that the factor confers increased angiogenic sprouting capabilities to ECFCs and can also trigger sprouting of mature endothelial cells. The data further display that CYTL1 can be induced by hypoxia and that it functions largely independent of VEGF-A (vascular endothelial growth factor-A). By recombinant production of CYTL1 we confirm that the peptide is indeed a strong proangiogenic factor and induces sprouting in cellular assays and functional vessel formation in animal models comparable to VEGF-A. Mass spectroscopy corroborates that CYTL1 is specifically O-glycosylated on 2 neighboring threonines in the C-terminal part and this modification is important for its proangiogenic bioactivity. Further analyses show that the factor does not upregulate proinflammatory genes and strongly induces several metallothionein genes encoding anti-inflammatory and antiapoptotic proteins. CONCLUSIONS We conclude that CYTL1 can mediate proangiogenic functions ascribed to endothelial progenitors such as ECFCs in vivo and may be a candidate to support vessel formation and tissue regeneration in ischemic pathologies.
Collapse
Affiliation(s)
- Doris Schneller
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria.,Division Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg (D.S.)
| | - Renate Hofer-Warbinek
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Caterina Sturtzel
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Karoline Lipnik
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Burcu Gencelli
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Monika Seltenhammer
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Mingjie Wen
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Julia Testori
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine (M.B.), Medical University of Vienna, Austria
| | | | - Markus Windwarder
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria (M. Windwarder, F.A.)
| | - Stephanie S Kapel
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany (S.S.K., H.G.A.)
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.)
| | - Petra Cejka
- Department of Immunology (P.C., O.M.), Medical University of Vienna, Austria
| | - Andreas Habertheuer
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Bernhard Schlechta
- Department of Gynecology and Obstetrics (B.S.), Medical University of Vienna, Austria
| | - Otto Majdic
- Department of Immunology (P.C., O.M.), Medical University of Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria (M. Windwarder, F.A.)
| | - Alfred Kocher
- Clinical Department for Heart Surgery (R.H.-W., A.H., A.K.), Medical University of Vienna, Austria
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (S.S.K., E.B., H.G.A.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany (S.S.K., H.G.A.)
| | | | - Erhard Hofer
- From the Department of Vascular Biology and Thrombosis Research (D.S., C.S., K.L., B.G., M.S., M. Wen, J.T., E.H.), Medical University of Vienna, Austria
| |
Collapse
|
33
|
Chen L, Han Y, Li Y, Chen B, Bai X, Belguise K, Wang X, Chen Y, Yi B, Lu K. Hepatocyte-derived exosomal MiR-194 activates PMVECs and promotes angiogenesis in hepatopulmonary syndrome. Cell Death Dis 2019; 10:853. [PMID: 31700002 PMCID: PMC6838168 DOI: 10.1038/s41419-019-2087-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a serious vascular complication in the setting of liver disease. Factors produced by the liver are essential to regulate pulmonary angiogenesis in the pathogenesis of HPS; however, the pathogenic mechanisms of pulmonary angiogenesis are not fully understood. We investigated the role of HPS rat serum exosomes (HEs) and sham-operated rat serum exosomes (SEs) in the regulation of angiogenesis. We found that HEs significantly enhance PMVEC proliferation, migration, and tube formation. We further identified miR-194 was the most notably increased miRNA in HEs compared to SEs. Once released, hepatocyte-derived exosomal miR-194 was internalized by PMVECs, leading to the promotion of PMVEC proliferation, migration, and tube formation through direct targeting of THBS1, STAT1, and LIF. Importantly, the pathogenic role of exosomal miR-194 in initiating angiogenesis was reversed by P53 inhibition, exosome secretion inhibition or miR-194 inhibition. Additionally, high levels of miR-194 were found in serum exosomes and were positively correlated with P(A-a)O2 in HPS patients and rats. Thus, our results highlight that the exosome/miR-194 axis plays a critical pathologic role in pulmonary angiogenesis, representing a new therapeutic target for HPS.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yi Han
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yujie Li
