1
|
Zou Y, Pu L, Guo A, Li Y, Liu Y, Wang Y, Ding Y, Du X, Guo X, Zhang S, Cai X, Wang S. Helminth reshapes host gut microbiota and immunoregulation by deploying an antimicrobial program of innate immunity. Gut Microbes 2025; 17:2496447. [PMID: 40266093 PMCID: PMC12026035 DOI: 10.1080/19490976.2025.2496447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Helminths can manipulate their host's gut microbiota, with the expansion of the lactobacilli population being a common feature. This process profoundly influences host immunoregulation, yet the underlying mechanisms remain almost unknown. Using a tissue-dwelling helminth model (larval Echinococcus multilocularis) while validating key findings from other helminth infections, we show that helminths harness the antibacterial program of host innate immunity to transform the host gut microbiome and control gut microbiota-mediated immunity. Using multifaceted techniques, we elucidate that cathelicidin-related antimicrobial peptide (CRAMP), derived from the expanded CD11b+CD206+ macrophages rather than the intestinal epithelial cells, is the key component that enters into the gut ecological system and enhances the fitness of Lactobacillus by selectively killing gram-negative microbes like enterobacteria. Furthermore, through in vitro cell culturing and in vivo dietary intervention experiments, we demonstrate that this regulation from innate immunity is boosted via toll-like receptor signaling by helminth's secretory products, which could be sufficiently tuned down by dietary vitamin D through its receptor and cyp27b1. Importantly, using microbiota-targeted treatment methods, we prove that this signaling bolsters gut microbiota-mediated host intestinal Foxp3+ Treg cell expansion and parasite survival and that therapies targeting this signaling are effective in treating infection. We outline a dietary micronutrient-dependent mechanism by which helminths leverage host innate immunity to edit the host gut microbiome and thereby control immunosuppression precisely.
Collapse
Affiliation(s)
- Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lixia Pu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yaqi Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yihui Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaowei Du
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shaohua Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuepeng Cai
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Palrasu M, Kakar K, Marudamuthu A, Hamida H, Thada S, Zhong Y, Staley S, Busbee PB, Li J, Garcia-Buitrago M, Nagarkatti M, Nagarkatti P. AhR Activation Transcriptionally Induces Anti-Microbial Peptide Alpha-Defensin 1 Leading to Reversal of Gut Microbiota Dysbiosis and Colitis. Gut Microbes 2025; 17:2460538. [PMID: 39894796 PMCID: PMC11792800 DOI: 10.1080/19490976.2025.2460538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025] Open
Abstract
Alpha-defensin 1 is a small antimicrobial peptide that acts as the first line of defense against pathogens. It is induced following microbial cues and inflammatory signals in neutrophils and Paneth cells in the small intestine, which suggests that it plays a role in microbial homeostasis in the gut. The gut microbial products also serve as ligands for the aryl hydrocarbon receptor (AhR), an environmental sensor. In the current study, we investigated if there is any crosstalk between AhR and alpha-defensin 1. Interestingly, we found a positive correlation between AhR and alpha-defensin 1 protein levels in ileal tissues from active Crohn's' (CD) patients and epithelial cells (IECs) from multiple models of murine colitis. In vitro downregulation of AhR led to inhibition of α-defensin 1, while activation of AhR induced α-defensin 1 in IECs. AhR directly targeted the dioxin response element 3 (DRE3) region on the α-defensin 1 promoter in IECs. AhR-mediated induction of α-defensin 1 in colitis mice reversed the gut microbial dysbiosis and alleviated colitis. Our data identify a novel signaling pathway in which AhR acts as a transcription factor for α-defensin 1, leading to regulation of homeostasis between gut microbiota, intestinal mucosa, and mucosal immunity.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Khadija Kakar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Amarnath Marudamuthu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Hamida Hamida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shruthi Thada
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Yin Zhong
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shanieka Staley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Monica Garcia-Buitrago
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Ju R, Li Y, Sui D, Xu FJ. Polyaminoglycoside nanosystem expressing antimicrobial peptides for multistage chronic wound management. J Control Release 2025; 382:113657. [PMID: 40122239 DOI: 10.1016/j.jconrel.2025.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Chronic wounds are difficult to heal due to pathogenic microbial colonization and dysregulation of healing cascades, necessitating novel therapeutic strategies. This study developed a multifunctional nanosystem by integrating the antimicrobial peptide LL37 with cationic polyaminoglycoside (SS-HPT), constructing a self-sustaining "AMP factory" to achieve multi-stage modulation of the wound healing. Validation through cell-level experiments and in vivo dual models (mechanical injury and bacterial infection) in immunocompromised rats demonstrated the system's unique dual intracellular-extracellular pathogen-killing capability, significantly accelerating the wound healing process. Transcriptomic analysis revealed that its mechanism involves the dual effects of suppressing pro-inflammatory factor expression and activating tissue repair pathways. Histological evidence confirmed that the system promotes angiogenesis, enhances re-epithelialization rates, and guides orderly collagen fiber deposition. This nanosystem, combining efficient AMP delivery and integrated therapeutic strategies, achieves three-dimensional synergy in microbial clearance, immune microenvironment regulation, and tissue matrix remodeling, providing theoretical and technical foundations for a paradigm shift in chronic wound treatment.
Collapse
Affiliation(s)
- Rui Ju
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Jiang Y, Chen J, Du Y, Fan M, Shen L. Immune modulation for the patterns of epithelial cell death in inflammatory bowel disease. Int Immunopharmacol 2025; 154:114462. [PMID: 40186907 DOI: 10.1016/j.intimp.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the intestine whose primary pathological presentation is the destruction of the intestinal epithelium. The intestinal epithelium, located between the lumen and lamina propria, transmits luminal microbial signals to the immune cells in the lamina propria, which also modulate the intestinal epithelium. In IBD patients, intestinal epithelial cells (IECs) die dysfunction and the mucosal barrier is disrupted, leading to the recruitment of immune cells and the release of cytokines. In this review, we describe the structure and functions of the intestinal epithelium and mucosal barrier in the physiological state and under IBD conditions, as well as the patterns of epithelial cell death and how immune cells modulate the intestinal epithelium providing a reference for clinical research and drug development of IBD. In addition, according to the targeting of epithelial apoptosis and necroptotic pathways and the regulation of immune cells, we summarized some new methods for the treatment of IBD, such as necroptosis inhibitors, microbiome regulation, which provide potential ideas for the treatment of IBD. This review also describes the potential for integrating AI-driven approaches into innovation in IBD treatments.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Minwei Fan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Zareie P, Weiss ES, Kaplan DH, Mackay LK. Cutaneous T cell immunity. Nat Immunol 2025:10.1038/s41590-025-02145-3. [PMID: 40335684 DOI: 10.1038/s41590-025-02145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/13/2025] [Indexed: 05/09/2025]
Abstract
The skin is the primary barrier against environmental insults, safeguarding the body from mechanical, chemical and pathogenic threats. The frequent exposure of the skin to environmental challenges requires an immune response that incorporates a sophisticated combination of defenses. Tissue-resident lymphocytes are pivotal for skin immunity, working in tandem with commensal bacteria to maintain immune surveillance and homeostasis, as well as participating in the pathogenesis of several skin diseases. Indeed, it has been estimated that the human skin harbors nearly twice as many T cells as found in the circulation. Effective treatment of skin diseases and new therapy development require a thorough understanding of the complex interactions among skin tissue, immune cells and the microbiota, which together regulate the skin's immune balance. This Review explores the latest developments and understanding of this critical barrier organ, with a specific focus on the role of skin-resident T cells.
