1
|
Yew YW, Loh M, Brown SJ. Understanding Atopic Dermatitis in Asian and European Population Cohorts Using Complementary Omics Techniques. J Invest Dermatol 2025; 145:1283-1293. [PMID: 39503693 DOI: 10.1016/j.jid.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Atopic dermatitis is highly heterogeneous with respect to pathogenesis, clinical manifestations, and treatment response. There is evidence that ancestry and skin type each contribute to this heterogeneity, indicating the need to improve understanding of disease mechanisms in diverse populations. Methods to integrate multiomics studies have been well-described, but this review focuses on the importance and the strategies needed to integrate data across different ancestral groups, focusing, because of data availability, on Asian and European populations. Skin scientists and clinicians will each benefit from an understanding of how the multiple complimentary layers of omics data may inform future clinical management, from insight into disease pathogenesis and treatment targets.
Collapse
Affiliation(s)
- Yik Weng Yew
- National Skin Centre, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Marie Loh
- National Skin Centre, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sara J Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Department of Dermatology, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Khani N, Bonyadi M, Soleimani RA, Raziabad RH, Ahmadi M, Homayouni-Rad A. Postbiotics: As a Promising Tools in the Treatment of Celiac Disease. Probiotics Antimicrob Proteins 2025; 17:1513-1522. [PMID: 39673575 DOI: 10.1007/s12602-024-10416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Celiac disease (CD) can be considered an autoimmune problem, a disease caused by gluten sensitivity in the body. Gluten is found in foods such as barley, wheat, and rye. This ailment manifests in individuals with hereditary susceptibility and under the sway of environmental stimulants, counting, in addition to gluten and intestinal microbiota dysbiosis. Currently, the only recommended treatment for this condition is to follow a gluten-free diet for life. In this review, we scrutinized the studies of recent years that focused on the use of postbiotics in vitro and in vivo in CD. The investigation of postbiotics in CD could be intriguing to observe their diverse effects on several pathways. This study highlights the definitions, characteristics, and safety issues of postbiotics and their possible biological role in the prevention and treatment of CD, as well as their application in the food and drug industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Roya Abedi Soleimani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ahmadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhou YD, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Bozicevich A, Juengel B, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. Mucosal Immunol 2025:S1933-0219(25)00050-9. [PMID: 40398680 DOI: 10.1016/j.mucimm.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/21/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The REG/Reg gene locus encodes a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in humans and mice, the pancreas and gut differed in REG/Reg isoform levels and preferences, with the duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, in pancreatic ductal adenocarcinoma and pancreatitis models, only inducible Reg members were upregulated in the pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG/Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
Affiliation(s)
- Yixuan D Zhou
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Macy R Komnick
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Grace Liu
- The College, University of Chicago, Chicago, IL, USA
| | - Elida Nieves-Ortiz
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Kelsey Meador
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Aliia Fatkhullina
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Asha Bozicevich
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Braden Juengel
- The Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Paulina M Naydenkov
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Johnathan Kent
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | | | | | - Piotr Witkowski
- The Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Daria Esterházy
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Qin J, Zhu W, Zhou W. Navigating the Paradox of IL-22: Friend or Foe in Hepatic Health? J Gastroenterol Hepatol 2025. [PMID: 40358483 DOI: 10.1111/jgh.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/11/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Interleukin-22 (IL-22), a cytokine from the IL-10 family produced by T cells and innate lymphoid cells, plays a crucial role in immune responses and tissue regeneration. Its association with liver disease has garnered significant attention; however, its exact impact remains controversial. This review aims to enhance the current understanding of the dual role of IL-22 in liver disease by exploring its protective and pathogenic effects. First, we provide an overview of IL-22 biology, including its source, receptors, and signaling pathways. Subsequently, we offer a comprehensive overview of the dual function of IL-22 in non-neoplastic liver disease, emphasizing its antiapoptotic and regenerative properties. We also discuss the applicability of the conclusions drawn from studies on nonalcoholic fatty liver disease to metabolic dysfunction-associated steatotic liver disease. Furthermore, we elaborate on the intricate role of IL-22 in hepatocellular carcinoma, particularly its influence on the tumor microenvironment, proliferation, and immune evasion. In conclusion, IL-22 is paradoxical in liver disease, acting as a friend and foe. It is imperative to understand this paradox to develop targeted therapies that capitalize on the beneficial effects of IL-22 while mitigating its detrimental effects.
Collapse
Affiliation(s)
- Jianqi Qin
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Weixiong Zhu
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Wence Zhou
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Liu S, Zhao R, Zang Y, Huang P, Zhang Q, Fan X, Bai J, Zheng X, Zhao S, Kuai D, Gao C, Wang Y, Xue F. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol Cell Biochem 2025; 480:3147-3160. [PMID: 39690293 PMCID: PMC12048457 DOI: 10.1007/s11010-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59 ± 23.72 pg/mL) compared to the control group (27.47 ± 8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, 313002, Zhejiang, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Qingdao Municipal Hospital, Shandong, 266071, China
| | - Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junyi Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
6
|
Ramani N, Patwardhan RS, Checker R, Singh B, Morjaria S, Kumar BK, Gurjar M, Gota V, Sharma D. Preclinical evaluation of sodium copper chlorophyllin: safety, pharmacokinetics, and therapeutic potential in breast cancer chemotherapy and cyclophosphamide-induced bladder toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04112-z. [PMID: 40274623 DOI: 10.1007/s00210-025-04112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Sodium copper chlorophyllin (chlorophyllin, CHL), a semi-synthetic water-soluble derivative of green plant pigment chlorophyll, is associated with potential health benefits; however, systematic preclinical evaluation of its pharmacological and therapeutic potential remains limited. This study investigates safety, toxicology, pharmacokinetics, and efficacy of CHL as an adjunct to breast cancer chemotherapy. Acute and sub-acute oral toxicity of CHL was assessed in mice and rats under Good Laboratory Practice (GLP) conditions following OECD guidelines. Anti-cancer effects and mechanisms were evaluated in 4 T1mouse breast cancer cells using viability assays, colony formation analysis, and proteomics. Cyclophosphamide (CYP)-induced painful bladder syndrome (PBS) was studied in C57BL/6 female mice. In acute toxicity study, up to 5000 mg/kg bw of CHL was well tolerated without any signs of toxicity and death. In the sub-acute toxicity study, no features suggestive of drug-induced toxicity indicated No-Observed Adverse Effect Level (NOAEL) to be beyond 1000 mg/kg bw. CHL showed wide biodistribution, achieving sustained therapeutic concentrations in target tissues. CHL enhanced the anti-proliferative and cytotoxic effects of CYP in 4 T1 breast cancer cells, and proteomics studies revealed disruption in DNA damage repair, microtubule dynamics, and mitochondrial biogenesis, leading to apoptosis. CHL (100 mg/kg bw, oral) showed significant therapeutic benefit for treatment of CYP induced PBS. CHL alleviated PBS symptoms by restoring IL- 22 levels, reducing oxidative stress, and improving bladder functionality. Chlorophyllin appears to be relatively safe even at high doses, demonstrates potentially favorable pharmacology, and may hold promise for mitigating CYP-induced bladder toxicity and enhancing chemotherapy efficacy.