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xuehong Bai
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Karine Belguise
- LBCMCP, ×tégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xiaobo Wang
- LBCMCP, ×tégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yang Chen
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
34
|
He M, Cui T, Cai Q, Wang H, Kong H, Xie W. Iptakalim ameliorates hypoxia-impaired human endothelial colony-forming cells proliferation, migration, and angiogenesis via Akt/eNOS pathways. Pulm Circ 2019; 9:2045894019875417. [PMID: 31692706 DOI: 10.1177/2045894019875417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-associated pulmonary hypertension is characterized by pulmonary vascular remodeling. Pulmonary arterial endothelial cells dysfunction is considered as the initial event. As precursor of endothelial cells, endothelial colony-forming cells (ECFCs) play significant roles in maintenance of endothelium integrity and restoration of normal endothelial cell function. Accumulating data have indicated that hypoxia leads to a decrease in the number and function of ECFCs with defective capacity of endothelial regeneration. Previous studies have reported that the activation of ATP-sensitive potassium channels (KATP) shows therapeutic effects in pulmonary hypertension. However, there have been few reports focusing on the impact of KATP on ECFC function under hypoxic condition. Therefore, the aim of this study was to investigate whether the opening of KATP could regulate hypoxia-induced ECFC dysfunction. Using ECFCs derived from adult peripheral blood, we observed that Iptakalim (Ipt), a novel KATP opener (KCO), significantly promoted ECFC function including cellular viability, proliferation, migration, angiogenesis, and apoptosis compared with ECFCs exposed to hypoxia. Glibenclamide (Gli), a nonselective KATP blocker, could eliminate the effects. The protective role of Ipt is attributed to an increased production of nitric oxide (NO), as well as an enhanced activation of angiogenic transduction pathways, containing Akt and endothelial nitric oxide synthase. Our observations demonstrated that KATP activation could improve ECFC function in hypoxia via Akt/endothelial nitric oxide synthase pathways, which may constitute increase ECFC therapeutic potential for hypoxia-associated pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mengyu He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Cui
- The Inspection Department of the first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Cai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Bhetraratana M, Orozco LD, Hong J, Diamante G, Majid S, Bennett BJ, Ahn IS, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particles dysregulate multiple immunological pathways in murine macrophages: Lessons from microarray and scRNA-seq technologies. Arch Biochem Biophys 2019; 678:108116. [PMID: 31568751 DOI: 10.1016/j.abb.2019.108116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023]
Abstract
Exposure to ambient particulate matter has been shown to promote a variety of disorders, including cardiovascular diseases predominantly of ischemic etiology. However, the mechanisms linking inhaled particulates with systemic vascular effects, resulting in worsened atherosclerosis, are not well defined. We assessed the potential role of macrophages in translating these effects by analyzing gene expression patterns in response to diesel exhaust particles (DEP) at the average cell level, using Affymetrix microarrays in peritoneal macrophages in culture (in vitro), and at the individual cell level, using single-cell RNA sequencing (scRNA-seq) in alveolar macrophages collected from exposed mice (in vivo). Peritoneal macrophages were harvested from C57BL/6J mice and treated with 25 μg/mL of a DEP methanol extract (DEPe). These cells exhibited significant (FDR < 0.05) differential expression of a large number of genes and enrichment in pathways, especially engaged in immune responses and antioxidant defense. DEPe led to marked upregulation of heme oxygenase 1 (Hmox1), the most significantly upregulated gene (FDR = 1.75E-06), and several other antioxidant genes. For the in vivo work, C57BL/6J mice were subjected to oropharyngeal aspiration of 200 μg of whole DEP. The gene expression profiles of the alveolar macrophages harvested from these mice were analyzed at the single-cell level using scRNA-seq, which showed significant dysregulation of a broad number of genes enriched in immune system pathways as well, but with a large heterogeneity in how individual alveolar macrophages responded to DEP exposures. Altogether, DEP pollutants dysregulated immunological pathways in macrophages that may mediate the development of pulmonary and systemic vascular effects.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Hong