Collapse
Affiliation(s)
- Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Eric S Weiss
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Ma H, Li R, Qu B, Liu Y, Li P, Zhao J. The Role of Bile Acid in Immune-Mediated Skin Diseases. Exp Dermatol 2025; 34:e70108. [PMID: 40302108 DOI: 10.1111/exd.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Immune-mediated skin disorders arise from dysfunctional immune responses, instigating inflammatory dermatoses and a reduced quality of life. The complex pathogenesis likely involves genetic risks, environmental triggers and aberrant immune activation. An emerging body of evidence suggests that bile acid disturbances may critically promote immune pathology in certain skin conditions. Bile acids synthesised from cholesterol regulate nutrient metabolism and immune cell function via nuclear receptors and G protein-coupled receptors (GPCRs). Altered bile acid profiles and receptor expression have been identified in psoriasis, atopic dermatitis (AD) and autoimmune blistering diseases. Disruptions in bile acid signalling affect the inflammatory and metabolic pathways linked to these disorders. Targeting components of the bile acid axis represents a promising therapeutic strategy. This review elucidates the intricate links between bile acid homeostasis and immune dysfunction in inflammatory skin diseases, synthesising evidence that targeting bile acid pathways may unlock innovative therapeutic avenues. This study compiles clinical and experimental data revealing disrupted bile acid signalling and composition in various immune-mediated dermatoses, highlighting the emerging significance of bile acids in cutaneous immune regulation.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruonan Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuchen Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Balaji SK, Balasundarasekar B, Khuwaja WM, Dolan KM, Dong X. Antimicrobial Peptide Signaling in Skin Diseases. JID INNOVATIONS 2025; 5:100354. [PMID: 40104692 PMCID: PMC11914806 DOI: 10.1016/j.xjidi.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Antimicrobial peptides (AMPs) are important innate immune molecules at microbe-host interfaces. The biophysical properties of AMPs that facilitate direct killing of microbes have been extensively reviewed. In this article, we focus on how AMPs perform immunomodulatory functions through interaction with host receptors on epithelial, immune, and neuronal cell types. We summarize the current knowledge of known AMPs in the skin, the receptors that respond to AMPs, and the downstream intracellular signaling pathways. In the end, we discuss the roles of AMP signaling systems in skin diseases.
Collapse
Affiliation(s)
- Sharan Kumar Balaji
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Waris Muhammad Khuwaja
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Keean Michael Dolan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Xintong Dong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
8
|
Liu J, Yao K, Sun R, Ma X, Ma C, Chen X, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Discovery and Optimisation of Novel Bombinin-Derived Peptides from Bombina variegata against Staphylococcus aureus. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10542-1. [PMID: 40301231 DOI: 10.1007/s12602-025-10542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
Amphibian skin-secreted antimicrobial peptides (AMPs) have garnered significant attention for their excellent biological activity and low propensity for drug resistance over the past 40 years. Bombinins and bombinin H, two classes of AMPs isolated from the skin secretions of Bombina species, demonstrate strong antimicrobial activity against broad-spectrum microorganisms. In this study, two novel peptides, bombinin-like peptide 7S and bombinin-H2L, were identified from the toad, Bombina variegata. While both peptides exhibited broad-spectrum antimicrobial activity, they also showed relatively high cytotoxicity. To explore the structure-activity relationship and enhance therapeutic potential, bombinin-H2L, which displayed stronger average antimicrobial activity, was used as a template. With the aid of bioinformatics analysis, a series of bombinin-H2L analogues were designed by increasing the net positive charges and/or adjusting the amphiphilicity of the parent peptide. Among these analogues, [Arg8, 15]BH2L and [Lys7, 8]BH2L demonstrated high therapeutic efficacy and specificity toward clinically isolated, drug-resistant Staphylococcus aureus strains in both in vitro and ex vivo tests. Their notable biosafety profiles, sensitivity to diverse environments, and ability to disrupt biofilms highlight their potential for further development. Additionally, studies on the mechanism of [Arg8, 15]BH2L and [Lys7, 8]BH2L revealed a membrane-targeted antimicrobial mechanism, with its antibacterial function exerted by disrupting the integrity of bacterial membranes. These findings provide valuable insights into structural modifications of bombinin H peptides for enhanced activity, and [Arg8, 15]BH2L and [Lys7, 8]BH2L have the potential as promising candidates for novel antibacterial agents in treated bacterial skin infections.
Collapse
Affiliation(s)
- Jiachen Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Keyi Yao
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Xiaonan Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| |
Collapse
|
9
|
Park J, Ke W, Kaage A, Feigin CY, Griffing AH, Pritykin Y, Donia MS, Mallarino R. Cathelicidin antimicrobial peptides mediate immune protection in marsupial neonates. SCIENCE ADVANCES 2025; 11:eads6359. [PMID: 40238884 PMCID: PMC12002115 DOI: 10.1126/sciadv.ads6359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, although the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins-a family of antimicrobial peptides expanded in the genomes of marsupials-are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters, and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. Functionally, cathelicidins modulate immune responses and have potent antibacterial effects, sufficient to provide protection in a mouse model of sepsis. Evolutionarily, cathelicidins have a complex history, with marsupials and monotremes uniquely retaining both clusters among tetrapods. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution may reflect the life history-specific immunological needs of these animals.
Collapse
Affiliation(s)
- Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aellah Kaage
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron H. Griffing
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
11
|
Liu S, HuiXin E, Xing B. Harnessing from Nature - Evolving Potential of Antimicrobial Peptide. Chembiochem 2025; 26:e202400983. [PMID: 39871592 DOI: 10.1002/cbic.202400983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Antimicrobial peptides (AMPs) are recognized as one of the most ancient components of innate immunity, playing a pivotal role as the first line of host defense systems. These evolutionarily conserved molecules have been identified in various organisms, from prokaryotes to humans. AMPs establish a delicate balanced relationship between host and microbes, by simultaneously regulating the biological activities of pathogens and commensal microbes. Given the escalating global concern over antibiotic resistance, there is an urgent need to explore alternative strategies to combat challenging infectious diseases. AMPs have emerged as promising candidates employed in clinical practice due to their sustainable bactericidal properties. Witnessed by deep understanding of AMPs actions toward host and bacteria, the potential applications of AMPs extend far beyond infection control. Emerging developments harnessed natural capabilities of AMPs to optimize their roles in modulating host signaling, treating diverse diseases, advancing biosensing and bioimaging technologies. In this Concept paper, we provide a comprehensive overview of the diversity and properties of AMPs. Additionally, we elaborate on the mechanisms underlying AMP activity and bacterial responses counteracting AMPs' functions. Most importantly, we discuss potential biomedical applications of AMPs and offer perspectives on their future development.