Collapse
Affiliation(s)
- Neha Ramani
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Babita Singh
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Shruti Morjaria
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Binita K Kumar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre (ACTREC-TMC), Kharghar, Navi Mumbai, 410210, India
| | - Vikram Gota
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre (ACTREC-TMC), Kharghar, Navi Mumbai, 410210, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
7
|
Fu L, Yokus B, Gao B, Pacher P. An Update on IL-22 Therapies in Alcohol-Associated Liver Disease and Beyond. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00117-8. [PMID: 40254130 DOI: 10.1016/j.ajpath.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
Excessive alcohol consumption drives the development of alcohol-associated liver disease (ALD), including steatohepatitis, cirrhosis, and hepatocellular carcinoma, and its associated complications, such as hepatorenal syndrome. Hepatocyte death, inflammation, and impaired liver regeneration are key processes implicated in the pathogenesis and progression of ALD. Despite extensive research, therapeutic options for ALD remain limited. IL-22 has emerged as a promising therapeutic target because of its hepatoprotective properties mediated through the activation of the STAT3 signaling pathway. IL-22 enhances hepatocyte survival by mitigating apoptosis, oxidative stress, and inflammation while simultaneously promoting liver regeneration through the proliferation of hepatocytes and hepatic progenitor cells and the up-regulation of growth factors. Additionally, IL-22 exerts protective effects on epithelial cells in various organs affected by ALD and its associated complications. Studies from preclinical models and early-phase clinical trials of IL-22 agonists, such as F-652 and UTTR1147A, have shown favorable safety profiles, good tolerability, and encouraging efficacy in reducing liver injury and promoting regeneration. However, the heterogeneity and multifactorial nature of ALD present ongoing challenges. Further research is needed to optimize IL-22-based therapies and clarify their roles within a comprehensive approach to ALD management. This review summarizes the current understanding of IL-22 biology and its role in ALD pathophysiology and ALD-associated complications along with therapeutic application of IL-22, potential benefits, and limitations.
Collapse
Affiliation(s)
- Lihong Fu
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Burhan Yokus
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| |
Collapse
|
8
|
Li L, Liu J, Lu J, Wu J, Zhang X, Ma T, Wu X, Zhu Q, Chen Z, Tai Z. Interventions in cytokine signaling: novel horizons for psoriasis treatment. Front Immunol 2025; 16:1573905. [PMID: 40303401 PMCID: PMC12037536 DOI: 10.3389/fimmu.2025.1573905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Intricate interactions between immune cells and cytokines define psoriasis, a chronic inflammatory skin condition that is immunological-mediated. Cytokines, including interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, and transforming growth factor-β (TGF-β), are essential for controlling cellular activity and immunological responses, maintaining homeostasis and contributing to the pathogenesis of psoriasis. These molecules modulate the immune microenvironment by either promoting or suppressing inflammation, which significantly impacts therapeutic outcomes. Recent research indicates that treatment strategies targeting cytokines and chemokines have significant potential, offering new approaches for regulating the immune system, inhibiting the progression of psoriasis, and reducing adverse effects of traditional therapies. This review consolidates current knowledge on cytokine and chemokine signaling pathways in psoriasis and examines their significance in treatment. Specific attention is given to cytokines like IL-17, IL-23, and TNF-α, underscoring the necessity for innovative therapies to modulate these pathways and address inflammatory processes. This review emphasizes the principal part of cytokines in the -pathological process of psoriasis and explores the challenges and opportunities they present for therapeutic intervention. Furthermore, we examine recent advancements in targeted therapies, with a particular focus on monoclonal antibodies, in ongoing research and clinical trials.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Saini A, Hopkins LS, Serna VA, McCullen MVD, Selner NG, Bhattarai B, Fachi JL, Glynn R, Hayer KE, Bassing CH, Colonna M, Oltz EM. Cell type-specific enhancers regulate IL-22 expression in innate and adaptive lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646834. [PMID: 40291691 PMCID: PMC12026504 DOI: 10.1101/2025.04.02.646834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
IL-22, a signature cytokine of type 3 lymphoid cells, mediates epithelial homeostasis and protective pathogen responses in barrier tissues, while its deregulated expression drives chronic inflammation associated with colitis and psoriasis. Despite its therapeutic value, little is known about regulatory elements for IL-22 expression. We identify two conserved enhancers, E22-1 and E22-2, which differentially regulate Il22 in type 3 lymphoid subsets. These enhancers are required for steady-state expression of gut antimicrobial peptides, protection from C. rodentium infection, and development of IL-22-mediated psoriasis. E22-1 resembles many known enhancers, functioning in both Th-ILC counterparts. However, E22-2 is only required for IL-22 expression in ILC3s. Its ILC3 restriction relies on multiple Runx3 sites, combined with the lack of a functional RORγt motif, which is present in E22-1. Thus, although responding to similar stimuli, type 3 lymphoid cells use distinct cis-elements for IL-22 expression, with E22-2 likely serving as a homeostatic enhancer in barrier tissues.
Collapse
|
10
|
Xiang L, Yin G, Gong Z, Lv X, Feng C, Liu L, Abdu FA, Shi T, Zhang W, Alifu J, Xu X, Dai Y, Che W, Weng X. IL-22 Attenuates Pressure Overload-Induced Heart Failure and Inflammation. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10613-2. [PMID: 40195212 DOI: 10.1007/s12265-025-10613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Heart failure (HF) due to left ventricular (LV) dysfunction remains a major global health challenge, with inflammation driving its progression under chronic pressure overload, such as hypertension. This study explored the role of interleukin-22 (IL-22), a cytokine associated with tissue protection, in HF induced by transverse aortic constriction (TAC). IL-22 knockout (KO) mice exhibited exacerbated HF, marked by worsened LV hypertrophy, heightened inflammation, and impaired cardiac function compared to wild-type controls. Conversely, treatment with recombinant IL-22Fc improved LV function, reduced inflammatory cell infiltration, and alleviated cardiac remodeling and inflammation. These findings demonstrate that IL-22 plays a critical role in regulating inflammation and cardiac remodeling in pressure overload-induced HF. Targeting IL-22 may represent a promising therapeutic strategy to alleviate HF progression and associated pulmonary complications.
Collapse
Affiliation(s)
- Lanqing Xiang
- Department of Cardiology, Clinical Medical College of Shanghai Tenth People'S Hospital, Nanjing Medical University, Shanghai, China
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zifan Gong
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, China
| | - Xian Lv
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cailin Feng
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Shi
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiasuer Alifu
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojiang Xu
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yuxiang Dai
- Department of Cardiology, State Key Laboratory of Cardiovascular Diseases, Shanghai Institute of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases China, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wenliang Che
- Department of Cardiology, Clinical Medical College of Shanghai Tenth People'S Hospital, Nanjing Medical University, Shanghai, China.
- Department of Cardiology, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, China.