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Sana Majid
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Huuskes BM, DeBuque RJ, Kerr PG, Samuel CS, Ricardo SD. The Use of Live Cell Imaging and Automated Image Analysis to Assist With Determining Optimal Parameters for Angiogenic Assay in vitro. Front Cell Dev Biol 2019; 7:45. [PMID: 31024908 PMCID: PMC6468051 DOI: 10.3389/fcell.2019.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/15/2019] [Indexed: 11/16/2022] Open
Abstract
Testing angiogenic potential and function of cells in culture is important for the understanding of the mechanisms that can modulate angiogenesis, especially when discovering novel anti- or pro-angiogenic therapeutics. Commonly used angiogenic assays include tube formation, proliferation, migration, and wound healing, and although well-characterized, it is important that methodology is standardized and reproducible. Human endothelial progenitor cells (EPCs) are critical for post-natal vascular homeostasis and can be isolated from human peripheral blood. Endothelial colony forming cells (ECFCs) are a subset of EPCs and are of interest as a possible therapeutic target for hypoxic diseases such as kidney disease, as they have a high angiogenic potential. However, once ECFCs are identified in culture, the exact timing of passaging has not been well-described and the optimal conditions to perform angiogenic assays such as seeding density, growth media (GM) concentrations and end-points of these assays is widely varied in the literature. Here, we describe the process of isolating, culturing and passaging ECFCs from patients with end-stage renal disease (ESRD), aided by image analysis. We further describe optimal conditions, for human bladder endothelial cells (hBECs), challenged in angiogenic assays and confirm that cell density is a limiting factor in accurately detecting angiogenic parameters. Furthermore, we show that GM along is enough to alter the angiogenic potential of cells, seeded at the same density. Lastly, we report on the success of human ECFCs in angiogenic assays and describe the benefits of live-cell imaging combined with time-lapse microscopy for this type of investigation.
Collapse
Affiliation(s)
- Brooke M Huuskes
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Ryan J DeBuque
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, VIC, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Colunga T, Hayworth M, Kreß S, Reynolds DM, Chen L, Nazor KL, Baur J, Singh AM, Loring JF, Metzger M, Dalton S. Human Pluripotent Stem Cell-Derived Multipotent Vascular Progenitors of the Mesothelium Lineage Have Utility in Tissue Engineering and Repair. Cell Rep 2019; 26:2566-2579.e10. [PMID: 30840882 PMCID: PMC6585464 DOI: 10.1016/j.celrep.2019.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023] Open
Abstract
In this report we describe a human pluripotent stem cell-derived vascular progenitor (MesoT) cell of the mesothelium lineage. MesoT cells are multipotent and generate smooth muscle cells, endothelial cells, and pericytes and self-assemble into vessel-like networks in vitro. MesoT cells transplanted into mechanically damaged neonatal mouse heart migrate into the injured tissue and contribute to nascent coronary vessels in the repair zone. When seeded onto decellularized vascular scaffolds, MesoT cells differentiate into the major vascular lineages and self-assemble into vasculature capable of supporting peripheral blood flow following transplantation. These findings demonstrate in vivo functionality and the potential utility of MesoT cells in vascular engineering applications.
Collapse
Affiliation(s)
- Thomas Colunga
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Miranda Hayworth
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Sebastian Kreß
- Department of Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - David M Reynolds
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Luoman Chen
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Kristopher L Nazor
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Johannes Baur
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Amar M Singh
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Jeanne F Loring
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marco Metzger
- Translational Centre for Regenerative Therapies TLZ-RT, Fraunhofer Institute for Silicate Research ISC, Röntgenring 11, 97070 Würzburg, Germany
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA.