Collapse
Affiliation(s)
- Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - EveliasYan HuiXin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Paquet A, Bahlouli N, Coutel X, Leterme D, Delattre J, Gauthier V, Miellot F, Delplace S, Rouge-Labriet H, Bertheaume N, Chauveau C, Benachour H. Obesity and insulinopenic type 2 diabetes differentially impact, bone phenotype, bone marrow adipose tissue, and serum levels of the cathelicidin-related antimicrobial peptide in mice. Bone 2025; 193:117387. [PMID: 39742907 DOI: 10.1016/j.bone.2024.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Obesity is a risk factor of developing type 2 diabetes (T2D) and metabolic complications, through systemic inflammation and insulin resistance. It has also been associated with increased bone marrow adipocytes along with increased bone fragility and fracture risk. However, the differential effects of obesity and T2D on bone fragility remain unclear. The cathelicidin-related antimicrobial peptide (CRAMP) is a multifunctional modulator of the innate immunity that has emerged as biomarker of cardiometabolic diseases. The aims of this study were i) to assess the differential impact between hyperinsulinemic obesity versus insulinopenic T2D, on bone phenotype and bone marrow adipose tissue (BMAT), and ii) to analyse the link with CRAMP expression and its circulating levels in the context of obesity and T2D. We used C57BL/6 J male mice models of obesity induced by high-fat diet (HFD), and of insulinopenic T2D induced by streptozotocin (STZ) treatment combined with HFD, reflecting the metabolic heterogeneity of the diseases. As compared to low-fat diet (LFD) control group after 16 weeks of feeding, the HFD mice exhibit a significant weight gain, moderate hyperglycaemia, impaired glucose tolerance and insulin sensitivity, and significant increase in serum insulin levels. This hyperinsulinemic obesity led to decreased trabecular (Tb.Th) and cortical thickness (Ct.Th) in the tibia, associated with significant BMAT expansion, in addition to increased subcutaneaous (SCAT) and visceral adipose tissue (VAT). No changes were observed in the circulating levels of CRAMP peptide neither in other bone parameters. While, STZ treatment in HFD/STZ group induced a more severe hyperglycaemia, glucose intolerance and insulin resistance, and hypoinsulinemia. We also observed a negative effect on the expansion of both SCAT and VAT, as well as lower increase in BMAT as compared to HFD group. However, these mice with insulinopenic T2D exhibit early decrease in trabecular number (Tb.N) in proximal tibia, progressively from 8 to 16 weeks of protocol, and impaired femoral biomechanical stiffness. These alterations are also accompanied with decreased circulating levels of the CRAMP peptide in the HFD/STZ mice. The CRAMP mRNA levels decreased in VAT of both HFD and HFD/STZ groups. Overall, these results provide novel insights into the differential negative impact of obesity versus T2D on bone microenvironment, and suggest a link between hyperglycaemia-induced bone quality alterations during insulinopenia, and impaired regulation of the cathelicidin peptide of the innate immunity. Further investigations are needed to elucidate this relationship.
Collapse
Affiliation(s)
- Amélie Paquet
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Nadia Bahlouli
- ICube, Université de Strasbourg, CNRS, 2-4 Rue Boussingault, Strasbourg 67000, France
| | - Xavier Coutel
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Damien Leterme
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Jérôme Delattre
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Véronique Gauthier
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Flore Miellot
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Séverine Delplace
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Hélène Rouge-Labriet
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Nicolas Bertheaume
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Hamanou Benachour
- Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
13
|
Hu S, Dong J, Che Y, Guo J. Causal association of the skin microbiome with human infertility: insights from a bidirectional two-sample Mendelian randomization. Arch Dermatol Res 2025; 317:565. [PMID: 40095168 DOI: 10.1007/s00403-025-04098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Infertility is a disorder characterized by the inability to achieve a clinical pregnancy after 12 months of regular and unprotected sexual activity. Affecting 8-12% of the global population, with the continuous progress of microbial research in recent years, a variety of microorganisms may be associated with the onset of infertility. We therefore used a two-sample MR Analysis to investigate the association between skin microbes and infertility. we used preprocessed exposure data to correlate infertility measures (infertility in women, associated with anovulation; Female infertility, cervical infertility, vaginal infertility, other infertility or unknown causes; Female infertility, fallopian tube origin; ED; Based on this, the positive results were subjected to horizontal pleiotropy analysis and heterogeneity analysis. Finally, Steiger test was performed to confirm the absence of reverse causality. The data used in this study were obtained from the published GWAS data sets. skin microbiota from the study conducted by Moitinho-Silva et al., and the exposure from the Finn. In this study, we found a positive causal association between Lactobacillales, Clostridiales, Pseudomonadales, and Moraxellaceae and female infertility and anovulation by MR Analysis of two samples. Enhydrobacter, Betaproteobacteria have a negative causal association with female infertility and anovulation. Lactobacillales and Alphaproteobacteria had positive causal association with female infertility, cervical infertility, vaginal infertility, other infertility or unknown causes. There was a negative causal association between Haemophilus and female infertility, cervical infertility, vaginal infertility, other infertility or unknown causes. Alphaproteobacteria are positively correlated with female infertility and fallopian tube origin. Bacteroidetes is negatively correlated with female infertility and fallopian tube origin. Rhodobacteraceae, Clostridiales and Flavobacteriaceae had a negative causal association with male infertility. Corynebacterium had a positive causal association with ED, and Micrococcus had a negative causal association with ED. Our study reveals a causal association between skin microbiota and infertility, and provides a theoretical basis for the inclusion of skin microbiota in the prevention and treatment of infertility. To the best of our knowledge, our study is the first MR Analysis to explore the potential causal association between skin microbiota and infertility. On this basis, we make a reasonable hypothesis that skin microbes cause infertility, and propose possible mechanisms. Our research contributes to the prevention and treatment of clinical infertility.
Collapse
Affiliation(s)
- Shucheng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaojiao Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Che
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
14
|
Yun S, Kang SH, Ryu J, Kim K, Lee KY, Lee JJ, Hong JY, Son GH. The Role of Beta-Defensin 2 in Preventing Preterm Birth with Chorioamnionitis: Insights into Inflammatory Responses and Epithelial Barrier Protection. Int J Mol Sci 2025; 26:2127. [PMID: 40076749 PMCID: PMC11900102 DOI: 10.3390/ijms26052127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, focusing on its regulation of inflammatory cytokines and its protective effect on the epithelial barrier. Our results show increased BD2 expression in chorioamnionitis, and Lipopolysaccharide (LPS)-induced inflammation increased BD2 release from hAECs in a dose- and time-dependent manner. BD2 treatment effectively modulated the inflammatory response by reducing pro-inflammatory cytokines (IL-6, IL-1β) and enhancing the release of the anti-inflammatory cytokine IL-10. Additionally, BD2 helps preserve epithelial barrier integrity by restoring E-cadherin expression and reducing Snail expression in inflamed hAECs. In an LPS-induced preterm birth mouse model, BD2 treatment delayed preterm delivery and reduced inflammatory cytokine levels. These results suggest that BD2 plays a protective role in preventing preterm birth by regulating inflammation and maintaining epithelial barrier function, highlighting its therapeutic potential for inflammation-related preterm birth.