| | - Xinyu Weng
- Department of Cardiology, State Key Laboratory of Cardiovascular Diseases, Shanghai Institute of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases China, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Støy S, D'Alessio S, Sandahl TD, Dige A, Kjølbye AL, Jorgensen R, Danese S, van de Bunt M. Lipidated IL-22 Alone or Combined with Immunomodulatory Agents Improves Disease Endpoints and Promotes Mucosal Healing in a Mouse Model of Chronic Dextran Sodium Sulfate-Induced Colitis. Dig Dis Sci 2025:10.1007/s10620-025-09007-w. [PMID: 40138118 DOI: 10.1007/s10620-025-09007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND IL-22 facilitates mucosal healing by directly inducing epithelial regeneration and barrier integrity, which is essential for achieving remission and thereby treating inflammatory bowel disease. AIMS Here, we evaluated efficacy of a novel lipidated IL-22 alone and in combination with immunomodulatory agents in addressing chronic dextran sodium sulfate (DSS)-induced colitis in mice and demonstrated action of IL-22 on mucosal healing. METHODS Mice were treated with DSS, followed by various doses of lipidated IL-22, anti-TNF antibody, fingolimod, or anti-mouse α4β7 integrin antibody. Additionally, gene expression was determined in colonic biopsies from ulcerative colitis patients to assess effects of IL-22 stimulation. RESULTS Lipidated IL-22 significantly improved all aspects of chronic DSS-induced colitis in mice, with dose-dependent efficacy. Combinations of a range of immunomodulatory agents with lipidated IL-22 showed further additive reductions in disease activity, significantly greater than those of monotherapies. Immunohistochemistry revealed that lipidated IL-22 increased epithelial cell proliferation and reduced CD3+ T-cell infiltration, indicating enhanced mucosal healing. This was further supported gene expression data from colonic biopsies from ulcerative colitis patients after IL-22 stimulation. CONCLUSIONS Given the challenges in achieving long-term remission in IBD due to inflammation and mucosal damage, lipidated IL-22 presents a promising treatment option that directly promotes mucosal healing, unlike traditional immunomodulatory therapies.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Thomas Damgaard Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Hospital, Milan, Italy
- IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
12
|
Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J, Liu Y. Neutrophils in colorectal cancer: mechanisms, prognostic value, and therapeutic implications. Front Immunol 2025; 16:1538635. [PMID: 40092983 PMCID: PMC11906667 DOI: 10.3389/fimmu.2025.1538635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve as the first defense line against infection and are also significantly involved in the initiation and progression of cancer. In colorectal cancer (CRC), neutrophils exhibit a dual function by promoting tumor events and exerting antitumor activity, which is related to the heterogeneity of neutrophils. The neutrophil extracellular traps (NETs), gut microbiota, and various cells within the tumor microenvironment (TME) are involved in shaping the heterogeneous function of neutrophils. This article provides an updated overview of the complex functions and underlying mechanisms of neutrophils in CRC and their pivotal role in guiding prognosis assessment and therapeutic strategies, aiming to offer novel insights into neutrophil-associated treatment approaches for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Chi F, Zhang Q, Shay JE, Hoeve JT, Yuan Y, Yang Z, Shin H, Solanki S, Shah YM, Agudo J, Yilmaz ÖH. Dietary cysteine enhances intestinal stemness via CD8 + T cell-derived IL-22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638423. [PMID: 39990373 PMCID: PMC11844450 DOI: 10.1101/2025.02.15.638423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A critical question in physiology is understanding how tissues adapt and alter their cellular composition in response to dietary cues. The mammalian small intestine, a vital digestive organ that absorbs nutrients, is maintained by rapidly renewing Lgr5+ intestinal stem cells (ISCs) at the intestinal crypt base. While Lgr5+ ISCs drive intestinal adaptation by altering self-renewal and differentiation divisions in response to diverse diets such as high-fat diets and fasting regimens, little is known about how micronutrients, particularly amino acids, instruct Lgr5+ ISC fate decisions to control intestinal homeostasis and repair after injury. Here, we demonstrate that cysteine, an essential amino acid, enhances the ability of Lgr5+ ISCs to repair intestinal injury. Mechanistically, the effects of cysteine on ISC-driven repair are mediated by elevated IL-22 from intraepithelial CD8αβ+ T cells. These findings highlight how coupled cysteine metabolism between ISCs and CD8+ T cells augments intestinal stemness, providing a dietary approach that exploits ISC and immune cell crosstalk for ameliorating intestinal damage.
Collapse
Affiliation(s)
- Fangtao Chi
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Jessica E.S. Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yin Yuan
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Zhenning Yang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
| | - Sumeet Solanki
- Molecular & Integrative Physiology Department and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology Department and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Boston, MA 02215, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA 02139, USA
- Department of Pathology, Beth Israel Deaconess Medical Center and Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Zhang Z, Wang J, Li H, Niu Q, Tao Y, Zhao X, Zeng Z, Dong H. The role of the interleukin family in liver fibrosis. Front Immunol 2025; 16:1497095. [PMID: 39995661 PMCID: PMC11847652 DOI: 10.3389/fimmu.2025.1497095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis represents a wound-healing response to chronic liver injury caused by viral infections, alcohol, and chemicals agents. It is a critical step in the progression from chronic liver disease to cirrhosis and hepatocellular carcinoma. No chemical or biological drugs have been approved for the treatment of liver fibrosis. Relevant studies have demonstrated that effective inhibition of hepatitis B virus (HBV) replication by nucleoside (acid) analogs or polyethylene glycol alpha-interferon can lead to recovery in some patients with hepatitis B liver fibrosis, However, some patients with liver fibrosis do not show improvement, even after achieving a complete serologic and virologic response. A similar situation occurs in patients with hepatitis C-related liver fibrosis. The liver, with its unique anatomical and immunological structure, is the largest immune organ and produces a large number of cytokines in response to external stimuli, which are crucial for the progression of liver fibrosis. cytokines can act either by directly affecting hepatic stellate cells (HSCs) or by indirectly regulating immune target cells. Among these, the interleukin family activates a complex cascade of responses, including cytokines, chemokines, adhesion molecules, and lipid mediators, playing a key role in the initiation and regulation of inflammation, as well as innate and adaptive immunity. In this paper, we systematically summarize recent literature to elucidate the pathogenesis of interleukin-mediated liver fibrosis and explore potential therapeutic targets for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zixin Zhang
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujing Tao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijian Zeng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijian Dong
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Tian B, Xu X, Li L, Tian Y, Liu Y, Mu Y, Lu J, Song K, Lv J, He Q, Zhong W, Xia H, Lan C. Epigenetic Insights Into Necrotizing Enterocolitis: Unraveling Methylation-Regulated Biomarkers. Inflammation 2025; 48:236-253. [PMID: 38814387 PMCID: PMC11807086 DOI: 10.1007/s10753-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Necrotizing enterocolitis (NEC) is a multifactorial gastrointestinal disease with high morbidity and mortality among premature infants. This study aimed to identify novel methylation-regulated biomarkers in NEC intestinal tissue through multiomics analysis. We analyzed DNA methylation and transcriptome datasets from ileum and colon tissues of patients with NEC. We identify methylation-related differential genes (MrDEGs) based on the rule that the degree of methylation in the promoter region is inversely proportional to RNA transcription. These MrDEGs included ADAP1, GUCA2A, BCL2L14, FUT3, MISP, USH1C, ITGA3, UNC93A and IL22RA1. Single-cell data revealed that MrDEGs were mainly located in the intestinal epithelial part of intestinal tissue. These MrDEGs were verified through Target gene bisulfite sequencing and RT-qPCR. We successfully identified and verified the ADAP1, GUCA2A, IL22RA1 and MISP, primarily expressed in intestinal epithelial villus cells through single-cell data. Through single-gene gene set enrichment analysis, we found that these genes participate mainly in the pathological process of T-cell differentiation and the suppression of intestinal inflammation in NEC. This study enhances our understanding of the pathogenesis of NEC and may promote the development of new precision medicine methods for NEC prediction and diagnosis.
Collapse
Affiliation(s)
- Bowen Tian
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaogang Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Lin Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Yan Tian
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Yide Mu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Jieting Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Song
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Junjian Lv
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| | - Huimin Xia
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| | - Chaoting Lan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Wei X, Sui K, Peng Y, Li S, Fang Y, Chen Z, Du X, Xie X, Tang H, Wen Q, Li J, He M, Cheng Q, Zhang W. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Loaded Mir-29-3p Targets AhR to Improve Juvenile Idiopathic Arthritis via Inhibiting the Expression of IL-22 in CD4 + T Cell. Stem Cell Rev Rep 2025; 21:536-553. [PMID: 39621151 DOI: 10.1007/s12015-024-10827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children. Human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (HUCMSCs-Exos) are involved in autoimmune diseases. This study investigates the mechanism of HUCMSC-Exos in improving JIA by targeting AhR through delivery of miR-29-3p to inhibit IL-22 expression in CD4+ T cells. METHODS Collagen induced arthritis (CIA) mouse model was established, and mice were treated with HUCMSCs-Exos and miR-29-3p antagomir, respectively. CD4+ T cells from JIA patients were used for cell experiments. The mechanism was elucidated by histopathological staining, transmission electron microscopy (TEM), immunohistochemistry, CCK-8 assay, flow cytometry, Western blotting, real-time PCR, and enzyme-linked immunosorbent assay (ELISA), laser confocal microscopy, and luciferase assay. RESULT JIA-CD4+ T cells showed higher expression of IL-22 and lower the levels of miR-29-3p, while HUCMSCs-Exos significantly inhibited the expression of IL-22 and increased the levels of miR-29a-3p, miR-29b-3p, and miR-29c-3p in CD4+ T cells from JIA patients. The expression of miR-29a-3p, miR-29b-3p, miR-29c-3p, AhR, and IL-22 in CD4+ T cells was significantly reversed when co-cultured with HUCMSCs transfected with miR-29-3p mimic or miR-29-3p inhibitor. In vivo experiment, HUCMSCs-Exos ameliorated CIA mice by delivering miR-29-3p to inhibit AhR, IL-22, IL-22R1, MMP3, and MMP13 expression. Furthermore, HUCMSCs-Exos also deliver miR-29-3p targeting AhR expression to inhibit IL-22 in JIA-CD4 + T cells through alleviating arthritic synovial fibroblast activation. CONCLUSION HUCMSCs-Exos loaded miR-29-3p targets AhR to improve JIA via inhibiting the expression of IL-22 in CD4+ T cell, which provides a scientific basis for the treatment of JIA.