| |
Collapse
|
38
|
Wertheim BM, Lin YD, Zhang YY, Samokhin AO, Alba GA, Arons E, Yu PB, Maron BA. Isolating pulmonary microvascular endothelial cells ex vivo: Implications for pulmonary arterial hypertension, and a caution on the use of commercial biomaterials. PLoS One 2019; 14:e0211909. [PMID: 30811450 PMCID: PMC6392245 DOI: 10.1371/journal.pone.0211909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Transcriptomic analysis of pulmonary microvascular endothelial cells from experimental models offers insight into pulmonary arterial hypertension (PAH) pathobiology. However, culturing may alter the molecular profile of endothelial cells prior to analysis, limiting the translational relevance of results. Here we present a novel and validated method for isolating RNA from pulmonary microvascular endothelial cells (PMVECs) ex vivo that does not require cell culturing. Initially, presumed rat PMVECs were isolated from rat peripheral lung tissue using tissue dissociation and enzymatic digestion, and cells were cultured until confluence to assess endothelial marker expression. Anti-CD31, anti-von Willebrand Factor, and anti-α-smooth muscle actin immunocytochemistry/immunofluorescence signal was detected in presumed rat PMVECs, but also in non-endothelial cell type controls. By contrast, flow cytometry using an anti-CD31 antibody and isolectin 1-B4 (from Griffonia simplicifolia) was highly specific for rat PMVECs. We next developed a strategy in which the addition of an immunomagnetic selection step for CD31+ cells permitted culture-free isolation of rat PMVECs ex vivo for RNA isolation and transcriptomic analysis using fluorescence-activated cell sorting. Heterogeneity in the validity and reproducibility of results using commercial antibodies against endothelial surface markers corresponded to a substantial burden on laboratory time, labor, and scientific budget. We demonstrate a novel protocol for the culture-free isolation and transcriptomic analysis of rat PMVECs with translational relevance to PAH. In doing so, we highlight wide variability in the quality of commonly used biological reagents, which emphasizes the importance of investigator-initiated validation of commercial biomaterials.
Collapse
Affiliation(s)
- Bradley M. Wertheim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Yi-Dong Lin
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Ying-Yi Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Andriy O. Samokhin
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - George A. Alba
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Elena Arons
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Paul B. Yu
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Bradley A. Maron
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| |
Collapse
|
39
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
40
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
41
|
Keighron C, Lyons CJ, Creane M, O'Brien T, Liew A. Recent Advances in Endothelial Progenitor Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:354. [PMID: 30619864 PMCID: PMC6305310 DOI: 10.3389/fmed.2018.00354] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
Since the discovery of Endothelial Progenitor Cells (EPC) by Asahara and colleagues in 1997, an increasing number of preclinical studies have shown that EPC based therapy is feasible, safe, and efficacious in multiple disease states. Subsequently, this has led to several, mainly early phase, clinical trials demonstrating the feasibility and safety profile of EPC therapy, with the suggestion of efficacy in several conditions including ischemic heart disease, pulmonary arterial hypertension and decompensated liver cirrhosis. Despite the use of the common term “EPC,” the characteristics, manufacturing methods and subset of the cell type used in these studies often vary significantly, rendering clinical translation challenging. It has recently been acknowledged that the true EPC is the endothelial colony forming cells (ECFC). The objective of this review was to summarize and critically appraise the registered and published clinical studies using the term “EPC,” which encompasses a heterogeneous cell population, as a therapeutic agent. Furthermore, the preclinical data using ECFC from the PubMed and Web of Science databases were searched and analyzed. We noted that despite the promising effect of ECFC on vascular regeneration, no clinical study has stemmed from these preclinical studies. We showed that there is a lack of information registered on www.clinicaltrials.gov for EPC clinical trials, specifically on cell culture methods. We also highlighted the importance of a detailed definition of the cell type used in EPC clinical trials to facilitate comparisons between trials and better understanding of the potential clinical benefit of EPC based therapy. We concluded our review by discussing the potential and limitations of EPC based therapy in clinical settings.