Collapse
Affiliation(s)
- Sangho Yun
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
| | - Shin-Hae Kang
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
| | - Jiwon Ryu
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Kyoungseon Kim
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Keun-Young Lee
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Jae Jun Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Departments of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Ji Young Hong
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Ga-Hyun Son
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| |
Collapse
|
15
|
Gou D, Xu R, Liu H, Gong P, Di W, Zuo H, Ding J, Chang Y, Zuo R. Effects of Dietary Vitamin A on the Growth Performance, Nonspecific Immune Response, Shell Microbiota and Red Spotted Disease Resistance of Juvenile Sea Urchin ( Strongylocentrotus intermedius). AQUACULTURE NUTRITION 2025; 2025:3601517. [PMID: 39958704 PMCID: PMC11828657 DOI: 10.1155/anu/3601517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025]
Abstract
A 114-day feeding trial was used to investigate the influence of vitamin A (VA) on growth performance, nonspecific immune responses and shell microbiota in juvenile sea urchin (Strongylocentrotus intermedius). Graded levels of VA (0, 4000, 8000, 16,000, 32,000 and 64,000 IU/kg) were added to make six experimental feeds. Each feed was allocated to three parallel tanks of sea urchins (initial weight 0.87 ± 0.05 g and initial test diameter 1.83 ± 0.57 mm). The data revealed that the weight gain rate (WGR) and gonadosomatic index (GSI) rose markedly as VA addition level increased from 0 to 4000 IU/kg and then reached a plateau with further increase of dietary VA levels. As VA addition level increased, nonspecific immune response of S. intermedius first increased and then decreased, with those fed diets with relatively higher addition of VA (32,000 IU/kg) exhibiting significantly greater phagocytic activity (PA) and acid phosphatase (ACP) activities, as well as upregulated expression of several immune-related genes such as tumour necrosis factor α (TNF-α), antimicrobial peptides (AMPs), toll-like receptors (TLRs) and lysozyme (LYZ). The abundance of Firmicutes, Bacteroidota, Bacteroides and Faecalibacterium increased, but that of Proteobacteria and Leucothrix decreased in the shell of S. intermedius as VA addition level increased. The percentage of sea urchins with severe red spotted disease decreased from 64.44% to13.33% as VA addition level increased to 32,000 IU/kg and subsequently increased to 42.22% with further increase of VA addition level. On the contrary, the percentage of sea urchins with mild red spotted disease increased from13.33% to 55.55% as VA addition level increased to 32,000 IU/kg and subsequently decreased to 31.11% with further increase of VA addition level. These results demonstrated that a low addition level of VA (4000 IU/kg) can help S. intermedius achieve ideal growth performance. However, relatively higher addition levels of VA (32,000 IU/kg) enhanced nonspecific immunity and red spotted disease resistance of S. intermedius, which could be accomplished by promoting immune gene expression and optimizing the shell microbiota composition.
Collapse
Affiliation(s)
- Dan Gou
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Rujian Xu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Haijing Liu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Panke Gong
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Weixiao Di
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Huinan Zuo
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Rantao Zuo
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
16
|
Gilaberte Y, Piquero‐Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2025; 101:38-52. [PMID: 38767119 PMCID: PMC11737011 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of DermatologyMiguel Servet University Hospital, IIS AragónZaragozaSpain
| | - Jaime Piquero‐Casals
- Department of DermatologyDermik Multidisciplinary Dermatology ClinicBarcelonaSpain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry DepartmentChemistry Institute of São Paulo UniversitySão PauloBrazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment UnitIsraelite HospitalRomeItaly
| | | | | | | | - Henry W. Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of DermatologyHenry Ford HealthDetroitMichiganUSA
| | - Jean Krutmann
- IUF – Leibniz‐Institut für umweltmedizinische ForschungDüsseldorfGermany
| | - Thierry Passeron
- Department of DermatologyCentre Hospitalier Universitaire de Nice, Université Côte d'AzurNiceFrance
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065Université Côte d'AzurNiceFrance
| |
Collapse
|
17
|
Houtsaeger C, Pasmans F, Claes I, Vandenabeele S, Haesebrouck F, Lebeer S, Boyen F. The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review. Front Vet Sci 2024; 11:1413684. [PMID: 39736936 PMCID: PMC11683847 DOI: 10.3389/fvets.2024.1413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization. We propose a pathogenetic model in which allergic conditions disrupt the antimicrobial environment of the EEC, creating circumstances favorable for facultative pathogenic micro-organisms like Staphylococcus and Malassezia species, leading to otitis externa (OE). A better understanding of the underpinning mechanisms may lead to innovative approaches to disease mitigation.
Collapse
Affiliation(s)
- Cyrelle Houtsaeger
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- YUN NV, Niel, Belgium
| | - Frank Pasmans
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingmar Claes
- YUN NV, Niel, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sophie Vandenabeele
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Boyen
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
18
|
Verma SC, Enée E, Manasse K, Rebhi F, Penc A, Romeo-Guitart D, Bui Thi C, Titeux M, Oury F, Fillatreau S, Liblau R, Diana J. Cathelicidin antimicrobial peptide expression in neutrophils and neurons antagonistically modulates neuroinflammation. J Clin Invest 2024; 135:e184502. [PMID: 39656548 PMCID: PMC11785927 DOI: 10.1172/jci184502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 02/03/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, the pathophysiology of which remains unclear and for which there is no definitive cure. Antimicrobial peptides (AMPs) are immunomodulatory molecules expressed in various tissues, including the CNS. Here, we investigated whether the cathelicidin-related AMP (CRAMP) modulated the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We showed that, at an early stage, CNS-recruited neutrophils produced neutrophil extracellular traps (NETs) rich in CRAMP that were required for EAE initiation. NET-associated CRAMP stimulated IL-6 production by dendritic cells via the cGAS/STING pathway, thereby promoting encephalitogenic Th17 response. However, at a later disease stage, neurons also expressed CRAMP that reduced EAE severity. Camp knockdown in neurons led to disease exacerbation, while local injection of CRAMP1-39 at the peak of EAE promoted disease remission. In vitro, CRAMP1-39 regulated the activation of microglia and astrocytes through the formyl peptide receptor (FPR) 2. Finally, administration of butyrate, a gut microbiota-derived metabolite, stimulated the expression of neural CRAMP via the free fatty acids receptors 2/3 (FFAR2/3), and prevented EAE. This study shows that CRAMP produced by different cell types has opposing effects on neuroinflammation, offering therapeutic opportunities for MS and other neuroinflammatory disorders.
Collapse
MESH Headings
- Animals
- Mice
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Neutrophils/immunology
- Neurons/metabolism
- Neurons/pathology
- Neurons/immunology
- Cathelicidins/genetics
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/genetics
- Antimicrobial Cationic Peptides/genetics
- Extracellular Traps/immunology
- Extracellular Traps/genetics
- Extracellular Traps/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/genetics
- Neuroinflammatory Diseases/immunology
- Female
- Mice, Inbred C57BL
- Antimicrobial Peptides/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/genetics
Collapse
Affiliation(s)
- Subash Chand Verma
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Emmanuelle Enée
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Kanchanadevi Manasse
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Feriel Rebhi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Axelle Penc
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - David Romeo-Guitart
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Cuc Bui Thi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Matthias Titeux
- Université Paris Cité, Imagine Institute, INSERM U1163, Paris, France
| | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
- APHP, Hôpital Necker-Enfants Malades, Paris, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, Université Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| | - Julien Diana
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| |
Collapse
|
19
|
Shi Y, Peng H, Liao Y, Li J, Yin Y, Peng H, Wang L, Tan Y, Li C, Bai H, Ma C, Tan W, Li X. The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. Probiotics Antimicrob Proteins 2024; 16:2054-2072. [PMID: 37668855 PMCID: PMC11573835 DOI: 10.1007/s12602-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
Collapse
Affiliation(s)
- Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China.