Collapse
Affiliation(s)
- Xinyi Wei
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kunpeng Sui
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuanyuan Peng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sha Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Fang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhi Chen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiao Du
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xue Xie
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haiming Tang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - QiuYue Wen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - JingWei Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Meilin He
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Cheng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Zhang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chief Physician, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No.1617, Riyue Avenue, Qingyang District, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
18
|
Liu Y, Lui KS, Ye Z, Chen L, Cheung AKL. Epstein-Barr Virus BRRF1 Induces Butyrophilin 2A1 in Nasopharyngeal Carcinoma NPC43 Cells via the IL-22/JAK3-STAT3 Pathway. Int J Mol Sci 2024; 25:13452. [PMID: 39769218 PMCID: PMC11677325 DOI: 10.3390/ijms252413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Epstein-Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
Collapse
Affiliation(s)
- Yue Liu
- Medical School, Fuyang Normal University, Fuyang 236000, China;
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Ka Sin Lui
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Zuodong Ye
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China;
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| |
Collapse
|
19
|
Mullish BH, Thursz MR. Alcohol-associated liver disease: Emerging therapeutic strategies. Hepatology 2024; 80:1372-1389. [PMID: 38922808 DOI: 10.1097/hep.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The large and growing burden of alcohol-associated liver disease-and the considerable burden of morbidity and mortality associated with it-has been a drive toward ongoing research into novel strategies for its treatment, with a particular focus upon alcohol-associated hepatitis (AH). Management of alcohol-use disorder forms the central pillar of alcohol-associated liver disease care, with evidence-based psychological and pharmacological approaches being well established, and certain models demonstrating improved clinical outcomes when hepatology and addiction services are co-located. Corticosteroids have previously been used somewhat indiscriminately in patients with severe AH, but effective tools now exist to assess early response (and limit futile ongoing exposure). Techniques to predict risk of corticosteroid-related infection are also available, although current clinical strategies to mitigate this risk are limited. A variety of novel therapeutic approaches to AH are at different phases of trials and evidence gathering, with some of the most promising signals related to cytokine manipulation, epigenetic modulation, and targeting of the gut microbiota (ie, by means of fecal microbiota transplant). While remaining an ongoing source of debate, early liver transplant in severe AH has grown in interest and acceptability over the past decade as evidence supporting its efficacy builds, in the process challenging paradigms about mandatory pretransplant sobriety periods. However, uncertainty remains regarding the optimal selection criteria, and whether liver transplant has a role for only a highly limited proportion of patients with AH or more widespread application. This review aims to provide an overview of this fast-moving field.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
20
|
Dean LS, Threatt AN, Jones K, Oyewole EO, Pauly M, Wahl M, Barahona M, Reiter RW, Nordgren TM. I don't know about you, but I'm feeling IL-22. Cytokine Growth Factor Rev 2024; 80:1-11. [PMID: 39537498 PMCID: PMC12097143 DOI: 10.1016/j.cytogfr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Defense of the human body against damaging and pathogenic insults is a heavily regulated affair. A primary mechanism of defense at sites of insult are soluble mediators whose defensive maneuvers increase barrier integrity and promote pro-reparative and resolution processes. IL-22 is a cytokine in the IL-10 cytokine family that has garnered increased attention in recent years due to its intimate link in promoting resolution of inflammatory insults, while simultaneously being over expressed in certain fibrotic and chronic inflammatory-skewed diseases. The spatial action of IL-22 centers around the barrier sites of the body, including the skin, lungs, and gut mucosa. As such, a detailed understanding of the role of this cytokine, the producers and responders, and the diseases resulting from over- or under-expression have prominent impacts on a variety of disease outcomes. Herein we present a comprehensive review of IL-22; from historical perspectives and initial discovery, as well as more recent data that dramatically expands on the cellular sources and impact of this cytokine. We aim to showcase the duality of IL-22 and highlight addressable gaps in the field of IL-22 crosstalk and impacts at the ever-important mucosal and tissue barrier sites.
Collapse
Affiliation(s)
- Logan S Dean
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Alissa N Threatt
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Kaylee Jones
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Emmanuel O Oyewole
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Morgan Pauly
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Maëlis Wahl
- Department of Biochemistry and Molecular Biology, Colorado State University, CO 80521, United States
| | - Melea Barahona
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Rose W Reiter
- Department of Molecular, Cellular, and Integrative Neuroscience, Colorado State University, CO 80521, United States
| | - Tara M Nordgren
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States.
| |
Collapse
|
21
|
Wang K, Nie Y, Maguire C, Syphurs C, Sheen H, Karoly M, Lapp L, Gygi JP, Jayavelu ND, Patel RK, Hoch A, Corry D, Kheradmand F, McComsey GA, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, Davis MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Hafler DA, Shaw A, Rahman A, Hough CL, Geng LN, Ozonoff A, Haddad EK, Reed EF, van Bakel H, Kim-Schultz S, Krammer F, Wilson M, Eckalbar W, Bosinger S, Langelier CR, Sekaly RP, Montgomery RR, Maecker HT, Krumholz H, Melamed E, Steen H, Pulendran B, Augustine AD, Cairns CB, Rouphael N, Becker PM, Fourati S, Shannon CP, Smolen KK, Peters B, Kleinstein SH, Levy O, Altman MC, Iwasaki A, Diray-Arce J, Ehrlich LIR, Guan L. Unraveling SARS-CoV-2 Host-Response Heterogeneity through Longitudinal Molecular Subtyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624784. [PMID: 39651165 PMCID: PMC11623532 DOI: 10.1101/2024.11.22.624784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hospitalized COVID-19 patients exhibit diverse immune responses during acute infection, which are associated with a wide range of clinical outcomes. However, understanding these immune heterogeneities and their links to various clinical complications, especially long COVID, remains a challenge. In this study, we performed unsupervised subtyping of longitudinal multi-omics immunophenotyping in over 1,000 hospitalized patients, identifying two critical subtypes linked to mortality or mechanical ventilation with prolonged hospital stay and three severe subtypes associated with timely acute recovery. We confirmed that unresolved systemic inflammation and T-cell dysfunctions were hallmarks of increased severity and further distinguished patients with similar acute respiratory severity by their distinct immune profiles, which correlated with differences in demographic and clinical complications. Notably, one critical subtype (SubF) was uniquely characterized by early excessive inflammation, insufficient anticoagulation, and fatty acid dysregulation, alongside higher incidences of hematologic, cardiac, and renal complications, and an elevated risk of long COVID. Among the severe subtypes, significant differences in viral clearance and early antiviral responses were observed, with one subtype (SubC) showing strong early T-cell cytotoxicity but a poor humoral response, slower viral clearance, and greater risks of chronic organ dysfunction and long COVID. These findings provide crucial insights into the complex and context-dependent nature of COVID-19 immune responses, highlighting the importance of personalized therapeutic strategies to improve both acute and long-term outcomes.