Collapse
Affiliation(s)
- Cameron Keighron
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Aaron Liew
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
42
|
Protective Role of Endogenous Kallistatin in Vascular Injury and Senescence by Inhibiting Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4138560. [PMID: 30622668 PMCID: PMC6304815 DOI: 10.1155/2018/4138560] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Kallistatin was identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin exerts pleiotropic effects on angiogenesis, oxidative stress, inflammation, apoptosis, fibrosis, and tumor growth. Kallistatin levels are markedly reduced in patients with coronary artery disease, sepsis, diabetic retinopathy, inflammatory bowel disease, pneumonia, and cancer. Moreover, plasma kallistatin levels are positively associated with leukocyte telomere length in young African Americans, indicating the involvement of kallistatin in aging. In addition, kallistatin treatment promotes vascular repair by increasing the migration and function of endothelial progenitor cells (EPCs). Kallistatin via its heparin-binding site antagonizes TNF-α-induced senescence and superoxide formation, while kallistatin's active site is essential for inhibiting miR-34a synthesis, thus elevating sirtuin 1 (SIRT1)/eNOS synthesis in EPCs. Kallistatin inhibits oxidative stress-induced cellular senescence by upregulating Let-7g synthesis, leading to modulate Let-7g-mediated miR-34a-SIRT1-eNOS signaling pathway in human endothelial cells. Exogenous kallistatin administration attenuates vascular injury and senescence in association with increased SIRT1 and eNOS levels and reduced miR-34a synthesis and NADPH oxidase activity, as well as TNF-α and ICAM-1 expression in the aortas of streptozotocin- (STZ-) induced diabetic mice. Conversely, endothelial-specific depletion of kallistatin aggravates vascular senescence, oxidative stress, and inflammation, with further reduction of Let-7g, SIRT1, and eNOS and elevation of miR-34a in mouse lung endothelial cells. Furthermore, systemic depletion of kallistatin exacerbates aortic injury, senescence, NADPH oxidase activity, and inflammatory gene expression in STZ-induced diabetic mice. These findings indicate that endogenous kallistatin displays a novel role in protection against vascular injury and senescence by inhibiting oxidative stress and inflammation.
Collapse
|
43
|
Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:295. [PMID: 30406106 PMCID: PMC6205967 DOI: 10.3389/fmed.2018.00295] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
The term “Endothelial progenitor cell” (EPC) has been used to describe multiple cell populations that express endothelial surface makers and promote vascularisation. However, the only population that has all the characteristics of a real “EPC” is the Endothelial Colony Forming Cells (ECFC). ECFC possess clonal proliferative potential, display endothelial and not myeloid cell surface markers, and exhibit pronounced postnatal vascularisation ability in vivo. ECFC have been used to investigate endothelial molecular dysfunction in several diseases, as they give access to endothelial cells from patients in a non-invasive way. ECFC also represent a promising tool for revascularization of damaged tissue. Here we review the translational applications of ECFC research. We discuss studies which have used ECFC to investigate molecular endothelial abnormalities in several diseases and review the evidence supporting the use of ECFC for autologous cell therapy, gene therapy and tissue regeneration. Finally, we discuss ways to improve the therapeutic efficacy of ECFC in clinical applications, as well as the challenges that must be overcome to use ECFC in clinical trials for regenerative approaches.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
O'Neill CL, McLoughlin KJ, Chambers SEJ, Guduric-Fuchs J, Stitt AW, Medina RJ. The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Front Med (Lausanne) 2018; 5:273. [PMID: 30460233 PMCID: PMC6232760 DOI: 10.3389/fmed.2018.00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
For over a decade various cell populations have been investigated for their vasoreparative potential. Cells with the capacity to promote blood vessel regeneration are commonly known as endothelial progenitor cells (EPCs); although such a definition is currently considered too simple for the complexity of cell populations involved in the reparative angiogenic process. A subset of EPCs called endothelial colony forming cells (ECFCs) have emerged as a suitable candidate for cytotherapy, primarily due to their clonogenic progenitor characteristics, unequivocal endothelial phenotype, and inherent ability to promote vasculogenesis. ECFCs can be readily isolated from human peripheral and cord blood, expanded ex vivo and used to revascularize ischemic tissues. These cells have demonstrated efficacy in several in vivo preclinical models such as the ischemic heart, retina, brain, limb, lung and kidney. This review will summarize the current pre-clinical evidence for ECFC cytotherapy and discuss their potential for clinical application.