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Yangyan Yin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyan Peng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Fangchenggang Administrative Examination and Approval Service Center, Fangchenggang, 538001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, 530021, China
| | - Wenbao Tan
- Qibainong Chicken Industry Development Center of Dahua Yao Autonomous County, Dahua Guangxi, 530800, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
20
|
Wallblom K, Forsberg F, Lundgren S, Fisher J, Cardoso J, Petruk G, Strömdahl A, Saleh K, Puthia M, Schmidtchen A. Bactogram: Spatial Analysis of Bacterial Colonisation in Epidermal Wounds. Exp Dermatol 2024; 33:e70018. [PMID: 39627888 PMCID: PMC11615128 DOI: 10.1111/exd.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 12/06/2024]
Abstract
Skin barrier damage and subsequent development of harmful microbiota contribute to conditions such as wound infections, atopic dermatitis and chronic wounds, which impact millions of people globally and pose a significant economic burden on healthcare systems. Established microbial sampling methods, such as swabs and tissue biopsies, provide limited information on the spatial distribution of bacteria. We here describe a new method that produces a visual map of the distribution of cultivable bacteria, denoted 'Bactogram', across the whole wound and surrounding skin, suitable for image-based quantification. As part of an exploratory endpoint in a clinical trial we applied the Bactogram method to 48 suction blister wounds in 24 healthy volunteers. Bacteria developed in all wounds, predominantly on the skin under the dressing and near wound edges. Two quantification methods, based on visual scoring and image analysis, demonstrated high inter-, and intra-rater agreement and were used to characterise bacterial re-colonisation during epidermal wound healing. We also demonstrated proof of concept that the method can be used with chromogenic agar to enable spatial identification of pathogenic bacterial species, such as Staphylococcus aureus. In conclusion, this study introduces a simple method for sampling bacteria over large areas and generating a bacterial map that can identify spatial variations in bacterial composition and abundance in skin and wound conditions. Trial Registration: ClinicalTrials.gov identifier: NCT05378997.
Collapse
Affiliation(s)
- Karl Wallblom
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
- Department of DermatologySkane University HospitalLundSweden
| | - Fredrik Forsberg
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Sigrid Lundgren
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
- Department of DermatologySkane University HospitalLundSweden
| | - Jane Fisher
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - José Cardoso
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Ann‐Charlotte Strömdahl
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Karim Saleh
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences LundLund UniversityLundSweden
- Department of DermatologySkane University HospitalLundSweden
| |
Collapse
|
21
|
Yu C, Xu D, Luo Y, Jiao J, Liu G, Wang F, Gao Y, Sun X, Lv X, Wu H, Kong X. Osteopontin Depletion in Nonhematopoietic Cells Improves Outcomes in Septic Mice by Enhancing Antimicrobial Peptide Production. J Infect Dis 2024; 230:e1146-e1157. [PMID: 38913690 PMCID: PMC11566238 DOI: 10.1093/infdis/jiae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Osteopontin (Opn) depletion can improve septic outcomes, but the underlying mechanism remains unknown. In this study, we demonstrated that nonhematopoietic but not hematopoietic Opn depletion improved septic outcomes. When compared with wild type mice, cohoused Opn-/- mice displayed enhanced production of antibacterial peptides (AMPs), decreased bacterial loads, and a distinct bacterial composition of gut microbiota. Fecal microbiota transplantation and OPN neutralization assay showed that Opn depletion could reduce bacterial loads and improve septic inflammation. By employing an intestinal organoid culture system, we proved that OPN neutralization in wild type organoids could inactivate AKT and decrease FOXO3a phosphorylation, resulting in enhanced AMP production, whereas OPN treatment in OPN-deficient organoids could activate AKT and increase FOXO3a phosphorylation, leading to reduced AMP production. Our findings identified OPN as a novel regulatory factor of AMP production to modulate bacterial loads and composition of gut microbiota, in turn affecting sepsis outcomes.
Collapse
Affiliation(s)
- Chang Yu
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine
| | - Yichun Luo
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Guanjie Liu
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
22
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
23
|
Yao H, Wang Y, Wang S, Sun C, Zhou Y, Jiang L, Wang Z, Wang X, Zhang Z, Yang T, Song F, Luo H. A multiplex microbial profiling system for the identification of the source of body fluid and skin samples. Forensic Sci Int Genet 2024; 73:103124. [PMID: 39173342 DOI: 10.1016/j.fsigen.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Determining the source of body fluids is crucial in forensic investigations, as it provides valuable information about suspects and the nature of the crime. Microbial markers that trace the source of tissues and body fluids based on site specificity and temporal stability are often used effectively for this purpose. In this study, a multiplex system comprising seven microbial markers (Finegoldia magna, Corynebacterium tuberculostearicum, Cutibacterium acnes, Haemophilus parainfluenzae, Streptococcus oralis, Prevotella melaninogenica and Faecalibacterium prausnitzii) was developed to distinguish between skin, saliva, and feces samples. Based on these markers, the system produces electropherograms that are specific for each sample type. We collected 492 samples from six different skin sites (palm, antecubital crease, inguinal crease, cheek, upper back, and toe web space), the buccal mucosa, and stool were collected to further test the system. Beta diversity analysis revealed distinct clustering among the three sample groups. Additionally, skin microenvironment cluster analysis was used to identify skin sites accurately. This analysis classified skin samples into four distinct microenvironments: dry, moist, oily, and foot. Finally, we established a machine learning prediction model based on random forest regression to identify the skin microenvironment, achieving an overall prediction accuracy of 79 %. The multiplex system developed in this study accurately identifies the sources of body fluids, and the skin microenvironment. These findings offer new insights into the application of microbial markers in forensic science.
Collapse
Affiliation(s)
- Hewen Yao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Chaoran Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xindi Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zhirui Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Tingting Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
24
|
Liu H, Wang S, Zhang Z, Yan H, He T, Wei X, Shi Y, Chen Y, Wang W, Li X. Nanopore-based full-length transcriptome sequencing of the skin in Pseudopleuronectes yokohamae identifies novel antimicrobial peptide genes. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109957. [PMID: 39393612 DOI: 10.1016/j.fsi.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The marbled flounder (Pseudopleuronectes yokohamae) is highly esteemed for its exceptional nutritional value and delicious taste. However, this species has extremely limited transcriptome data, which can offer priceless information for disease protection. In the study, the skin transcriptomic sequencing of P. yokohamae revealed 7.72 GB of clean data using the Nanopore sequencing platform. The results revealed 30,498 transcripts of functional annotations in the P. yokohamae transcriptome. All transcripts were searched in eight functional databases. A total of 10,337 ORFs were obtained, of which 6081 complete ORFs accounted for 58.83% of all predicted CDS. Moreover, 10,195 SSRs were detected. Meanwhile, the non-pecific immunity pathways were investigated for better understanding of the immunological reaction in P. yokohamae, and seven innate immune pathways were identified. The innate-immune related genes were highly expressed in the NOD-like receptor signaling pathway, followed by the C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. In this study, four families of antimicrobial peptides (AMPs) in P. yokohamae were analysed for the first time, including piscidins, hepcidins, liver-expressed antimicrobial peptide and defensins. Seven AMPs, including Pypleurocidin-like WF3, Pypleurocidin-like WFX, Pyhepcidin 1, Pyhepcidin-like 1, PyLEAP-2, Pybeta-defensin and Pybeta-defensin-like 1, were further identified. The seven AMPs showed a highly identity in their cDNA and genomic structures and an inducible expression pattern preferable to skin in response to pathogens. The transcriptomic data and investigation of AMPs from P. yokohamae promote a deeper awareness of fish mucosal immunity and provide information in the prevention of fish diseases.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zheng Zhang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
| | - Huixiang Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
25
|
Lee W, Lin SL, Chiang CS, Chen JY, Chieng WW, Huang SR, Chang TY, Linju Yen B, Hung MC, Chang KC, Lee HT, Jeng LB, Shyu WC. Role of HIF-1α-Activated IL-22/IL-22R1/Bmi1 Signaling Modulates the Self-Renewal of Cardiac Stem Cells in Acute Myocardial Ischemia. Stem Cell Rev Rep 2024; 20:2194-2214. [PMID: 39264501 PMCID: PMC11554697 DOI: 10.1007/s12015-024-10774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.