Collapse
|
22
|
Sajiir H, Ramm GA, Macdonald GA, McGuckin MA, Prins JB, Hasnain SZ. Harnessing IL-22 for metabolic health: promise and pitfalls. Trends Mol Med 2024:S1471-4914(24)00283-1. [PMID: 39578121 DOI: 10.1016/j.molmed.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Primarily perceived as an anti-inflammatory and antimicrobial mediator in mucosa and skin, interleukin-22 (IL-22) has emerged as a pivotal metabolic regulator. Central to IL-22 signaling is its receptor, IL-22RA1. Through IL-22RA1, IL-22 orchestrates glucose homeostasis by modulating insulin secretion, reducing cellular stress in pancreatic islets, promoting beta-cell regeneration, and influencing hepatic glucose and lipid metabolism. These actions suggest its potential as a therapeutic for metabolic dysfunctions like diabetes, obesity, and steatohepatitis. However, clinical applications of IL-22 face challenges related to off-target effects and safety concerns. This review explores IL-22's physiological roles, regulatory mechanisms, and profound influence on metabolic tissues. It also underscores IL-22's dual role in metabolic health and disease, advocating further research to harness its therapeutic potential.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michael A McGuckin
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Johannes B Prins
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Health Translation Queensland, UQ Oral Health Building, Herston, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
23
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Nguyen HH, Talbot J, Li D, Raghavan V, Littman DR. Modulating intestinal neuroimmune VIPergic signaling attenuates the reduction in ILC3-derived IL-22 and hepatic steatosis in MASLD. Hepatol Commun 2024; 8:e0528. [PMID: 39761015 PMCID: PMC11495769 DOI: 10.1097/hc9.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine. Given the described hepatoprotective role of IL-22, we hypothesize that modulation of this neuroimmune circuit could potentially be an innovative approach for the control of liver steatosis. METHODS We used a model of diet-induced MASLD by exposing mice to a high-fat diet (HFD) for 16 weeks, when the development of liver steatosis was first observed in our animals. We characterized IL-22 production by intestinal ILC3 at this dietary endpoint. We then evaluated whether communication between VIP-neurons and ILC3 affected IL-22 production and MASLD development by exposing mice with a conditional genetic deletion of Vipr2 in ILC3 (Rorc(t)CreVipr2fl/fl) to the HFD. We also performed intermittent global inhibition of VIP-neurons using a chemogenetic inhibitory approach (VipIres-CrehM4DiLSL) in HFD-fed mice. RESULTS Production of IL-22 by intestinal ILC3 is reduced in steatotic mice that were exposed to an HFD for 16 weeks. Targeted deletion of VIP receptor 2 in ILC3 resulted in higher production of IL-22 in ILC3 and was associated with a significant reduction in liver steatosis in mice under HFD. Global inhibition of VIP-producing neurons also resulted in a significant reduction in liver steatosis. CONCLUSIONS Modulating VIPergic neuroimmune signaling can ameliorate the development of hepatic steatosis induced by a surplus of fat ingestion in the diet. This neuroimmune pathway should be further investigated as a potential therapeutic avenue in MASLD.
Collapse
Affiliation(s)
- Henry H. Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
- Department of Medicine and Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jhimmy Talbot
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Dayi Li
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Varsha Raghavan
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Dan R. Littman
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
25
|
Ouyang H, Wei S, Gao B, Qian X, Chen Y, Lu J, Ding Y, Mao Z, Du Y, Wang W. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401499. [PMID: 39082407 DOI: 10.1002/smll.202401499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/08/2024]
Abstract
Hepatocellular injury, a pivotal contributor to liver diseases, particularly hepatitis, lacks effective pharmacological treatments. Interleukin-22 (IL-22), crucial for liver cell survival, shows potential in treating liver diseases by regulating repair and regeneration through signal transducer and activator of transcription 3 (STAT3) activation. However, the short half-life and off-target effects limit its clinical applications. To address these issues, lipid nanoparticles are employed to deliver synthetic IL-22 mRNA (IL-22/NP) for in situ IL-22 expression in hepatocytes. The study reveals that IL-22/NP exhibits liver-targeted IL-22 expression, with increased IL-22 levels detected in the liver as early as 3 h postintravenous injection, lasting up to 96 h. Furthermore, IL-22/NP activates STAT3 signaling in an autocrine or paracrine manner to upregulate downstream factors Bcl-xL and CyclinD1, inhibiting hepatocyte apoptosis and promoting cell proliferation. The therapeutic efficacy of IL-22/NP is demonstrated in both chronic and acute liver injury models, suggesting IL-22 mRNA delivery as a promising treatment strategy for hepatitis and liver diseases involving hepatocellular injury.
Collapse
Affiliation(s)
- Hanxiang Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Jingxiong Lu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Zhejiang Laboratory, Kechuang Ave., Yuhang District, Hangzhou, 311100, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
26
|
Zhou Y, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619139. [PMID: 39484594 PMCID: PMC11526982 DOI: 10.1101/2024.10.18.619139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The REG / Reg gene locus encodes for a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in human and mouse, pancreas and gut differed in REG / Reg isoform levels and preferences, with duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, also in models of pancreatic-ductal adenocarcinoma and pancreatitis, only inducible Reg members were upregulated in pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG / Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
|
27
|
Liao B, Chen W, Qi X, Yun C, Pang Y. Interleukin-22 improves ovulation in polycystic ovary syndrome via STAT3 signaling. Mol Hum Reprod 2024; 30:gaae037. [PMID: 39423135 DOI: 10.1093/molehr/gaae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease, which leads to serious impairment of reproductive health in women of child-bearing age. Anovulation or oligo-ovulation is a common clinical manifestation of PCOS patients. A disturbance of the ovarian immune microenvironment contributes to the disorders of follicle development and ovulation; however, the underlying mechanism remains unclear. Here we demonstrated the protective effect of immune factor interleukin-22 (IL-22) on PCOS follicle development and ovulation. Follicular IL-22 levels were significantly lower in PCOS patients than in the control group and were positively correlated with oocyte fertilization rate and high-quality embryo rate. Additionally, IL-22 evidently improved follicle development in vitro and promoted ovulation-related gene expression, which was disrupted by the depletion of interleukin-22 receptor 1 (IL-22R1) or inhibition of STAT3 in granulosa cells. This indicates that IL-22 acts through IL-22R1 and the STAT3 signaling pathway to promote follicle development and ovulation in PCOS. In summary, this study has elucidated the vital role of the ovarian immune microenvironment in follicle development and ovulation. Application of IL-22 may provide new insights into the treatment of PCOS patients.
Collapse
Affiliation(s)
- Baoying Liao
- Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
| | - Weixuan Chen
- Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
| | - Xinyu Qi
- Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chuyu Yun
- Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yanli Pang
- Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
28
|
Kuchař M, Sloupenská K, Rašková Kafková L, Groza Y, Škarda J, Kosztyu P, Hlavničková M, Mierzwicka JM, Osička R, Petroková H, Walimbwa SI, Bharadwaj S, Černý J, Raška M, Malý P. Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis. Cell Commun Signal 2024; 22:469. [PMID: 39354587 PMCID: PMC11446014 DOI: 10.1186/s12964-024-01846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A. CONCLUSIONS We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
Collapse
Affiliation(s)
- Milan Kuchař
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jozef Škarda
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 708 00, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Marie Hlavničková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Stephen I Walimbwa
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
29
|
Bochnia-Bueno L, Coelho GM, Cataneo AHD, Zanluca C, Ferreira LH, Cavalcanti LPDG, Clementino MADF, Yaochite JNU, Dos Santos HG, Nogueira MB, Duarte Dos Santos CN, Raboni SM. Assessment of immune responses to a Comirnaty® booster following CoronaVac® vaccination in healthcare workers. Mem Inst Oswaldo Cruz 2024; 119:e230239. [PMID: 39258622 PMCID: PMC11385826 DOI: 10.1590/0074-02760230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and immunisation is variable. OBJECTIVES To describe the humoral immune response by correlating IgA and IgG antibodies with NAbs titration following CoronaVac® immunisation and an mRNA (Comirnaty®) booster among healthcare workers (HCWs) and to compare the cytokine and interleukin profiles between HCWs vaccinated with CoronaVac and coronavirus disease 2019 (COVID-19) infected patients. METHODS Samples from 133 HCWs collected at 20 (T1) and 90 (T2) days after CoronaVac immunisation and 15 (T3) days after a booster dose with the Comirnaty vaccine were analysed for IgA and IgG EIA and neutralisation assay. Cytokine levels from vaccinated individuals at T1 day and COVID-19 patients were compared. FINDINGS Neutralising antibodies (NAbs) were observed in 81.7% of participants at T1, but only 49.2% maintained detectable NAbs after 90 days. The booster dose increased NAbs response in all participants. The cytokines with the highest levels post-vaccination were IL-6 and MCP-1. The MCP-1, IL-18, and IFN- γ levels were higher in COVID-19 patients than in vaccinated HCWs, while IL-22 levels increased in the vaccinated HCWs group. MAIN CONCLUSIONS The neutralisation titres in the T2 samples decreased, and antibody levels detected at T2 showed a more significant reduction than the neutralisation. The higher IL-22 expression in immunised individuals compared to those with COVID-19 suggests that IL-22 may be beneficial in protecting against severe disease.