Collapse
Affiliation(s)
- Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sarah E J Chambers
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
45
|
Ha G, Ferratge S, Naserian S, Proust R, Ponsen AC, Arouche N, Uzan G. Circulating endothelial progenitors in vascular repair. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jocit.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Guo Y, Chao L, Chao J. Kallistatin attenuates endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway. J Cell Mol Med 2018; 22:4387-4398. [PMID: 29992759 PMCID: PMC6111868 DOI: 10.1111/jcmm.13734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023] Open
Abstract
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2 O2 -induced senescence in human endothelial cells, as indicated by reduced senescence-associated-β-galactosidase activity, p16INK4a and plasminogen activator inhibitor-1 expression, and elevated telomerase activity. Kallistatin blocked H2 O2 -induced superoxide formation, NADPH oxidase levels and VCAM-1, ICAM-1, IL-6 and miR-34a synthesis. Kallistatin reversed H2 O2 -mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)-2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti-senescence and anti-oxidant effects were attributed to SIRT1-mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up-regulated Let-7g, whereas Let-7g inhibitor abolished kallistatin's effects on miR-34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium-specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild-type mouse endothelial cells, and H2 O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let-7g, SIRT1, eNOS, catalase and SOD-1 mRNA levels, and elevated miR-34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway.
Collapse
Affiliation(s)
- Youming Guo
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| | - Lee Chao
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| | - Julie Chao
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
47
|
Sturtzel C, Lipnik K, Hofer-Warbinek R, Testori J, Ebner B, Seigner J, Qiu P, Bilban M, Jandrositz A, Preisegger KH, Untergasser G, Gunsilius E, de Martin R, Kroll J, Hofer E. FOXF1 Mediates Endothelial Progenitor Functions and Regulates Vascular Sprouting. Front Bioeng Biotechnol 2018; 6:76. [PMID: 29963552 PMCID: PMC6010557 DOI: 10.3389/fbioe.2018.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 01/26/2023] Open
Abstract
Endothelial colony forming cells (ECFC) or late blood outgrowth endothelial cells (BOEC) have been proposed to contribute to neovascularization in humans. Exploring genes characteristic for the progenitor status of ECFC we have identified the forkhead box transcription factor FOXF1 to be selectively expressed in ECFC compared to mature endothelial cells isolated from the vessel wall. Analyzing the role of FOXF1 by gain- and loss-of-function studies we detected a strong impact of FOXF1 expression on the particularly high sprouting capabilities of endothelial progenitors. This apparently relates to the regulation of expression of several surface receptors. First, FOXF1 overexpression specifically induces the expression of Notch2 receptors and induces sprouting. Vice versa, knock-down of FOXF1 and Notch2 reduces sprouting. In addition, FOXF1 augments the expression of VEGF receptor-2 and of the arterial marker ephrin B2, whereas it downmodulates the venous marker EphB4. In line with these findings on human endothelial progenitors, we further show that knockdown of FOXF1 in the zebrafish model alters, during embryonic development, the regular formation of vasculature by sprouting. Hence, these findings support a crucial role of FOXF1 for endothelial progenitors and connected vascular sprouting as it may be relevant for tissue neovascularization. It further implicates Notch2, VEGF receptor-2, and ephrin B2 as downstream mediators of FOXF1 functions.
Collapse
Affiliation(s)
- Caterina Sturtzel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karoline Lipnik
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Renate Hofer-Warbinek
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julia Testori
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bettina Ebner
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jaqueline Seigner
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ping Qiu
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | | | - Karl-Heinz Preisegger
- VivoCell Biosolutions GmbH, Graz, Austria.,Institut für morphologische Analytik und Humangenetik, Graz, Austria
| | - Gerold Untergasser
- Laboratory for Tumor Biology & Angiogenesis, Medical University of Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Laboratory for Tumor Biology & Angiogenesis, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European for Center for Angioscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Erhard Hofer
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Banno K, Yoder MC. Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 2018; 83:283-290. [PMID: 28915234 DOI: 10.1038/pr.2017.231] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
Repairing and rebuilding damaged tissue in diseased human subjects remains a daunting challenge for clinical medicine. Proper vascular formation that serves to deliver blood-borne nutrients and adequate levels of oxygen and to remove wastes is critical for successful tissue regeneration. Endothelial colony-forming cells (ECFC) represent a promising cell source for revascularization of damaged tissue. ECFCs are identified by displaying a hierarchy of clonal proliferative potential and by pronounced postnatal vascularization ability in vivo. In this review, we provide a brief overview of human ECFC isolation and characterization, a survey of a number of animal models of human disease in which ECFCs have been shown to have prominent roles in tissue repair, and a summary of current challenges that must be overcome before moving ECFC into human subjects as a cell therapy.