Collapse
Affiliation(s)
- Wei Lee
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - Syuan-Ling Lin
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan
| | - Jui-Yu Chen
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Wee-Wei Chieng
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Shu-Rou Huang
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Ting-Yu Chang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, 350, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, CMU, Taichung, 404, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, CMUH, Taichung, 404, Taiwan
- School of Medicine, CMU, Taichung, 404, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 404, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Organ Transplantation Center, CMUH, Taichung, 404, Taiwan
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan.
- Department of Neurology, CMUH, Taichung, 404, Taiwan.
- Department of Occupational Therapy, Asia University, No. 2, Yude Rd., North Dist, Taichung City, 404332, Taiwan.
| |
Collapse
|
26
|
Wang ZC, Hu YY, Shen XZ, Tan WQ. Absence of Langerhans cells resulted in over-influx of neutrophils and increased bacterial burden in skin wounds. Cell Death Dis 2024; 15:760. [PMID: 39424788 PMCID: PMC11489468 DOI: 10.1038/s41419-024-07143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Langerhans cells (LCs) are resident dendritic cells in the epidermis and their roles in presenting antigens derived from microorganisms present in the skin has been well appreciated. However, it is generally thought that incoming neutrophils are mainly responsible for eradicating invading pathogens in the early stage of wounds and a role of LCs in innate immunity is elusive. In the current study, we showed that wounds absent of LCs had a delayed closure. Mechanistically, LCs were the primary cells in warding off bacteria invasion at the early stage of wound healing. Without LCs, commensal bacteria quickly invaded and propagated in the wounded area. keratinocytes surrounding the wounds responded to the excessive bacteria by elevated production of CXCL5, resulting in an over-influx of neutrophils. The over-presence of activated neutrophils, possibly together with the aggravated invasion of bacteria, was detrimental to epidermal progenitor cell propagation and re-epithelialization. These observations underscore an indispensable role of LCs as effective guardians that preclude both bacteria invasion and damages inflicted by secondary inflammation.
Collapse
Affiliation(s)
- Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
28
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Moussa AY. Streptomyces Endophytes in Edible Plants: New Insights into their Chemistry and Health Benefits. Chem Biodivers 2024; 21:e202400888. [PMID: 38884446 DOI: 10.1002/cbdv.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Streptomyces is the largest source of microbial antibiotics with about 50 % of marketed antimicrobial drugs originating from this genus. Endophytic streptomyces are the link between medicinal plants and the microbial world. Endophytic Streptomyces in edible plants were not targeted before despite their uniqueness and importance. In this review, we analyzed the chemical diversity of more than 150 compounds belonging to endophytic Streptomyces chemical classes such as alkaloids, polyketides, peptides, macrolides and terpenes and their biological activities. This analysis showed a dominant antimicrobial effect for most of the isolated compounds and highlighted an underestimated diversity to be studied or repurposed for other biological activities. Return to edible plants use and conducting toxicity studies to rationalize their nutraceutical potential based on their beneficial endophytes is urged. Although there are many studies for non-vertebrates, the nutraceutical potential of these plants is expected to improve the gut microbiota since they are enriched with bioactive compounds from streptomyces species. This is the first review to discuss edible plants associated streptomyces, and we prospect that many studies will follow to unravel the mysterious health benefits of streptomyces in the human microbiome and encourage the revival of a correct lifestyle for the sake of a healthier microbiome.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Postal address, 11566, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
30
|
Zheng X, Gong T, Luo W, Hu B, Gao J, Li Y, Liu R, Xie N, Yang W, Xu X, Cheng L, Zhou C, Yuan Q, Huang C, Peng X, Zhou X. Fusobacterium nucleatum extracellular vesicles are enriched in colorectal cancer and facilitate bacterial adhesion. SCIENCE ADVANCES 2024; 10:eado0016. [PMID: 39303027 PMCID: PMC11414721 DOI: 10.1126/sciadv.ado0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Fusobacterium nucleatum in colorectal cancer (CRC) tissue is implicated at multiple stages of the disease, while the mechanisms underlying bacterial translocation and colonization remain incompletely understood. Herein, we investigated whether extracellular vesicles derived from F. nucleatum (FnEVs) have impacts on bacterial colonization. In mice with colitis-related CRC, a notable enrichment of FnEVs was observed, leading to a significant increase in intratumor colonization by F. nucleatum and accelerated progression of CRC. The enrichment of FnEVs in clinical CRC tissues was demonstrated. Subsequently, we revealed that FnEVs undergo membrane fusion with CRC cells, leading to the transfer and retention of FomA on recipient cell surfaces. Given its ability to facilitate F. nucleatum autoaggregation through interaction with FN1441, the presence of FomA on CRC cell surfaces presents a target for bacterial adhesion. Collectively, the findings unveil a mechanism used by EVs to prepare a niche conducive for bacterial colonization in distal organs.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Wanyi Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
31
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
32
|
Liu J, Jiang L, Wang H, Wu J, Gao Q, Huan C, Gao S. Protamine cleavage specificity of the avian pathogen Escherichia coli OmpT reveals two substrate-binding sites related to virulence. Front Vet Sci 2024; 11:1410113. [PMID: 39301284 PMCID: PMC11410778 DOI: 10.3389/fvets.2024.1410113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The pathogenic nature of bacteria can be increased by cleaving antimicrobial peptides using omptins, to avoid or counter the host's natural immune defenses. Plasmid-encoded OmpT (pOmpT or ArlC) in avian pathogenic Escherichia coli (APEC), like the chromosome-encoded OmpT (cOmpT), belongs to the omptin family and both exhibit highly similar sequences and structures. Through sequence alignment and physiological examinations, pOmpT has been identified as a virulence factor, distinct from cOmpT in terms of substrate specificity. When pOmpT is compared with cOmpT regarding their proteolytic activities and target substrates, Asp267 and Ser276 on loop 5 of cOmpT are found to be binding sites that facilitate substrate anchoring and enhance substrate cleavage (protamine or synthetic peptide) by the catalytic center. Conversely, the characteristics of residues at positions 267 and 276 on loop 5 of pOmpT inhibit protamine cleavage, yet allow the specific cleavage of the human antimicrobial peptide RNase 7, which plays a role in host defense. This finding suggests a relationship between these two binding sites and substrate specificity. Furthermore, the substrate-binding sites (residues 267 and 276, particularly residue 267) of cOmpT and pOmpT are determined to be critical in the virulence of APEC. In summary, residues 267 and 276 of pOmpT are crucial for the pathogenicity of APEC and offer new insights into the determinants of APEC virulence and the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Juanhua Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| | - Luyao Jiang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| | - Hang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| | - Jiayan Wu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| | - Qingqing Gao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| | - Changchao Huan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| | - Song Gao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou, China