Collapse
Affiliation(s)
- Lucas Bochnia-Bueno
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | - Gabriela Mattoso Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | | | - Camila Zanluca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Laura Holtman Ferreira
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | | | | | - Juliana Navarro Ueda Yaochite
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Departamento de Análises Clínicas e Toxicologia, Fortaleza, CE, Brasil
| | | | - Meri Bordignon Nogueira
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | | | - Sonia Mara Raboni
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| |
Collapse
|
30
|
Felix FA, Zhou J, Li D, Onodera S, Yu Q. Endogenous IL-22 contributes to the pathogenesis of salivary gland dysfunction in the non-obese diabetic model of Sjögren's syndrome. Mol Immunol 2024; 173:20-29. [PMID: 39018744 PMCID: PMC11343657 DOI: 10.1016/j.molimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Sjӧgren's syndrome is a systemic autoimmune disease primarily targeting the salivary and lacrimal glands. Our previous investigations have shown that administration of interleukin-22 (IL-22), an IL-10 family cytokine known for its complex and context-dependent effects on tissues, either protective- or detrimental, to salivary glands leads to hypofunction and pathological changes of salivary glands in C57BL/6 mice and in non-obese diabetic (NOD) mice, the latter being a commonly used model of Sjӧgren's syndrome. This study aims to delineate the pathophysiological roles of endogenously produced IL-22 in the development of salivary gland pathologies and dysfunction associated with Sjӧgren's disease in the NOD mouse model. Our results reveal that neutralizing IL-22 offered a protective effect on salivary gland function without significantly affecting the immune cell infiltration of salivary glands or the autoantibody production. Blockade of IL-22 reduced the levels of phosphorylated STAT3 in salivary gland tissues of NOD mice, while its administration to salivary glands had the opposite effect. Correspondingly, the detrimental impact of exogenously applied IL-22 on salivary glands was almost completely abrogated by a specific STAT3 inhibitor. Moreover, IL-22 blockade led to a downregulation of protein amounts of Ten-Eleven-Translocation 2, a methylcytosine dioxygenase critical for mediating interferon-induced responses, in salivary gland epithelial cells. IL-22 neutralization also exerted a protective effect on the salivary gland epithelial cells that express high levels of surface EpCAM and bear the stem cell potential, and IL-22 treatment in vitro hampered the survival/expansion of these salivary gland stem cells, indicating a direct negative impact of IL-22 on these cells. In summary, this study has uncovered a critical pathogenic role of the endogenous IL-22 in the pathogenesis of Sjögren's disease-characteristic salivary gland dysfunction and provided initial evidence that this effect is dependent on STAT3 activation and potentially achieved through fostering Tet2-mediated interferon responses in salivary gland epithelial cells and negatively affecting the EpCAMhigh salivary gland stem cells.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States; Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States.
| |
Collapse
|
31
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
32
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
33
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
34
|
Guo C, Boulant S, Stanifer ML. The Role of Interleukin-22 in Controlling Virus Infections at Mucosal Surfaces. J Interferon Cytokine Res 2024; 44:349-354. [PMID: 38868897 DOI: 10.1089/jir.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan Lynn Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Yu D, Yang G, Mo J, Zhang M, Xia H, Gan Z, Lu Y. Identification and functional characterization of interleukin-22 (IL-22) in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109598. [PMID: 38697375 DOI: 10.1016/j.fsi.2024.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Guanjian Yang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Hongli Xia
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
36
|
Sajiir H, Wong KY, Müller A, Keshvari S, Burr L, Aiello E, Mezza T, Giaccari A, Sebastiani G, Dotta F, Ramm GA, Macdonald GA, McGuckin MA, Prins JB, Hasnain SZ. Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis. Nat Commun 2024; 15:4527. [PMID: 38811550 PMCID: PMC11137127 DOI: 10.1038/s41467-024-48320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.
Collapse
Affiliation(s)
- Haressh Sajiir
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexandra Müller
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lucy Burr
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD, Australia
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Michael A McGuckin
- School of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Johannes B Prins
- Health Translation Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
37
|
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R, Zhang C, Xu H. The role of Interleukin-22 in severe acute pancreatitis. Mol Med 2024; 30:60. [PMID: 38750415 PMCID: PMC11097471 DOI: 10.1186/s10020-024-00826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Ruofan Cao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Feifei Zhou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Ben Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Qianqian Xu
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Ji'nan, Shandong, 250021, P.R. China
| | - Rui Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - ChunHua Zhang
- Shandong First Medical University, Ji'nan, Shandong, 250117, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
38
|
Fachi JL, Di Luccia B, Gilfillan S, Chang HW, Song C, Cheng J, Cella M, Vinolo MA, Gordon JI, Colonna M. Deficiency of IL-22-binding protein enhances the ability of the gut microbiota to protect against enteric pathogens. Proc Natl Acad Sci U S A 2024; 121:e2321836121. [PMID: 38687788 PMCID: PMC11087805 DOI: 10.1073/pnas.2321836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - Hao-Wei Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - Christina Song
- Clinical Biomarkers and Diagnostics, Amgen Inc., South San Francisco, CA94080
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, and the Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| | - Marco Aurelio Vinolo
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paulo13083-862, Brazil
| | - Jeffrey I. Gordon
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
- Edison Family Center for Genome Sciences and Systems Biology, and the Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO63110
| |
Collapse
|
39
|
Guttman-Yassky E, Facheris P, Gomez-Arias PJ, Del Duca E, Da Rosa JC, Weidinger S, Bissonnette R, Armstrong AW, Seneschal J, Eyerich K, Estrada YD, Bose SN, Xu D, Chen A, Tatulych S, Güler E, Chan G, Page KM, Kerkmann U. Effect of abrocitinib on skin biomarkers in patients with moderate-to-severe atopic dermatitis. Allergy 2024; 79:1258-1270. [PMID: 38108208 DOI: 10.1111/all.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND This is the first report on the effects of abrocitinib, a Janus kinase 1-selective inhibitor, on the expression of skin biomarkers in patients with moderate-to-severe atopic dermatitis (AD). METHODS JADE MOA (NCT03915496) was a double-blind Phase 2a trial. Adults were randomly assigned 1:1:1 to receive monotherapy with once-daily abrocitinib 200 mg, abrocitinib 100 mg, or placebo for 12 weeks. The primary endpoint was change from baseline in markers of inflammation (matrix metalloproteinase [MMP]-12), epidermal hyperplasia (keratin-16 [KRT16]), T-helper 2 (Th2) immune response (C-C motif chemokine ligand [CCL]17, CCL18, and CCL26), and Th22 immune response (S100 calcium binding protein A8, A9, and A12 [S100A8, S100A9, and S100A12]) in skin through 12 weeks. RESULTS A total of 46 patients received abrocitinib 200 mg (n = 14), abrocitinib 100 mg (n = 16), or placebo (n = 16). Abrocitinib improved AD clinical signs and reduced itch. Gene expression of MMP-12, KRT16, S100A8, S100A9, and S100A12 was significantly decreased from baseline with abrocitinib 200 mg (at Weeks 2, 4, and 12) and abrocitinib 100 mg (at Weeks 4 and 12) in a dose-dependent manner. Abrocitinib 200 mg resulted in significant decreases from baseline in CCL17 expression at Week 12 and CCL18 expression at Weeks 2, 4, and 12; no significant decreases were observed for CCL26. CONCLUSIONS Alongside improvements in clinical signs and symptoms of AD, 12 weeks of abrocitinib treatment resulted in downregulation of genes associated with inflammation, epidermal hyperplasia, and Th2 and Th22 immune responses in the skin of patients with moderate-to-severe AD.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Paola Facheris
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | | | - Ester Del Duca
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Joel Correa Da Rosa
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | | | | | | | - Julien Seneschal
- Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hospital Saint-André, Bordeaux, France
- Bordeaux University, CNRS UMR 5164, Immunoconcept, Bordeaux, France
| | | | - Yeriel D Estrada
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Swaroop N Bose
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York, USA
| | - Dan Xu
- Pfizer Inc., San Diego, California, USA
| | | | | | | | - Gary Chan
- Pfizer Inc., Groton, Connecticut, USA
| | | | | |
Collapse
|
40
|
Krueger JG, Eyerich K, Kuchroo VK, Ritchlin CT, Abreu MT, Elloso MM, Fourie A, Fakharzadeh S, Sherlock JP, Yang YW, Cua DJ, McInnes IB. IL-23 past, present, and future: a roadmap to advancing IL-23 science and therapy. Front Immunol 2024; 15:1331217. [PMID: 38686385 PMCID: PMC11056518 DOI: 10.3389/fimmu.2024.1331217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.