Collapse
Affiliation(s)
- Kimihiko Banno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
49
|
Stem cell biology and regenerative medicine for neonatal lung diseases. Pediatr Res 2018; 83:291-297. [PMID: 28922348 DOI: 10.1038/pr.2017.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
Lung diseases remain one of the main causes of morbidity and mortality in neonates. Cell therapy and regenerative medicine have the potential to revolutionize the management of life-threatening and debilitating lung diseases that currently lack effective treatments. Over the past decade, the repair capabilities of stem/progenitor cells have been harnessed to prevent/rescue lung damage in experimental neonatal lung diseases. Mesenchymal stromal cells and amnion epithelial cells exert pleiotropic effects and represent ideal therapeutic cells for bronchopulmonary dysplasia, a multifactorial disease. Endothelial progenitor cells are optimally suited to promote lung vascular growth and attenuate pulmonary hypertension in infants with congenital diaphragmatic hernia or a vascular bronchopulmonary dysplasia phenotype. Induced pluripotent stem cells (iPSCs) are one of the most exciting breakthroughs of the past decade. Patient-specific iPSCs can be derived from somatic cells and differentiated into any cell type. iPSCs can be capitalized upon to develop personalized regenerative cell products for surfactant protein deficiencies-lethal lung disorders without treatment-that affect a single gene in a single cell type and thus lend themselves to phenotype-specific cell replacement. While the clinical translation has begun, more needs to be learned about the biology of these repair cells to make this translation successful.
Collapse
|
50
|
Long term culture and differentiation of endothelial progenitor like cells from rat adipose derived stem cells. Cytotechnology 2017; 70:397-413. [PMID: 29264678 DOI: 10.1007/s10616-017-0155-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
The procedure of obtaining qualified endothelial progenitor cells (EPCs) is still unclear and there has been some controversy on their biological properties and time of emergence. In this study, we used long-term culture of Adipose Derived Stem Cells (ADSCs) in an endothelial induction medium to obtain endothelial progenitor-like cells, and investigated the features of a few surface markers and the physiologic functions of the cells produced. In order to achieve our aim, rat ADSCs were isolated and cultured in an endothelial basal medium (EBM2), supplemented with an endothelial growth medium (EGM2). The cells were cultured 1 week for short-time, 2 weeks for mid-time, and 3 weeks for long-time cultures. Morphological changes were monitored by phase contrast and electron microscopy. The expressions of a few endothelial progenitor cells markers were analyzed by real-time RT-PCR. Low-density lipoprotein uptake and lectin binding assay were also performed for functional characterization. After induction, ADSCs showed changes in morphology from spindle-shaped in the first week to cobblestone-shaped during the next 2 weeks. Then, endothelial cell phenotype was defined by the presence of Weibel-Palade bodies in the cytoplasm and tube formation, without the use of Matrigel in the third week. In keeping with gene expression analysis, VEGFR-2 showed significant expression during early stages of endothelial differentiation for up to 3 weeks. A significantly increased expression of Tie2 was observed on day 21. Likewise, VE-Cadherin, CD34, CD133, WVF and CD31 were not significantly expressed within the same period of time. Endothelial differentiated cells also showed little LDL uptake and little to no lectin binding during the first 2 weeks of induction. However, high LDL uptake and lectin binding were observed in the third week. It appears that long term culture of ADSCs in EGM2 leads to significantly increased expression of some endothelial progenitor cells markers, strong DiI-ac-LDL uptake, lectin binding and tube-like structure formation in endothelial differentiated cells. Therefore, selection of an appropriate culture time and culture medium is crucial for establishing an efficient route to obtain sufficient numbers of EPCs with optimized quantity and quality.
Collapse
|