| |
Collapse
|
33
|
Kim NY, Lee SI. Lauric acid reduces apoptosis by inhibiting FOXO3a-signaling in deoxynivalenol-treated IPEC-J2 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1010-1020. [PMID: 39398305 PMCID: PMC11466732 DOI: 10.5187/jast.2023.e92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2024]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant of food or feed worldwide and causes disease in animals. Lauric acid (LA) is a medium-chain fatty acid useful for barrier functions such as antimicrobial activity in the intestine of monogastric animals. However, the molecular mechanisms by which lauric acid exerts its effects on the deoxynivalenol-exposed small intestine have not been studied. We used an intestinal porcine epithelial cell line (IPEC-J2) as an in vitro model to explore the molecular mechanism of lauric acid in alleviating deoxynivalenol-induced damage. We found that lauric acid reversed deoxynivalenol-induced reduction in cell viability. Our quantitative real-time polymerase chain reaction results indicated that lauric acid alleviated deoxynivalenol-induced apoptosis through Annexin-V. Additionally, immunofluorescence and Western blotting showed that lauric acid attenuated deoxynivalenol-induced forkhead box O3 (FOXO3a) translocation into the nucleus. These results suggest that lauric acid attenuates forkhead box O3 translocation in the small intestine damaged by deoxynivalenol, thereby reducing apoptosis. In conclusion, this study found that lauric acid alleviates deoxynivalenol-induced damage in intestinal porcine epithelial cell line through various molecular mechanisms.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Sang In Lee
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
34
|
Wang Y, Liu Y, Xu Z, Chai L, Wang H. Variation in the sensitivity of intestine and skin of Bufo gargarizans and Rana chensinensis tadpoles in relation to zinc exposure. CHEMOSPHERE 2024; 363:142874. [PMID: 39019178 DOI: 10.1016/j.chemosphere.2024.142874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Zinc (Zn) contaminants in the aquatic environment have an intricate impact on amphibians. Amphibian gut and skin microbiota are participated in regulating their normal physiological functions. Here, we investigated the effects of Zn on the gut and skin tissues and microbiota of Bufo gargarizans and Rana chensinensis tadpoles using histological methods and 16S rRNA sequencing technology. Our results showed a decrease in the height of enterocytes and skin epithelial cells after Zn treatment. Furthermore, Zn exposure elicited alterations in the composition and structure of the gut and skin microbiota at the phylum and genus levels in Bufo gargarizans and Rana chensinensis tadpoles. The feature predictions revealed an elevation in the abundance of potentially pathogenic bacteria and stress-tolerant bacteria in the gut and skin of both tadpoles after zinc exposure. We also speculated that microbiota from various species and organs exhibit varying degrees of sensitivity to zinc based on the functional predictions results. In the context of increasing environmental pollution and the global amphibians decline, our research enriches the current understanding of effects of zinc on amphibian microbiota and provides new framework for artificial breeding and amphibian conservation.
Collapse
Affiliation(s)
- Yaxi Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Ying Liu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhangying Xu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
35
|
Li S, Zhao L, Xiao J, Guo Y, Fu R, Zhang Y, Xu S. The gut microbiome: an important role in neurodegenerative diseases and their therapeutic advances. Mol Cell Biochem 2024; 479:2217-2243. [PMID: 37787835 DOI: 10.1007/s11010-023-04853-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
There are complex interactions between the gut and the brain. With increasing research on the relationship between gut microbiota and brain function, accumulated clinical and preclinical evidence suggests that gut microbiota is intimately involved in the pathogenesis of neurodegenerative diseases (NDs). Increasingly studies are beginning to focus on the association between gut microbiota and central nervous system (CNS) degenerative pathologies to find potential therapies for these refractory diseases. In this review, we summarize the changes in the gut microbiota in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis and contribute to our understanding of the function of the gut microbiota in NDs and its possible involvement in the pathogenesis. We subsequently discuss therapeutic approaches targeting gut microbial abnormalities in these diseases, including antibiotics, diet, probiotics, and fecal microbiota transplantation (FMT). Furthermore, we summarize some completed and ongoing clinical trials of interventions with gut microbes for NDs, which may provide new ideas for studying NDs.
Collapse
Affiliation(s)
- Songlin Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Jie Xiao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
36
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
37
|
Dinić M, Burgess JL, Lukić J, Catanuto P, Radojević D, Marjanović J, Verpile R, Thaller SR, Gonzalez T, Golić N, Strahinić I, Tomic-Canic M, Pastar I. Postbiotic lactobacilli induce cutaneous antimicrobial response and restore the barrier to inhibit the intracellular invasion of Staphylococcus aureus in vitro and ex vivo. FASEB J 2024; 38:e23801. [PMID: 39018106 PMCID: PMC11258854 DOI: 10.1096/fj.202400054rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Intracellular pathogens including Staphylococcus aureus contribute to the non-healing phenotype of chronic wounds. Lactobacilli, well known as beneficial bacteria, are also reported to modulate the immune system, yet their role in cutaneous immunity remains largely unknown. We explored the therapeutic potential of bacteria-free postbiotics, bioactive lysates of lactobacilli, to reduce intracellular S. aureus colonization and promote healing. Fourteen postbiotics derived from various lactobacilli species were screened, and Latilactobacillus curvatus BGMK2-41 was selected for further analysis based on the most efficient ability to reduce intracellular infection by S. aureus diabetic foot ulcer clinical isolate and S. aureus USA300. Treatment of both infected keratinocytes in vitro and infected human skin ex vivo with BGMK2-41 postbiotic cleared S. aureus. Keratinocytes treated in vitro with BGMK2-41 upregulated expression of antimicrobial response genes, of which DEFB4, ANG, and RNASE7 were also found upregulated in treated ex vivo human skin together with CAMP exclusively upregulated ex vivo. Furthermore, BGMK2-41 postbiotic treatment has a multifaceted impact on the wound healing process. Treatment of keratinocytes stimulated cell migration and the expression of tight junction proteins, while in ex vivo human skin BGMK2-41 increased expression of anti-inflammatory cytokine IL-10, promoted re-epithelialization, and restored the epidermal barrier via upregulation of tight junction proteins. Together, this provides a potential therapeutic approach for persistent intracellular S. aureus infections.