Collapse
Affiliation(s)
- James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher T. Ritchlin
- Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical School, Rochester, NY, United States
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL, United States
| | | | - Anne Fourie
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Steven Fakharzadeh
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Jonathan P. Sherlock
- Janssen Research & Development, LLC, Spring House, PA, United States
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ya-Wen Yang
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Iain B. McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
41
|
Liu F, Chen Y, Qin D, Qian C. Interleukin-22 inhibits cardiac fibrosis by regulating fibroblast metabolic reprogramming in myocardial infarction. Pathol Res Pract 2024; 256:155256. [PMID: 38492359 DOI: 10.1016/j.prp.2024.155256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Cardiac fibrosis, a significant characteristic of cardiovascular diseases, leads to ventricular remodeling and impaired cardiac function. In this study, we aimed to investigate the role of Interleukin-22 (IL-22) in myocardial fibrosis following myocardial infarction (MI) and to explore the underlying metabolic mechanisms. Here we analyzed the single-cell sequencing data and found that the level of aerobic glycolysis was significantly higher in cardiac fibrosis in MI patient, which we validated through in vivo experiments. Utilizing MI mouse model, these experiments revealed decreased serum IL-22 levels and increased levels of AngII and TGF-β1. However, treatment with exogenous IL-22 reversed these changes, reduced infarct size, and fibrosis. In vitro experiments demonstrated that IL-22 inhibited AngII-induced fibroblast-to-myofibroblast transition (FMT) by suppressing the expression of α-SMA, Cola1, and Cola3. Metabolic analysis indicated that IL-22 decreased the expression of glycolytic enzymes and reduced lactate production in cardiac fibroblasts. Further in vivo experiments confirmed the inhibitory effect of IL-22 on Pyruvate kinase isoform M2 (PKM2) levels in heart tissue. Additionally, IL-22 activated the c-Jun N-terminal kinase (JNK) pathway, while inhibition of JNK partially reversed IL-22's effect on PKM2 activity. These findings suggest that IL-22 mitigates cardiac fibrosis and FMT by inhibiting aerobic glycolysis by activating the JNK/PKM2 pathway. Our study highlights IL-22 as a potential therapeutic target for myocardial fibrosis and cardiovascular diseases, providing insights into its role in regulating fibrosis and glycolysis. These findings pave the way for developing targeted therapies and investigating additional metabolic pathways for improved treatment outcomes in the field of cardiovascular diseases.
Collapse
Affiliation(s)
- Fang Liu
- Department of Vascular Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| | - Yueqi Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Demeng Qin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Qian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
42
|
Yang R, Chen J, Qu X, Liu H, Wang X, Tan C, Chen H, Wang X. Interleukin-22 Contributes to Blood-Brain Barrier Disruption via STAT3/VEGFA Activation in Escherichia coli Meningitis. ACS Infect Dis 2024; 10:988-999. [PMID: 38317607 PMCID: PMC10928716 DOI: 10.1021/acsinfecdis.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Escherichia coli continues to be the predominant Gram-negative pathogen causing neonatal meningitis worldwide. Inflammatory mediators have been implicated in the pathogenesis of meningitis and are key therapeutic targets. The role of interleukin-22 (IL-22) in various diseases is diverse, with both protective and pathogenic effects. However, little is understood about the mechanisms underlying the damaging effects of IL-22 on the blood-brain barrier (BBB) in E. coli meningitis. We observed that meningitic E. coli infection induced IL-22 expression in the serum and brain of mice. The tight junction proteins (TJPs) components ZO-1, Occludin, and Claudin-5 were degraded in the mouse brain and human brain microvascular endothelial cells (hBMEC) following IL-22 administration. Moreover, the meningitic E. coli-caused increase in BBB permeability in wild-type mice was restored by knocking out IL-22. Mechanistically, IL-22 activated the STAT3-VEGFA signaling cascade in E. coli meningitis, thus eliciting the degradation of TJPs to induce BBB disruption. Our data indicated that IL-22 is an essential host accomplice during E. coli-caused BBB disruption and could be targeted for the therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Qu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Hulin Liu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Chen Tan
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
43
|
Deng H, Li H, Liu Z, Shen N, Dong N, Deng C, Liu F. Pro-osteogenic role of interleukin-22 in calcific aortic valve disease. Atherosclerosis 2024; 388:117424. [PMID: 38104486 DOI: 10.1016/j.atherosclerosis.2023.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND AIMS Although calcific aortic valve disease (CAVD) is a common valvular disease among elderly populations and its incidence has markedly increased in recent decades, the pathogenesis of CAVD remains unclear. In this study, we explored the potential role of interleukin (IL)-22 and the underlying molecular mechanism in CAVD. METHODS AND RESULTS Our results showed that IL-22 was upregulated in calcific aortic valves from CAVD patients, and its main sources were CD3+ T cells and CD68+ macrophages. Human aortic valve interstitial cells (VICs) expressed the IL-22-specific receptor IL-22R1, and IL-22R1 expression also was elevated in calcified valves. Treatment of cultured human VICs with recombinant human IL-22 resulted in markedly increased expression of osteogenic proteins Runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), as well as increased matrix calcium deposition. Moreover, siRNA silencing of IL-22R1 blocked the pro-osteogenic effect of IL-22 in VICs. In IL-22-treated VICs, we also observed increased phosphorylation of JAK3 and STAT3 and nuclear translocation of STAT3. Pretreatment with a specific JAK3 inhibitor, WHIP-154, or siRNA knockout of STAT3 effectively mitigated the IL-22-induced osteoblastic trans-differentiation of human VICs. CONCLUSIONS Together, these data indicate that IL-22 promotes osteogenic differentiation of VICs by activating JAK3/STAT3 signaling. Based on our results demonstrating a pro-osteogenic role of IL-22 in human aortic valves, pharmacological inhibition of IL-22 signaling may represent a potential strategy for alleviating CAVD.
Collapse
Affiliation(s)
- Huifang Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Na Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Cheng Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
44
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
45
|
Xu Y, Zhao Z, Geng Z, Zhou H, Yang C, Wang Y, Kuerban B, Xiao Y, Luo G. Enhancement of recombinant human interleukin-22 production by fusing with human serum albumin and supplementing N-acetylcysteine in Pichia Pastoris. Protein Expr Purif 2023; 212:106360. [PMID: 37652392 DOI: 10.1016/j.pep.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Interleukin-22 (IL-22) plays an important role in the treatment of organ failure, which can induce anti-apoptotic and proliferative signaling pathways; Nevertheless, the practical utilization of IL-22 is hindered by the restricted efficacy of its production. Pichia pastoris presents a viable platform for both industrial and pharmaceutical applications. In this study, we successfully generated a fusion protein consisting of truncated human serum albumin and human IL-22 (HSA-hIL-22) using P. pastoris, and examined the impact of antioxidants on HSA-hIL-22 production. We have achieved the production of HSA-hIL-22 in the culture medium at a yield of approximately 2.25 mg/ml. Moreover, 0-40 mM ascorbic acid supplementation did not significantly affect HSA-hIL-22 production or the growth rate of the recombinant strain. However, 80 mM ascorbic acid treatment had a detrimental effect on the expression of HSA-hIL-22. In addition, 5-10 mM N-acetyl-l-cysteine (NAC) resulted in an increase of HSA-hIL-22 production, accompanied by a reduction in the growth rate of the recombinant strain. Conversely, 20-80 mM NAC supplementation inhibited the growth of the recombinant strains and reduced intact HSA-hIL-22 production. However, neither NAC nor ascorbic acid exhibited any effect on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, except that NAC increased GSH content. Furthermore, our findings indicate that recombinant HSA-hIL-22, which demonstrated the ability to stimulate the proliferation of HepG2 cells, possesses bioactivity. In addition, NAC did not affect HSA-hIL-22 bioactivity. In conclusion, our study demonstrates that NAC supplementation can enhance the secretion of functional HSA-hIL-22 proteins produced in P. pastoris without compromising their activity.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Ziming Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yimeng Xiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
46
|
Liu L, Li X, Chen Y, Li YZ, Liu Z, Duan Y, Chen Y. Interleukin-22 promotes proliferation and reverses LPS-induced apoptosis and steroidogenesis attenuation in human ovarian granulosa cells: implications for polycystic ovary syndrome pathogenesis. J Matern Fetal Neonatal Med 2023; 36:2253347. [PMID: 37661176 DOI: 10.1080/14767058.2023.2253347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Interleukin 22 (IL-22) plays a role in inflammatory diseases. However, whether IL-22 affects the function of ovarian granulosa cells (GCs) and its relationship with Polycystic Ovary Syndrome (PCOS)remains unclear. METHODS We investigated the level of IL-22 in human follicular fluid using ELISA. The expression and localization of the IL-22 receptor 1 (IL-22R1) in GCs were investigated by RT-PCR and immunofluorescence staining, respectively. The proliferation of KGN cells (human GCs line) was assessed by CCK-8 assay and EdU assay after treatment with recombinant human IL-22 (rhIL-22) and lipopolysaccharide (LPS). Apoptosis was assessed using flow cytometry. Apoptotic proteins and steroidogenic genes were detected by western blotting. RESULTS ELISA's results showed that compared with the control group, PCOS patients showed lower expression of IL-22 in follicular fluid. Immunofluorescence showed that IL-22R1 is expressed and localized in human granulosa cell membranes. IL-22 promoted cell proliferation and reversed LPS-induced inhibition of cell proliferation. IL-22 alone did not affect apoptotic or steroidogenic protein expression, however, it reversed LPS-induced apoptosis via downregulation of Bcl-2, upregulation of Bax and cleaved caspase-3, and restoration of LPS-downregulated StAR, CYP11A1, and CYP19A1 expression. Western blotting confirmed that IL-22 activated the JAK2/STAT3 signaling. CONCLUSION IL-22 promotes cell proliferation, inhibits apoptosis, and regulates KGN cell steroidogenesis confronted with LPS, and decreased IL-22 may be involved in the development of PCOS.
Collapse
Affiliation(s)
- Linhong Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhe Li
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhen Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Duan
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Peng Y, Zhang Y, Luo M, Pan Y, Zhou R, Yan YN, Yi T, Luo F, Wang B, Wang L, Ran C, Wang H. NEK2 overexpression aggravates IL-22-induced keratinocyte proliferation and cytokine level increases and IMQ-induced psoriasis-like dermatitis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119525. [PMID: 37348763 DOI: 10.1016/j.bbamcr.2023.119525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Psoriasis is a common inflammatory skin disease characterized by the excessive proliferation and abnormal differentiation of keratinocytes. Protein kinases could act on intracellular signaling pathways associated with cell proliferation. OBJECTIVE Identifying more hub protein kinases affecting cellular and molecular processes in psoriasis, and exploring the dynamic effects of baicalin and NEK2 on the IL-22-induced cellular inflammation and IMQ-induced psoriasis-like mice. METHODS AND RESULTS In this study, differentially expressed protein kinases playing a hub role in psoriasis initiation and development were identified using integrative bioinformatics analyses, and NEK2 has been chosen. NEK2 was significantly up-regulated in psoriatic samples according to online datasets and experimental analyses. In IL-22-induced cellular inflammation model in HaCaT cells, NEK2 overexpression promoted, whereas NEK2 knockdown partially abolished IL-22-induced alterations in cell viability, DNA synthesis, cytokine levels, as well as STAT3 phosphorylation and p-RB, cyclin D1, CDK4, and CDK6 protein contents. Baicalin treatment partially suppressed IL-22-induced HaCaT cell viability, DNA synthesis, and increases in cytokine levels, whereas NEK2 overexpression significantly abolished Baicalin-induced protection against cellular inflammation. In IMQ-induced psoriasis-like skin inflammation model in mice, baicalin markedly ameliorated IMQ-induced psoriasis-like symptoms and local skin inflammation, whereas NEK2 overexpression partially eliminated the therapeutic effects of baicalin. CONCLUSION NEK2, up-regulated in psoriatic lesion skin, could aggravate IMQ-induced psoriasis-like dermatitis and attenuate the therapeutic efficiency of baicalin through promoting keratinocyte proliferation and cytokine levels. The STAT3 signaling might be involved.
Collapse
Affiliation(s)
- Youhua Peng
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China; Department of Dermatology, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Meijunzi Luo
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Yi Pan
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Rong Zhou
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Yi-Ning Yan
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Tingting Yi
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Feifei Luo
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Biying Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Li Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Chongjun Ran
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China
| | - Haizhen Wang
- Department of Dermatology, the Second Affiliated Hospital, the Domestic First-class Discipline Construction Project of Hunan University of Chinese Medicine, Changsha 410005, Hunan, China.
| |
Collapse
|
48
|
Ballarò C, Quaranta V, Giannelli G. Colorectal Liver Metastasis: Can Cytokines Make the Difference? Cancers (Basel) 2023; 15:5359. [PMID: 38001618 PMCID: PMC10670198 DOI: 10.3390/cancers15225359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. Metastasis is the prime driver of CRC-related mortality, and the liver is the organ most frequently involved. Despite the overall success of current treatments, colorectal liver metastasis (CRLM) is associated with poor prognoses and a survival rate of only 14%. Recent studies have highlighted the importance of the tumor microenvironment (TME) and the crosstalk within it in determining the invasion of distant organs by circulating cancer cells. In the TME, cellular communication is mediated via soluble molecules, among which cytokines have recently emerged as key regulators, involved in every aspect of tumor progression and the metastatic cascade. Indeed, in the serum of CRC patients elevated levels of several cytokines are associated with cancer development and progression. The current review evaluates the role of different cytokines during CRLM development. Additionally, considering the increasing amount of data concerning the importance of cytokine complex networks, we outline the potential of combination treatments using targeted cytokines together with other well-established therapies, such as immune checkpoint blockades, chemotherapy, or gene therapy, to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Costanza Ballarò
- Laboratory of Molecular Medicine, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Valeria Quaranta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
49
|
Watanabe M, Okamura Y, Kono T, Sakai M, Hikima JI. Interleukin-22 induces immune-related gene expression in the gills of Japanese medaka Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104916. [PMID: 37591365 DOI: 10.1016/j.dci.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
The cytokine interleukin (IL)-22 has been identified in several fish species; however, its functional significance in the gills of these fish species remains unclear. In this study, we analyzed the expression of proinflammatory cytokines, antimicrobial peptides, and IL-22 binding protein in the gills of wild-type and IL-22-knockout (IL-22 KO) medaka under dextran sulfate sodium-induced inflammation. We also produced medaka recombinant IL-22 (rIL-22) and analyzed the expression of immune-related genes in rIL-22-stimulated primary cell cultures from gills. The il1b, il6, tnfa, and hamp genes were significantly upregulated in wild-type gills upon dextran sulfate sodium stimulation compared with the naïve state but not in IL-22 KO gills. il22bp transcripts were barely detectable in the IL-22 KO medaka gills. However, the expression of il1b, il6, hamp, and il22bp was upregulated in rIL-22-stimulated gill cell culture. These results suggest IL-22 could be involved in immune responses through inflammatory cytokine and antimicrobial peptide production in fish gills.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
50
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|