Collapse
Affiliation(s)
- Miroslav Dinić
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Jovanka Lukić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paola Catanuto
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanović
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Verpile
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seth R. Thaller
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tammy Gonzalez
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Strahinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
38
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
39
|
Palmieri V, Falcone M. Editorial: The role of physical and biological gut barriers in modulating crosstalk between the microbiota and the immune system. Front Immunol 2024; 15:1448642. [PMID: 39100661 PMCID: PMC11294226 DOI: 10.3389/fimmu.2024.1448642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
- Vittoria Palmieri
- Autoimmune Pathogenesis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marika Falcone
- Autoimmune Pathogenesis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
41
|
Benvenuti L, Di Salvo C, Bellini G, Seguella L, Rettura F, Esposito G, Antonioli L, Ceravolo R, Bernardini N, Pellegrini C, Fornai M. Gut-directed therapy in Parkinson's disease. Front Pharmacol 2024; 15:1407925. [PMID: 38974034 PMCID: PMC11224490 DOI: 10.3389/fphar.2024.1407925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Parkinson's disease (PD) is a common and slow-progressing neurodegenerative disorder characterized by motor and non-motor symptoms, including gastrointestinal (GI) dysfunctions. Over the last years, the microbiota-gut-brain (MGB) axis is emerging as a bacterial-neuro-immune ascending pathway that contributes to the progression of PD. Indeed, PD patients are characterized by changes in gut microbiota composition, alterations of intestinal epithelial barrier (IEB) and enteric neurogenic/inflammatory responses that, besides determining intestinal disturbances, contribute to brain pathology. In this context, despite the causal relationship between gut dysbiosis, impaired MGB axis and PD remains to be elucidated, emerging evidence shows that MGB axis modulation can represent a suitable therapeutical strategy for the treatment of PD. This review provides an overview of the available knowledge about the beneficial effects of gut-directed therapies, including dietary interventions, prebiotics, probiotics, synbiotics and fecal microbiota transplantation (FMT), in both PD patients and animal models. In this context, particular attention has been devoted to the mechanisms by which the modulation of MGB axis could halt or slow down PD pathology and, most importantly, how these approaches can be included in the clinical practice.
Collapse
Affiliation(s)
- Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Francesco Rettura
- Unit of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
An R, Ni Z, Xie E, Rey FE, Kendziorski C, Thibeault SL. Single-cell view into the role of microbiota shaping host immunity in the larynx. iScience 2024; 27:110156. [PMID: 38974468 PMCID: PMC11225822 DOI: 10.1016/j.isci.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| | - Zijian Ni
- Department of Statistics, College of Letters and Sciences , UW-Madison, Madison, WI, USA
| | - Elliott Xie
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Federico E. Rey
- Department of Bacteriology, College of Agriculture and Life Sciences, UW-Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
43
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
44
|
Lachat J, Lextrait G, Jouan R, Boukherissa A, Yokota A, Jang S, Ishigami K, Futahashi R, Cossard R, Naquin D, Costache V, Augusto L, Tissières P, Biondi EG, Alunni B, Timchenko T, Ohbayashi T, Kikuchi Y, Mergaert P. Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. Proc Natl Acad Sci U S A 2024; 121:e2401802121. [PMID: 38865264 PMCID: PMC11194567 DOI: 10.1073/pnas.2401802121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.
Collapse
Affiliation(s)
- Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Romain Jouan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Amira Boukherissa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Aya Yokota
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Vlad Costache
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments (MIMA2), INRAe, Jouy-en-Josas78352, France
| | - Luis Augusto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Pierre Tissières
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Emanuele G. Biondi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Benoît Alunni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Tatiana Timchenko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Tsubasa Ohbayashi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo062-8517, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette91198, France
| |
Collapse
|
45
|
Li M, Li H, Yuan T, Liu Z, Li Y, Tan Y, Long Y. MUC21: a new target for tumor treatment. Front Oncol 2024; 14:1410761. [PMID: 38933439 PMCID: PMC11199685 DOI: 10.3389/fonc.2024.1410761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
MUC21, also known as Epiglycanin, is a high-molecular-weight glycoprotein with transmembrane mucin properties. It consists of a tandem repeat domain, a stem domain, a transmembrane domain and a cytoplasmic tail. MUC21 is expressed is observed in normal tissues in organs like the thymus, testes, lungs, and large intestine. Research has shown that MUC21 is expressed in esophageal squamous cell carcinoma, lung adenocarcinoma, glioblastoma, thyroid cancer, melanoma, and various other malignant tumors in distinctive manner. Additionally, tumor invasion, metastasis, and poor prognosis are linked to it. Some researchers believe that MUC21 has the potential to become a new target in cancer treatment. This review aims to deliver a comprehensive overview of the glycosylation, function, and research progress of MUC21 in multiple types of cancer and infectious diseases.
Collapse
Affiliation(s)
- Miao Li
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
| | - Hui Li
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
| | - Ting Yuan
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhi Liu
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yingzheng Tan
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yunzhu Long
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
46
|
Verma J, Devi S, Narang A, Kaur S, Manhas RK. Probiotic potential of Streptomyces levis strain HFM-2 isolated from human gut and its antibiofilm properties against pathogenic bacteria. BMC Microbiol 2024; 24:208. [PMID: 38862894 PMCID: PMC11165917 DOI: 10.1186/s12866-024-03353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a serious worldwide public health concern that needs immediate action. Probiotics could be a promising alternative for fighting antibiotic resistance, displaying beneficial effects to the host by combating diseases, improving growth, and stimulating the host immune responses against infection. This study was conducted to evaluate the probiotic, antibacterial, and antibiofilm potential of Streptomyces levis strain HFM-2 isolated from the healthy human gut. RESULTS In vitro antibacterial activity in the cell-free supernatant of S. levis strain HFM-2 was evaluated against different pathogens viz. K. pneumoniae sub sp. pneumoniae, S. aureus, B. subtilis, VRE, S. typhi, S. epidermidis, MRSA, V. cholerae, M. smegmatis, E. coli, P. aeruginosa and E. aerogenes. Further, the ethyl acetate extract from S. levis strain HFM-2 showed strong biofilm inhibition against S. typhi, K. pneumoniae sub sp. pneumoniae, P. aeruginosa and E. coli. Fluorescence microscopy was used to detect biofilm inhibition properties. MIC and MBC values of EtOAc extract were determined at 500 and 1000 µg/mL, respectively. Further, strain HFM-2 showed high tolerance in gastric juice, pancreatin, bile, and at low pH. It exhibited efficient adhesion properties, displaying auto-aggregation (97.0%), hydrophobicity (95.71%, 88.96%, and 81.15% for ethyl acetate, chloroform and xylene, respectively), and showed 89.75%, 86.53%, 83.06% and 76.13% co-aggregation with S. typhi, MRSA, S. pyogenes and E. coli, respectively after 60 min of incubation. The S. levis strain HFM-2 was susceptible to different antibiotics such as tetracycline, streptomycin, kanamycin, ciprofloxacin, erythromycin, linezolid, meropenem, amikacin, gentamycin, clindamycin, moxifloxacin and vancomycin, but resistant to ampicillin and penicillin G. CONCLUSION The study shows that S. levis strain HFM-2 has significant probiotic properties such as good viability in bile, gastric juice, pancreatin environment, and at low pH; proficient adhesion properties, and antibiotic susceptibility. Further, the EtOAc extract of Streptomyces levis strain HFM-2 has a potent antibiofilm and antibacterial activity against antibacterial-resistant clinical pathogens.
Collapse
Affiliation(s)
- Jaya Verma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sapna Devi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
47
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
48
|
Kocabiyik O, Amlashi P, Vo AL, Suh H, Rodriguez-Aponte SA, Dalvie NC, Love JC, Andrabi R, Irvine DJ. Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. SCIENCE ADVANCES 2024; 10:eadn7786. [PMID: 38809992 PMCID: PMC11135404 DOI: 10.1126/sciadv.adn7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Lina Vo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
49
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
50
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|